[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / LiveIntervals.cpp
blob8a76048bb8c4ce6c2576c321d13d87d527096b50
1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervalCalc.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Statepoint.h"
41 #include "llvm/MC/LaneBitmask.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
56 using namespace llvm;
58 #define DEBUG_TYPE "regalloc"
60 char LiveIntervals::ID = 0;
61 char &llvm::LiveIntervalsID = LiveIntervals::ID;
62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis",
63 false, false)
64 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
65 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
66 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
67 "Live Interval Analysis", false, false)
69 #ifndef NDEBUG
70 static cl::opt<bool> EnablePrecomputePhysRegs(
71 "precompute-phys-liveness", cl::Hidden,
72 cl::desc("Eagerly compute live intervals for all physreg units."));
73 #else
74 static bool EnablePrecomputePhysRegs = false;
75 #endif // NDEBUG
77 namespace llvm {
79 cl::opt<bool> UseSegmentSetForPhysRegs(
80 "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
81 cl::desc(
82 "Use segment set for the computation of the live ranges of physregs."));
84 } // end namespace llvm
86 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
87 AU.setPreservesCFG();
88 AU.addPreserved<LiveVariables>();
89 AU.addPreservedID(MachineLoopInfoID);
90 AU.addRequiredTransitiveID(MachineDominatorsID);
91 AU.addPreservedID(MachineDominatorsID);
92 AU.addPreserved<SlotIndexes>();
93 AU.addRequiredTransitive<SlotIndexes>();
94 MachineFunctionPass::getAnalysisUsage(AU);
97 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
98 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
101 LiveIntervals::~LiveIntervals() { delete LICalc; }
103 void LiveIntervals::releaseMemory() {
104 // Free the live intervals themselves.
105 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
106 delete VirtRegIntervals[Register::index2VirtReg(i)];
107 VirtRegIntervals.clear();
108 RegMaskSlots.clear();
109 RegMaskBits.clear();
110 RegMaskBlocks.clear();
112 for (LiveRange *LR : RegUnitRanges)
113 delete LR;
114 RegUnitRanges.clear();
116 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
117 VNInfoAllocator.Reset();
120 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
121 MF = &fn;
122 MRI = &MF->getRegInfo();
123 TRI = MF->getSubtarget().getRegisterInfo();
124 TII = MF->getSubtarget().getInstrInfo();
125 Indexes = &getAnalysis<SlotIndexes>();
126 DomTree = &getAnalysis<MachineDominatorTree>();
128 if (!LICalc)
129 LICalc = new LiveIntervalCalc();
131 // Allocate space for all virtual registers.
132 VirtRegIntervals.resize(MRI->getNumVirtRegs());
134 computeVirtRegs();
135 computeRegMasks();
136 computeLiveInRegUnits();
138 if (EnablePrecomputePhysRegs) {
139 // For stress testing, precompute live ranges of all physical register
140 // units, including reserved registers.
141 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
142 getRegUnit(i);
144 LLVM_DEBUG(dump());
145 return false;
148 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
149 OS << "********** INTERVALS **********\n";
151 // Dump the regunits.
152 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
153 if (LiveRange *LR = RegUnitRanges[Unit])
154 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
156 // Dump the virtregs.
157 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
158 Register Reg = Register::index2VirtReg(i);
159 if (hasInterval(Reg))
160 OS << getInterval(Reg) << '\n';
163 OS << "RegMasks:";
164 for (SlotIndex Idx : RegMaskSlots)
165 OS << ' ' << Idx;
166 OS << '\n';
168 printInstrs(OS);
171 void LiveIntervals::printInstrs(raw_ostream &OS) const {
172 OS << "********** MACHINEINSTRS **********\n";
173 MF->print(OS, Indexes);
176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
177 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
178 printInstrs(dbgs());
180 #endif
182 LiveInterval *LiveIntervals::createInterval(Register reg) {
183 float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
184 return new LiveInterval(reg, Weight);
187 /// Compute the live interval of a virtual register, based on defs and uses.
188 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
189 assert(LICalc && "LICalc not initialized.");
190 assert(LI.empty() && "Should only compute empty intervals.");
191 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
192 LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
193 return computeDeadValues(LI, nullptr);
196 void LiveIntervals::computeVirtRegs() {
197 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
198 Register Reg = Register::index2VirtReg(i);
199 if (MRI->reg_nodbg_empty(Reg))
200 continue;
201 LiveInterval &LI = createEmptyInterval(Reg);
202 bool NeedSplit = computeVirtRegInterval(LI);
203 if (NeedSplit) {
204 SmallVector<LiveInterval*, 8> SplitLIs;
205 splitSeparateComponents(LI, SplitLIs);
210 void LiveIntervals::computeRegMasks() {
211 RegMaskBlocks.resize(MF->getNumBlockIDs());
213 // Find all instructions with regmask operands.
214 for (const MachineBasicBlock &MBB : *MF) {
215 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
216 RMB.first = RegMaskSlots.size();
218 // Some block starts, such as EH funclets, create masks.
219 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
220 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
221 RegMaskBits.push_back(Mask);
224 // Unwinders may clobber additional registers.
225 // FIXME: This functionality can possibly be merged into
226 // MachineBasicBlock::getBeginClobberMask().
227 if (MBB.isEHPad())
228 if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
229 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
230 RegMaskBits.push_back(Mask);
233 for (const MachineInstr &MI : MBB) {
234 for (const MachineOperand &MO : MI.operands()) {
235 if (!MO.isRegMask())
236 continue;
237 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
238 RegMaskBits.push_back(MO.getRegMask());
242 // Some block ends, such as funclet returns, create masks. Put the mask on
243 // the last instruction of the block, because MBB slot index intervals are
244 // half-open.
245 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
246 assert(!MBB.empty() && "empty return block?");
247 RegMaskSlots.push_back(
248 Indexes->getInstructionIndex(MBB.back()).getRegSlot());
249 RegMaskBits.push_back(Mask);
252 // Compute the number of register mask instructions in this block.
253 RMB.second = RegMaskSlots.size() - RMB.first;
257 //===----------------------------------------------------------------------===//
258 // Register Unit Liveness
259 //===----------------------------------------------------------------------===//
261 // Fixed interference typically comes from ABI boundaries: Function arguments
262 // and return values are passed in fixed registers, and so are exception
263 // pointers entering landing pads. Certain instructions require values to be
264 // present in specific registers. That is also represented through fixed
265 // interference.
268 /// Compute the live range of a register unit, based on the uses and defs of
269 /// aliasing registers. The range should be empty, or contain only dead
270 /// phi-defs from ABI blocks.
271 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
272 assert(LICalc && "LICalc not initialized.");
273 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
275 // The physregs aliasing Unit are the roots and their super-registers.
276 // Create all values as dead defs before extending to uses. Note that roots
277 // may share super-registers. That's OK because createDeadDefs() is
278 // idempotent. It is very rare for a register unit to have multiple roots, so
279 // uniquing super-registers is probably not worthwhile.
280 bool IsReserved = false;
281 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
282 bool IsRootReserved = true;
283 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
284 Super.isValid(); ++Super) {
285 MCRegister Reg = *Super;
286 if (!MRI->reg_empty(Reg))
287 LICalc->createDeadDefs(LR, Reg);
288 // A register unit is considered reserved if all its roots and all their
289 // super registers are reserved.
290 if (!MRI->isReserved(Reg))
291 IsRootReserved = false;
293 IsReserved |= IsRootReserved;
295 assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
296 "reserved computation mismatch");
298 // Now extend LR to reach all uses.
299 // Ignore uses of reserved registers. We only track defs of those.
300 if (!IsReserved) {
301 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
302 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
303 Super.isValid(); ++Super) {
304 MCRegister Reg = *Super;
305 if (!MRI->reg_empty(Reg))
306 LICalc->extendToUses(LR, Reg);
311 // Flush the segment set to the segment vector.
312 if (UseSegmentSetForPhysRegs)
313 LR.flushSegmentSet();
316 /// Precompute the live ranges of any register units that are live-in to an ABI
317 /// block somewhere. Register values can appear without a corresponding def when
318 /// entering the entry block or a landing pad.
319 void LiveIntervals::computeLiveInRegUnits() {
320 RegUnitRanges.resize(TRI->getNumRegUnits());
321 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
323 // Keep track of the live range sets allocated.
324 SmallVector<unsigned, 8> NewRanges;
326 // Check all basic blocks for live-ins.
327 for (const MachineBasicBlock &MBB : *MF) {
328 // We only care about ABI blocks: Entry + landing pads.
329 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
330 continue;
332 // Create phi-defs at Begin for all live-in registers.
333 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
334 LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
335 for (const auto &LI : MBB.liveins()) {
336 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
337 unsigned Unit = *Units;
338 LiveRange *LR = RegUnitRanges[Unit];
339 if (!LR) {
340 // Use segment set to speed-up initial computation of the live range.
341 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
342 NewRanges.push_back(Unit);
344 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
345 (void)VNI;
346 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
349 LLVM_DEBUG(dbgs() << '\n');
351 LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
353 // Compute the 'normal' part of the ranges.
354 for (unsigned Unit : NewRanges)
355 computeRegUnitRange(*RegUnitRanges[Unit], Unit);
358 static void createSegmentsForValues(LiveRange &LR,
359 iterator_range<LiveInterval::vni_iterator> VNIs) {
360 for (VNInfo *VNI : VNIs) {
361 if (VNI->isUnused())
362 continue;
363 SlotIndex Def = VNI->def;
364 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
368 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
369 ShrinkToUsesWorkList &WorkList,
370 Register Reg, LaneBitmask LaneMask) {
371 // Keep track of the PHIs that are in use.
372 SmallPtrSet<VNInfo*, 8> UsedPHIs;
373 // Blocks that have already been added to WorkList as live-out.
374 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
376 auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
377 -> const LiveRange& {
378 if (M.none())
379 return I;
380 for (const LiveInterval::SubRange &SR : I.subranges()) {
381 if ((SR.LaneMask & M).any()) {
382 assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
383 return SR;
386 llvm_unreachable("Subrange for mask not found");
389 const LiveInterval &LI = getInterval(Reg);
390 const LiveRange &OldRange = getSubRange(LI, LaneMask);
392 // Extend intervals to reach all uses in WorkList.
393 while (!WorkList.empty()) {
394 SlotIndex Idx = WorkList.back().first;
395 VNInfo *VNI = WorkList.back().second;
396 WorkList.pop_back();
397 const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
398 SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
400 // Extend the live range for VNI to be live at Idx.
401 if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
402 assert(ExtVNI == VNI && "Unexpected existing value number");
403 (void)ExtVNI;
404 // Is this a PHIDef we haven't seen before?
405 if (!VNI->isPHIDef() || VNI->def != BlockStart ||
406 !UsedPHIs.insert(VNI).second)
407 continue;
408 // The PHI is live, make sure the predecessors are live-out.
409 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
410 if (!LiveOut.insert(Pred).second)
411 continue;
412 SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
413 // A predecessor is not required to have a live-out value for a PHI.
414 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
415 WorkList.push_back(std::make_pair(Stop, PVNI));
417 continue;
420 // VNI is live-in to MBB.
421 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
422 Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
424 // Make sure VNI is live-out from the predecessors.
425 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
426 if (!LiveOut.insert(Pred).second)
427 continue;
428 SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
429 if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
430 assert(OldVNI == VNI && "Wrong value out of predecessor");
431 (void)OldVNI;
432 WorkList.push_back(std::make_pair(Stop, VNI));
433 } else {
434 #ifndef NDEBUG
435 // There was no old VNI. Verify that Stop is jointly dominated
436 // by <undef>s for this live range.
437 assert(LaneMask.any() &&
438 "Missing value out of predecessor for main range");
439 SmallVector<SlotIndex,8> Undefs;
440 LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
441 assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
442 "Missing value out of predecessor for subrange");
443 #endif
449 bool LiveIntervals::shrinkToUses(LiveInterval *li,
450 SmallVectorImpl<MachineInstr*> *dead) {
451 LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
452 assert(Register::isVirtualRegister(li->reg()) &&
453 "Can only shrink virtual registers");
455 // Shrink subregister live ranges.
456 bool NeedsCleanup = false;
457 for (LiveInterval::SubRange &S : li->subranges()) {
458 shrinkToUses(S, li->reg());
459 if (S.empty())
460 NeedsCleanup = true;
462 if (NeedsCleanup)
463 li->removeEmptySubRanges();
465 // Find all the values used, including PHI kills.
466 ShrinkToUsesWorkList WorkList;
468 // Visit all instructions reading li->reg().
469 Register Reg = li->reg();
470 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
471 if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
472 continue;
473 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
474 LiveQueryResult LRQ = li->Query(Idx);
475 VNInfo *VNI = LRQ.valueIn();
476 if (!VNI) {
477 // This shouldn't happen: readsVirtualRegister returns true, but there is
478 // no live value. It is likely caused by a target getting <undef> flags
479 // wrong.
480 LLVM_DEBUG(
481 dbgs() << Idx << '\t' << UseMI
482 << "Warning: Instr claims to read non-existent value in "
483 << *li << '\n');
484 continue;
486 // Special case: An early-clobber tied operand reads and writes the
487 // register one slot early.
488 if (VNInfo *DefVNI = LRQ.valueDefined())
489 Idx = DefVNI->def;
491 WorkList.push_back(std::make_pair(Idx, VNI));
494 // Create new live ranges with only minimal live segments per def.
495 LiveRange NewLR;
496 createSegmentsForValues(NewLR, li->vnis());
497 extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
499 // Move the trimmed segments back.
500 li->segments.swap(NewLR.segments);
502 // Handle dead values.
503 bool CanSeparate = computeDeadValues(*li, dead);
504 LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
505 return CanSeparate;
508 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
509 SmallVectorImpl<MachineInstr*> *dead) {
510 bool MayHaveSplitComponents = false;
511 bool HaveDeadDef = false;
513 for (VNInfo *VNI : LI.valnos) {
514 if (VNI->isUnused())
515 continue;
516 SlotIndex Def = VNI->def;
517 LiveRange::iterator I = LI.FindSegmentContaining(Def);
518 assert(I != LI.end() && "Missing segment for VNI");
520 // Is the register live before? Otherwise we may have to add a read-undef
521 // flag for subregister defs.
522 Register VReg = LI.reg();
523 if (MRI->shouldTrackSubRegLiveness(VReg)) {
524 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
525 MachineInstr *MI = getInstructionFromIndex(Def);
526 MI->setRegisterDefReadUndef(VReg);
530 if (I->end != Def.getDeadSlot())
531 continue;
532 if (VNI->isPHIDef()) {
533 // This is a dead PHI. Remove it.
534 VNI->markUnused();
535 LI.removeSegment(I);
536 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
537 MayHaveSplitComponents = true;
538 } else {
539 // This is a dead def. Make sure the instruction knows.
540 MachineInstr *MI = getInstructionFromIndex(Def);
541 assert(MI && "No instruction defining live value");
542 MI->addRegisterDead(LI.reg(), TRI);
543 if (HaveDeadDef)
544 MayHaveSplitComponents = true;
545 HaveDeadDef = true;
547 if (dead && MI->allDefsAreDead()) {
548 LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
549 dead->push_back(MI);
553 return MayHaveSplitComponents;
556 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
557 LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
558 assert(Register::isVirtualRegister(Reg) &&
559 "Can only shrink virtual registers");
560 // Find all the values used, including PHI kills.
561 ShrinkToUsesWorkList WorkList;
563 // Visit all instructions reading Reg.
564 SlotIndex LastIdx;
565 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
566 // Skip "undef" uses.
567 if (!MO.readsReg())
568 continue;
569 // Maybe the operand is for a subregister we don't care about.
570 unsigned SubReg = MO.getSubReg();
571 if (SubReg != 0) {
572 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
573 if ((LaneMask & SR.LaneMask).none())
574 continue;
576 // We only need to visit each instruction once.
577 MachineInstr *UseMI = MO.getParent();
578 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
579 if (Idx == LastIdx)
580 continue;
581 LastIdx = Idx;
583 LiveQueryResult LRQ = SR.Query(Idx);
584 VNInfo *VNI = LRQ.valueIn();
585 // For Subranges it is possible that only undef values are left in that
586 // part of the subregister, so there is no real liverange at the use
587 if (!VNI)
588 continue;
590 // Special case: An early-clobber tied operand reads and writes the
591 // register one slot early.
592 if (VNInfo *DefVNI = LRQ.valueDefined())
593 Idx = DefVNI->def;
595 WorkList.push_back(std::make_pair(Idx, VNI));
598 // Create a new live ranges with only minimal live segments per def.
599 LiveRange NewLR;
600 createSegmentsForValues(NewLR, SR.vnis());
601 extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
603 // Move the trimmed ranges back.
604 SR.segments.swap(NewLR.segments);
606 // Remove dead PHI value numbers
607 for (VNInfo *VNI : SR.valnos) {
608 if (VNI->isUnused())
609 continue;
610 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
611 assert(Segment != nullptr && "Missing segment for VNI");
612 if (Segment->end != VNI->def.getDeadSlot())
613 continue;
614 if (VNI->isPHIDef()) {
615 // This is a dead PHI. Remove it.
616 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
617 << " may separate interval\n");
618 VNI->markUnused();
619 SR.removeSegment(*Segment);
623 LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
626 void LiveIntervals::extendToIndices(LiveRange &LR,
627 ArrayRef<SlotIndex> Indices,
628 ArrayRef<SlotIndex> Undefs) {
629 assert(LICalc && "LICalc not initialized.");
630 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
631 for (SlotIndex Idx : Indices)
632 LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
635 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
636 SmallVectorImpl<SlotIndex> *EndPoints) {
637 LiveQueryResult LRQ = LR.Query(Kill);
638 VNInfo *VNI = LRQ.valueOutOrDead();
639 if (!VNI)
640 return;
642 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
643 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
645 // If VNI isn't live out from KillMBB, the value is trivially pruned.
646 if (LRQ.endPoint() < MBBEnd) {
647 LR.removeSegment(Kill, LRQ.endPoint());
648 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
649 return;
652 // VNI is live out of KillMBB.
653 LR.removeSegment(Kill, MBBEnd);
654 if (EndPoints) EndPoints->push_back(MBBEnd);
656 // Find all blocks that are reachable from KillMBB without leaving VNI's live
657 // range. It is possible that KillMBB itself is reachable, so start a DFS
658 // from each successor.
659 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
660 VisitedTy Visited;
661 for (MachineBasicBlock *Succ : KillMBB->successors()) {
662 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
663 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
664 I != E;) {
665 MachineBasicBlock *MBB = *I;
667 // Check if VNI is live in to MBB.
668 SlotIndex MBBStart, MBBEnd;
669 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
670 LiveQueryResult LRQ = LR.Query(MBBStart);
671 if (LRQ.valueIn() != VNI) {
672 // This block isn't part of the VNI segment. Prune the search.
673 I.skipChildren();
674 continue;
677 // Prune the search if VNI is killed in MBB.
678 if (LRQ.endPoint() < MBBEnd) {
679 LR.removeSegment(MBBStart, LRQ.endPoint());
680 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
681 I.skipChildren();
682 continue;
685 // VNI is live through MBB.
686 LR.removeSegment(MBBStart, MBBEnd);
687 if (EndPoints) EndPoints->push_back(MBBEnd);
688 ++I;
693 //===----------------------------------------------------------------------===//
694 // Register allocator hooks.
697 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
698 // Keep track of regunit ranges.
699 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
701 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
702 Register Reg = Register::index2VirtReg(i);
703 if (MRI->reg_nodbg_empty(Reg))
704 continue;
705 const LiveInterval &LI = getInterval(Reg);
706 if (LI.empty())
707 continue;
709 // Target may have not allocated this yet.
710 Register PhysReg = VRM->getPhys(Reg);
711 if (!PhysReg)
712 continue;
714 // Find the regunit intervals for the assigned register. They may overlap
715 // the virtual register live range, cancelling any kills.
716 RU.clear();
717 for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid();
718 ++Unit) {
719 const LiveRange &RURange = getRegUnit(*Unit);
720 if (RURange.empty())
721 continue;
722 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
724 // Every instruction that kills Reg corresponds to a segment range end
725 // point.
726 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
727 ++RI) {
728 // A block index indicates an MBB edge.
729 if (RI->end.isBlock())
730 continue;
731 MachineInstr *MI = getInstructionFromIndex(RI->end);
732 if (!MI)
733 continue;
735 // Check if any of the regunits are live beyond the end of RI. That could
736 // happen when a physreg is defined as a copy of a virtreg:
738 // %eax = COPY %5
739 // FOO %5 <--- MI, cancel kill because %eax is live.
740 // BAR killed %eax
742 // There should be no kill flag on FOO when %5 is rewritten as %eax.
743 for (auto &RUP : RU) {
744 const LiveRange &RURange = *RUP.first;
745 LiveRange::const_iterator &I = RUP.second;
746 if (I == RURange.end())
747 continue;
748 I = RURange.advanceTo(I, RI->end);
749 if (I == RURange.end() || I->start >= RI->end)
750 continue;
751 // I is overlapping RI.
752 goto CancelKill;
755 if (MRI->subRegLivenessEnabled()) {
756 // When reading a partial undefined value we must not add a kill flag.
757 // The regalloc might have used the undef lane for something else.
758 // Example:
759 // %1 = ... ; R32: %1
760 // %2:high16 = ... ; R64: %2
761 // = read killed %2 ; R64: %2
762 // = read %1 ; R32: %1
763 // The <kill> flag is correct for %2, but the register allocator may
764 // assign R0L to %1, and R0 to %2 because the low 32bits of R0
765 // are actually never written by %2. After assignment the <kill>
766 // flag at the read instruction is invalid.
767 LaneBitmask DefinedLanesMask;
768 if (LI.hasSubRanges()) {
769 // Compute a mask of lanes that are defined.
770 DefinedLanesMask = LaneBitmask::getNone();
771 for (const LiveInterval::SubRange &SR : LI.subranges())
772 for (const LiveRange::Segment &Segment : SR.segments) {
773 if (Segment.start >= RI->end)
774 break;
775 if (Segment.end == RI->end) {
776 DefinedLanesMask |= SR.LaneMask;
777 break;
780 } else
781 DefinedLanesMask = LaneBitmask::getAll();
783 bool IsFullWrite = false;
784 for (const MachineOperand &MO : MI->operands()) {
785 if (!MO.isReg() || MO.getReg() != Reg)
786 continue;
787 if (MO.isUse()) {
788 // Reading any undefined lanes?
789 unsigned SubReg = MO.getSubReg();
790 LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
791 : MRI->getMaxLaneMaskForVReg(Reg);
792 if ((UseMask & ~DefinedLanesMask).any())
793 goto CancelKill;
794 } else if (MO.getSubReg() == 0) {
795 // Writing to the full register?
796 assert(MO.isDef());
797 IsFullWrite = true;
801 // If an instruction writes to a subregister, a new segment starts in
802 // the LiveInterval. But as this is only overriding part of the register
803 // adding kill-flags is not correct here after registers have been
804 // assigned.
805 if (!IsFullWrite) {
806 // Next segment has to be adjacent in the subregister write case.
807 LiveRange::const_iterator N = std::next(RI);
808 if (N != LI.end() && N->start == RI->end)
809 goto CancelKill;
813 MI->addRegisterKilled(Reg, nullptr);
814 continue;
815 CancelKill:
816 MI->clearRegisterKills(Reg, nullptr);
821 MachineBasicBlock*
822 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
823 assert(!LI.empty() && "LiveInterval is empty.");
825 // A local live range must be fully contained inside the block, meaning it is
826 // defined and killed at instructions, not at block boundaries. It is not
827 // live in or out of any block.
829 // It is technically possible to have a PHI-defined live range identical to a
830 // single block, but we are going to return false in that case.
832 SlotIndex Start = LI.beginIndex();
833 if (Start.isBlock())
834 return nullptr;
836 SlotIndex Stop = LI.endIndex();
837 if (Stop.isBlock())
838 return nullptr;
840 // getMBBFromIndex doesn't need to search the MBB table when both indexes
841 // belong to proper instructions.
842 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
843 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
844 return MBB1 == MBB2 ? MBB1 : nullptr;
847 bool
848 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
849 for (const VNInfo *PHI : LI.valnos) {
850 if (PHI->isUnused() || !PHI->isPHIDef())
851 continue;
852 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
853 // Conservatively return true instead of scanning huge predecessor lists.
854 if (PHIMBB->pred_size() > 100)
855 return true;
856 for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
857 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
858 return true;
860 return false;
863 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
864 const MachineBlockFrequencyInfo *MBFI,
865 const MachineInstr &MI) {
866 return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
869 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
870 const MachineBlockFrequencyInfo *MBFI,
871 const MachineBasicBlock *MBB) {
872 return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
875 LiveRange::Segment
876 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
877 LiveInterval &Interval = createEmptyInterval(Reg);
878 VNInfo *VN = Interval.getNextValue(
879 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
880 getVNInfoAllocator());
881 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
882 getMBBEndIdx(startInst.getParent()), VN);
883 Interval.addSegment(S);
885 return S;
888 //===----------------------------------------------------------------------===//
889 // Register mask functions
890 //===----------------------------------------------------------------------===//
891 /// Check whether use of reg in MI is live-through. Live-through means that
892 /// the value is alive on exit from Machine instruction. The example of such
893 /// use is a deopt value in statepoint instruction.
894 static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
895 if (MI->getOpcode() != TargetOpcode::STATEPOINT)
896 return false;
897 StatepointOpers SO(MI);
898 if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
899 return false;
900 for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
901 ++Idx) {
902 const MachineOperand &MO = MI->getOperand(Idx);
903 if (MO.isReg() && MO.getReg() == Reg)
904 return true;
906 return false;
909 bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI,
910 BitVector &UsableRegs) {
911 if (LI.empty())
912 return false;
913 LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end();
915 // Use a smaller arrays for local live ranges.
916 ArrayRef<SlotIndex> Slots;
917 ArrayRef<const uint32_t*> Bits;
918 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
919 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
920 Bits = getRegMaskBitsInBlock(MBB->getNumber());
921 } else {
922 Slots = getRegMaskSlots();
923 Bits = getRegMaskBits();
926 // We are going to enumerate all the register mask slots contained in LI.
927 // Start with a binary search of RegMaskSlots to find a starting point.
928 ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
929 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
931 // No slots in range, LI begins after the last call.
932 if (SlotI == SlotE)
933 return false;
935 bool Found = false;
936 // Utility to union regmasks.
937 auto unionBitMask = [&](unsigned Idx) {
938 if (!Found) {
939 // This is the first overlap. Initialize UsableRegs to all ones.
940 UsableRegs.clear();
941 UsableRegs.resize(TRI->getNumRegs(), true);
942 Found = true;
944 // Remove usable registers clobbered by this mask.
945 UsableRegs.clearBitsNotInMask(Bits[Idx]);
947 while (true) {
948 assert(*SlotI >= LiveI->start);
949 // Loop over all slots overlapping this segment.
950 while (*SlotI < LiveI->end) {
951 // *SlotI overlaps LI. Collect mask bits.
952 unionBitMask(SlotI - Slots.begin());
953 if (++SlotI == SlotE)
954 return Found;
956 // If segment ends with live-through use we need to collect its regmask.
957 if (*SlotI == LiveI->end)
958 if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
959 if (hasLiveThroughUse(MI, LI.reg()))
960 unionBitMask(SlotI++ - Slots.begin());
961 // *SlotI is beyond the current LI segment.
962 // Special advance implementation to not miss next LiveI->end.
963 if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
964 return Found;
965 while (LiveI->end < *SlotI)
966 ++LiveI;
967 // Advance SlotI until it overlaps.
968 while (*SlotI < LiveI->start)
969 if (++SlotI == SlotE)
970 return Found;
974 //===----------------------------------------------------------------------===//
975 // IntervalUpdate class.
976 //===----------------------------------------------------------------------===//
978 /// Toolkit used by handleMove to trim or extend live intervals.
979 class LiveIntervals::HMEditor {
980 private:
981 LiveIntervals& LIS;
982 const MachineRegisterInfo& MRI;
983 const TargetRegisterInfo& TRI;
984 SlotIndex OldIdx;
985 SlotIndex NewIdx;
986 SmallPtrSet<LiveRange*, 8> Updated;
987 bool UpdateFlags;
989 public:
990 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
991 const TargetRegisterInfo& TRI,
992 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
993 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
994 UpdateFlags(UpdateFlags) {}
996 // FIXME: UpdateFlags is a workaround that creates live intervals for all
997 // physregs, even those that aren't needed for regalloc, in order to update
998 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
999 // flags, and postRA passes will use a live register utility instead.
1000 LiveRange *getRegUnitLI(unsigned Unit) {
1001 if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
1002 return &LIS.getRegUnit(Unit);
1003 return LIS.getCachedRegUnit(Unit);
1006 /// Update all live ranges touched by MI, assuming a move from OldIdx to
1007 /// NewIdx.
1008 void updateAllRanges(MachineInstr *MI) {
1009 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
1010 << *MI);
1011 bool hasRegMask = false;
1012 for (MachineOperand &MO : MI->operands()) {
1013 if (MO.isRegMask())
1014 hasRegMask = true;
1015 if (!MO.isReg())
1016 continue;
1017 if (MO.isUse()) {
1018 if (!MO.readsReg())
1019 continue;
1020 // Aggressively clear all kill flags.
1021 // They are reinserted by VirtRegRewriter.
1022 MO.setIsKill(false);
1025 Register Reg = MO.getReg();
1026 if (!Reg)
1027 continue;
1028 if (Register::isVirtualRegister(Reg)) {
1029 LiveInterval &LI = LIS.getInterval(Reg);
1030 if (LI.hasSubRanges()) {
1031 unsigned SubReg = MO.getSubReg();
1032 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1033 : MRI.getMaxLaneMaskForVReg(Reg);
1034 for (LiveInterval::SubRange &S : LI.subranges()) {
1035 if ((S.LaneMask & LaneMask).none())
1036 continue;
1037 updateRange(S, Reg, S.LaneMask);
1040 updateRange(LI, Reg, LaneBitmask::getNone());
1041 // If main range has a hole and we are moving a subrange use across
1042 // the hole updateRange() cannot properly handle it since it only
1043 // gets the LiveRange and not the whole LiveInterval. As a result
1044 // we may end up with a main range not covering all subranges.
1045 // This is extremely rare case, so let's check and reconstruct the
1046 // main range.
1047 if (LI.hasSubRanges()) {
1048 unsigned SubReg = MO.getSubReg();
1049 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1050 : MRI.getMaxLaneMaskForVReg(Reg);
1051 for (LiveInterval::SubRange &S : LI.subranges()) {
1052 if ((S.LaneMask & LaneMask).none() || LI.covers(S))
1053 continue;
1054 LI.clear();
1055 LIS.constructMainRangeFromSubranges(LI);
1056 break;
1060 continue;
1063 // For physregs, only update the regunits that actually have a
1064 // precomputed live range.
1065 for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid();
1066 ++Units)
1067 if (LiveRange *LR = getRegUnitLI(*Units))
1068 updateRange(*LR, *Units, LaneBitmask::getNone());
1070 if (hasRegMask)
1071 updateRegMaskSlots();
1074 private:
1075 /// Update a single live range, assuming an instruction has been moved from
1076 /// OldIdx to NewIdx.
1077 void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1078 if (!Updated.insert(&LR).second)
1079 return;
1080 LLVM_DEBUG({
1081 dbgs() << " ";
1082 if (Register::isVirtualRegister(Reg)) {
1083 dbgs() << printReg(Reg);
1084 if (LaneMask.any())
1085 dbgs() << " L" << PrintLaneMask(LaneMask);
1086 } else {
1087 dbgs() << printRegUnit(Reg, &TRI);
1089 dbgs() << ":\t" << LR << '\n';
1091 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1092 handleMoveDown(LR);
1093 else
1094 handleMoveUp(LR, Reg, LaneMask);
1095 LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n');
1096 LR.verify();
1099 /// Update LR to reflect an instruction has been moved downwards from OldIdx
1100 /// to NewIdx (OldIdx < NewIdx).
1101 void handleMoveDown(LiveRange &LR) {
1102 LiveRange::iterator E = LR.end();
1103 // Segment going into OldIdx.
1104 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1106 // No value live before or after OldIdx? Nothing to do.
1107 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1108 return;
1110 LiveRange::iterator OldIdxOut;
1111 // Do we have a value live-in to OldIdx?
1112 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1113 // If the live-in value already extends to NewIdx, there is nothing to do.
1114 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1115 return;
1116 // Aggressively remove all kill flags from the old kill point.
1117 // Kill flags shouldn't be used while live intervals exist, they will be
1118 // reinserted by VirtRegRewriter.
1119 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1120 for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1121 if (MOP.isReg() && MOP.isUse())
1122 MOP.setIsKill(false);
1124 // Is there a def before NewIdx which is not OldIdx?
1125 LiveRange::iterator Next = std::next(OldIdxIn);
1126 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1127 SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1128 // If we are here then OldIdx was just a use but not a def. We only have
1129 // to ensure liveness extends to NewIdx.
1130 LiveRange::iterator NewIdxIn =
1131 LR.advanceTo(Next, NewIdx.getBaseIndex());
1132 // Extend the segment before NewIdx if necessary.
1133 if (NewIdxIn == E ||
1134 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1135 LiveRange::iterator Prev = std::prev(NewIdxIn);
1136 Prev->end = NewIdx.getRegSlot();
1138 // Extend OldIdxIn.
1139 OldIdxIn->end = Next->start;
1140 return;
1143 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1144 // invalid by overlapping ranges.
1145 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1146 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1147 // If this was not a kill, then there was no def and we're done.
1148 if (!isKill)
1149 return;
1151 // Did we have a Def at OldIdx?
1152 OldIdxOut = Next;
1153 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1154 return;
1155 } else {
1156 OldIdxOut = OldIdxIn;
1159 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1160 // to the segment starting there.
1161 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1162 "No def?");
1163 VNInfo *OldIdxVNI = OldIdxOut->valno;
1164 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1166 // If the defined value extends beyond NewIdx, just move the beginning
1167 // of the segment to NewIdx.
1168 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1169 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1170 OldIdxVNI->def = NewIdxDef;
1171 OldIdxOut->start = OldIdxVNI->def;
1172 return;
1175 // If we are here then we have a Definition at OldIdx which ends before
1176 // NewIdx.
1178 // Is there an existing Def at NewIdx?
1179 LiveRange::iterator AfterNewIdx
1180 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1181 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1182 if (!OldIdxDefIsDead &&
1183 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1184 // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1185 VNInfo *DefVNI;
1186 if (OldIdxOut != LR.begin() &&
1187 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1188 OldIdxOut->start)) {
1189 // There is no gap between OldIdxOut and its predecessor anymore,
1190 // merge them.
1191 LiveRange::iterator IPrev = std::prev(OldIdxOut);
1192 DefVNI = OldIdxVNI;
1193 IPrev->end = OldIdxOut->end;
1194 } else {
1195 // The value is live in to OldIdx
1196 LiveRange::iterator INext = std::next(OldIdxOut);
1197 assert(INext != E && "Must have following segment");
1198 // We merge OldIdxOut and its successor. As we're dealing with subreg
1199 // reordering, there is always a successor to OldIdxOut in the same BB
1200 // We don't need INext->valno anymore and will reuse for the new segment
1201 // we create later.
1202 DefVNI = OldIdxVNI;
1203 INext->start = OldIdxOut->end;
1204 INext->valno->def = INext->start;
1206 // If NewIdx is behind the last segment, extend that and append a new one.
1207 if (AfterNewIdx == E) {
1208 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1209 // one position.
1210 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1211 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1212 std::copy(std::next(OldIdxOut), E, OldIdxOut);
1213 // The last segment is undefined now, reuse it for a dead def.
1214 LiveRange::iterator NewSegment = std::prev(E);
1215 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1216 DefVNI);
1217 DefVNI->def = NewIdxDef;
1219 LiveRange::iterator Prev = std::prev(NewSegment);
1220 Prev->end = NewIdxDef;
1221 } else {
1222 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1223 // one position.
1224 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1225 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1226 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1227 LiveRange::iterator Prev = std::prev(AfterNewIdx);
1228 // We have two cases:
1229 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1230 // Case 1: NewIdx is inside a liverange. Split this liverange at
1231 // NewIdxDef into the segment "Prev" followed by "NewSegment".
1232 LiveRange::iterator NewSegment = AfterNewIdx;
1233 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1234 Prev->valno->def = NewIdxDef;
1236 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1237 DefVNI->def = Prev->start;
1238 } else {
1239 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1240 // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1241 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1242 DefVNI->def = NewIdxDef;
1243 assert(DefVNI != AfterNewIdx->valno);
1246 return;
1249 if (AfterNewIdx != E &&
1250 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1251 // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1252 // that value.
1253 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1254 LR.removeValNo(OldIdxVNI);
1255 } else {
1256 // There was no existing def at NewIdx. We need to create a dead def
1257 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1258 // a new segment at the place where we want to construct the dead def.
1259 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1260 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1261 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1262 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1263 // We can reuse OldIdxVNI now.
1264 LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1265 VNInfo *NewSegmentVNI = OldIdxVNI;
1266 NewSegmentVNI->def = NewIdxDef;
1267 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1268 NewSegmentVNI);
1272 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1273 /// to NewIdx (NewIdx < OldIdx).
1274 void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1275 LiveRange::iterator E = LR.end();
1276 // Segment going into OldIdx.
1277 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1279 // No value live before or after OldIdx? Nothing to do.
1280 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1281 return;
1283 LiveRange::iterator OldIdxOut;
1284 // Do we have a value live-in to OldIdx?
1285 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1286 // If the live-in value isn't killed here, then we have no Def at
1287 // OldIdx, moreover the value must be live at NewIdx so there is nothing
1288 // to do.
1289 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1290 if (!isKill)
1291 return;
1293 // At this point we have to move OldIdxIn->end back to the nearest
1294 // previous use or (dead-)def but no further than NewIdx.
1295 SlotIndex DefBeforeOldIdx
1296 = std::max(OldIdxIn->start.getDeadSlot(),
1297 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1298 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1300 // Did we have a Def at OldIdx? If not we are done now.
1301 OldIdxOut = std::next(OldIdxIn);
1302 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1303 return;
1304 } else {
1305 OldIdxOut = OldIdxIn;
1306 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1309 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1310 // to the segment starting there.
1311 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1312 "No def?");
1313 VNInfo *OldIdxVNI = OldIdxOut->valno;
1314 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1315 bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1317 // Is there an existing def at NewIdx?
1318 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1319 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1320 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1321 assert(NewIdxOut->valno != OldIdxVNI &&
1322 "Same value defined more than once?");
1323 // If OldIdx was a dead def remove it.
1324 if (!OldIdxDefIsDead) {
1325 // Remove segment starting at NewIdx and move begin of OldIdxOut to
1326 // NewIdx so it can take its place.
1327 OldIdxVNI->def = NewIdxDef;
1328 OldIdxOut->start = NewIdxDef;
1329 LR.removeValNo(NewIdxOut->valno);
1330 } else {
1331 // Simply remove the dead def at OldIdx.
1332 LR.removeValNo(OldIdxVNI);
1334 } else {
1335 // Previously nothing was live after NewIdx, so all we have to do now is
1336 // move the begin of OldIdxOut to NewIdx.
1337 if (!OldIdxDefIsDead) {
1338 // Do we have any intermediate Defs between OldIdx and NewIdx?
1339 if (OldIdxIn != E &&
1340 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1341 // OldIdx is not a dead def and NewIdx is before predecessor start.
1342 LiveRange::iterator NewIdxIn = NewIdxOut;
1343 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1344 const SlotIndex SplitPos = NewIdxDef;
1345 OldIdxVNI = OldIdxIn->valno;
1347 SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1348 LiveRange::iterator Prev = std::prev(OldIdxIn);
1349 if (OldIdxIn != LR.begin() &&
1350 SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1351 // If the segment before OldIdx read a value defined earlier than
1352 // NewIdx, the moved instruction also reads and forwards that
1353 // value. Extend the lifetime of the new def point.
1355 // Extend to where the previous range started, unless there is
1356 // another redef first.
1357 NewDefEndPoint = std::min(OldIdxIn->start,
1358 std::next(NewIdxOut)->start);
1361 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1362 OldIdxOut->valno->def = OldIdxIn->start;
1363 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1364 OldIdxOut->valno);
1365 // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1366 // We Slide [NewIdxIn, OldIdxIn) down one position.
1367 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1368 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1369 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1370 // NewIdxIn is now considered undef so we can reuse it for the moved
1371 // value.
1372 LiveRange::iterator NewSegment = NewIdxIn;
1373 LiveRange::iterator Next = std::next(NewSegment);
1374 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1375 // There is no gap between NewSegment and its predecessor.
1376 *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1377 Next->valno);
1379 *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1380 Next->valno->def = SplitPos;
1381 } else {
1382 // There is a gap between NewSegment and its predecessor
1383 // Value becomes live in.
1384 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1385 NewSegment->valno->def = SplitPos;
1387 } else {
1388 // Leave the end point of a live def.
1389 OldIdxOut->start = NewIdxDef;
1390 OldIdxVNI->def = NewIdxDef;
1391 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1392 OldIdxIn->end = NewIdxDef;
1394 } else if (OldIdxIn != E
1395 && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1396 && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1397 // OldIdxVNI is a dead def that has been moved into the middle of
1398 // another value in LR. That can happen when LR is a whole register,
1399 // but the dead def is a write to a subreg that is dead at NewIdx.
1400 // The dead def may have been moved across other values
1401 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1402 // down one position.
1403 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1404 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1405 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1406 // Modify the segment at NewIdxOut and the following segment to meet at
1407 // the point of the dead def, with the following segment getting
1408 // OldIdxVNI as its value number.
1409 *NewIdxOut = LiveRange::Segment(
1410 NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1411 *(NewIdxOut + 1) = LiveRange::Segment(
1412 NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1413 OldIdxVNI->def = NewIdxDef;
1414 // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1415 for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1416 Idx->valno = OldIdxVNI;
1417 // Aggressively remove all dead flags from the former dead definition.
1418 // Kill/dead flags shouldn't be used while live intervals exist; they
1419 // will be reinserted by VirtRegRewriter.
1420 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1421 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1422 if (MO->isReg() && !MO->isUse())
1423 MO->setIsDead(false);
1424 } else {
1425 // OldIdxVNI is a dead def. It may have been moved across other values
1426 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1427 // down one position.
1428 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1429 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1430 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1431 // OldIdxVNI can be reused now to build a new dead def segment.
1432 LiveRange::iterator NewSegment = NewIdxOut;
1433 VNInfo *NewSegmentVNI = OldIdxVNI;
1434 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1435 NewSegmentVNI);
1436 NewSegmentVNI->def = NewIdxDef;
1441 void updateRegMaskSlots() {
1442 SmallVectorImpl<SlotIndex>::iterator RI =
1443 llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1444 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1445 "No RegMask at OldIdx.");
1446 *RI = NewIdx.getRegSlot();
1447 assert((RI == LIS.RegMaskSlots.begin() ||
1448 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1449 "Cannot move regmask instruction above another call");
1450 assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1451 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1452 "Cannot move regmask instruction below another call");
1455 // Return the last use of reg between NewIdx and OldIdx.
1456 SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
1457 LaneBitmask LaneMask) {
1458 if (Register::isVirtualRegister(Reg)) {
1459 SlotIndex LastUse = Before;
1460 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1461 if (MO.isUndef())
1462 continue;
1463 unsigned SubReg = MO.getSubReg();
1464 if (SubReg != 0 && LaneMask.any()
1465 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1466 continue;
1468 const MachineInstr &MI = *MO.getParent();
1469 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1470 if (InstSlot > LastUse && InstSlot < OldIdx)
1471 LastUse = InstSlot.getRegSlot();
1473 return LastUse;
1476 // This is a regunit interval, so scanning the use list could be very
1477 // expensive. Scan upwards from OldIdx instead.
1478 assert(Before < OldIdx && "Expected upwards move");
1479 SlotIndexes *Indexes = LIS.getSlotIndexes();
1480 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1482 // OldIdx may not correspond to an instruction any longer, so set MII to
1483 // point to the next instruction after OldIdx, or MBB->end().
1484 MachineBasicBlock::iterator MII = MBB->end();
1485 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1486 Indexes->getNextNonNullIndex(OldIdx)))
1487 if (MI->getParent() == MBB)
1488 MII = MI;
1490 MachineBasicBlock::iterator Begin = MBB->begin();
1491 while (MII != Begin) {
1492 if ((--MII)->isDebugOrPseudoInstr())
1493 continue;
1494 SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1496 // Stop searching when Before is reached.
1497 if (!SlotIndex::isEarlierInstr(Before, Idx))
1498 return Before;
1500 // Check if MII uses Reg.
1501 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1502 if (MO->isReg() && !MO->isUndef() &&
1503 Register::isPhysicalRegister(MO->getReg()) &&
1504 TRI.hasRegUnit(MO->getReg(), Reg))
1505 return Idx.getRegSlot();
1507 // Didn't reach Before. It must be the first instruction in the block.
1508 return Before;
1512 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1513 // It is fine to move a bundle as a whole, but not an individual instruction
1514 // inside it.
1515 assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1516 "Cannot move instruction in bundle");
1517 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1518 Indexes->removeMachineInstrFromMaps(MI);
1519 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1520 assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1521 OldIndex < getMBBEndIdx(MI.getParent()) &&
1522 "Cannot handle moves across basic block boundaries.");
1524 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1525 HME.updateAllRanges(&MI);
1528 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1529 bool UpdateFlags) {
1530 assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1531 "Bundle start is not a bundle");
1532 SmallVector<SlotIndex, 16> ToProcess;
1533 const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1534 auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1536 auto I = BundleStart.getIterator();
1537 I++;
1538 while (I != BundleEnd) {
1539 if (!Indexes->hasIndex(*I))
1540 continue;
1541 SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1542 ToProcess.push_back(OldIndex);
1543 Indexes->removeMachineInstrFromMaps(*I, true);
1544 I++;
1546 for (SlotIndex OldIndex : ToProcess) {
1547 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1548 HME.updateAllRanges(&BundleStart);
1551 // Fix up dead defs
1552 const SlotIndex Index = getInstructionIndex(BundleStart);
1553 for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
1554 MachineOperand &MO = BundleStart.getOperand(Idx);
1555 if (!MO.isReg())
1556 continue;
1557 Register Reg = MO.getReg();
1558 if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1559 LiveInterval &LI = getInterval(Reg);
1560 LiveQueryResult LRQ = LI.Query(Index);
1561 if (LRQ.isDeadDef())
1562 MO.setIsDead();
1567 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1568 const MachineBasicBlock::iterator End,
1569 const SlotIndex EndIdx, LiveRange &LR,
1570 const Register Reg,
1571 LaneBitmask LaneMask) {
1572 LiveInterval::iterator LII = LR.find(EndIdx);
1573 SlotIndex lastUseIdx;
1574 if (LII != LR.end() && LII->start < EndIdx) {
1575 lastUseIdx = LII->end;
1576 } else if (LII == LR.begin()) {
1577 // We may not have a liverange at all if this is a subregister untouched
1578 // between \p Begin and \p End.
1579 } else {
1580 --LII;
1583 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1584 --I;
1585 MachineInstr &MI = *I;
1586 if (MI.isDebugOrPseudoInstr())
1587 continue;
1589 SlotIndex instrIdx = getInstructionIndex(MI);
1590 bool isStartValid = getInstructionFromIndex(LII->start);
1591 bool isEndValid = getInstructionFromIndex(LII->end);
1593 // FIXME: This doesn't currently handle early-clobber or multiple removed
1594 // defs inside of the region to repair.
1595 for (const MachineOperand &MO : MI.operands()) {
1596 if (!MO.isReg() || MO.getReg() != Reg)
1597 continue;
1599 unsigned SubReg = MO.getSubReg();
1600 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1601 if ((Mask & LaneMask).none())
1602 continue;
1604 if (MO.isDef()) {
1605 if (!isStartValid) {
1606 if (LII->end.isDead()) {
1607 LII = LR.removeSegment(LII, true);
1608 if (LII != LR.begin())
1609 --LII;
1610 } else {
1611 LII->start = instrIdx.getRegSlot();
1612 LII->valno->def = instrIdx.getRegSlot();
1613 if (MO.getSubReg() && !MO.isUndef())
1614 lastUseIdx = instrIdx.getRegSlot();
1615 else
1616 lastUseIdx = SlotIndex();
1617 continue;
1621 if (!lastUseIdx.isValid()) {
1622 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1623 LiveRange::Segment S(instrIdx.getRegSlot(),
1624 instrIdx.getDeadSlot(), VNI);
1625 LII = LR.addSegment(S);
1626 } else if (LII->start != instrIdx.getRegSlot()) {
1627 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1628 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1629 LII = LR.addSegment(S);
1632 if (MO.getSubReg() && !MO.isUndef())
1633 lastUseIdx = instrIdx.getRegSlot();
1634 else
1635 lastUseIdx = SlotIndex();
1636 } else if (MO.isUse()) {
1637 // FIXME: This should probably be handled outside of this branch,
1638 // either as part of the def case (for defs inside of the region) or
1639 // after the loop over the region.
1640 if (!isEndValid && !LII->end.isBlock())
1641 LII->end = instrIdx.getRegSlot();
1642 if (!lastUseIdx.isValid())
1643 lastUseIdx = instrIdx.getRegSlot();
1648 bool isStartValid = getInstructionFromIndex(LII->start);
1649 if (!isStartValid && LII->end.isDead())
1650 LR.removeSegment(*LII, true);
1653 void
1654 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1655 MachineBasicBlock::iterator Begin,
1656 MachineBasicBlock::iterator End,
1657 ArrayRef<Register> OrigRegs) {
1658 // Find anchor points, which are at the beginning/end of blocks or at
1659 // instructions that already have indexes.
1660 while (Begin != MBB->begin() && !Indexes->hasIndex(*std::prev(Begin)))
1661 --Begin;
1662 while (End != MBB->end() && !Indexes->hasIndex(*End))
1663 ++End;
1665 SlotIndex EndIdx;
1666 if (End == MBB->end())
1667 EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1668 else
1669 EndIdx = getInstructionIndex(*End);
1671 Indexes->repairIndexesInRange(MBB, Begin, End);
1673 // Make sure a live interval exists for all register operands in the range.
1674 SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end());
1675 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1676 --I;
1677 MachineInstr &MI = *I;
1678 if (MI.isDebugOrPseudoInstr())
1679 continue;
1680 for (const MachineOperand &MO : MI.operands()) {
1681 if (MO.isReg() && MO.getReg().isVirtual()) {
1682 Register Reg = MO.getReg();
1683 // If the new instructions refer to subregs but the old instructions did
1684 // not, throw away any old live interval so it will be recomputed with
1685 // subranges.
1686 if (MO.getSubReg() && hasInterval(Reg) &&
1687 !getInterval(Reg).hasSubRanges() &&
1688 MRI->shouldTrackSubRegLiveness(Reg))
1689 removeInterval(Reg);
1690 if (!hasInterval(Reg)) {
1691 createAndComputeVirtRegInterval(Reg);
1692 // Don't bother to repair a freshly calculated live interval.
1693 erase_value(RegsToRepair, Reg);
1699 for (Register Reg : RegsToRepair) {
1700 if (!Reg.isVirtual())
1701 continue;
1703 LiveInterval &LI = getInterval(Reg);
1704 // FIXME: Should we support undefs that gain defs?
1705 if (!LI.hasAtLeastOneValue())
1706 continue;
1708 for (LiveInterval::SubRange &S : LI.subranges())
1709 repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1710 LI.removeEmptySubRanges();
1712 repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1716 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1717 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1718 if (LiveRange *LR = getCachedRegUnit(*Unit))
1719 if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1720 LR->removeValNo(VNI);
1724 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1725 // LI may not have the main range computed yet, but its subranges may
1726 // be present.
1727 VNInfo *VNI = LI.getVNInfoAt(Pos);
1728 if (VNI != nullptr) {
1729 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1730 LI.removeValNo(VNI);
1733 // Also remove the value defined in subranges.
1734 for (LiveInterval::SubRange &S : LI.subranges()) {
1735 if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1736 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1737 S.removeValNo(SVNI);
1739 LI.removeEmptySubRanges();
1742 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1743 SmallVectorImpl<LiveInterval*> &SplitLIs) {
1744 ConnectedVNInfoEqClasses ConEQ(*this);
1745 unsigned NumComp = ConEQ.Classify(LI);
1746 if (NumComp <= 1)
1747 return;
1748 LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n');
1749 Register Reg = LI.reg();
1750 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1751 for (unsigned I = 1; I < NumComp; ++I) {
1752 Register NewVReg = MRI->createVirtualRegister(RegClass);
1753 LiveInterval &NewLI = createEmptyInterval(NewVReg);
1754 SplitLIs.push_back(&NewLI);
1756 ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1759 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1760 assert(LICalc && "LICalc not initialized.");
1761 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1762 LICalc->constructMainRangeFromSubranges(LI);