1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervalCalc.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Statepoint.h"
41 #include "llvm/MC/LaneBitmask.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
58 #define DEBUG_TYPE "regalloc"
60 char LiveIntervals::ID
= 0;
61 char &llvm::LiveIntervalsID
= LiveIntervals::ID
;
62 INITIALIZE_PASS_BEGIN(LiveIntervals
, "liveintervals", "Live Interval Analysis",
64 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
65 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
66 INITIALIZE_PASS_END(LiveIntervals
, "liveintervals",
67 "Live Interval Analysis", false, false)
70 static cl::opt
<bool> EnablePrecomputePhysRegs(
71 "precompute-phys-liveness", cl::Hidden
,
72 cl::desc("Eagerly compute live intervals for all physreg units."));
74 static bool EnablePrecomputePhysRegs
= false;
79 cl::opt
<bool> UseSegmentSetForPhysRegs(
80 "use-segment-set-for-physregs", cl::Hidden
, cl::init(true),
82 "Use segment set for the computation of the live ranges of physregs."));
84 } // end namespace llvm
86 void LiveIntervals::getAnalysisUsage(AnalysisUsage
&AU
) const {
88 AU
.addPreserved
<LiveVariables
>();
89 AU
.addPreservedID(MachineLoopInfoID
);
90 AU
.addRequiredTransitiveID(MachineDominatorsID
);
91 AU
.addPreservedID(MachineDominatorsID
);
92 AU
.addPreserved
<SlotIndexes
>();
93 AU
.addRequiredTransitive
<SlotIndexes
>();
94 MachineFunctionPass::getAnalysisUsage(AU
);
97 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID
) {
98 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
101 LiveIntervals::~LiveIntervals() { delete LICalc
; }
103 void LiveIntervals::releaseMemory() {
104 // Free the live intervals themselves.
105 for (unsigned i
= 0, e
= VirtRegIntervals
.size(); i
!= e
; ++i
)
106 delete VirtRegIntervals
[Register::index2VirtReg(i
)];
107 VirtRegIntervals
.clear();
108 RegMaskSlots
.clear();
110 RegMaskBlocks
.clear();
112 for (LiveRange
*LR
: RegUnitRanges
)
114 RegUnitRanges
.clear();
116 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
117 VNInfoAllocator
.Reset();
120 bool LiveIntervals::runOnMachineFunction(MachineFunction
&fn
) {
122 MRI
= &MF
->getRegInfo();
123 TRI
= MF
->getSubtarget().getRegisterInfo();
124 TII
= MF
->getSubtarget().getInstrInfo();
125 Indexes
= &getAnalysis
<SlotIndexes
>();
126 DomTree
= &getAnalysis
<MachineDominatorTree
>();
129 LICalc
= new LiveIntervalCalc();
131 // Allocate space for all virtual registers.
132 VirtRegIntervals
.resize(MRI
->getNumVirtRegs());
136 computeLiveInRegUnits();
138 if (EnablePrecomputePhysRegs
) {
139 // For stress testing, precompute live ranges of all physical register
140 // units, including reserved registers.
141 for (unsigned i
= 0, e
= TRI
->getNumRegUnits(); i
!= e
; ++i
)
148 void LiveIntervals::print(raw_ostream
&OS
, const Module
* ) const {
149 OS
<< "********** INTERVALS **********\n";
151 // Dump the regunits.
152 for (unsigned Unit
= 0, UnitE
= RegUnitRanges
.size(); Unit
!= UnitE
; ++Unit
)
153 if (LiveRange
*LR
= RegUnitRanges
[Unit
])
154 OS
<< printRegUnit(Unit
, TRI
) << ' ' << *LR
<< '\n';
156 // Dump the virtregs.
157 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
158 Register Reg
= Register::index2VirtReg(i
);
159 if (hasInterval(Reg
))
160 OS
<< getInterval(Reg
) << '\n';
164 for (SlotIndex Idx
: RegMaskSlots
)
171 void LiveIntervals::printInstrs(raw_ostream
&OS
) const {
172 OS
<< "********** MACHINEINSTRS **********\n";
173 MF
->print(OS
, Indexes
);
176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
177 LLVM_DUMP_METHOD
void LiveIntervals::dumpInstrs() const {
182 LiveInterval
*LiveIntervals::createInterval(Register reg
) {
183 float Weight
= Register::isPhysicalRegister(reg
) ? huge_valf
: 0.0F
;
184 return new LiveInterval(reg
, Weight
);
187 /// Compute the live interval of a virtual register, based on defs and uses.
188 bool LiveIntervals::computeVirtRegInterval(LiveInterval
&LI
) {
189 assert(LICalc
&& "LICalc not initialized.");
190 assert(LI
.empty() && "Should only compute empty intervals.");
191 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
192 LICalc
->calculate(LI
, MRI
->shouldTrackSubRegLiveness(LI
.reg()));
193 return computeDeadValues(LI
, nullptr);
196 void LiveIntervals::computeVirtRegs() {
197 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
198 Register Reg
= Register::index2VirtReg(i
);
199 if (MRI
->reg_nodbg_empty(Reg
))
201 LiveInterval
&LI
= createEmptyInterval(Reg
);
202 bool NeedSplit
= computeVirtRegInterval(LI
);
204 SmallVector
<LiveInterval
*, 8> SplitLIs
;
205 splitSeparateComponents(LI
, SplitLIs
);
210 void LiveIntervals::computeRegMasks() {
211 RegMaskBlocks
.resize(MF
->getNumBlockIDs());
213 // Find all instructions with regmask operands.
214 for (const MachineBasicBlock
&MBB
: *MF
) {
215 std::pair
<unsigned, unsigned> &RMB
= RegMaskBlocks
[MBB
.getNumber()];
216 RMB
.first
= RegMaskSlots
.size();
218 // Some block starts, such as EH funclets, create masks.
219 if (const uint32_t *Mask
= MBB
.getBeginClobberMask(TRI
)) {
220 RegMaskSlots
.push_back(Indexes
->getMBBStartIdx(&MBB
));
221 RegMaskBits
.push_back(Mask
);
224 // Unwinders may clobber additional registers.
225 // FIXME: This functionality can possibly be merged into
226 // MachineBasicBlock::getBeginClobberMask().
228 if (auto *Mask
= TRI
->getCustomEHPadPreservedMask(*MBB
.getParent())) {
229 RegMaskSlots
.push_back(Indexes
->getMBBStartIdx(&MBB
));
230 RegMaskBits
.push_back(Mask
);
233 for (const MachineInstr
&MI
: MBB
) {
234 for (const MachineOperand
&MO
: MI
.operands()) {
237 RegMaskSlots
.push_back(Indexes
->getInstructionIndex(MI
).getRegSlot());
238 RegMaskBits
.push_back(MO
.getRegMask());
242 // Some block ends, such as funclet returns, create masks. Put the mask on
243 // the last instruction of the block, because MBB slot index intervals are
245 if (const uint32_t *Mask
= MBB
.getEndClobberMask(TRI
)) {
246 assert(!MBB
.empty() && "empty return block?");
247 RegMaskSlots
.push_back(
248 Indexes
->getInstructionIndex(MBB
.back()).getRegSlot());
249 RegMaskBits
.push_back(Mask
);
252 // Compute the number of register mask instructions in this block.
253 RMB
.second
= RegMaskSlots
.size() - RMB
.first
;
257 //===----------------------------------------------------------------------===//
258 // Register Unit Liveness
259 //===----------------------------------------------------------------------===//
261 // Fixed interference typically comes from ABI boundaries: Function arguments
262 // and return values are passed in fixed registers, and so are exception
263 // pointers entering landing pads. Certain instructions require values to be
264 // present in specific registers. That is also represented through fixed
268 /// Compute the live range of a register unit, based on the uses and defs of
269 /// aliasing registers. The range should be empty, or contain only dead
270 /// phi-defs from ABI blocks.
271 void LiveIntervals::computeRegUnitRange(LiveRange
&LR
, unsigned Unit
) {
272 assert(LICalc
&& "LICalc not initialized.");
273 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
275 // The physregs aliasing Unit are the roots and their super-registers.
276 // Create all values as dead defs before extending to uses. Note that roots
277 // may share super-registers. That's OK because createDeadDefs() is
278 // idempotent. It is very rare for a register unit to have multiple roots, so
279 // uniquing super-registers is probably not worthwhile.
280 bool IsReserved
= false;
281 for (MCRegUnitRootIterator
Root(Unit
, TRI
); Root
.isValid(); ++Root
) {
282 bool IsRootReserved
= true;
283 for (MCSuperRegIterator
Super(*Root
, TRI
, /*IncludeSelf=*/true);
284 Super
.isValid(); ++Super
) {
285 MCRegister Reg
= *Super
;
286 if (!MRI
->reg_empty(Reg
))
287 LICalc
->createDeadDefs(LR
, Reg
);
288 // A register unit is considered reserved if all its roots and all their
289 // super registers are reserved.
290 if (!MRI
->isReserved(Reg
))
291 IsRootReserved
= false;
293 IsReserved
|= IsRootReserved
;
295 assert(IsReserved
== MRI
->isReservedRegUnit(Unit
) &&
296 "reserved computation mismatch");
298 // Now extend LR to reach all uses.
299 // Ignore uses of reserved registers. We only track defs of those.
301 for (MCRegUnitRootIterator
Root(Unit
, TRI
); Root
.isValid(); ++Root
) {
302 for (MCSuperRegIterator
Super(*Root
, TRI
, /*IncludeSelf=*/true);
303 Super
.isValid(); ++Super
) {
304 MCRegister Reg
= *Super
;
305 if (!MRI
->reg_empty(Reg
))
306 LICalc
->extendToUses(LR
, Reg
);
311 // Flush the segment set to the segment vector.
312 if (UseSegmentSetForPhysRegs
)
313 LR
.flushSegmentSet();
316 /// Precompute the live ranges of any register units that are live-in to an ABI
317 /// block somewhere. Register values can appear without a corresponding def when
318 /// entering the entry block or a landing pad.
319 void LiveIntervals::computeLiveInRegUnits() {
320 RegUnitRanges
.resize(TRI
->getNumRegUnits());
321 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
323 // Keep track of the live range sets allocated.
324 SmallVector
<unsigned, 8> NewRanges
;
326 // Check all basic blocks for live-ins.
327 for (const MachineBasicBlock
&MBB
: *MF
) {
328 // We only care about ABI blocks: Entry + landing pads.
329 if ((&MBB
!= &MF
->front() && !MBB
.isEHPad()) || MBB
.livein_empty())
332 // Create phi-defs at Begin for all live-in registers.
333 SlotIndex Begin
= Indexes
->getMBBStartIdx(&MBB
);
334 LLVM_DEBUG(dbgs() << Begin
<< "\t" << printMBBReference(MBB
));
335 for (const auto &LI
: MBB
.liveins()) {
336 for (MCRegUnitIterator
Units(LI
.PhysReg
, TRI
); Units
.isValid(); ++Units
) {
337 unsigned Unit
= *Units
;
338 LiveRange
*LR
= RegUnitRanges
[Unit
];
340 // Use segment set to speed-up initial computation of the live range.
341 LR
= RegUnitRanges
[Unit
] = new LiveRange(UseSegmentSetForPhysRegs
);
342 NewRanges
.push_back(Unit
);
344 VNInfo
*VNI
= LR
->createDeadDef(Begin
, getVNInfoAllocator());
346 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit
, TRI
) << '#' << VNI
->id
);
349 LLVM_DEBUG(dbgs() << '\n');
351 LLVM_DEBUG(dbgs() << "Created " << NewRanges
.size() << " new intervals.\n");
353 // Compute the 'normal' part of the ranges.
354 for (unsigned Unit
: NewRanges
)
355 computeRegUnitRange(*RegUnitRanges
[Unit
], Unit
);
358 static void createSegmentsForValues(LiveRange
&LR
,
359 iterator_range
<LiveInterval::vni_iterator
> VNIs
) {
360 for (VNInfo
*VNI
: VNIs
) {
363 SlotIndex Def
= VNI
->def
;
364 LR
.addSegment(LiveRange::Segment(Def
, Def
.getDeadSlot(), VNI
));
368 void LiveIntervals::extendSegmentsToUses(LiveRange
&Segments
,
369 ShrinkToUsesWorkList
&WorkList
,
370 Register Reg
, LaneBitmask LaneMask
) {
371 // Keep track of the PHIs that are in use.
372 SmallPtrSet
<VNInfo
*, 8> UsedPHIs
;
373 // Blocks that have already been added to WorkList as live-out.
374 SmallPtrSet
<const MachineBasicBlock
*, 16> LiveOut
;
376 auto getSubRange
= [](const LiveInterval
&I
, LaneBitmask M
)
377 -> const LiveRange
& {
380 for (const LiveInterval::SubRange
&SR
: I
.subranges()) {
381 if ((SR
.LaneMask
& M
).any()) {
382 assert(SR
.LaneMask
== M
&& "Expecting lane masks to match exactly");
386 llvm_unreachable("Subrange for mask not found");
389 const LiveInterval
&LI
= getInterval(Reg
);
390 const LiveRange
&OldRange
= getSubRange(LI
, LaneMask
);
392 // Extend intervals to reach all uses in WorkList.
393 while (!WorkList
.empty()) {
394 SlotIndex Idx
= WorkList
.back().first
;
395 VNInfo
*VNI
= WorkList
.back().second
;
397 const MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(Idx
.getPrevSlot());
398 SlotIndex BlockStart
= Indexes
->getMBBStartIdx(MBB
);
400 // Extend the live range for VNI to be live at Idx.
401 if (VNInfo
*ExtVNI
= Segments
.extendInBlock(BlockStart
, Idx
)) {
402 assert(ExtVNI
== VNI
&& "Unexpected existing value number");
404 // Is this a PHIDef we haven't seen before?
405 if (!VNI
->isPHIDef() || VNI
->def
!= BlockStart
||
406 !UsedPHIs
.insert(VNI
).second
)
408 // The PHI is live, make sure the predecessors are live-out.
409 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
410 if (!LiveOut
.insert(Pred
).second
)
412 SlotIndex Stop
= Indexes
->getMBBEndIdx(Pred
);
413 // A predecessor is not required to have a live-out value for a PHI.
414 if (VNInfo
*PVNI
= OldRange
.getVNInfoBefore(Stop
))
415 WorkList
.push_back(std::make_pair(Stop
, PVNI
));
420 // VNI is live-in to MBB.
421 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart
<< '\n');
422 Segments
.addSegment(LiveRange::Segment(BlockStart
, Idx
, VNI
));
424 // Make sure VNI is live-out from the predecessors.
425 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
426 if (!LiveOut
.insert(Pred
).second
)
428 SlotIndex Stop
= Indexes
->getMBBEndIdx(Pred
);
429 if (VNInfo
*OldVNI
= OldRange
.getVNInfoBefore(Stop
)) {
430 assert(OldVNI
== VNI
&& "Wrong value out of predecessor");
432 WorkList
.push_back(std::make_pair(Stop
, VNI
));
435 // There was no old VNI. Verify that Stop is jointly dominated
436 // by <undef>s for this live range.
437 assert(LaneMask
.any() &&
438 "Missing value out of predecessor for main range");
439 SmallVector
<SlotIndex
,8> Undefs
;
440 LI
.computeSubRangeUndefs(Undefs
, LaneMask
, *MRI
, *Indexes
);
441 assert(LiveRangeCalc::isJointlyDominated(Pred
, Undefs
, *Indexes
) &&
442 "Missing value out of predecessor for subrange");
449 bool LiveIntervals::shrinkToUses(LiveInterval
*li
,
450 SmallVectorImpl
<MachineInstr
*> *dead
) {
451 LLVM_DEBUG(dbgs() << "Shrink: " << *li
<< '\n');
452 assert(Register::isVirtualRegister(li
->reg()) &&
453 "Can only shrink virtual registers");
455 // Shrink subregister live ranges.
456 bool NeedsCleanup
= false;
457 for (LiveInterval::SubRange
&S
: li
->subranges()) {
458 shrinkToUses(S
, li
->reg());
463 li
->removeEmptySubRanges();
465 // Find all the values used, including PHI kills.
466 ShrinkToUsesWorkList WorkList
;
468 // Visit all instructions reading li->reg().
469 Register Reg
= li
->reg();
470 for (MachineInstr
&UseMI
: MRI
->reg_instructions(Reg
)) {
471 if (UseMI
.isDebugInstr() || !UseMI
.readsVirtualRegister(Reg
))
473 SlotIndex Idx
= getInstructionIndex(UseMI
).getRegSlot();
474 LiveQueryResult LRQ
= li
->Query(Idx
);
475 VNInfo
*VNI
= LRQ
.valueIn();
477 // This shouldn't happen: readsVirtualRegister returns true, but there is
478 // no live value. It is likely caused by a target getting <undef> flags
481 dbgs() << Idx
<< '\t' << UseMI
482 << "Warning: Instr claims to read non-existent value in "
486 // Special case: An early-clobber tied operand reads and writes the
487 // register one slot early.
488 if (VNInfo
*DefVNI
= LRQ
.valueDefined())
491 WorkList
.push_back(std::make_pair(Idx
, VNI
));
494 // Create new live ranges with only minimal live segments per def.
496 createSegmentsForValues(NewLR
, li
->vnis());
497 extendSegmentsToUses(NewLR
, WorkList
, Reg
, LaneBitmask::getNone());
499 // Move the trimmed segments back.
500 li
->segments
.swap(NewLR
.segments
);
502 // Handle dead values.
503 bool CanSeparate
= computeDeadValues(*li
, dead
);
504 LLVM_DEBUG(dbgs() << "Shrunk: " << *li
<< '\n');
508 bool LiveIntervals::computeDeadValues(LiveInterval
&LI
,
509 SmallVectorImpl
<MachineInstr
*> *dead
) {
510 bool MayHaveSplitComponents
= false;
511 bool HaveDeadDef
= false;
513 for (VNInfo
*VNI
: LI
.valnos
) {
516 SlotIndex Def
= VNI
->def
;
517 LiveRange::iterator I
= LI
.FindSegmentContaining(Def
);
518 assert(I
!= LI
.end() && "Missing segment for VNI");
520 // Is the register live before? Otherwise we may have to add a read-undef
521 // flag for subregister defs.
522 Register VReg
= LI
.reg();
523 if (MRI
->shouldTrackSubRegLiveness(VReg
)) {
524 if ((I
== LI
.begin() || std::prev(I
)->end
< Def
) && !VNI
->isPHIDef()) {
525 MachineInstr
*MI
= getInstructionFromIndex(Def
);
526 MI
->setRegisterDefReadUndef(VReg
);
530 if (I
->end
!= Def
.getDeadSlot())
532 if (VNI
->isPHIDef()) {
533 // This is a dead PHI. Remove it.
536 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def
<< " may separate interval\n");
537 MayHaveSplitComponents
= true;
539 // This is a dead def. Make sure the instruction knows.
540 MachineInstr
*MI
= getInstructionFromIndex(Def
);
541 assert(MI
&& "No instruction defining live value");
542 MI
->addRegisterDead(LI
.reg(), TRI
);
544 MayHaveSplitComponents
= true;
547 if (dead
&& MI
->allDefsAreDead()) {
548 LLVM_DEBUG(dbgs() << "All defs dead: " << Def
<< '\t' << *MI
);
553 return MayHaveSplitComponents
;
556 void LiveIntervals::shrinkToUses(LiveInterval::SubRange
&SR
, Register Reg
) {
557 LLVM_DEBUG(dbgs() << "Shrink: " << SR
<< '\n');
558 assert(Register::isVirtualRegister(Reg
) &&
559 "Can only shrink virtual registers");
560 // Find all the values used, including PHI kills.
561 ShrinkToUsesWorkList WorkList
;
563 // Visit all instructions reading Reg.
565 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
566 // Skip "undef" uses.
569 // Maybe the operand is for a subregister we don't care about.
570 unsigned SubReg
= MO
.getSubReg();
572 LaneBitmask LaneMask
= TRI
->getSubRegIndexLaneMask(SubReg
);
573 if ((LaneMask
& SR
.LaneMask
).none())
576 // We only need to visit each instruction once.
577 MachineInstr
*UseMI
= MO
.getParent();
578 SlotIndex Idx
= getInstructionIndex(*UseMI
).getRegSlot();
583 LiveQueryResult LRQ
= SR
.Query(Idx
);
584 VNInfo
*VNI
= LRQ
.valueIn();
585 // For Subranges it is possible that only undef values are left in that
586 // part of the subregister, so there is no real liverange at the use
590 // Special case: An early-clobber tied operand reads and writes the
591 // register one slot early.
592 if (VNInfo
*DefVNI
= LRQ
.valueDefined())
595 WorkList
.push_back(std::make_pair(Idx
, VNI
));
598 // Create a new live ranges with only minimal live segments per def.
600 createSegmentsForValues(NewLR
, SR
.vnis());
601 extendSegmentsToUses(NewLR
, WorkList
, Reg
, SR
.LaneMask
);
603 // Move the trimmed ranges back.
604 SR
.segments
.swap(NewLR
.segments
);
606 // Remove dead PHI value numbers
607 for (VNInfo
*VNI
: SR
.valnos
) {
610 const LiveRange::Segment
*Segment
= SR
.getSegmentContaining(VNI
->def
);
611 assert(Segment
!= nullptr && "Missing segment for VNI");
612 if (Segment
->end
!= VNI
->def
.getDeadSlot())
614 if (VNI
->isPHIDef()) {
615 // This is a dead PHI. Remove it.
616 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI
->def
617 << " may separate interval\n");
619 SR
.removeSegment(*Segment
);
623 LLVM_DEBUG(dbgs() << "Shrunk: " << SR
<< '\n');
626 void LiveIntervals::extendToIndices(LiveRange
&LR
,
627 ArrayRef
<SlotIndex
> Indices
,
628 ArrayRef
<SlotIndex
> Undefs
) {
629 assert(LICalc
&& "LICalc not initialized.");
630 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
631 for (SlotIndex Idx
: Indices
)
632 LICalc
->extend(LR
, Idx
, /*PhysReg=*/0, Undefs
);
635 void LiveIntervals::pruneValue(LiveRange
&LR
, SlotIndex Kill
,
636 SmallVectorImpl
<SlotIndex
> *EndPoints
) {
637 LiveQueryResult LRQ
= LR
.Query(Kill
);
638 VNInfo
*VNI
= LRQ
.valueOutOrDead();
642 MachineBasicBlock
*KillMBB
= Indexes
->getMBBFromIndex(Kill
);
643 SlotIndex MBBEnd
= Indexes
->getMBBEndIdx(KillMBB
);
645 // If VNI isn't live out from KillMBB, the value is trivially pruned.
646 if (LRQ
.endPoint() < MBBEnd
) {
647 LR
.removeSegment(Kill
, LRQ
.endPoint());
648 if (EndPoints
) EndPoints
->push_back(LRQ
.endPoint());
652 // VNI is live out of KillMBB.
653 LR
.removeSegment(Kill
, MBBEnd
);
654 if (EndPoints
) EndPoints
->push_back(MBBEnd
);
656 // Find all blocks that are reachable from KillMBB without leaving VNI's live
657 // range. It is possible that KillMBB itself is reachable, so start a DFS
658 // from each successor.
659 using VisitedTy
= df_iterator_default_set
<MachineBasicBlock
*,9>;
661 for (MachineBasicBlock
*Succ
: KillMBB
->successors()) {
662 for (df_ext_iterator
<MachineBasicBlock
*, VisitedTy
>
663 I
= df_ext_begin(Succ
, Visited
), E
= df_ext_end(Succ
, Visited
);
665 MachineBasicBlock
*MBB
= *I
;
667 // Check if VNI is live in to MBB.
668 SlotIndex MBBStart
, MBBEnd
;
669 std::tie(MBBStart
, MBBEnd
) = Indexes
->getMBBRange(MBB
);
670 LiveQueryResult LRQ
= LR
.Query(MBBStart
);
671 if (LRQ
.valueIn() != VNI
) {
672 // This block isn't part of the VNI segment. Prune the search.
677 // Prune the search if VNI is killed in MBB.
678 if (LRQ
.endPoint() < MBBEnd
) {
679 LR
.removeSegment(MBBStart
, LRQ
.endPoint());
680 if (EndPoints
) EndPoints
->push_back(LRQ
.endPoint());
685 // VNI is live through MBB.
686 LR
.removeSegment(MBBStart
, MBBEnd
);
687 if (EndPoints
) EndPoints
->push_back(MBBEnd
);
693 //===----------------------------------------------------------------------===//
694 // Register allocator hooks.
697 void LiveIntervals::addKillFlags(const VirtRegMap
*VRM
) {
698 // Keep track of regunit ranges.
699 SmallVector
<std::pair
<const LiveRange
*, LiveRange::const_iterator
>, 8> RU
;
701 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
702 Register Reg
= Register::index2VirtReg(i
);
703 if (MRI
->reg_nodbg_empty(Reg
))
705 const LiveInterval
&LI
= getInterval(Reg
);
709 // Target may have not allocated this yet.
710 Register PhysReg
= VRM
->getPhys(Reg
);
714 // Find the regunit intervals for the assigned register. They may overlap
715 // the virtual register live range, cancelling any kills.
717 for (MCRegUnitIterator
Unit(PhysReg
, TRI
); Unit
.isValid();
719 const LiveRange
&RURange
= getRegUnit(*Unit
);
722 RU
.push_back(std::make_pair(&RURange
, RURange
.find(LI
.begin()->end
)));
724 // Every instruction that kills Reg corresponds to a segment range end
726 for (LiveInterval::const_iterator RI
= LI
.begin(), RE
= LI
.end(); RI
!= RE
;
728 // A block index indicates an MBB edge.
729 if (RI
->end
.isBlock())
731 MachineInstr
*MI
= getInstructionFromIndex(RI
->end
);
735 // Check if any of the regunits are live beyond the end of RI. That could
736 // happen when a physreg is defined as a copy of a virtreg:
739 // FOO %5 <--- MI, cancel kill because %eax is live.
742 // There should be no kill flag on FOO when %5 is rewritten as %eax.
743 for (auto &RUP
: RU
) {
744 const LiveRange
&RURange
= *RUP
.first
;
745 LiveRange::const_iterator
&I
= RUP
.second
;
746 if (I
== RURange
.end())
748 I
= RURange
.advanceTo(I
, RI
->end
);
749 if (I
== RURange
.end() || I
->start
>= RI
->end
)
751 // I is overlapping RI.
755 if (MRI
->subRegLivenessEnabled()) {
756 // When reading a partial undefined value we must not add a kill flag.
757 // The regalloc might have used the undef lane for something else.
759 // %1 = ... ; R32: %1
760 // %2:high16 = ... ; R64: %2
761 // = read killed %2 ; R64: %2
762 // = read %1 ; R32: %1
763 // The <kill> flag is correct for %2, but the register allocator may
764 // assign R0L to %1, and R0 to %2 because the low 32bits of R0
765 // are actually never written by %2. After assignment the <kill>
766 // flag at the read instruction is invalid.
767 LaneBitmask DefinedLanesMask
;
768 if (LI
.hasSubRanges()) {
769 // Compute a mask of lanes that are defined.
770 DefinedLanesMask
= LaneBitmask::getNone();
771 for (const LiveInterval::SubRange
&SR
: LI
.subranges())
772 for (const LiveRange::Segment
&Segment
: SR
.segments
) {
773 if (Segment
.start
>= RI
->end
)
775 if (Segment
.end
== RI
->end
) {
776 DefinedLanesMask
|= SR
.LaneMask
;
781 DefinedLanesMask
= LaneBitmask::getAll();
783 bool IsFullWrite
= false;
784 for (const MachineOperand
&MO
: MI
->operands()) {
785 if (!MO
.isReg() || MO
.getReg() != Reg
)
788 // Reading any undefined lanes?
789 unsigned SubReg
= MO
.getSubReg();
790 LaneBitmask UseMask
= SubReg
? TRI
->getSubRegIndexLaneMask(SubReg
)
791 : MRI
->getMaxLaneMaskForVReg(Reg
);
792 if ((UseMask
& ~DefinedLanesMask
).any())
794 } else if (MO
.getSubReg() == 0) {
795 // Writing to the full register?
801 // If an instruction writes to a subregister, a new segment starts in
802 // the LiveInterval. But as this is only overriding part of the register
803 // adding kill-flags is not correct here after registers have been
806 // Next segment has to be adjacent in the subregister write case.
807 LiveRange::const_iterator N
= std::next(RI
);
808 if (N
!= LI
.end() && N
->start
== RI
->end
)
813 MI
->addRegisterKilled(Reg
, nullptr);
816 MI
->clearRegisterKills(Reg
, nullptr);
822 LiveIntervals::intervalIsInOneMBB(const LiveInterval
&LI
) const {
823 assert(!LI
.empty() && "LiveInterval is empty.");
825 // A local live range must be fully contained inside the block, meaning it is
826 // defined and killed at instructions, not at block boundaries. It is not
827 // live in or out of any block.
829 // It is technically possible to have a PHI-defined live range identical to a
830 // single block, but we are going to return false in that case.
832 SlotIndex Start
= LI
.beginIndex();
836 SlotIndex Stop
= LI
.endIndex();
840 // getMBBFromIndex doesn't need to search the MBB table when both indexes
841 // belong to proper instructions.
842 MachineBasicBlock
*MBB1
= Indexes
->getMBBFromIndex(Start
);
843 MachineBasicBlock
*MBB2
= Indexes
->getMBBFromIndex(Stop
);
844 return MBB1
== MBB2
? MBB1
: nullptr;
848 LiveIntervals::hasPHIKill(const LiveInterval
&LI
, const VNInfo
*VNI
) const {
849 for (const VNInfo
*PHI
: LI
.valnos
) {
850 if (PHI
->isUnused() || !PHI
->isPHIDef())
852 const MachineBasicBlock
*PHIMBB
= getMBBFromIndex(PHI
->def
);
853 // Conservatively return true instead of scanning huge predecessor lists.
854 if (PHIMBB
->pred_size() > 100)
856 for (const MachineBasicBlock
*Pred
: PHIMBB
->predecessors())
857 if (VNI
== LI
.getVNInfoBefore(Indexes
->getMBBEndIdx(Pred
)))
863 float LiveIntervals::getSpillWeight(bool isDef
, bool isUse
,
864 const MachineBlockFrequencyInfo
*MBFI
,
865 const MachineInstr
&MI
) {
866 return getSpillWeight(isDef
, isUse
, MBFI
, MI
.getParent());
869 float LiveIntervals::getSpillWeight(bool isDef
, bool isUse
,
870 const MachineBlockFrequencyInfo
*MBFI
,
871 const MachineBasicBlock
*MBB
) {
872 return (isDef
+ isUse
) * MBFI
->getBlockFreqRelativeToEntryBlock(MBB
);
876 LiveIntervals::addSegmentToEndOfBlock(Register Reg
, MachineInstr
&startInst
) {
877 LiveInterval
&Interval
= createEmptyInterval(Reg
);
878 VNInfo
*VN
= Interval
.getNextValue(
879 SlotIndex(getInstructionIndex(startInst
).getRegSlot()),
880 getVNInfoAllocator());
881 LiveRange::Segment
S(SlotIndex(getInstructionIndex(startInst
).getRegSlot()),
882 getMBBEndIdx(startInst
.getParent()), VN
);
883 Interval
.addSegment(S
);
888 //===----------------------------------------------------------------------===//
889 // Register mask functions
890 //===----------------------------------------------------------------------===//
891 /// Check whether use of reg in MI is live-through. Live-through means that
892 /// the value is alive on exit from Machine instruction. The example of such
893 /// use is a deopt value in statepoint instruction.
894 static bool hasLiveThroughUse(const MachineInstr
*MI
, Register Reg
) {
895 if (MI
->getOpcode() != TargetOpcode::STATEPOINT
)
897 StatepointOpers
SO(MI
);
898 if (SO
.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn
)
900 for (unsigned Idx
= SO
.getNumDeoptArgsIdx(), E
= SO
.getNumGCPtrIdx(); Idx
< E
;
902 const MachineOperand
&MO
= MI
->getOperand(Idx
);
903 if (MO
.isReg() && MO
.getReg() == Reg
)
909 bool LiveIntervals::checkRegMaskInterference(const LiveInterval
&LI
,
910 BitVector
&UsableRegs
) {
913 LiveInterval::const_iterator LiveI
= LI
.begin(), LiveE
= LI
.end();
915 // Use a smaller arrays for local live ranges.
916 ArrayRef
<SlotIndex
> Slots
;
917 ArrayRef
<const uint32_t*> Bits
;
918 if (MachineBasicBlock
*MBB
= intervalIsInOneMBB(LI
)) {
919 Slots
= getRegMaskSlotsInBlock(MBB
->getNumber());
920 Bits
= getRegMaskBitsInBlock(MBB
->getNumber());
922 Slots
= getRegMaskSlots();
923 Bits
= getRegMaskBits();
926 // We are going to enumerate all the register mask slots contained in LI.
927 // Start with a binary search of RegMaskSlots to find a starting point.
928 ArrayRef
<SlotIndex
>::iterator SlotI
= llvm::lower_bound(Slots
, LiveI
->start
);
929 ArrayRef
<SlotIndex
>::iterator SlotE
= Slots
.end();
931 // No slots in range, LI begins after the last call.
936 // Utility to union regmasks.
937 auto unionBitMask
= [&](unsigned Idx
) {
939 // This is the first overlap. Initialize UsableRegs to all ones.
941 UsableRegs
.resize(TRI
->getNumRegs(), true);
944 // Remove usable registers clobbered by this mask.
945 UsableRegs
.clearBitsNotInMask(Bits
[Idx
]);
948 assert(*SlotI
>= LiveI
->start
);
949 // Loop over all slots overlapping this segment.
950 while (*SlotI
< LiveI
->end
) {
951 // *SlotI overlaps LI. Collect mask bits.
952 unionBitMask(SlotI
- Slots
.begin());
953 if (++SlotI
== SlotE
)
956 // If segment ends with live-through use we need to collect its regmask.
957 if (*SlotI
== LiveI
->end
)
958 if (MachineInstr
*MI
= getInstructionFromIndex(*SlotI
))
959 if (hasLiveThroughUse(MI
, LI
.reg()))
960 unionBitMask(SlotI
++ - Slots
.begin());
961 // *SlotI is beyond the current LI segment.
962 // Special advance implementation to not miss next LiveI->end.
963 if (++LiveI
== LiveE
|| SlotI
== SlotE
|| *SlotI
> LI
.endIndex())
965 while (LiveI
->end
< *SlotI
)
967 // Advance SlotI until it overlaps.
968 while (*SlotI
< LiveI
->start
)
969 if (++SlotI
== SlotE
)
974 //===----------------------------------------------------------------------===//
975 // IntervalUpdate class.
976 //===----------------------------------------------------------------------===//
978 /// Toolkit used by handleMove to trim or extend live intervals.
979 class LiveIntervals::HMEditor
{
982 const MachineRegisterInfo
& MRI
;
983 const TargetRegisterInfo
& TRI
;
986 SmallPtrSet
<LiveRange
*, 8> Updated
;
990 HMEditor(LiveIntervals
& LIS
, const MachineRegisterInfo
& MRI
,
991 const TargetRegisterInfo
& TRI
,
992 SlotIndex OldIdx
, SlotIndex NewIdx
, bool UpdateFlags
)
993 : LIS(LIS
), MRI(MRI
), TRI(TRI
), OldIdx(OldIdx
), NewIdx(NewIdx
),
994 UpdateFlags(UpdateFlags
) {}
996 // FIXME: UpdateFlags is a workaround that creates live intervals for all
997 // physregs, even those that aren't needed for regalloc, in order to update
998 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
999 // flags, and postRA passes will use a live register utility instead.
1000 LiveRange
*getRegUnitLI(unsigned Unit
) {
1001 if (UpdateFlags
&& !MRI
.isReservedRegUnit(Unit
))
1002 return &LIS
.getRegUnit(Unit
);
1003 return LIS
.getCachedRegUnit(Unit
);
1006 /// Update all live ranges touched by MI, assuming a move from OldIdx to
1008 void updateAllRanges(MachineInstr
*MI
) {
1009 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx
<< " -> " << NewIdx
<< ": "
1011 bool hasRegMask
= false;
1012 for (MachineOperand
&MO
: MI
->operands()) {
1020 // Aggressively clear all kill flags.
1021 // They are reinserted by VirtRegRewriter.
1022 MO
.setIsKill(false);
1025 Register Reg
= MO
.getReg();
1028 if (Register::isVirtualRegister(Reg
)) {
1029 LiveInterval
&LI
= LIS
.getInterval(Reg
);
1030 if (LI
.hasSubRanges()) {
1031 unsigned SubReg
= MO
.getSubReg();
1032 LaneBitmask LaneMask
= SubReg
? TRI
.getSubRegIndexLaneMask(SubReg
)
1033 : MRI
.getMaxLaneMaskForVReg(Reg
);
1034 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1035 if ((S
.LaneMask
& LaneMask
).none())
1037 updateRange(S
, Reg
, S
.LaneMask
);
1040 updateRange(LI
, Reg
, LaneBitmask::getNone());
1041 // If main range has a hole and we are moving a subrange use across
1042 // the hole updateRange() cannot properly handle it since it only
1043 // gets the LiveRange and not the whole LiveInterval. As a result
1044 // we may end up with a main range not covering all subranges.
1045 // This is extremely rare case, so let's check and reconstruct the
1047 if (LI
.hasSubRanges()) {
1048 unsigned SubReg
= MO
.getSubReg();
1049 LaneBitmask LaneMask
= SubReg
? TRI
.getSubRegIndexLaneMask(SubReg
)
1050 : MRI
.getMaxLaneMaskForVReg(Reg
);
1051 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1052 if ((S
.LaneMask
& LaneMask
).none() || LI
.covers(S
))
1055 LIS
.constructMainRangeFromSubranges(LI
);
1063 // For physregs, only update the regunits that actually have a
1064 // precomputed live range.
1065 for (MCRegUnitIterator
Units(Reg
.asMCReg(), &TRI
); Units
.isValid();
1067 if (LiveRange
*LR
= getRegUnitLI(*Units
))
1068 updateRange(*LR
, *Units
, LaneBitmask::getNone());
1071 updateRegMaskSlots();
1075 /// Update a single live range, assuming an instruction has been moved from
1076 /// OldIdx to NewIdx.
1077 void updateRange(LiveRange
&LR
, Register Reg
, LaneBitmask LaneMask
) {
1078 if (!Updated
.insert(&LR
).second
)
1082 if (Register::isVirtualRegister(Reg
)) {
1083 dbgs() << printReg(Reg
);
1085 dbgs() << " L" << PrintLaneMask(LaneMask
);
1087 dbgs() << printRegUnit(Reg
, &TRI
);
1089 dbgs() << ":\t" << LR
<< '\n';
1091 if (SlotIndex::isEarlierInstr(OldIdx
, NewIdx
))
1094 handleMoveUp(LR
, Reg
, LaneMask
);
1095 LLVM_DEBUG(dbgs() << " -->\t" << LR
<< '\n');
1099 /// Update LR to reflect an instruction has been moved downwards from OldIdx
1100 /// to NewIdx (OldIdx < NewIdx).
1101 void handleMoveDown(LiveRange
&LR
) {
1102 LiveRange::iterator E
= LR
.end();
1103 // Segment going into OldIdx.
1104 LiveRange::iterator OldIdxIn
= LR
.find(OldIdx
.getBaseIndex());
1106 // No value live before or after OldIdx? Nothing to do.
1107 if (OldIdxIn
== E
|| SlotIndex::isEarlierInstr(OldIdx
, OldIdxIn
->start
))
1110 LiveRange::iterator OldIdxOut
;
1111 // Do we have a value live-in to OldIdx?
1112 if (SlotIndex::isEarlierInstr(OldIdxIn
->start
, OldIdx
)) {
1113 // If the live-in value already extends to NewIdx, there is nothing to do.
1114 if (SlotIndex::isEarlierEqualInstr(NewIdx
, OldIdxIn
->end
))
1116 // Aggressively remove all kill flags from the old kill point.
1117 // Kill flags shouldn't be used while live intervals exist, they will be
1118 // reinserted by VirtRegRewriter.
1119 if (MachineInstr
*KillMI
= LIS
.getInstructionFromIndex(OldIdxIn
->end
))
1120 for (MachineOperand
&MOP
: mi_bundle_ops(*KillMI
))
1121 if (MOP
.isReg() && MOP
.isUse())
1122 MOP
.setIsKill(false);
1124 // Is there a def before NewIdx which is not OldIdx?
1125 LiveRange::iterator Next
= std::next(OldIdxIn
);
1126 if (Next
!= E
&& !SlotIndex::isSameInstr(OldIdx
, Next
->start
) &&
1127 SlotIndex::isEarlierInstr(Next
->start
, NewIdx
)) {
1128 // If we are here then OldIdx was just a use but not a def. We only have
1129 // to ensure liveness extends to NewIdx.
1130 LiveRange::iterator NewIdxIn
=
1131 LR
.advanceTo(Next
, NewIdx
.getBaseIndex());
1132 // Extend the segment before NewIdx if necessary.
1133 if (NewIdxIn
== E
||
1134 !SlotIndex::isEarlierInstr(NewIdxIn
->start
, NewIdx
)) {
1135 LiveRange::iterator Prev
= std::prev(NewIdxIn
);
1136 Prev
->end
= NewIdx
.getRegSlot();
1139 OldIdxIn
->end
= Next
->start
;
1143 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1144 // invalid by overlapping ranges.
1145 bool isKill
= SlotIndex::isSameInstr(OldIdx
, OldIdxIn
->end
);
1146 OldIdxIn
->end
= NewIdx
.getRegSlot(OldIdxIn
->end
.isEarlyClobber());
1147 // If this was not a kill, then there was no def and we're done.
1151 // Did we have a Def at OldIdx?
1153 if (OldIdxOut
== E
|| !SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
))
1156 OldIdxOut
= OldIdxIn
;
1159 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1160 // to the segment starting there.
1161 assert(OldIdxOut
!= E
&& SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
) &&
1163 VNInfo
*OldIdxVNI
= OldIdxOut
->valno
;
1164 assert(OldIdxVNI
->def
== OldIdxOut
->start
&& "Inconsistent def");
1166 // If the defined value extends beyond NewIdx, just move the beginning
1167 // of the segment to NewIdx.
1168 SlotIndex NewIdxDef
= NewIdx
.getRegSlot(OldIdxOut
->start
.isEarlyClobber());
1169 if (SlotIndex::isEarlierInstr(NewIdxDef
, OldIdxOut
->end
)) {
1170 OldIdxVNI
->def
= NewIdxDef
;
1171 OldIdxOut
->start
= OldIdxVNI
->def
;
1175 // If we are here then we have a Definition at OldIdx which ends before
1178 // Is there an existing Def at NewIdx?
1179 LiveRange::iterator AfterNewIdx
1180 = LR
.advanceTo(OldIdxOut
, NewIdx
.getRegSlot());
1181 bool OldIdxDefIsDead
= OldIdxOut
->end
.isDead();
1182 if (!OldIdxDefIsDead
&&
1183 SlotIndex::isEarlierInstr(OldIdxOut
->end
, NewIdxDef
)) {
1184 // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1186 if (OldIdxOut
!= LR
.begin() &&
1187 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut
)->end
,
1188 OldIdxOut
->start
)) {
1189 // There is no gap between OldIdxOut and its predecessor anymore,
1191 LiveRange::iterator IPrev
= std::prev(OldIdxOut
);
1193 IPrev
->end
= OldIdxOut
->end
;
1195 // The value is live in to OldIdx
1196 LiveRange::iterator INext
= std::next(OldIdxOut
);
1197 assert(INext
!= E
&& "Must have following segment");
1198 // We merge OldIdxOut and its successor. As we're dealing with subreg
1199 // reordering, there is always a successor to OldIdxOut in the same BB
1200 // We don't need INext->valno anymore and will reuse for the new segment
1203 INext
->start
= OldIdxOut
->end
;
1204 INext
->valno
->def
= INext
->start
;
1206 // If NewIdx is behind the last segment, extend that and append a new one.
1207 if (AfterNewIdx
== E
) {
1208 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1210 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1211 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1212 std::copy(std::next(OldIdxOut
), E
, OldIdxOut
);
1213 // The last segment is undefined now, reuse it for a dead def.
1214 LiveRange::iterator NewSegment
= std::prev(E
);
1215 *NewSegment
= LiveRange::Segment(NewIdxDef
, NewIdxDef
.getDeadSlot(),
1217 DefVNI
->def
= NewIdxDef
;
1219 LiveRange::iterator Prev
= std::prev(NewSegment
);
1220 Prev
->end
= NewIdxDef
;
1222 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1224 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1225 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1226 std::copy(std::next(OldIdxOut
), std::next(AfterNewIdx
), OldIdxOut
);
1227 LiveRange::iterator Prev
= std::prev(AfterNewIdx
);
1228 // We have two cases:
1229 if (SlotIndex::isEarlierInstr(Prev
->start
, NewIdxDef
)) {
1230 // Case 1: NewIdx is inside a liverange. Split this liverange at
1231 // NewIdxDef into the segment "Prev" followed by "NewSegment".
1232 LiveRange::iterator NewSegment
= AfterNewIdx
;
1233 *NewSegment
= LiveRange::Segment(NewIdxDef
, Prev
->end
, Prev
->valno
);
1234 Prev
->valno
->def
= NewIdxDef
;
1236 *Prev
= LiveRange::Segment(Prev
->start
, NewIdxDef
, DefVNI
);
1237 DefVNI
->def
= Prev
->start
;
1239 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1240 // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1241 *Prev
= LiveRange::Segment(NewIdxDef
, AfterNewIdx
->start
, DefVNI
);
1242 DefVNI
->def
= NewIdxDef
;
1243 assert(DefVNI
!= AfterNewIdx
->valno
);
1249 if (AfterNewIdx
!= E
&&
1250 SlotIndex::isSameInstr(AfterNewIdx
->start
, NewIdxDef
)) {
1251 // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1253 assert(AfterNewIdx
->valno
!= OldIdxVNI
&& "Multiple defs of value?");
1254 LR
.removeValNo(OldIdxVNI
);
1256 // There was no existing def at NewIdx. We need to create a dead def
1257 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1258 // a new segment at the place where we want to construct the dead def.
1259 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1260 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1261 assert(AfterNewIdx
!= OldIdxOut
&& "Inconsistent iterators");
1262 std::copy(std::next(OldIdxOut
), AfterNewIdx
, OldIdxOut
);
1263 // We can reuse OldIdxVNI now.
1264 LiveRange::iterator NewSegment
= std::prev(AfterNewIdx
);
1265 VNInfo
*NewSegmentVNI
= OldIdxVNI
;
1266 NewSegmentVNI
->def
= NewIdxDef
;
1267 *NewSegment
= LiveRange::Segment(NewIdxDef
, NewIdxDef
.getDeadSlot(),
1272 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1273 /// to NewIdx (NewIdx < OldIdx).
1274 void handleMoveUp(LiveRange
&LR
, Register Reg
, LaneBitmask LaneMask
) {
1275 LiveRange::iterator E
= LR
.end();
1276 // Segment going into OldIdx.
1277 LiveRange::iterator OldIdxIn
= LR
.find(OldIdx
.getBaseIndex());
1279 // No value live before or after OldIdx? Nothing to do.
1280 if (OldIdxIn
== E
|| SlotIndex::isEarlierInstr(OldIdx
, OldIdxIn
->start
))
1283 LiveRange::iterator OldIdxOut
;
1284 // Do we have a value live-in to OldIdx?
1285 if (SlotIndex::isEarlierInstr(OldIdxIn
->start
, OldIdx
)) {
1286 // If the live-in value isn't killed here, then we have no Def at
1287 // OldIdx, moreover the value must be live at NewIdx so there is nothing
1289 bool isKill
= SlotIndex::isSameInstr(OldIdx
, OldIdxIn
->end
);
1293 // At this point we have to move OldIdxIn->end back to the nearest
1294 // previous use or (dead-)def but no further than NewIdx.
1295 SlotIndex DefBeforeOldIdx
1296 = std::max(OldIdxIn
->start
.getDeadSlot(),
1297 NewIdx
.getRegSlot(OldIdxIn
->end
.isEarlyClobber()));
1298 OldIdxIn
->end
= findLastUseBefore(DefBeforeOldIdx
, Reg
, LaneMask
);
1300 // Did we have a Def at OldIdx? If not we are done now.
1301 OldIdxOut
= std::next(OldIdxIn
);
1302 if (OldIdxOut
== E
|| !SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
))
1305 OldIdxOut
= OldIdxIn
;
1306 OldIdxIn
= OldIdxOut
!= LR
.begin() ? std::prev(OldIdxOut
) : E
;
1309 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1310 // to the segment starting there.
1311 assert(OldIdxOut
!= E
&& SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
) &&
1313 VNInfo
*OldIdxVNI
= OldIdxOut
->valno
;
1314 assert(OldIdxVNI
->def
== OldIdxOut
->start
&& "Inconsistent def");
1315 bool OldIdxDefIsDead
= OldIdxOut
->end
.isDead();
1317 // Is there an existing def at NewIdx?
1318 SlotIndex NewIdxDef
= NewIdx
.getRegSlot(OldIdxOut
->start
.isEarlyClobber());
1319 LiveRange::iterator NewIdxOut
= LR
.find(NewIdx
.getRegSlot());
1320 if (SlotIndex::isSameInstr(NewIdxOut
->start
, NewIdx
)) {
1321 assert(NewIdxOut
->valno
!= OldIdxVNI
&&
1322 "Same value defined more than once?");
1323 // If OldIdx was a dead def remove it.
1324 if (!OldIdxDefIsDead
) {
1325 // Remove segment starting at NewIdx and move begin of OldIdxOut to
1326 // NewIdx so it can take its place.
1327 OldIdxVNI
->def
= NewIdxDef
;
1328 OldIdxOut
->start
= NewIdxDef
;
1329 LR
.removeValNo(NewIdxOut
->valno
);
1331 // Simply remove the dead def at OldIdx.
1332 LR
.removeValNo(OldIdxVNI
);
1335 // Previously nothing was live after NewIdx, so all we have to do now is
1336 // move the begin of OldIdxOut to NewIdx.
1337 if (!OldIdxDefIsDead
) {
1338 // Do we have any intermediate Defs between OldIdx and NewIdx?
1339 if (OldIdxIn
!= E
&&
1340 SlotIndex::isEarlierInstr(NewIdxDef
, OldIdxIn
->start
)) {
1341 // OldIdx is not a dead def and NewIdx is before predecessor start.
1342 LiveRange::iterator NewIdxIn
= NewIdxOut
;
1343 assert(NewIdxIn
== LR
.find(NewIdx
.getBaseIndex()));
1344 const SlotIndex SplitPos
= NewIdxDef
;
1345 OldIdxVNI
= OldIdxIn
->valno
;
1347 SlotIndex NewDefEndPoint
= std::next(NewIdxIn
)->end
;
1348 LiveRange::iterator Prev
= std::prev(OldIdxIn
);
1349 if (OldIdxIn
!= LR
.begin() &&
1350 SlotIndex::isEarlierInstr(NewIdx
, Prev
->end
)) {
1351 // If the segment before OldIdx read a value defined earlier than
1352 // NewIdx, the moved instruction also reads and forwards that
1353 // value. Extend the lifetime of the new def point.
1355 // Extend to where the previous range started, unless there is
1356 // another redef first.
1357 NewDefEndPoint
= std::min(OldIdxIn
->start
,
1358 std::next(NewIdxOut
)->start
);
1361 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1362 OldIdxOut
->valno
->def
= OldIdxIn
->start
;
1363 *OldIdxOut
= LiveRange::Segment(OldIdxIn
->start
, OldIdxOut
->end
,
1365 // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1366 // We Slide [NewIdxIn, OldIdxIn) down one position.
1367 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1368 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1369 std::copy_backward(NewIdxIn
, OldIdxIn
, OldIdxOut
);
1370 // NewIdxIn is now considered undef so we can reuse it for the moved
1372 LiveRange::iterator NewSegment
= NewIdxIn
;
1373 LiveRange::iterator Next
= std::next(NewSegment
);
1374 if (SlotIndex::isEarlierInstr(Next
->start
, NewIdx
)) {
1375 // There is no gap between NewSegment and its predecessor.
1376 *NewSegment
= LiveRange::Segment(Next
->start
, SplitPos
,
1379 *Next
= LiveRange::Segment(SplitPos
, NewDefEndPoint
, OldIdxVNI
);
1380 Next
->valno
->def
= SplitPos
;
1382 // There is a gap between NewSegment and its predecessor
1383 // Value becomes live in.
1384 *NewSegment
= LiveRange::Segment(SplitPos
, Next
->start
, OldIdxVNI
);
1385 NewSegment
->valno
->def
= SplitPos
;
1388 // Leave the end point of a live def.
1389 OldIdxOut
->start
= NewIdxDef
;
1390 OldIdxVNI
->def
= NewIdxDef
;
1391 if (OldIdxIn
!= E
&& SlotIndex::isEarlierInstr(NewIdx
, OldIdxIn
->end
))
1392 OldIdxIn
->end
= NewIdxDef
;
1394 } else if (OldIdxIn
!= E
1395 && SlotIndex::isEarlierInstr(NewIdxOut
->start
, NewIdx
)
1396 && SlotIndex::isEarlierInstr(NewIdx
, NewIdxOut
->end
)) {
1397 // OldIdxVNI is a dead def that has been moved into the middle of
1398 // another value in LR. That can happen when LR is a whole register,
1399 // but the dead def is a write to a subreg that is dead at NewIdx.
1400 // The dead def may have been moved across other values
1401 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1402 // down one position.
1403 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1404 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1405 std::copy_backward(NewIdxOut
, OldIdxOut
, std::next(OldIdxOut
));
1406 // Modify the segment at NewIdxOut and the following segment to meet at
1407 // the point of the dead def, with the following segment getting
1408 // OldIdxVNI as its value number.
1409 *NewIdxOut
= LiveRange::Segment(
1410 NewIdxOut
->start
, NewIdxDef
.getRegSlot(), NewIdxOut
->valno
);
1411 *(NewIdxOut
+ 1) = LiveRange::Segment(
1412 NewIdxDef
.getRegSlot(), (NewIdxOut
+ 1)->end
, OldIdxVNI
);
1413 OldIdxVNI
->def
= NewIdxDef
;
1414 // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1415 for (auto *Idx
= NewIdxOut
+ 2; Idx
<= OldIdxOut
; ++Idx
)
1416 Idx
->valno
= OldIdxVNI
;
1417 // Aggressively remove all dead flags from the former dead definition.
1418 // Kill/dead flags shouldn't be used while live intervals exist; they
1419 // will be reinserted by VirtRegRewriter.
1420 if (MachineInstr
*KillMI
= LIS
.getInstructionFromIndex(NewIdx
))
1421 for (MIBundleOperands
MO(*KillMI
); MO
.isValid(); ++MO
)
1422 if (MO
->isReg() && !MO
->isUse())
1423 MO
->setIsDead(false);
1425 // OldIdxVNI is a dead def. It may have been moved across other values
1426 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1427 // down one position.
1428 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1429 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1430 std::copy_backward(NewIdxOut
, OldIdxOut
, std::next(OldIdxOut
));
1431 // OldIdxVNI can be reused now to build a new dead def segment.
1432 LiveRange::iterator NewSegment
= NewIdxOut
;
1433 VNInfo
*NewSegmentVNI
= OldIdxVNI
;
1434 *NewSegment
= LiveRange::Segment(NewIdxDef
, NewIdxDef
.getDeadSlot(),
1436 NewSegmentVNI
->def
= NewIdxDef
;
1441 void updateRegMaskSlots() {
1442 SmallVectorImpl
<SlotIndex
>::iterator RI
=
1443 llvm::lower_bound(LIS
.RegMaskSlots
, OldIdx
);
1444 assert(RI
!= LIS
.RegMaskSlots
.end() && *RI
== OldIdx
.getRegSlot() &&
1445 "No RegMask at OldIdx.");
1446 *RI
= NewIdx
.getRegSlot();
1447 assert((RI
== LIS
.RegMaskSlots
.begin() ||
1448 SlotIndex::isEarlierInstr(*std::prev(RI
), *RI
)) &&
1449 "Cannot move regmask instruction above another call");
1450 assert((std::next(RI
) == LIS
.RegMaskSlots
.end() ||
1451 SlotIndex::isEarlierInstr(*RI
, *std::next(RI
))) &&
1452 "Cannot move regmask instruction below another call");
1455 // Return the last use of reg between NewIdx and OldIdx.
1456 SlotIndex
findLastUseBefore(SlotIndex Before
, Register Reg
,
1457 LaneBitmask LaneMask
) {
1458 if (Register::isVirtualRegister(Reg
)) {
1459 SlotIndex LastUse
= Before
;
1460 for (MachineOperand
&MO
: MRI
.use_nodbg_operands(Reg
)) {
1463 unsigned SubReg
= MO
.getSubReg();
1464 if (SubReg
!= 0 && LaneMask
.any()
1465 && (TRI
.getSubRegIndexLaneMask(SubReg
) & LaneMask
).none())
1468 const MachineInstr
&MI
= *MO
.getParent();
1469 SlotIndex InstSlot
= LIS
.getSlotIndexes()->getInstructionIndex(MI
);
1470 if (InstSlot
> LastUse
&& InstSlot
< OldIdx
)
1471 LastUse
= InstSlot
.getRegSlot();
1476 // This is a regunit interval, so scanning the use list could be very
1477 // expensive. Scan upwards from OldIdx instead.
1478 assert(Before
< OldIdx
&& "Expected upwards move");
1479 SlotIndexes
*Indexes
= LIS
.getSlotIndexes();
1480 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(Before
);
1482 // OldIdx may not correspond to an instruction any longer, so set MII to
1483 // point to the next instruction after OldIdx, or MBB->end().
1484 MachineBasicBlock::iterator MII
= MBB
->end();
1485 if (MachineInstr
*MI
= Indexes
->getInstructionFromIndex(
1486 Indexes
->getNextNonNullIndex(OldIdx
)))
1487 if (MI
->getParent() == MBB
)
1490 MachineBasicBlock::iterator Begin
= MBB
->begin();
1491 while (MII
!= Begin
) {
1492 if ((--MII
)->isDebugOrPseudoInstr())
1494 SlotIndex Idx
= Indexes
->getInstructionIndex(*MII
);
1496 // Stop searching when Before is reached.
1497 if (!SlotIndex::isEarlierInstr(Before
, Idx
))
1500 // Check if MII uses Reg.
1501 for (MIBundleOperands
MO(*MII
); MO
.isValid(); ++MO
)
1502 if (MO
->isReg() && !MO
->isUndef() &&
1503 Register::isPhysicalRegister(MO
->getReg()) &&
1504 TRI
.hasRegUnit(MO
->getReg(), Reg
))
1505 return Idx
.getRegSlot();
1507 // Didn't reach Before. It must be the first instruction in the block.
1512 void LiveIntervals::handleMove(MachineInstr
&MI
, bool UpdateFlags
) {
1513 // It is fine to move a bundle as a whole, but not an individual instruction
1515 assert((!MI
.isBundled() || MI
.getOpcode() == TargetOpcode::BUNDLE
) &&
1516 "Cannot move instruction in bundle");
1517 SlotIndex OldIndex
= Indexes
->getInstructionIndex(MI
);
1518 Indexes
->removeMachineInstrFromMaps(MI
);
1519 SlotIndex NewIndex
= Indexes
->insertMachineInstrInMaps(MI
);
1520 assert(getMBBStartIdx(MI
.getParent()) <= OldIndex
&&
1521 OldIndex
< getMBBEndIdx(MI
.getParent()) &&
1522 "Cannot handle moves across basic block boundaries.");
1524 HMEditor
HME(*this, *MRI
, *TRI
, OldIndex
, NewIndex
, UpdateFlags
);
1525 HME
.updateAllRanges(&MI
);
1528 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr
&BundleStart
,
1530 assert((BundleStart
.getOpcode() == TargetOpcode::BUNDLE
) &&
1531 "Bundle start is not a bundle");
1532 SmallVector
<SlotIndex
, 16> ToProcess
;
1533 const SlotIndex NewIndex
= Indexes
->insertMachineInstrInMaps(BundleStart
);
1534 auto BundleEnd
= getBundleEnd(BundleStart
.getIterator());
1536 auto I
= BundleStart
.getIterator();
1538 while (I
!= BundleEnd
) {
1539 if (!Indexes
->hasIndex(*I
))
1541 SlotIndex OldIndex
= Indexes
->getInstructionIndex(*I
, true);
1542 ToProcess
.push_back(OldIndex
);
1543 Indexes
->removeMachineInstrFromMaps(*I
, true);
1546 for (SlotIndex OldIndex
: ToProcess
) {
1547 HMEditor
HME(*this, *MRI
, *TRI
, OldIndex
, NewIndex
, UpdateFlags
);
1548 HME
.updateAllRanges(&BundleStart
);
1552 const SlotIndex Index
= getInstructionIndex(BundleStart
);
1553 for (unsigned Idx
= 0, E
= BundleStart
.getNumOperands(); Idx
!= E
; ++Idx
) {
1554 MachineOperand
&MO
= BundleStart
.getOperand(Idx
);
1557 Register Reg
= MO
.getReg();
1558 if (Reg
.isVirtual() && hasInterval(Reg
) && !MO
.isUndef()) {
1559 LiveInterval
&LI
= getInterval(Reg
);
1560 LiveQueryResult LRQ
= LI
.Query(Index
);
1561 if (LRQ
.isDeadDef())
1567 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin
,
1568 const MachineBasicBlock::iterator End
,
1569 const SlotIndex EndIdx
, LiveRange
&LR
,
1571 LaneBitmask LaneMask
) {
1572 LiveInterval::iterator LII
= LR
.find(EndIdx
);
1573 SlotIndex lastUseIdx
;
1574 if (LII
!= LR
.end() && LII
->start
< EndIdx
) {
1575 lastUseIdx
= LII
->end
;
1576 } else if (LII
== LR
.begin()) {
1577 // We may not have a liverange at all if this is a subregister untouched
1578 // between \p Begin and \p End.
1583 for (MachineBasicBlock::iterator I
= End
; I
!= Begin
;) {
1585 MachineInstr
&MI
= *I
;
1586 if (MI
.isDebugOrPseudoInstr())
1589 SlotIndex instrIdx
= getInstructionIndex(MI
);
1590 bool isStartValid
= getInstructionFromIndex(LII
->start
);
1591 bool isEndValid
= getInstructionFromIndex(LII
->end
);
1593 // FIXME: This doesn't currently handle early-clobber or multiple removed
1594 // defs inside of the region to repair.
1595 for (const MachineOperand
&MO
: MI
.operands()) {
1596 if (!MO
.isReg() || MO
.getReg() != Reg
)
1599 unsigned SubReg
= MO
.getSubReg();
1600 LaneBitmask Mask
= TRI
->getSubRegIndexLaneMask(SubReg
);
1601 if ((Mask
& LaneMask
).none())
1605 if (!isStartValid
) {
1606 if (LII
->end
.isDead()) {
1607 LII
= LR
.removeSegment(LII
, true);
1608 if (LII
!= LR
.begin())
1611 LII
->start
= instrIdx
.getRegSlot();
1612 LII
->valno
->def
= instrIdx
.getRegSlot();
1613 if (MO
.getSubReg() && !MO
.isUndef())
1614 lastUseIdx
= instrIdx
.getRegSlot();
1616 lastUseIdx
= SlotIndex();
1621 if (!lastUseIdx
.isValid()) {
1622 VNInfo
*VNI
= LR
.getNextValue(instrIdx
.getRegSlot(), VNInfoAllocator
);
1623 LiveRange::Segment
S(instrIdx
.getRegSlot(),
1624 instrIdx
.getDeadSlot(), VNI
);
1625 LII
= LR
.addSegment(S
);
1626 } else if (LII
->start
!= instrIdx
.getRegSlot()) {
1627 VNInfo
*VNI
= LR
.getNextValue(instrIdx
.getRegSlot(), VNInfoAllocator
);
1628 LiveRange::Segment
S(instrIdx
.getRegSlot(), lastUseIdx
, VNI
);
1629 LII
= LR
.addSegment(S
);
1632 if (MO
.getSubReg() && !MO
.isUndef())
1633 lastUseIdx
= instrIdx
.getRegSlot();
1635 lastUseIdx
= SlotIndex();
1636 } else if (MO
.isUse()) {
1637 // FIXME: This should probably be handled outside of this branch,
1638 // either as part of the def case (for defs inside of the region) or
1639 // after the loop over the region.
1640 if (!isEndValid
&& !LII
->end
.isBlock())
1641 LII
->end
= instrIdx
.getRegSlot();
1642 if (!lastUseIdx
.isValid())
1643 lastUseIdx
= instrIdx
.getRegSlot();
1648 bool isStartValid
= getInstructionFromIndex(LII
->start
);
1649 if (!isStartValid
&& LII
->end
.isDead())
1650 LR
.removeSegment(*LII
, true);
1654 LiveIntervals::repairIntervalsInRange(MachineBasicBlock
*MBB
,
1655 MachineBasicBlock::iterator Begin
,
1656 MachineBasicBlock::iterator End
,
1657 ArrayRef
<Register
> OrigRegs
) {
1658 // Find anchor points, which are at the beginning/end of blocks or at
1659 // instructions that already have indexes.
1660 while (Begin
!= MBB
->begin() && !Indexes
->hasIndex(*std::prev(Begin
)))
1662 while (End
!= MBB
->end() && !Indexes
->hasIndex(*End
))
1666 if (End
== MBB
->end())
1667 EndIdx
= getMBBEndIdx(MBB
).getPrevSlot();
1669 EndIdx
= getInstructionIndex(*End
);
1671 Indexes
->repairIndexesInRange(MBB
, Begin
, End
);
1673 // Make sure a live interval exists for all register operands in the range.
1674 SmallVector
<Register
> RegsToRepair(OrigRegs
.begin(), OrigRegs
.end());
1675 for (MachineBasicBlock::iterator I
= End
; I
!= Begin
;) {
1677 MachineInstr
&MI
= *I
;
1678 if (MI
.isDebugOrPseudoInstr())
1680 for (const MachineOperand
&MO
: MI
.operands()) {
1681 if (MO
.isReg() && MO
.getReg().isVirtual()) {
1682 Register Reg
= MO
.getReg();
1683 // If the new instructions refer to subregs but the old instructions did
1684 // not, throw away any old live interval so it will be recomputed with
1686 if (MO
.getSubReg() && hasInterval(Reg
) &&
1687 !getInterval(Reg
).hasSubRanges() &&
1688 MRI
->shouldTrackSubRegLiveness(Reg
))
1689 removeInterval(Reg
);
1690 if (!hasInterval(Reg
)) {
1691 createAndComputeVirtRegInterval(Reg
);
1692 // Don't bother to repair a freshly calculated live interval.
1693 erase_value(RegsToRepair
, Reg
);
1699 for (Register Reg
: RegsToRepair
) {
1700 if (!Reg
.isVirtual())
1703 LiveInterval
&LI
= getInterval(Reg
);
1704 // FIXME: Should we support undefs that gain defs?
1705 if (!LI
.hasAtLeastOneValue())
1708 for (LiveInterval::SubRange
&S
: LI
.subranges())
1709 repairOldRegInRange(Begin
, End
, EndIdx
, S
, Reg
, S
.LaneMask
);
1710 LI
.removeEmptySubRanges();
1712 repairOldRegInRange(Begin
, End
, EndIdx
, LI
, Reg
);
1716 void LiveIntervals::removePhysRegDefAt(MCRegister Reg
, SlotIndex Pos
) {
1717 for (MCRegUnitIterator
Unit(Reg
, TRI
); Unit
.isValid(); ++Unit
) {
1718 if (LiveRange
*LR
= getCachedRegUnit(*Unit
))
1719 if (VNInfo
*VNI
= LR
->getVNInfoAt(Pos
))
1720 LR
->removeValNo(VNI
);
1724 void LiveIntervals::removeVRegDefAt(LiveInterval
&LI
, SlotIndex Pos
) {
1725 // LI may not have the main range computed yet, but its subranges may
1727 VNInfo
*VNI
= LI
.getVNInfoAt(Pos
);
1728 if (VNI
!= nullptr) {
1729 assert(VNI
->def
.getBaseIndex() == Pos
.getBaseIndex());
1730 LI
.removeValNo(VNI
);
1733 // Also remove the value defined in subranges.
1734 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1735 if (VNInfo
*SVNI
= S
.getVNInfoAt(Pos
))
1736 if (SVNI
->def
.getBaseIndex() == Pos
.getBaseIndex())
1737 S
.removeValNo(SVNI
);
1739 LI
.removeEmptySubRanges();
1742 void LiveIntervals::splitSeparateComponents(LiveInterval
&LI
,
1743 SmallVectorImpl
<LiveInterval
*> &SplitLIs
) {
1744 ConnectedVNInfoEqClasses
ConEQ(*this);
1745 unsigned NumComp
= ConEQ
.Classify(LI
);
1748 LLVM_DEBUG(dbgs() << " Split " << NumComp
<< " components: " << LI
<< '\n');
1749 Register Reg
= LI
.reg();
1750 const TargetRegisterClass
*RegClass
= MRI
->getRegClass(Reg
);
1751 for (unsigned I
= 1; I
< NumComp
; ++I
) {
1752 Register NewVReg
= MRI
->createVirtualRegister(RegClass
);
1753 LiveInterval
&NewLI
= createEmptyInterval(NewVReg
);
1754 SplitLIs
.push_back(&NewLI
);
1756 ConEQ
.Distribute(LI
, SplitLIs
.data(), *MRI
);
1759 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval
&LI
) {
1760 assert(LICalc
&& "LICalc not initialized.");
1761 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
1762 LICalc
->constructMainRangeFromSubranges(LI
);