1 //===- IndirectBrExpandPass.cpp - Expand indirectbr to switch -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Implements an expansion pass to turn `indirectbr` instructions in the IR
11 /// into `switch` instructions. This works by enumerating the basic blocks in
12 /// a dense range of integers, replacing each `blockaddr` constant with the
13 /// corresponding integer constant, and then building a switch that maps from
14 /// the integers to the actual blocks. All of the indirectbr instructions in the
15 /// function are redirected to this common switch.
17 /// While this is generically useful if a target is unable to codegen
18 /// `indirectbr` natively, it is primarily useful when there is some desire to
19 /// get the builtin non-jump-table lowering of a switch even when the input
20 /// source contained an explicit indirect branch construct.
22 /// Note that it doesn't make any sense to enable this pass unless a target also
23 /// disables jump-table lowering of switches. Doing that is likely to pessimize
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/Sequence.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/DomTreeUpdater.h"
32 #include "llvm/CodeGen/TargetPassConfig.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetMachine.h"
46 #define DEBUG_TYPE "indirectbr-expand"
50 class IndirectBrExpandPass
: public FunctionPass
{
51 const TargetLowering
*TLI
= nullptr;
54 static char ID
; // Pass identification, replacement for typeid
56 IndirectBrExpandPass() : FunctionPass(ID
) {
57 initializeIndirectBrExpandPassPass(*PassRegistry::getPassRegistry());
60 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
61 AU
.addPreserved
<DominatorTreeWrapperPass
>();
64 bool runOnFunction(Function
&F
) override
;
67 } // end anonymous namespace
69 char IndirectBrExpandPass::ID
= 0;
71 INITIALIZE_PASS_BEGIN(IndirectBrExpandPass
, DEBUG_TYPE
,
72 "Expand indirectbr instructions", false, false)
73 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
74 INITIALIZE_PASS_END(IndirectBrExpandPass
, DEBUG_TYPE
,
75 "Expand indirectbr instructions", false, false)
77 FunctionPass
*llvm::createIndirectBrExpandPass() {
78 return new IndirectBrExpandPass();
81 bool IndirectBrExpandPass::runOnFunction(Function
&F
) {
82 auto &DL
= F
.getParent()->getDataLayout();
83 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
87 auto &TM
= TPC
->getTM
<TargetMachine
>();
88 auto &STI
= *TM
.getSubtargetImpl(F
);
89 if (!STI
.enableIndirectBrExpand())
91 TLI
= STI
.getTargetLowering();
93 Optional
<DomTreeUpdater
> DTU
;
94 if (auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>())
95 DTU
.emplace(DTWP
->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy
);
97 SmallVector
<IndirectBrInst
*, 1> IndirectBrs
;
99 // Set of all potential successors for indirectbr instructions.
100 SmallPtrSet
<BasicBlock
*, 4> IndirectBrSuccs
;
102 // Build a list of indirectbrs that we want to rewrite.
103 for (BasicBlock
&BB
: F
)
104 if (auto *IBr
= dyn_cast
<IndirectBrInst
>(BB
.getTerminator())) {
105 // Handle the degenerate case of no successors by replacing the indirectbr
106 // with unreachable as there is no successor available.
107 if (IBr
->getNumSuccessors() == 0) {
108 (void)new UnreachableInst(F
.getContext(), IBr
);
109 IBr
->eraseFromParent();
113 IndirectBrs
.push_back(IBr
);
114 for (BasicBlock
*SuccBB
: IBr
->successors())
115 IndirectBrSuccs
.insert(SuccBB
);
118 if (IndirectBrs
.empty())
121 // If we need to replace any indirectbrs we need to establish integer
122 // constants that will correspond to each of the basic blocks in the function
123 // whose address escapes. We do that here and rewrite all the blockaddress
124 // constants to just be those integer constants cast to a pointer type.
125 SmallVector
<BasicBlock
*, 4> BBs
;
127 for (BasicBlock
&BB
: F
) {
128 // Skip blocks that aren't successors to an indirectbr we're going to
130 if (!IndirectBrSuccs
.count(&BB
))
133 auto IsBlockAddressUse
= [&](const Use
&U
) {
134 return isa
<BlockAddress
>(U
.getUser());
136 auto BlockAddressUseIt
= llvm::find_if(BB
.uses(), IsBlockAddressUse
);
137 if (BlockAddressUseIt
== BB
.use_end())
140 assert(std::find_if(std::next(BlockAddressUseIt
), BB
.use_end(),
141 IsBlockAddressUse
) == BB
.use_end() &&
142 "There should only ever be a single blockaddress use because it is "
143 "a constant and should be uniqued.");
145 auto *BA
= cast
<BlockAddress
>(BlockAddressUseIt
->getUser());
147 // Skip if the constant was formed but ended up not being used (due to DCE
149 if (!BA
->isConstantUsed())
152 // Compute the index we want to use for this basic block. We can't use zero
153 // because null can be compared with block addresses.
154 int BBIndex
= BBs
.size() + 1;
157 auto *ITy
= cast
<IntegerType
>(DL
.getIntPtrType(BA
->getType()));
158 ConstantInt
*BBIndexC
= ConstantInt::get(ITy
, BBIndex
);
160 // Now rewrite the blockaddress to an integer constant based on the index.
161 // FIXME: This part doesn't properly recognize other uses of blockaddress
162 // expressions, for instance, where they are used to pass labels to
163 // asm-goto. This part of the pass needs a rework.
164 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(BBIndexC
, BA
->getType()));
168 // There are no blocks whose address is taken, so any indirectbr instruction
169 // cannot get a valid input and we can replace all of them with unreachable.
170 SmallVector
<DominatorTree::UpdateType
, 8> Updates
;
172 Updates
.reserve(IndirectBrSuccs
.size());
173 for (auto *IBr
: IndirectBrs
) {
175 for (BasicBlock
*SuccBB
: IBr
->successors())
176 Updates
.push_back({DominatorTree::Delete
, IBr
->getParent(), SuccBB
});
178 (void)new UnreachableInst(F
.getContext(), IBr
);
179 IBr
->eraseFromParent();
182 assert(Updates
.size() == IndirectBrSuccs
.size() &&
183 "Got unexpected update count.");
184 DTU
->applyUpdates(Updates
);
189 BasicBlock
*SwitchBB
;
192 // Compute a common integer type across all the indirectbr instructions.
193 IntegerType
*CommonITy
= nullptr;
194 for (auto *IBr
: IndirectBrs
) {
196 cast
<IntegerType
>(DL
.getIntPtrType(IBr
->getAddress()->getType()));
197 if (!CommonITy
|| ITy
->getBitWidth() > CommonITy
->getBitWidth())
201 auto GetSwitchValue
= [DL
, CommonITy
](IndirectBrInst
*IBr
) {
202 return CastInst::CreatePointerCast(
203 IBr
->getAddress(), CommonITy
,
204 Twine(IBr
->getAddress()->getName()) + ".switch_cast", IBr
);
207 SmallVector
<DominatorTree::UpdateType
, 8> Updates
;
209 if (IndirectBrs
.size() == 1) {
210 // If we only have one indirectbr, we can just directly replace it within
212 IndirectBrInst
*IBr
= IndirectBrs
[0];
213 SwitchBB
= IBr
->getParent();
214 SwitchValue
= GetSwitchValue(IBr
);
216 Updates
.reserve(IndirectBrSuccs
.size());
217 for (BasicBlock
*SuccBB
: IBr
->successors())
218 Updates
.push_back({DominatorTree::Delete
, IBr
->getParent(), SuccBB
});
219 assert(Updates
.size() == IndirectBrSuccs
.size() &&
220 "Got unexpected update count.");
222 IBr
->eraseFromParent();
224 // Otherwise we need to create a new block to hold the switch across BBs,
225 // jump to that block instead of each indirectbr, and phi together the
226 // values for the switch.
227 SwitchBB
= BasicBlock::Create(F
.getContext(), "switch_bb", &F
);
228 auto *SwitchPN
= PHINode::Create(CommonITy
, IndirectBrs
.size(),
229 "switch_value_phi", SwitchBB
);
230 SwitchValue
= SwitchPN
;
232 // Now replace the indirectbr instructions with direct branches to the
233 // switch block and fill out the PHI operands.
235 Updates
.reserve(IndirectBrs
.size() + 2 * IndirectBrSuccs
.size());
236 for (auto *IBr
: IndirectBrs
) {
237 SwitchPN
->addIncoming(GetSwitchValue(IBr
), IBr
->getParent());
238 BranchInst::Create(SwitchBB
, IBr
);
240 Updates
.push_back({DominatorTree::Insert
, IBr
->getParent(), SwitchBB
});
241 for (BasicBlock
*SuccBB
: IBr
->successors())
242 Updates
.push_back({DominatorTree::Delete
, IBr
->getParent(), SuccBB
});
244 IBr
->eraseFromParent();
248 // Now build the switch in the block. The block will have no terminator
250 auto *SI
= SwitchInst::Create(SwitchValue
, BBs
[0], BBs
.size(), SwitchBB
);
252 // Add a case for each block.
253 for (int i
: llvm::seq
<int>(1, BBs
.size()))
254 SI
->addCase(ConstantInt::get(CommonITy
, i
+ 1), BBs
[i
]);
257 // If there were multiple indirectbr's, they may have common successors,
258 // but in the dominator tree, we only track unique edges.
259 SmallPtrSet
<BasicBlock
*, 8> UniqueSuccessors
;
260 Updates
.reserve(Updates
.size() + BBs
.size());
261 for (BasicBlock
*BB
: BBs
) {
262 if (UniqueSuccessors
.insert(BB
).second
)
263 Updates
.push_back({DominatorTree::Insert
, SwitchBB
, BB
});
265 DTU
->applyUpdates(Updates
);