1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of the ML eviction advisor and reward injection pass
11 //===----------------------------------------------------------------------===//
13 #include "AllocationOrder.h"
14 #include "RegAllocEvictionAdvisor.h"
15 #include "RegAllocGreedy.h"
16 #include "llvm/Analysis/MLModelRunner.h"
17 #include "llvm/Analysis/TensorSpec.h"
18 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TF_API)
19 #include "llvm/Analysis/ModelUnderTrainingRunner.h"
20 #include "llvm/Analysis/NoInferenceModelRunner.h"
21 #include "llvm/Analysis/Utils/TrainingLogger.h"
23 #include "llvm/Analysis/ReleaseModeModelRunner.h"
24 #include "llvm/CodeGen/CalcSpillWeights.h"
25 #include "llvm/CodeGen/LiveRegMatrix.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/VirtRegMap.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Pass.h"
35 #include "llvm/PassRegistry.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/ErrorHandling.h"
44 #define DEBUG_TYPE "ml-regalloc"
46 // Generated header in release (AOT) mode
47 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
48 #include "RegallocEvictModel.h"
49 using CompiledModelType
= RegallocEvictModel
;
51 using CompiledModelType
= NoopSavedModelImpl
;
54 // Options that only make sense in development mode
55 #ifdef LLVM_HAVE_TF_API
56 #include "RegAllocScore.h"
57 #include "llvm/Analysis/Utils/TFUtils.h"
59 static cl::opt
<std::string
> TrainingLog(
60 "regalloc-training-log", cl::Hidden
,
61 cl::desc("Training log for the register allocator eviction model"));
63 static cl::opt
<std::string
> ModelUnderTraining(
64 "regalloc-model", cl::Hidden
,
65 cl::desc("The model being trained for register allocation eviction"));
67 #endif // #ifdef LLVM_HAVE_TF_API
69 extern cl::opt
<unsigned> EvictInterferenceCutoff
;
71 /// The score injection pass.
72 /// This pass calculates the score for a function and inserts it in the log, but
73 /// this happens only in development mode. It's a no-op otherwise.
75 class RegAllocScoring
: public MachineFunctionPass
{
79 RegAllocScoring() : MachineFunctionPass(ID
) {
80 initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
83 ~RegAllocScoring() override
= default;
85 StringRef
getPassName() const override
{
86 return "Register Allocation Pass Scoring";
89 /// RegAllocReward analysis usage.
90 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
92 AU
.addRequired
<RegAllocEvictionAdvisorAnalysis
>();
93 AU
.addRequired
<MachineBlockFrequencyInfo
>();
94 MachineFunctionPass::getAnalysisUsage(AU
);
97 /// Performs this pass
98 bool runOnMachineFunction(MachineFunction
&) override
;
101 char RegAllocScoring::ID
= 0;
102 FunctionPass
*createRegAllocScoringPass() { return new RegAllocScoring(); }
106 INITIALIZE_PASS(RegAllocScoring
, "regallocscoringpass",
107 "Register Allocation Scoring Pass", false, false)
109 // ===================================
110 // Common ML Advisor declarations
111 // ===================================
113 // This is the maximum number of interfererring ranges. That's the number of
114 // distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize.
115 // For X86, that's 32.
116 // TODO: find a way to get this, statically, in a programmatic way.
117 static const int64_t MaxInterferences
= 32;
119 // Logically, we can think of the feature set given to the evaluator as a 2D
120 // matrix. The rows are the features (see next). The columns correspond to the
121 // interferences. We treat the candidate virt reg as an 'interference', too, as
122 // its feature set is the same as that of the interferring ranges. So we'll have
123 // MaxInterferences + 1 columns and by convention, we will use the last column
124 // for the virt reg seeking allocation.
125 static const int64_t CandidateVirtRegPos
= MaxInterferences
;
126 static const int64_t NumberOfInterferences
= CandidateVirtRegPos
+ 1;
128 // Most features are as described above, so we'll reuse this vector in defining
130 static const std::vector
<int64_t> PerLiveRangeShape
{1, NumberOfInterferences
};
135 // For each interfering live range (incl. the candidate) we collect a number of
136 // features. However, because the features are of different types (and because
137 // of ML best practices), we organize the tensors per feature, not per
138 // candidate. Each such tensor has a scalar value corresponding to the
139 // interferring live range at that position, in the order in AllocationOrder.
140 // The last position corresponds to the virt reg seeking allocation.
141 // Exception to all that is the progression feature, which is just a scalar (see
142 // its documentation for details).
143 // Note on naming: the "_by_max" are normalized using the largest value of that
144 // tensor, as observed in the current decision making stage (i.e. for the
145 // current call to the advisor's tryFindEvictionCandidate)
147 // The feature list format: type, name, shape, documentation.
148 // Note: we can really just use int64 and float, hence the modeling of some
149 // bools as int64 values.
150 #define RA_EVICT_FEATURES_LIST(M) \
151 M(int64_t, mask, PerLiveRangeShape, \
152 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
154 "can't be evicted)") \
155 M(int64_t, is_free, PerLiveRangeShape, \
156 "boolean values, 1 if this phys reg is actually free (no interferences)") \
157 M(float, nr_urgent, PerLiveRangeShape, \
158 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \
159 "to break cascades") \
160 M(float, nr_broken_hints, PerLiveRangeShape, \
161 "if this position were evicted, how many broken hints would there be") \
162 M(int64_t, is_hint, PerLiveRangeShape, \
163 "is this a preferred phys reg for the candidate") \
164 M(int64_t, is_local, PerLiveRangeShape, \
165 "is this live range local to a basic block") \
166 M(float, nr_rematerializable, PerLiveRangeShape, \
167 "nr rematerializable ranges") \
168 M(float, nr_defs_and_uses, PerLiveRangeShape, \
169 "bb freq - weighed nr defs and uses") \
170 M(float, weighed_reads_by_max, PerLiveRangeShape, \
171 "bb freq - weighed nr of reads, normalized") \
172 M(float, weighed_writes_by_max, PerLiveRangeShape, \
173 "bb feq - weighed nr of writes, normalized") \
174 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
175 "bb freq - weighed nr of uses that are both read and writes, normalized") \
176 M(float, weighed_indvars_by_max, PerLiveRangeShape, \
177 "bb freq - weighed nr of uses that are indvars, normalized") \
178 M(float, hint_weights_by_max, PerLiveRangeShape, \
179 "bb freq - weighed nr of uses that are hints, normalized") \
180 M(float, start_bb_freq_by_max, PerLiveRangeShape, \
181 "the freq in the start block, normalized") \
182 M(float, end_bb_freq_by_max, PerLiveRangeShape, \
183 "freq of end block, normalized") \
184 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
185 "hottest BB freq, normalized") \
186 M(float, liverange_size, PerLiveRangeShape, \
187 "size (instr index diff) of the LR") \
188 M(float, use_def_density, PerLiveRangeShape, \
189 "the max weight, as computed by the manual heuristic") \
190 M(int64_t, max_stage, PerLiveRangeShape, \
191 "largest stage of an interval in this LR") \
192 M(int64_t, min_stage, PerLiveRangeShape, \
193 "lowest stage of an interval in this LR") \
194 M(float, progress, {1}, "ratio of current queue size to initial size")
196 // The model learns to pick one of the mask == 1 interferences. This is the
197 // name of the output tensor. The contract with the model is that the output
198 // will be guaranteed to be to a mask == 1 position. Using a macro here to
199 // avoid 'not used' warnings (and keep cond compilation to a minimum)
200 #define DecisionName "index_to_evict"
202 // Named features index.
204 #define _FEATURE_IDX(_, name, __, ___) name,
205 RA_EVICT_FEATURES_LIST(_FEATURE_IDX
)
210 // The ML advisor will typically have a sparse input to the evaluator, because
211 // various phys regs won't be available. It's easier (maintenance-wise) to
212 // bulk-reset the state of the evaluator each time we are about to use it
214 template <typename T
> size_t getTotalSize(const std::vector
<int64_t> &Shape
) {
215 size_t Ret
= sizeof(T
);
216 for (const auto V
: Shape
)
221 void resetInputs(MLModelRunner
&Runner
) {
222 #define _RESET(TYPE, NAME, SHAPE, __) \
223 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
224 getTotalSize<TYPE>(SHAPE));
225 RA_EVICT_FEATURES_LIST(_RESET
)
229 // Per-live interval components that get aggregated into the feature values
230 // that will be passed to the evaluator.
231 struct LIFeatureComponents
{
235 double IndVarUpdates
= 0;
236 double HintWeights
= 0.0;
237 int64_t NrDefsAndUses
= 0;
238 float HottestBlockFreq
= 0.0;
239 bool IsRemat
= false;
242 using CandidateRegList
=
243 std::array
<std::pair
<MCRegister
, bool>, NumberOfInterferences
>;
244 using FeaturesListNormalizer
=
245 llvm::SmallVector
<float, FeatureIDs::FeatureCount
>;
247 /// The ML evictor (commonalities between release and development mode)
248 class MLEvictAdvisor
: public RegAllocEvictionAdvisor
{
250 MLEvictAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
,
251 MLModelRunner
*Runner
, const MachineBlockFrequencyInfo
&MBFI
,
252 const MachineLoopInfo
&Loops
);
255 const RegAllocEvictionAdvisor
&getDefaultAdvisor() const {
256 return static_cast<const RegAllocEvictionAdvisor
&>(DefaultAdvisor
);
259 // The assumption is that if the Runner could not be constructed, we emit-ed
260 // error, and we shouldn't be asking for it here.
261 const MLModelRunner
&getRunner() const { return *Runner
; }
263 /// This just calls Evaluate on the Runner, but in the development mode
264 /// case, if we're just capturing the log of the default advisor, it needs
265 /// to call the latter instead, so we need to pass all the necessary
266 /// parameters for it. In the development case, it will also log.
268 tryFindEvictionCandidatePosition(const LiveInterval
&VirtReg
,
269 const AllocationOrder
&Order
,
270 unsigned OrderLimit
, uint8_t CostPerUseLimit
,
271 const SmallVirtRegSet
&FixedRegisters
) const;
273 /// Load the features of the given VirtReg (allocated or not) at column Pos,
274 /// but if that can't be evicted, return false instead.
275 bool loadInterferenceFeatures(const LiveInterval
&VirtReg
, MCRegister PhysReg
,
277 const SmallVirtRegSet
&FixedRegisters
,
278 llvm::SmallVectorImpl
<float> &Largest
,
282 static float getInitialQueueSize(const MachineFunction
&MF
);
284 MCRegister
tryFindEvictionCandidate(
285 const LiveInterval
&VirtReg
, const AllocationOrder
&Order
,
286 uint8_t CostPerUseLimit
,
287 const SmallVirtRegSet
&FixedRegisters
) const override
;
289 void extractFeatures(const SmallVectorImpl
<const LiveInterval
*> &Intervals
,
290 llvm::SmallVectorImpl
<float> &Largest
, size_t Pos
,
291 int64_t IsHint
, int64_t LocalIntfsCount
,
292 float NrUrgent
) const;
294 // Point-in-time: we didn't learn this, so we always delegate to the
296 bool canEvictHintInterference(
297 const LiveInterval
&VirtReg
, MCRegister PhysReg
,
298 const SmallVirtRegSet
&FixedRegisters
) const override
{
299 return getDefaultAdvisor().canEvictHintInterference(VirtReg
, PhysReg
,
303 const LIFeatureComponents
&
304 getLIFeatureComponents(const LiveInterval
&LI
) const;
306 // Hold on to a default advisor for:
307 // 1) the implementation of canEvictHintInterference, because we didn't
308 // learn that nuance yet; 2) for bootstrapping (logging) in the development
310 const DefaultEvictionAdvisor DefaultAdvisor
;
311 MLModelRunner
*const Runner
;
312 const MachineBlockFrequencyInfo
&MBFI
;
313 const MachineLoopInfo
&Loops
;
315 // Indices of those features we don't want to normalize.
316 // This could be static and shared, but its initialization is non-trivial.
317 std::bitset
<FeatureIDs::FeatureCount
> DoNotNormalize
;
318 const float InitialQSize
;
320 using RegID
= unsigned;
321 mutable DenseMap
<RegID
, LIFeatureComponents
> CachedFeatures
;
324 #define _DECL_FEATURES(type, name, shape, _) \
325 TensorSpec::createSpec<type>(#name, shape),
327 // ===================================
328 // Release (AOT) - specifics
329 // ===================================
330 class ReleaseModeEvictionAdvisorAnalysis final
331 : public RegAllocEvictionAdvisorAnalysis
{
333 ReleaseModeEvictionAdvisorAnalysis()
334 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release
) {
335 InputFeatures
= {RA_EVICT_FEATURES_LIST(_DECL_FEATURES
)};
337 // support for isa<> and dyn_cast.
338 static bool classof(const RegAllocEvictionAdvisorAnalysis
*R
) {
339 return R
->getAdvisorMode() == AdvisorMode::Release
;
343 std::vector
<TensorSpec
> InputFeatures
;
345 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
346 AU
.addRequired
<MachineBlockFrequencyInfo
>();
347 AU
.addRequired
<MachineLoopInfo
>();
348 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU
);
351 std::unique_ptr
<RegAllocEvictionAdvisor
>
352 getAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
) override
{
354 Runner
= std::make_unique
<ReleaseModeModelRunner
<CompiledModelType
>>(
355 MF
.getFunction().getContext(), InputFeatures
, DecisionName
);
356 return std::make_unique
<MLEvictAdvisor
>(
357 MF
, RA
, Runner
.get(), getAnalysis
<MachineBlockFrequencyInfo
>(),
358 getAnalysis
<MachineLoopInfo
>());
360 std::unique_ptr
<ReleaseModeModelRunner
<CompiledModelType
>> Runner
;
363 // ===================================
364 // Development mode-specifics
365 // ===================================
368 #ifdef LLVM_HAVE_TF_API
369 static const TensorSpec Output
=
370 TensorSpec::createSpec
<int64_t>(DecisionName
, {1});
371 static const TensorSpec Reward
= TensorSpec::createSpec
<float>("reward", {1});
373 // Features we bind on the model. The tensor names have a prefix, and we also
374 // need to include some tensors that are expected to be present by the
376 // TODO: can we just get rid of these?
377 #define _DECL_TRAIN_FEATURES(type, name, shape, _) \
378 TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
380 class DevelopmentModeEvictAdvisor
: public MLEvictAdvisor
{
382 DevelopmentModeEvictAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
,
383 MLModelRunner
*Runner
,
384 const MachineBlockFrequencyInfo
&MBFI
,
385 const MachineLoopInfo
&Loops
, Logger
*Log
)
386 : MLEvictAdvisor(MF
, RA
, Runner
, MBFI
, Loops
), Log(Log
) {}
389 int64_t tryFindEvictionCandidatePosition(
390 const LiveInterval
&VirtReg
, const AllocationOrder
&Order
,
391 unsigned OrderLimit
, uint8_t CostPerUseLimit
,
392 const SmallVirtRegSet
&FixedRegisters
) const override
;
397 class DevelopmentModeEvictionAdvisorAnalysis final
398 : public RegAllocEvictionAdvisorAnalysis
{
400 DevelopmentModeEvictionAdvisorAnalysis()
401 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development
) {
402 InputFeatures
= {RA_EVICT_FEATURES_LIST(_DECL_FEATURES
)};
403 TrainingInputFeatures
= {
404 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES
)
405 TensorSpec::createSpec
<float>("action_discount", {1}),
406 TensorSpec::createSpec
<int32_t>("action_step_type", {1}),
407 TensorSpec::createSpec
<float>("action_reward", {1})};
409 // support for isa<> and dyn_cast.
410 static bool classof(const RegAllocEvictionAdvisorAnalysis
*R
) {
411 return R
->getAdvisorMode() == AdvisorMode::Development
;
414 /// get the logger for the given function, or nullptr if we didn't collect
415 /// one. This is used to inject the score by the RegAllocScoring pass.
416 Logger
*getLogger(const MachineFunction
&MF
) const {
417 auto I
= LogMap
.find(MF
.getName());
418 if (I
== LogMap
.end())
420 return I
->second
.get();
424 std::vector
<TensorSpec
> InputFeatures
;
425 std::vector
<TensorSpec
> TrainingInputFeatures
;
427 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
428 AU
.addRequired
<MachineBlockFrequencyInfo
>();
429 AU
.addRequired
<MachineLoopInfo
>();
430 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU
);
433 // Save all the logs (when requested).
434 bool doFinalization(Module
&M
) override
{
435 if (TrainingLog
.empty())
438 auto OS
= std::make_unique
<raw_fd_ostream
>(TrainingLog
, EC
);
440 M
.getContext().emitError(EC
.message() + ":" + TrainingLog
);
443 Logger::flushLogs(*OS
, LogMap
);
447 std::unique_ptr
<RegAllocEvictionAdvisor
>
448 getAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
) override
{
449 LLVMContext
&Ctx
= MF
.getFunction().getContext();
450 if (ModelUnderTraining
.empty() && TrainingLog
.empty()) {
451 Ctx
.emitError("Regalloc development mode should be requested with at "
452 "least logging enabled and/or a training model");
456 if (ModelUnderTraining
.empty())
457 Runner
= std::make_unique
<NoInferenceModelRunner
>(Ctx
, InputFeatures
);
459 Runner
= ModelUnderTrainingRunner::createAndEnsureValid(
460 Ctx
, ModelUnderTraining
, DecisionName
, TrainingInputFeatures
);
462 Ctx
.emitError("Regalloc: could not set up the model runner");
467 Logger
*Log
= nullptr;
468 if (!TrainingLog
.empty()) {
469 std::vector
<LoggedFeatureSpec
> LFS
;
470 for (const auto &FS
: InputFeatures
)
471 LFS
.push_back({FS
, None
});
472 if (auto *MUTR
= dyn_cast
<ModelUnderTrainingRunner
>(Runner
.get()))
473 if (MUTR
->outputLoggedFeatureSpecs().size() > 1)
474 append_range(LFS
, drop_begin(MUTR
->outputLoggedFeatureSpecs()));
475 // We always log the output; in particular, if we're not evaluating, we
476 // don't have an output spec json file. That's why we handle the
477 // 'normal' output separately.
478 LFS
.push_back({Output
, None
});
479 auto I
= LogMap
.insert(std::make_pair(
480 MF
.getFunction().getName(),
481 std::make_unique
<Logger
>(LFS
, Reward
, /*IncludeReward*/ true)));
483 Log
= I
.first
->second
.get();
485 return std::make_unique
<DevelopmentModeEvictAdvisor
>(
486 MF
, RA
, Runner
.get(), getAnalysis
<MachineBlockFrequencyInfo
>(),
487 getAnalysis
<MachineLoopInfo
>(), Log
);
490 std::unique_ptr
<MLModelRunner
> Runner
;
491 StringMap
<std::unique_ptr
<Logger
>> LogMap
;
494 #endif //#ifdef LLVM_HAVE_TF_API
497 float MLEvictAdvisor::getInitialQueueSize(const MachineFunction
&MF
) {
498 auto &MRI
= MF
.getRegInfo();
500 for (unsigned I
= 0, E
= MRI
.getNumVirtRegs(); I
!= E
; ++I
) {
501 Register Reg
= Register::index2VirtReg(I
);
502 if (MRI
.reg_nodbg_empty(Reg
))
509 MLEvictAdvisor::MLEvictAdvisor(const MachineFunction
&MF
, const RAGreedy
&RA
,
510 MLModelRunner
*Runner
,
511 const MachineBlockFrequencyInfo
&MBFI
,
512 const MachineLoopInfo
&Loops
)
513 : RegAllocEvictionAdvisor(MF
, RA
), DefaultAdvisor(MF
, RA
),
514 Runner(std::move(Runner
)), MBFI(MBFI
), Loops(Loops
),
515 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF
)) {
516 assert(this->Runner
);
517 DoNotNormalize
.set(FeatureIDs::mask
);
518 DoNotNormalize
.set(FeatureIDs::is_free
);
519 DoNotNormalize
.set(FeatureIDs::is_hint
);
520 DoNotNormalize
.set(FeatureIDs::is_local
);
521 DoNotNormalize
.set(FeatureIDs::min_stage
);
522 DoNotNormalize
.set(FeatureIDs::max_stage
);
523 DoNotNormalize
.set(FeatureIDs::progress
);
526 int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
527 const LiveInterval
&, const AllocationOrder
&, unsigned, uint8_t,
528 const SmallVirtRegSet
&) const {
529 int64_t Ret
= Runner
->evaluate
<int64_t>();
531 assert(Ret
<= CandidateVirtRegPos
);
535 bool MLEvictAdvisor::loadInterferenceFeatures(
536 const LiveInterval
&VirtReg
, MCRegister PhysReg
, bool IsHint
,
537 const SmallVirtRegSet
&FixedRegisters
,
538 llvm::SmallVectorImpl
<float> &Largest
, size_t Pos
) const {
539 // It is only possible to evict virtual register interference.
540 if (Matrix
->checkInterference(VirtReg
, PhysReg
) > LiveRegMatrix::IK_VirtReg
) {
545 const bool IsLocal
= LIS
->intervalIsInOneMBB(VirtReg
);
546 int64_t LocalIntfs
= 0;
547 float NrUrgent
= 0.0f
;
549 // The cascade tracking is the same as in the default advisor
550 unsigned Cascade
= RA
.getExtraInfo().getCascadeOrCurrentNext(VirtReg
.reg());
552 SmallVector
<const LiveInterval
*, MaxInterferences
> InterferingIntervals
;
553 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
554 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
555 // Different from the default heuristic, we don't make any assumptions
556 // about what having more than 10 results in the query may mean.
557 const auto &IFIntervals
= Q
.interferingVRegs(EvictInterferenceCutoff
);
558 if (IFIntervals
.empty() && InterferingIntervals
.empty())
560 if (IFIntervals
.size() >= EvictInterferenceCutoff
)
562 InterferingIntervals
.append(IFIntervals
.begin(), IFIntervals
.end());
563 for (const LiveInterval
*Intf
: reverse(IFIntervals
)) {
564 assert(Register::isVirtualRegister(Intf
->reg()) &&
565 "Only expecting virtual register interference from query");
566 // This is the same set of legality checks as in the default case: don't
567 // try to evict fixed regs or 'done' ones. Also don't break cascades,
568 // except in the urgent case, with the same nuances used in the default
570 // We could try sharing this between the advisors, but it may end up
571 // more complex than it is right now.
572 if (FixedRegisters
.count(Intf
->reg()))
574 if (RA
.getExtraInfo().getStage(*Intf
) == RS_Done
)
577 !VirtReg
.isSpillable() &&
578 (Intf
->isSpillable() ||
579 RegClassInfo
.getNumAllocatableRegs(MRI
->getRegClass(VirtReg
.reg())) <
580 RegClassInfo
.getNumAllocatableRegs(
581 MRI
->getRegClass(Intf
->reg())));
582 // Only evict older cascades or live ranges without a cascade.
583 unsigned IntfCascade
= RA
.getExtraInfo().getCascade(Intf
->reg());
584 if (Cascade
<= IntfCascade
) {
590 LocalIntfs
+= (IsLocal
&& LIS
->intervalIsInOneMBB(*Intf
) &&
591 (!EnableLocalReassign
|| !canReassign(*Intf
, PhysReg
)));
594 // OK, so if we made it this far, this LR is an eviction candidate, load its
596 extractFeatures(InterferingIntervals
, Largest
, Pos
, IsHint
, LocalIntfs
,
601 MCRegister
MLEvictAdvisor::tryFindEvictionCandidate(
602 const LiveInterval
&VirtReg
, const AllocationOrder
&Order
,
603 uint8_t CostPerUseLimit
, const SmallVirtRegSet
&FixedRegisters
) const {
604 auto MaybeOrderLimit
= getOrderLimit(VirtReg
, Order
, CostPerUseLimit
);
605 if (!MaybeOrderLimit
)
606 return MCRegister::NoRegister
;
607 unsigned OrderLimit
= *MaybeOrderLimit
;
609 // The heuristic sets initial costs such as, if CostPerUseLimit is
610 // max<uint8_t>, then any of the costs of the legally-evictable intervals
611 // would be lower. When that happens, one of those will be selected.
612 // Therefore, we allow the candidate be selected, unless the candidate is
613 // unspillable, in which case it would be incorrect to not find a register
615 const bool MustFindEviction
=
616 (!VirtReg
.isSpillable() && CostPerUseLimit
== static_cast<uint8_t>(~0u));
617 // Number of available candidates - if 0, no need to continue.
618 size_t Available
= 0;
619 // Make sure we don't have leftover partial state from an attempt where we
620 // had no available candidates and bailed out early.
621 resetInputs(*Runner
);
623 // Track the index->register mapping because AllocationOrder doesn't do that
624 // and we'd have to scan it.
625 // Also track their mask, to write asserts/debug.
626 CandidateRegList Regs
;
627 Regs
.fill({0, false});
629 // Track the largest value of features seen during this eviction session. We
630 // only normalize (some of) the float features, but it's just simpler to
631 // dimension 'Largest' to all the features, especially since we have the
632 // 'DoNotNormalize' list.
633 FeaturesListNormalizer
Largest(FeatureIDs::FeatureCount
, 0.0);
635 // Same overal idea as in the default eviction policy - we visit the values
636 // of AllocationOrder one at a time. If it's not legally available, we mask
637 // off the corresponding feature column (==do nothing because we already
638 // reset all the features to 0) Use Pos to capture the column we load
639 // features at - in AllocationOrder order.
641 for (auto I
= Order
.begin(), E
= Order
.getOrderLimitEnd(OrderLimit
); I
!= E
;
643 MCRegister PhysReg
= *I
;
644 assert(!Regs
[Pos
].second
);
646 if (!canAllocatePhysReg(CostPerUseLimit
, PhysReg
)) {
649 if (loadInterferenceFeatures(VirtReg
, PhysReg
, I
.isHint(), FixedRegisters
,
652 Regs
[Pos
] = std::make_pair(PhysReg
, true);
655 if (Available
== 0) {
656 // Nothing to decide, nothing to learn.
657 assert(!MustFindEviction
);
658 return MCRegister::NoRegister
;
660 const size_t ValidPosLimit
= Pos
;
661 // If we must find eviction, the candidate should be masked out of the
662 // decision making process.
663 Regs
[CandidateVirtRegPos
].second
= !MustFindEviction
;
664 if (!MustFindEviction
)
665 extractFeatures(SmallVector
<const LiveInterval
*, 1>(1, &VirtReg
), Largest
,
666 CandidateVirtRegPos
, /*IsHint*/ 0,
667 /*LocalIntfsCount*/ 0,
669 assert(InitialQSize
> 0.0 && "We couldn't have gotten here if we had "
670 "nothing to allocate initially.");
671 // Normalize the features.
672 for (auto &V
: Largest
)
674 for (size_t FeatureIndex
= 0; FeatureIndex
< FeatureIDs::FeatureCount
;
676 if (DoNotNormalize
.test(FeatureIndex
))
678 for (size_t Pos
= 0; Pos
< NumberOfInterferences
; ++Pos
) {
679 Runner
->getTensor
<float>(FeatureIndex
)[Pos
] /= Largest
[FeatureIndex
];
682 *Runner
->getTensor
<float>(FeatureIDs::progress
) =
683 static_cast<float>(RA
.getQueueSize()) / InitialQSize
;
686 size_t CandidatePos
= tryFindEvictionCandidatePosition(
687 VirtReg
, Order
, OrderLimit
, CostPerUseLimit
, FixedRegisters
);
688 // The contract with the ML side is that CandidatePos is mask == 1 (i.e.
689 // Regs[CandidatePos].second)
690 assert(Regs
[CandidatePos
].second
);
691 if (CandidatePos
== CandidateVirtRegPos
) {
692 assert(!MustFindEviction
);
693 return MCRegister::NoRegister
;
695 assert(CandidatePos
< ValidPosLimit
);
697 return Regs
[CandidatePos
].first
;
700 const LIFeatureComponents
&
701 MLEvictAdvisor::getLIFeatureComponents(const LiveInterval
&LI
) const {
702 RegID ID
= LI
.reg().id();
703 LIFeatureComponents Empty
;
704 auto I
= CachedFeatures
.insert(std::make_pair(ID
, Empty
));
705 LIFeatureComponents
&Ret
= I
.first
->getSecond();
709 SmallPtrSet
<MachineInstr
*, 8> Visited
;
710 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
712 for (MachineRegisterInfo::reg_instr_nodbg_iterator
713 I
= MRI
->reg_instr_nodbg_begin(LI
.reg()),
714 E
= MRI
->reg_instr_nodbg_end();
716 MachineInstr
*MI
= &*(I
++);
719 if (!Visited
.insert(MI
).second
)
722 if (MI
->isIdentityCopy() || MI
->isImplicitDef())
726 std::tie(Reads
, Writes
) = MI
->readsWritesVirtualRegister(LI
.reg());
728 float Freq
= MBFI
.getBlockFreqRelativeToEntryBlock(MI
->getParent());
729 Ret
.HottestBlockFreq
= std::max(Freq
, Ret
.HottestBlockFreq
);
731 Ret
.R
+= (Reads
&& !Writes
) * Freq
;
732 Ret
.W
+= (!Reads
&& Writes
) * Freq
;
733 Ret
.RW
+= (Reads
&& Writes
) * Freq
;
735 auto *MBB
= MI
->getParent();
736 auto *Loop
= Loops
.getLoopFor(MBB
);
737 bool IsExiting
= Loop
? Loop
->isLoopExiting(MBB
) : false;
739 if (Writes
&& IsExiting
&& LIS
->isLiveOutOfMBB(LI
, MBB
))
740 Ret
.IndVarUpdates
+= Freq
;
742 if (MI
->isCopy() && VirtRegAuxInfo::copyHint(MI
, LI
.reg(), TRI
, *MRI
))
743 Ret
.HintWeights
+= Freq
;
745 Ret
.IsRemat
= VirtRegAuxInfo::isRematerializable(
746 LI
, *LIS
, *VRM
, *MF
.getSubtarget().getInstrInfo());
750 // Overall, this currently mimics what we do for weight calculation, but instead
751 // of accummulating the various features, we keep them separate.
752 void MLEvictAdvisor::extractFeatures(
753 const SmallVectorImpl
<const LiveInterval
*> &Intervals
,
754 llvm::SmallVectorImpl
<float> &Largest
, size_t Pos
, int64_t IsHint
,
755 int64_t LocalIntfsCount
, float NrUrgent
) const {
756 int64_t NrDefsAndUses
= 0;
757 int64_t NrBrokenHints
= 0;
761 double IndVarUpdates
= 0.0;
762 double HintWeights
= 0.0;
763 float StartBBFreq
= 0.0;
764 float EndBBFreq
= 0.0;
765 float HottestBlockFreq
= 0.0;
766 int32_t NrRematerializable
= 0;
767 float TotalWeight
= 0.0;
769 SlotIndex EndSI
= LIS
->getSlotIndexes()->getZeroIndex();
770 SlotIndex StartSI
= LIS
->getSlotIndexes()->getLastIndex();
771 int64_t MaxStage
= 0;
773 Intervals
.empty() ? 0 : std::numeric_limits
<int64_t>::max();
775 for (const auto *L
: Intervals
) {
776 const LiveInterval
&LI
= *L
;
777 MaxStage
= std::max
<int64_t>(
778 MaxStage
, static_cast<int64_t>(RA
.getExtraInfo().getStage(LI
)));
779 MinStage
= std::min
<int64_t>(
780 MinStage
, static_cast<int64_t>(RA
.getExtraInfo().getStage(LI
)));
782 TotalWeight
= std::max(TotalWeight
, LI
.weight());
784 if (LI
.beginIndex() < StartSI
)
785 StartSI
= LI
.beginIndex();
787 if (LI
.endIndex() > EndSI
)
788 EndSI
= LI
.endIndex();
789 const LIFeatureComponents
&LIFC
= getLIFeatureComponents(LI
);
790 NrBrokenHints
+= VRM
->hasPreferredPhys(LI
.reg());
792 NrDefsAndUses
+= LIFC
.NrDefsAndUses
;
793 HottestBlockFreq
= std::max(HottestBlockFreq
, LIFC
.HottestBlockFreq
);
798 IndVarUpdates
+= LIFC
.IndVarUpdates
;
800 HintWeights
+= LIFC
.HintWeights
;
801 NrRematerializable
+= LIFC
.IsRemat
;
804 if (!Intervals
.empty()) {
806 MBFI
.getBlockFreqRelativeToEntryBlock(LIS
->getMBBFromIndex(StartSI
));
807 if (EndSI
>= LIS
->getSlotIndexes()->getLastIndex())
808 EndSI
= LIS
->getSlotIndexes()->getLastIndex().getPrevIndex();
810 MBFI
.getBlockFreqRelativeToEntryBlock(LIS
->getMBBFromIndex(EndSI
));
811 Size
= StartSI
.distance(EndSI
);
813 // Set the features at the column 'Pos'.
814 #define SET(ID, TYPE, VAL) \
816 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
817 if (!DoNotNormalize.test(FeatureIDs::ID)) \
818 Largest[FeatureIDs::ID] = \
819 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
821 SET(mask
, int64_t, 1);
822 SET(is_free
, int64_t, Intervals
.empty());
823 SET(nr_urgent
, float, NrUrgent
);
824 SET(nr_broken_hints
, float, NrBrokenHints
);
825 SET(is_hint
, int64_t, IsHint
);
826 SET(is_local
, int64_t, LocalIntfsCount
);
827 SET(nr_rematerializable
, float, NrRematerializable
);
828 SET(nr_defs_and_uses
, float, NrDefsAndUses
);
829 SET(weighed_reads_by_max
, float, R
);
830 SET(weighed_writes_by_max
, float, W
);
831 SET(weighed_read_writes_by_max
, float, RW
);
832 SET(weighed_indvars_by_max
, float, IndVarUpdates
);
833 SET(hint_weights_by_max
, float, HintWeights
);
834 SET(start_bb_freq_by_max
, float, StartBBFreq
);
835 SET(end_bb_freq_by_max
, float, EndBBFreq
);
836 SET(hottest_bb_freq_by_max
, float, HottestBlockFreq
);
837 SET(liverange_size
, float, Size
);
838 SET(use_def_density
, float, TotalWeight
);
839 SET(max_stage
, int64_t, MaxStage
);
840 SET(min_stage
, int64_t, MinStage
);
844 // Development mode-specific implementations
845 #ifdef LLVM_HAVE_TF_API
846 RegAllocEvictionAdvisorAnalysis
*llvm::createDevelopmentModeAdvisor() {
847 return new DevelopmentModeEvictionAdvisorAnalysis();
850 int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
851 const LiveInterval
&VirtReg
, const AllocationOrder
&Order
,
852 unsigned OrderLimit
, uint8_t CostPerUseLimit
,
853 const SmallVirtRegSet
&FixedRegisters
) const {
855 if (isa
<ModelUnderTrainingRunner
>(getRunner())) {
856 Ret
= MLEvictAdvisor::tryFindEvictionCandidatePosition(
857 VirtReg
, Order
, OrderLimit
, CostPerUseLimit
, FixedRegisters
);
859 MCRegister PhysReg
= getDefaultAdvisor().tryFindEvictionCandidate(
860 VirtReg
, Order
, CostPerUseLimit
, FixedRegisters
);
861 // Find the index of the selected PhysReg. We need it for logging,
862 // otherwise this is wasted cycles (but so would starting development mode
863 // without a model nor logging)
865 Ret
= CandidateVirtRegPos
;
867 for (auto I
= Order
.begin(), E
= Order
.getOrderLimitEnd(OrderLimit
);
872 if (TrainingLog
.empty())
874 size_t CurrentFeature
= 0;
875 for (; CurrentFeature
< FeatureIDs::FeatureCount
; ++CurrentFeature
) {
876 Log
->logSpecifiedTensorValue(
877 CurrentFeature
, reinterpret_cast<const char *>(
878 getRunner().getTensorUntyped(CurrentFeature
)));
880 if (auto *MUTR
= dyn_cast
<ModelUnderTrainingRunner
>(&getRunner()))
881 for (size_t I
= 1; I
< MUTR
->outputLoggedFeatureSpecs().size();
882 ++I
, ++CurrentFeature
)
883 Log
->logSpecifiedTensorValue(
885 reinterpret_cast<const char *>(
886 MUTR
->lastEvaluationResult()->getUntypedTensorValue(I
)));
887 // The output is right after the features and the extra outputs
888 Log
->logInt64Value(CurrentFeature
, &Ret
);
892 bool RegAllocScoring::runOnMachineFunction(MachineFunction
&MF
) {
893 if (auto *DevModeAnalysis
= dyn_cast
<DevelopmentModeEvictionAdvisorAnalysis
>(
894 &getAnalysis
<RegAllocEvictionAdvisorAnalysis
>()))
895 if (auto *Log
= DevModeAnalysis
->getLogger(MF
))
896 Log
->logFloatFinalReward(static_cast<float>(
897 calculateRegAllocScore(MF
, getAnalysis
<MachineBlockFrequencyInfo
>())
902 #endif // #ifdef LLVM_HAVE_TF_API
904 RegAllocEvictionAdvisorAnalysis
*llvm::createReleaseModeAdvisor() {
905 return new ReleaseModeEvictionAdvisorAnalysis();
908 // In all cases except development mode, we don't need scoring.
909 #if !defined(LLVM_HAVE_TF_API)
910 bool RegAllocScoring::runOnMachineFunction(MachineFunction
&) { return false; }