[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / InterleavedAccessPass.cpp
blob0582378be4cd8c6a4a9b77c2ff54644e29421e5c
1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
11 // intrinsics.
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
21 // CodeGen.
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/CodeGen/TargetLowering.h"
52 #include "llvm/CodeGen/TargetPassConfig.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstIterator.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include <cassert>
71 #include <utility>
73 using namespace llvm;
75 #define DEBUG_TYPE "interleaved-access"
77 static cl::opt<bool> LowerInterleavedAccesses(
78 "lower-interleaved-accesses",
79 cl::desc("Enable lowering interleaved accesses to intrinsics"),
80 cl::init(true), cl::Hidden);
82 namespace {
84 class InterleavedAccess : public FunctionPass {
85 public:
86 static char ID;
88 InterleavedAccess() : FunctionPass(ID) {
89 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
92 StringRef getPassName() const override { return "Interleaved Access Pass"; }
94 bool runOnFunction(Function &F) override;
96 void getAnalysisUsage(AnalysisUsage &AU) const override {
97 AU.addRequired<DominatorTreeWrapperPass>();
98 AU.setPreservesCFG();
101 private:
102 DominatorTree *DT = nullptr;
103 const TargetLowering *TLI = nullptr;
105 /// The maximum supported interleave factor.
106 unsigned MaxFactor;
108 /// Transform an interleaved load into target specific intrinsics.
109 bool lowerInterleavedLoad(LoadInst *LI,
110 SmallVector<Instruction *, 32> &DeadInsts);
112 /// Transform an interleaved store into target specific intrinsics.
113 bool lowerInterleavedStore(StoreInst *SI,
114 SmallVector<Instruction *, 32> &DeadInsts);
116 /// Returns true if the uses of an interleaved load by the
117 /// extractelement instructions in \p Extracts can be replaced by uses of the
118 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
119 /// replacements are also performed.
120 bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
121 ArrayRef<ShuffleVectorInst *> Shuffles);
123 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
124 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
125 /// interleaving load. Any newly created shuffles that operate on \p LI will
126 /// be added to \p Shuffles. Returns true, if any changes to the IR have been
127 /// made.
128 bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
129 SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
130 LoadInst *LI);
133 } // end anonymous namespace.
135 char InterleavedAccess::ID = 0;
137 INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
138 "Lower interleaved memory accesses to target specific intrinsics", false,
139 false)
140 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
141 INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
142 "Lower interleaved memory accesses to target specific intrinsics", false,
143 false)
145 FunctionPass *llvm::createInterleavedAccessPass() {
146 return new InterleavedAccess();
149 /// Check if the mask is a DE-interleave mask of the given factor
150 /// \p Factor like:
151 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
152 static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
153 unsigned &Index) {
154 // Check all potential start indices from 0 to (Factor - 1).
155 for (Index = 0; Index < Factor; Index++) {
156 unsigned i = 0;
158 // Check that elements are in ascending order by Factor. Ignore undef
159 // elements.
160 for (; i < Mask.size(); i++)
161 if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
162 break;
164 if (i == Mask.size())
165 return true;
168 return false;
171 /// Check if the mask is a DE-interleave mask for an interleaved load.
173 /// E.g. DE-interleave masks (Factor = 2) could be:
174 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
175 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
176 static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
177 unsigned &Index, unsigned MaxFactor,
178 unsigned NumLoadElements) {
179 if (Mask.size() < 2)
180 return false;
182 // Check potential Factors.
183 for (Factor = 2; Factor <= MaxFactor; Factor++) {
184 // Make sure we don't produce a load wider than the input load.
185 if (Mask.size() * Factor > NumLoadElements)
186 return false;
187 if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
188 return true;
191 return false;
194 /// Check if the mask can be used in an interleaved store.
196 /// It checks for a more general pattern than the RE-interleave mask.
197 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
198 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
199 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
200 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
202 /// The particular case of an RE-interleave mask is:
203 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
204 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
205 static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
206 unsigned MaxFactor, unsigned OpNumElts) {
207 unsigned NumElts = Mask.size();
208 if (NumElts < 4)
209 return false;
211 // Check potential Factors.
212 for (Factor = 2; Factor <= MaxFactor; Factor++) {
213 if (NumElts % Factor)
214 continue;
216 unsigned LaneLen = NumElts / Factor;
217 if (!isPowerOf2_32(LaneLen))
218 continue;
220 // Check whether each element matches the general interleaved rule.
221 // Ignore undef elements, as long as the defined elements match the rule.
222 // Outer loop processes all factors (x, y, z in the above example)
223 unsigned I = 0, J;
224 for (; I < Factor; I++) {
225 unsigned SavedLaneValue;
226 unsigned SavedNoUndefs = 0;
228 // Inner loop processes consecutive accesses (x, x+1... in the example)
229 for (J = 0; J < LaneLen - 1; J++) {
230 // Lane computes x's position in the Mask
231 unsigned Lane = J * Factor + I;
232 unsigned NextLane = Lane + Factor;
233 int LaneValue = Mask[Lane];
234 int NextLaneValue = Mask[NextLane];
236 // If both are defined, values must be sequential
237 if (LaneValue >= 0 && NextLaneValue >= 0 &&
238 LaneValue + 1 != NextLaneValue)
239 break;
241 // If the next value is undef, save the current one as reference
242 if (LaneValue >= 0 && NextLaneValue < 0) {
243 SavedLaneValue = LaneValue;
244 SavedNoUndefs = 1;
247 // Undefs are allowed, but defined elements must still be consecutive:
248 // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
249 // Verify this by storing the last non-undef followed by an undef
250 // Check that following non-undef masks are incremented with the
251 // corresponding distance.
252 if (SavedNoUndefs > 0 && LaneValue < 0) {
253 SavedNoUndefs++;
254 if (NextLaneValue >= 0 &&
255 SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
256 break;
260 if (J < LaneLen - 1)
261 break;
263 int StartMask = 0;
264 if (Mask[I] >= 0) {
265 // Check that the start of the I range (J=0) is greater than 0
266 StartMask = Mask[I];
267 } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
268 // StartMask defined by the last value in lane
269 StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
270 } else if (SavedNoUndefs > 0) {
271 // StartMask defined by some non-zero value in the j loop
272 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
274 // else StartMask remains set to 0, i.e. all elements are undefs
276 if (StartMask < 0)
277 break;
278 // We must stay within the vectors; This case can happen with undefs.
279 if (StartMask + LaneLen > OpNumElts*2)
280 break;
283 // Found an interleaved mask of current factor.
284 if (I == Factor)
285 return true;
288 return false;
291 bool InterleavedAccess::lowerInterleavedLoad(
292 LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
293 if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
294 return false;
296 // Check if all users of this load are shufflevectors. If we encounter any
297 // users that are extractelement instructions or binary operators, we save
298 // them to later check if they can be modified to extract from one of the
299 // shufflevectors instead of the load.
301 SmallVector<ShuffleVectorInst *, 4> Shuffles;
302 SmallVector<ExtractElementInst *, 4> Extracts;
303 // BinOpShuffles need to be handled a single time in case both operands of the
304 // binop are the same load.
305 SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
307 for (auto *User : LI->users()) {
308 auto *Extract = dyn_cast<ExtractElementInst>(User);
309 if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
310 Extracts.push_back(Extract);
311 continue;
313 if (auto *BI = dyn_cast<BinaryOperator>(User)) {
314 if (all_of(BI->users(),
315 [](auto *U) { return isa<ShuffleVectorInst>(U); })) {
316 for (auto *SVI : BI->users())
317 BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI));
318 continue;
321 auto *SVI = dyn_cast<ShuffleVectorInst>(User);
322 if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
323 return false;
325 Shuffles.push_back(SVI);
328 if (Shuffles.empty() && BinOpShuffles.empty())
329 return false;
331 unsigned Factor, Index;
333 unsigned NumLoadElements =
334 cast<FixedVectorType>(LI->getType())->getNumElements();
335 auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
336 // Check if the first shufflevector is DE-interleave shuffle.
337 if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
338 NumLoadElements))
339 return false;
341 // Holds the corresponding index for each DE-interleave shuffle.
342 SmallVector<unsigned, 4> Indices;
344 Type *VecTy = FirstSVI->getType();
346 // Check if other shufflevectors are also DE-interleaved of the same type
347 // and factor as the first shufflevector.
348 for (auto *Shuffle : Shuffles) {
349 if (Shuffle->getType() != VecTy)
350 return false;
351 if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
352 Index))
353 return false;
355 assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
356 Indices.push_back(Index);
358 for (auto *Shuffle : BinOpShuffles) {
359 if (Shuffle->getType() != VecTy)
360 return false;
361 if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
362 Index))
363 return false;
365 assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
367 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
368 Indices.push_back(Index);
369 if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
370 Indices.push_back(Index);
373 // Try and modify users of the load that are extractelement instructions to
374 // use the shufflevector instructions instead of the load.
375 if (!tryReplaceExtracts(Extracts, Shuffles))
376 return false;
378 bool BinOpShuffleChanged =
379 replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
381 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
383 // Try to create target specific intrinsics to replace the load and shuffles.
384 if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
385 // If Extracts is not empty, tryReplaceExtracts made changes earlier.
386 return !Extracts.empty() || BinOpShuffleChanged;
389 append_range(DeadInsts, Shuffles);
391 DeadInsts.push_back(LI);
392 return true;
395 bool InterleavedAccess::replaceBinOpShuffles(
396 ArrayRef<ShuffleVectorInst *> BinOpShuffles,
397 SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
398 for (auto *SVI : BinOpShuffles) {
399 BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
400 Type *BIOp0Ty = BI->getOperand(0)->getType();
401 ArrayRef<int> Mask = SVI->getShuffleMask();
402 assert(all_of(Mask, [&](int Idx) {
403 return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
404 }));
406 auto *NewSVI1 =
407 new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
408 Mask, SVI->getName(), SVI);
409 auto *NewSVI2 = new ShuffleVectorInst(
410 BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
411 SVI->getName(), SVI);
412 BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags(
413 BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), SVI);
414 SVI->replaceAllUsesWith(NewBI);
415 LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI
416 << "\n With : " << *NewSVI1 << "\n And : "
417 << *NewSVI2 << "\n And : " << *NewBI << "\n");
418 RecursivelyDeleteTriviallyDeadInstructions(SVI);
419 if (NewSVI1->getOperand(0) == LI)
420 Shuffles.push_back(NewSVI1);
421 if (NewSVI2->getOperand(0) == LI)
422 Shuffles.push_back(NewSVI2);
425 return !BinOpShuffles.empty();
428 bool InterleavedAccess::tryReplaceExtracts(
429 ArrayRef<ExtractElementInst *> Extracts,
430 ArrayRef<ShuffleVectorInst *> Shuffles) {
431 // If there aren't any extractelement instructions to modify, there's nothing
432 // to do.
433 if (Extracts.empty())
434 return true;
436 // Maps extractelement instructions to vector-index pairs. The extractlement
437 // instructions will be modified to use the new vector and index operands.
438 DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
440 for (auto *Extract : Extracts) {
441 // The vector index that is extracted.
442 auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
443 auto Index = IndexOperand->getSExtValue();
445 // Look for a suitable shufflevector instruction. The goal is to modify the
446 // extractelement instruction (which uses an interleaved load) to use one
447 // of the shufflevector instructions instead of the load.
448 for (auto *Shuffle : Shuffles) {
449 // If the shufflevector instruction doesn't dominate the extract, we
450 // can't create a use of it.
451 if (!DT->dominates(Shuffle, Extract))
452 continue;
454 // Inspect the indices of the shufflevector instruction. If the shuffle
455 // selects the same index that is extracted, we can modify the
456 // extractelement instruction.
457 SmallVector<int, 4> Indices;
458 Shuffle->getShuffleMask(Indices);
459 for (unsigned I = 0; I < Indices.size(); ++I)
460 if (Indices[I] == Index) {
461 assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
462 "Vector operations do not match");
463 ReplacementMap[Extract] = std::make_pair(Shuffle, I);
464 break;
467 // If we found a suitable shufflevector instruction, stop looking.
468 if (ReplacementMap.count(Extract))
469 break;
472 // If we did not find a suitable shufflevector instruction, the
473 // extractelement instruction cannot be modified, so we must give up.
474 if (!ReplacementMap.count(Extract))
475 return false;
478 // Finally, perform the replacements.
479 IRBuilder<> Builder(Extracts[0]->getContext());
480 for (auto &Replacement : ReplacementMap) {
481 auto *Extract = Replacement.first;
482 auto *Vector = Replacement.second.first;
483 auto Index = Replacement.second.second;
484 Builder.SetInsertPoint(Extract);
485 Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
486 Extract->eraseFromParent();
489 return true;
492 bool InterleavedAccess::lowerInterleavedStore(
493 StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
494 if (!SI->isSimple())
495 return false;
497 auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
498 if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
499 return false;
501 // Check if the shufflevector is RE-interleave shuffle.
502 unsigned Factor;
503 unsigned OpNumElts =
504 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
505 if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
506 return false;
508 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
510 // Try to create target specific intrinsics to replace the store and shuffle.
511 if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
512 return false;
514 // Already have a new target specific interleaved store. Erase the old store.
515 DeadInsts.push_back(SI);
516 DeadInsts.push_back(SVI);
517 return true;
520 bool InterleavedAccess::runOnFunction(Function &F) {
521 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
522 if (!TPC || !LowerInterleavedAccesses)
523 return false;
525 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
527 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
528 auto &TM = TPC->getTM<TargetMachine>();
529 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
530 MaxFactor = TLI->getMaxSupportedInterleaveFactor();
532 // Holds dead instructions that will be erased later.
533 SmallVector<Instruction *, 32> DeadInsts;
534 bool Changed = false;
536 for (auto &I : instructions(F)) {
537 if (auto *LI = dyn_cast<LoadInst>(&I))
538 Changed |= lowerInterleavedLoad(LI, DeadInsts);
540 if (auto *SI = dyn_cast<StoreInst>(&I))
541 Changed |= lowerInterleavedStore(SI, DeadInsts);
544 for (auto *I : DeadInsts)
545 I->eraseFromParent();
547 return Changed;