1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Collect the sequence of machine instructions for a basic block.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/LiveIntervals.h"
15 #include "llvm/CodeGen/LivePhysRegs.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
39 #define DEBUG_TYPE "codegen"
41 static cl::opt
<bool> PrintSlotIndexes(
43 cl::desc("When printing machine IR, annotate instructions and blocks with "
44 "SlotIndexes when available"),
45 cl::init(true), cl::Hidden
);
47 MachineBasicBlock::MachineBasicBlock(MachineFunction
&MF
, const BasicBlock
*B
)
48 : BB(B
), Number(-1), xParent(&MF
) {
51 IrrLoopHeaderWeight
= B
->getIrrLoopHeaderWeight();
54 MachineBasicBlock::~MachineBasicBlock() = default;
56 /// Return the MCSymbol for this basic block.
57 MCSymbol
*MachineBasicBlock::getSymbol() const {
58 if (!CachedMCSymbol
) {
59 const MachineFunction
*MF
= getParent();
60 MCContext
&Ctx
= MF
->getContext();
62 // We emit a non-temporary symbol -- with a descriptive name -- if it begins
63 // a section (with basic block sections). Otherwise we fall back to use temp
65 if (MF
->hasBBSections() && isBeginSection()) {
66 SmallString
<5> Suffix
;
67 if (SectionID
== MBBSectionID::ColdSectionID
) {
69 } else if (SectionID
== MBBSectionID::ExceptionSectionID
) {
72 // For symbols that represent basic block sections, we add ".__part." to
73 // allow tools like symbolizers to know that this represents a part of
74 // the original function.
75 Suffix
= (Suffix
+ Twine(".__part.") + Twine(SectionID
.Number
)).str();
77 CachedMCSymbol
= Ctx
.getOrCreateSymbol(MF
->getName() + Suffix
);
79 const StringRef Prefix
= Ctx
.getAsmInfo()->getPrivateLabelPrefix();
80 CachedMCSymbol
= Ctx
.getOrCreateSymbol(Twine(Prefix
) + "BB" +
81 Twine(MF
->getFunctionNumber()) +
82 "_" + Twine(getNumber()));
85 return CachedMCSymbol
;
88 MCSymbol
*MachineBasicBlock::getEHCatchretSymbol() const {
89 if (!CachedEHCatchretMCSymbol
) {
90 const MachineFunction
*MF
= getParent();
91 SmallString
<128> SymbolName
;
92 raw_svector_ostream(SymbolName
)
93 << "$ehgcr_" << MF
->getFunctionNumber() << '_' << getNumber();
94 CachedEHCatchretMCSymbol
= MF
->getContext().getOrCreateSymbol(SymbolName
);
96 return CachedEHCatchretMCSymbol
;
99 MCSymbol
*MachineBasicBlock::getEndSymbol() const {
100 if (!CachedEndMCSymbol
) {
101 const MachineFunction
*MF
= getParent();
102 MCContext
&Ctx
= MF
->getContext();
103 auto Prefix
= Ctx
.getAsmInfo()->getPrivateLabelPrefix();
104 CachedEndMCSymbol
= Ctx
.getOrCreateSymbol(Twine(Prefix
) + "BB_END" +
105 Twine(MF
->getFunctionNumber()) +
106 "_" + Twine(getNumber()));
108 return CachedEndMCSymbol
;
111 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const MachineBasicBlock
&MBB
) {
116 Printable
llvm::printMBBReference(const MachineBasicBlock
&MBB
) {
117 return Printable([&MBB
](raw_ostream
&OS
) { return MBB
.printAsOperand(OS
); });
120 /// When an MBB is added to an MF, we need to update the parent pointer of the
121 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
122 /// operand list for registers.
124 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
125 /// gets the next available unique MBB number. If it is removed from a
126 /// MachineFunction, it goes back to being #-1.
127 void ilist_callback_traits
<MachineBasicBlock
>::addNodeToList(
128 MachineBasicBlock
*N
) {
129 MachineFunction
&MF
= *N
->getParent();
130 N
->Number
= MF
.addToMBBNumbering(N
);
132 // Make sure the instructions have their operands in the reginfo lists.
133 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
134 for (MachineInstr
&MI
: N
->instrs())
135 MI
.addRegOperandsToUseLists(RegInfo
);
138 void ilist_callback_traits
<MachineBasicBlock
>::removeNodeFromList(
139 MachineBasicBlock
*N
) {
140 N
->getParent()->removeFromMBBNumbering(N
->Number
);
144 /// When we add an instruction to a basic block list, we update its parent
145 /// pointer and add its operands from reg use/def lists if appropriate.
146 void ilist_traits
<MachineInstr
>::addNodeToList(MachineInstr
*N
) {
147 assert(!N
->getParent() && "machine instruction already in a basic block");
148 N
->setParent(Parent
);
150 // Add the instruction's register operands to their corresponding
152 MachineFunction
*MF
= Parent
->getParent();
153 N
->addRegOperandsToUseLists(MF
->getRegInfo());
154 MF
->handleInsertion(*N
);
157 /// When we remove an instruction from a basic block list, we update its parent
158 /// pointer and remove its operands from reg use/def lists if appropriate.
159 void ilist_traits
<MachineInstr
>::removeNodeFromList(MachineInstr
*N
) {
160 assert(N
->getParent() && "machine instruction not in a basic block");
162 // Remove from the use/def lists.
163 if (MachineFunction
*MF
= N
->getMF()) {
164 MF
->handleRemoval(*N
);
165 N
->removeRegOperandsFromUseLists(MF
->getRegInfo());
168 N
->setParent(nullptr);
171 /// When moving a range of instructions from one MBB list to another, we need to
172 /// update the parent pointers and the use/def lists.
173 void ilist_traits
<MachineInstr
>::transferNodesFromList(ilist_traits
&FromList
,
174 instr_iterator First
,
175 instr_iterator Last
) {
176 assert(Parent
->getParent() == FromList
.Parent
->getParent() &&
177 "cannot transfer MachineInstrs between MachineFunctions");
179 // If it's within the same BB, there's nothing to do.
180 if (this == &FromList
)
183 assert(Parent
!= FromList
.Parent
&& "Two lists have the same parent?");
185 // If splicing between two blocks within the same function, just update the
187 for (; First
!= Last
; ++First
)
188 First
->setParent(Parent
);
191 void ilist_traits
<MachineInstr
>::deleteNode(MachineInstr
*MI
) {
192 assert(!MI
->getParent() && "MI is still in a block!");
193 Parent
->getParent()->deleteMachineInstr(MI
);
196 MachineBasicBlock::iterator
MachineBasicBlock::getFirstNonPHI() {
197 instr_iterator I
= instr_begin(), E
= instr_end();
198 while (I
!= E
&& I
->isPHI())
200 assert((I
== E
|| !I
->isInsideBundle()) &&
201 "First non-phi MI cannot be inside a bundle!");
205 MachineBasicBlock::iterator
206 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I
) {
207 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
210 while (I
!= E
&& (I
->isPHI() || I
->isPosition() ||
211 TII
->isBasicBlockPrologue(*I
)))
213 // FIXME: This needs to change if we wish to bundle labels
214 // inside the bundle.
215 assert((I
== E
|| !I
->isInsideBundle()) &&
216 "First non-phi / non-label instruction is inside a bundle!");
220 MachineBasicBlock::iterator
221 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I
,
223 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
226 while (I
!= E
&& (I
->isPHI() || I
->isPosition() || I
->isDebugInstr() ||
227 (SkipPseudoOp
&& I
->isPseudoProbe()) ||
228 TII
->isBasicBlockPrologue(*I
)))
230 // FIXME: This needs to change if we wish to bundle labels / dbg_values
231 // inside the bundle.
232 assert((I
== E
|| !I
->isInsideBundle()) &&
233 "First non-phi / non-label / non-debug "
234 "instruction is inside a bundle!");
238 MachineBasicBlock::iterator
MachineBasicBlock::getFirstTerminator() {
239 iterator B
= begin(), E
= end(), I
= E
;
240 while (I
!= B
&& ((--I
)->isTerminator() || I
->isDebugInstr()))
242 while (I
!= E
&& !I
->isTerminator())
247 MachineBasicBlock::instr_iterator
MachineBasicBlock::getFirstInstrTerminator() {
248 instr_iterator B
= instr_begin(), E
= instr_end(), I
= E
;
249 while (I
!= B
&& ((--I
)->isTerminator() || I
->isDebugInstr()))
251 while (I
!= E
&& !I
->isTerminator())
256 MachineBasicBlock::iterator
257 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp
) {
258 // Skip over begin-of-block dbg_value instructions.
259 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp
);
262 MachineBasicBlock::iterator
263 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp
) {
264 // Skip over end-of-block dbg_value instructions.
265 instr_iterator B
= instr_begin(), I
= instr_end();
268 // Return instruction that starts a bundle.
269 if (I
->isDebugInstr() || I
->isInsideBundle())
271 if (SkipPseudoOp
&& I
->isPseudoProbe())
275 // The block is all debug values.
279 bool MachineBasicBlock::hasEHPadSuccessor() const {
280 for (const MachineBasicBlock
*Succ
: successors())
286 bool MachineBasicBlock::isEntryBlock() const {
287 return getParent()->begin() == getIterator();
290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
291 LLVM_DUMP_METHOD
void MachineBasicBlock::dump() const {
296 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
297 for (const MachineBasicBlock
*Succ
: successors()) {
298 if (Succ
->isInlineAsmBrIndirectTarget())
304 bool MachineBasicBlock::isLegalToHoistInto() const {
305 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
310 StringRef
MachineBasicBlock::getName() const {
311 if (const BasicBlock
*LBB
= getBasicBlock())
312 return LBB
->getName();
314 return StringRef("", 0);
317 /// Return a hopefully unique identifier for this block.
318 std::string
MachineBasicBlock::getFullName() const {
321 Name
= (getParent()->getName() + ":").str();
323 Name
+= getBasicBlock()->getName();
325 Name
+= ("BB" + Twine(getNumber())).str();
329 void MachineBasicBlock::print(raw_ostream
&OS
, const SlotIndexes
*Indexes
,
330 bool IsStandalone
) const {
331 const MachineFunction
*MF
= getParent();
333 OS
<< "Can't print out MachineBasicBlock because parent MachineFunction"
337 const Function
&F
= MF
->getFunction();
338 const Module
*M
= F
.getParent();
339 ModuleSlotTracker
MST(M
);
340 MST
.incorporateFunction(F
);
341 print(OS
, MST
, Indexes
, IsStandalone
);
344 void MachineBasicBlock::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
345 const SlotIndexes
*Indexes
,
346 bool IsStandalone
) const {
347 const MachineFunction
*MF
= getParent();
349 OS
<< "Can't print out MachineBasicBlock because parent MachineFunction"
354 if (Indexes
&& PrintSlotIndexes
)
355 OS
<< Indexes
->getMBBStartIdx(this) << '\t';
357 printName(OS
, PrintNameIr
| PrintNameAttributes
, &MST
);
360 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
361 const MachineRegisterInfo
&MRI
= MF
->getRegInfo();
362 const TargetInstrInfo
&TII
= *getParent()->getSubtarget().getInstrInfo();
363 bool HasLineAttributes
= false;
365 // Print the preds of this block according to the CFG.
366 if (!pred_empty() && IsStandalone
) {
367 if (Indexes
) OS
<< '\t';
368 // Don't indent(2), align with previous line attributes.
369 OS
<< "; predecessors: ";
371 for (auto *Pred
: predecessors())
372 OS
<< LS
<< printMBBReference(*Pred
);
374 HasLineAttributes
= true;
378 if (Indexes
) OS
<< '\t';
379 // Print the successors
380 OS
.indent(2) << "successors: ";
382 for (auto I
= succ_begin(), E
= succ_end(); I
!= E
; ++I
) {
383 OS
<< LS
<< printMBBReference(**I
);
386 << format("0x%08" PRIx32
, getSuccProbability(I
).getNumerator())
389 if (!Probs
.empty() && IsStandalone
) {
390 // Print human readable probabilities as comments.
393 for (auto I
= succ_begin(), E
= succ_end(); I
!= E
; ++I
) {
394 const BranchProbability
&BP
= getSuccProbability(I
);
395 OS
<< LS
<< printMBBReference(**I
) << '('
397 rint(((double)BP
.getNumerator() / BP
.getDenominator()) *
405 HasLineAttributes
= true;
408 if (!livein_empty() && MRI
.tracksLiveness()) {
409 if (Indexes
) OS
<< '\t';
410 OS
.indent(2) << "liveins: ";
413 for (const auto &LI
: liveins()) {
414 OS
<< LS
<< printReg(LI
.PhysReg
, TRI
);
415 if (!LI
.LaneMask
.all())
416 OS
<< ":0x" << PrintLaneMask(LI
.LaneMask
);
418 HasLineAttributes
= true;
421 if (HasLineAttributes
)
424 bool IsInBundle
= false;
425 for (const MachineInstr
&MI
: instrs()) {
426 if (Indexes
&& PrintSlotIndexes
) {
427 if (Indexes
->hasIndex(MI
))
428 OS
<< Indexes
->getInstructionIndex(MI
);
432 if (IsInBundle
&& !MI
.isInsideBundle()) {
433 OS
.indent(2) << "}\n";
437 OS
.indent(IsInBundle
? 4 : 2);
438 MI
.print(OS
, MST
, IsStandalone
, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
439 /*AddNewLine=*/false, &TII
);
441 if (!IsInBundle
&& MI
.getFlag(MachineInstr::BundledSucc
)) {
449 OS
.indent(2) << "}\n";
451 if (IrrLoopHeaderWeight
&& IsStandalone
) {
452 if (Indexes
) OS
<< '\t';
453 OS
.indent(2) << "; Irreducible loop header weight: "
454 << IrrLoopHeaderWeight
.value() << '\n';
458 /// Print the basic block's name as:
460 /// bb.{number}[.{ir-name}] [(attributes...)]
462 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
463 /// (which is the default). If the IR block has no name, it is identified
464 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
466 /// When the \ref PrintNameAttributes flag is passed, additional attributes
467 /// of the block are printed when set.
469 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
470 /// the parts to print.
471 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
472 /// incorporate its own tracker when necessary to
473 /// determine the block's IR name.
474 void MachineBasicBlock::printName(raw_ostream
&os
, unsigned printNameFlags
,
475 ModuleSlotTracker
*moduleSlotTracker
) const {
476 os
<< "bb." << getNumber();
477 bool hasAttributes
= false;
479 auto PrintBBRef
= [&](const BasicBlock
*bb
) {
486 if (moduleSlotTracker
) {
487 slot
= moduleSlotTracker
->getLocalSlot(bb
);
488 } else if (bb
->getParent()) {
489 ModuleSlotTracker
tmpTracker(bb
->getModule(), false);
490 tmpTracker
.incorporateFunction(*bb
->getParent());
491 slot
= tmpTracker
.getLocalSlot(bb
);
495 os
<< "<ir-block badref>";
501 if (printNameFlags
& PrintNameIr
) {
502 if (const auto *bb
= getBasicBlock()) {
504 os
<< '.' << bb
->getName();
506 hasAttributes
= true;
513 if (printNameFlags
& PrintNameAttributes
) {
514 if (isMachineBlockAddressTaken()) {
515 os
<< (hasAttributes
? ", " : " (");
516 os
<< "machine-block-address-taken";
517 hasAttributes
= true;
519 if (isIRBlockAddressTaken()) {
520 os
<< (hasAttributes
? ", " : " (");
521 os
<< "ir-block-address-taken ";
522 PrintBBRef(getAddressTakenIRBlock());
523 hasAttributes
= true;
526 os
<< (hasAttributes
? ", " : " (");
528 hasAttributes
= true;
530 if (isInlineAsmBrIndirectTarget()) {
531 os
<< (hasAttributes
? ", " : " (");
532 os
<< "inlineasm-br-indirect-target";
533 hasAttributes
= true;
535 if (isEHFuncletEntry()) {
536 os
<< (hasAttributes
? ", " : " (");
537 os
<< "ehfunclet-entry";
538 hasAttributes
= true;
540 if (getAlignment() != Align(1)) {
541 os
<< (hasAttributes
? ", " : " (");
542 os
<< "align " << getAlignment().value();
543 hasAttributes
= true;
545 if (getSectionID() != MBBSectionID(0)) {
546 os
<< (hasAttributes
? ", " : " (");
548 switch (getSectionID().Type
) {
549 case MBBSectionID::SectionType::Exception
:
552 case MBBSectionID::SectionType::Cold
:
556 os
<< getSectionID().Number
;
558 hasAttributes
= true;
566 void MachineBasicBlock::printAsOperand(raw_ostream
&OS
,
567 bool /*PrintType*/) const {
572 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg
, LaneBitmask LaneMask
) {
573 LiveInVector::iterator I
= find_if(
574 LiveIns
, [Reg
](const RegisterMaskPair
&LI
) { return LI
.PhysReg
== Reg
; });
575 if (I
== LiveIns
.end())
578 I
->LaneMask
&= ~LaneMask
;
579 if (I
->LaneMask
.none())
583 MachineBasicBlock::livein_iterator
584 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I
) {
585 // Get non-const version of iterator.
586 LiveInVector::iterator LI
= LiveIns
.begin() + (I
- LiveIns
.begin());
587 return LiveIns
.erase(LI
);
590 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg
, LaneBitmask LaneMask
) const {
591 livein_iterator I
= find_if(
592 LiveIns
, [Reg
](const RegisterMaskPair
&LI
) { return LI
.PhysReg
== Reg
; });
593 return I
!= livein_end() && (I
->LaneMask
& LaneMask
).any();
596 void MachineBasicBlock::sortUniqueLiveIns() {
598 [](const RegisterMaskPair
&LI0
, const RegisterMaskPair
&LI1
) {
599 return LI0
.PhysReg
< LI1
.PhysReg
;
601 // Liveins are sorted by physreg now we can merge their lanemasks.
602 LiveInVector::const_iterator I
= LiveIns
.begin();
603 LiveInVector::const_iterator J
;
604 LiveInVector::iterator Out
= LiveIns
.begin();
605 for (; I
!= LiveIns
.end(); ++Out
, I
= J
) {
606 MCRegister PhysReg
= I
->PhysReg
;
607 LaneBitmask LaneMask
= I
->LaneMask
;
608 for (J
= std::next(I
); J
!= LiveIns
.end() && J
->PhysReg
== PhysReg
; ++J
)
609 LaneMask
|= J
->LaneMask
;
610 Out
->PhysReg
= PhysReg
;
611 Out
->LaneMask
= LaneMask
;
613 LiveIns
.erase(Out
, LiveIns
.end());
617 MachineBasicBlock::addLiveIn(MCRegister PhysReg
, const TargetRegisterClass
*RC
) {
618 assert(getParent() && "MBB must be inserted in function");
619 assert(Register::isPhysicalRegister(PhysReg
) && "Expected physreg");
620 assert(RC
&& "Register class is required");
621 assert((isEHPad() || this == &getParent()->front()) &&
622 "Only the entry block and landing pads can have physreg live ins");
624 bool LiveIn
= isLiveIn(PhysReg
);
625 iterator I
= SkipPHIsAndLabels(begin()), E
= end();
626 MachineRegisterInfo
&MRI
= getParent()->getRegInfo();
627 const TargetInstrInfo
&TII
= *getParent()->getSubtarget().getInstrInfo();
629 // Look for an existing copy.
631 for (;I
!= E
&& I
->isCopy(); ++I
)
632 if (I
->getOperand(1).getReg() == PhysReg
) {
633 Register VirtReg
= I
->getOperand(0).getReg();
634 if (!MRI
.constrainRegClass(VirtReg
, RC
))
635 llvm_unreachable("Incompatible live-in register class.");
639 // No luck, create a virtual register.
640 Register VirtReg
= MRI
.createVirtualRegister(RC
);
641 BuildMI(*this, I
, DebugLoc(), TII
.get(TargetOpcode::COPY
), VirtReg
)
642 .addReg(PhysReg
, RegState::Kill
);
648 void MachineBasicBlock::moveBefore(MachineBasicBlock
*NewAfter
) {
649 getParent()->splice(NewAfter
->getIterator(), getIterator());
652 void MachineBasicBlock::moveAfter(MachineBasicBlock
*NewBefore
) {
653 getParent()->splice(++NewBefore
->getIterator(), getIterator());
656 void MachineBasicBlock::updateTerminator(
657 MachineBasicBlock
*PreviousLayoutSuccessor
) {
658 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
661 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
662 // A block with no successors has no concerns with fall-through edges.
663 if (this->succ_empty())
666 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
667 SmallVector
<MachineOperand
, 4> Cond
;
668 DebugLoc DL
= findBranchDebugLoc();
669 bool B
= TII
->analyzeBranch(*this, TBB
, FBB
, Cond
);
671 assert(!B
&& "UpdateTerminators requires analyzable predecessors!");
674 // The block has an unconditional branch. If its successor is now its
675 // layout successor, delete the branch.
676 if (isLayoutSuccessor(TBB
))
677 TII
->removeBranch(*this);
679 // The block has an unconditional fallthrough, or the end of the block is
682 // Unfortunately, whether the end of the block is unreachable is not
683 // immediately obvious; we must fall back to checking the successor list,
684 // and assuming that if the passed in block is in the succesor list and
685 // not an EHPad, it must be the intended target.
686 if (!PreviousLayoutSuccessor
|| !isSuccessor(PreviousLayoutSuccessor
) ||
687 PreviousLayoutSuccessor
->isEHPad())
690 // If the unconditional successor block is not the current layout
691 // successor, insert a branch to jump to it.
692 if (!isLayoutSuccessor(PreviousLayoutSuccessor
))
693 TII
->insertBranch(*this, PreviousLayoutSuccessor
, nullptr, Cond
, DL
);
699 // The block has a non-fallthrough conditional branch. If one of its
700 // successors is its layout successor, rewrite it to a fallthrough
701 // conditional branch.
702 if (isLayoutSuccessor(TBB
)) {
703 if (TII
->reverseBranchCondition(Cond
))
705 TII
->removeBranch(*this);
706 TII
->insertBranch(*this, FBB
, nullptr, Cond
, DL
);
707 } else if (isLayoutSuccessor(FBB
)) {
708 TII
->removeBranch(*this);
709 TII
->insertBranch(*this, TBB
, nullptr, Cond
, DL
);
714 // We now know we're going to fallthrough to PreviousLayoutSuccessor.
715 assert(PreviousLayoutSuccessor
);
716 assert(!PreviousLayoutSuccessor
->isEHPad());
717 assert(isSuccessor(PreviousLayoutSuccessor
));
719 if (PreviousLayoutSuccessor
== TBB
) {
720 // We had a fallthrough to the same basic block as the conditional jump
721 // targets. Remove the conditional jump, leaving an unconditional
722 // fallthrough or an unconditional jump.
723 TII
->removeBranch(*this);
724 if (!isLayoutSuccessor(TBB
)) {
726 TII
->insertBranch(*this, TBB
, nullptr, Cond
, DL
);
731 // The block has a fallthrough conditional branch.
732 if (isLayoutSuccessor(TBB
)) {
733 if (TII
->reverseBranchCondition(Cond
)) {
734 // We can't reverse the condition, add an unconditional branch.
736 TII
->insertBranch(*this, PreviousLayoutSuccessor
, nullptr, Cond
, DL
);
739 TII
->removeBranch(*this);
740 TII
->insertBranch(*this, PreviousLayoutSuccessor
, nullptr, Cond
, DL
);
741 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor
)) {
742 TII
->removeBranch(*this);
743 TII
->insertBranch(*this, TBB
, PreviousLayoutSuccessor
, Cond
, DL
);
747 void MachineBasicBlock::validateSuccProbs() const {
750 for (auto Prob
: Probs
)
751 Sum
+= Prob
.getNumerator();
752 // Due to precision issue, we assume that the sum of probabilities is one if
753 // the difference between the sum of their numerators and the denominator is
754 // no greater than the number of successors.
755 assert((uint64_t)std::abs(Sum
- BranchProbability::getDenominator()) <=
757 "The sum of successors's probabilities exceeds one.");
761 void MachineBasicBlock::addSuccessor(MachineBasicBlock
*Succ
,
762 BranchProbability Prob
) {
763 // Probability list is either empty (if successor list isn't empty, this means
764 // disabled optimization) or has the same size as successor list.
765 if (!(Probs
.empty() && !Successors
.empty()))
766 Probs
.push_back(Prob
);
767 Successors
.push_back(Succ
);
768 Succ
->addPredecessor(this);
771 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock
*Succ
) {
772 // We need to make sure probability list is either empty or has the same size
773 // of successor list. When this function is called, we can safely delete all
774 // probability in the list.
776 Successors
.push_back(Succ
);
777 Succ
->addPredecessor(this);
780 void MachineBasicBlock::splitSuccessor(MachineBasicBlock
*Old
,
781 MachineBasicBlock
*New
,
782 bool NormalizeSuccProbs
) {
783 succ_iterator OldI
= llvm::find(successors(), Old
);
784 assert(OldI
!= succ_end() && "Old is not a successor of this block!");
785 assert(!llvm::is_contained(successors(), New
) &&
786 "New is already a successor of this block!");
788 // Add a new successor with equal probability as the original one. Note
789 // that we directly copy the probability using the iterator rather than
790 // getting a potentially synthetic probability computed when unknown. This
791 // preserves the probabilities as-is and then we can renormalize them and
792 // query them effectively afterward.
793 addSuccessor(New
, Probs
.empty() ? BranchProbability::getUnknown()
794 : *getProbabilityIterator(OldI
));
795 if (NormalizeSuccProbs
)
796 normalizeSuccProbs();
799 void MachineBasicBlock::removeSuccessor(MachineBasicBlock
*Succ
,
800 bool NormalizeSuccProbs
) {
801 succ_iterator I
= find(Successors
, Succ
);
802 removeSuccessor(I
, NormalizeSuccProbs
);
805 MachineBasicBlock::succ_iterator
806 MachineBasicBlock::removeSuccessor(succ_iterator I
, bool NormalizeSuccProbs
) {
807 assert(I
!= Successors
.end() && "Not a current successor!");
809 // If probability list is empty it means we don't use it (disabled
811 if (!Probs
.empty()) {
812 probability_iterator WI
= getProbabilityIterator(I
);
814 if (NormalizeSuccProbs
)
815 normalizeSuccProbs();
818 (*I
)->removePredecessor(this);
819 return Successors
.erase(I
);
822 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock
*Old
,
823 MachineBasicBlock
*New
) {
827 succ_iterator E
= succ_end();
828 succ_iterator NewI
= E
;
829 succ_iterator OldI
= E
;
830 for (succ_iterator I
= succ_begin(); I
!= E
; ++I
) {
842 assert(OldI
!= E
&& "Old is not a successor of this block");
844 // If New isn't already a successor, let it take Old's place.
846 Old
->removePredecessor(this);
847 New
->addPredecessor(this);
852 // New is already a successor.
853 // Update its probability instead of adding a duplicate edge.
854 if (!Probs
.empty()) {
855 auto ProbIter
= getProbabilityIterator(NewI
);
856 if (!ProbIter
->isUnknown())
857 *ProbIter
+= *getProbabilityIterator(OldI
);
859 removeSuccessor(OldI
);
862 void MachineBasicBlock::copySuccessor(MachineBasicBlock
*Orig
,
864 if (!Orig
->Probs
.empty())
865 addSuccessor(*I
, Orig
->getSuccProbability(I
));
867 addSuccessorWithoutProb(*I
);
870 void MachineBasicBlock::addPredecessor(MachineBasicBlock
*Pred
) {
871 Predecessors
.push_back(Pred
);
874 void MachineBasicBlock::removePredecessor(MachineBasicBlock
*Pred
) {
875 pred_iterator I
= find(Predecessors
, Pred
);
876 assert(I
!= Predecessors
.end() && "Pred is not a predecessor of this block!");
877 Predecessors
.erase(I
);
880 void MachineBasicBlock::transferSuccessors(MachineBasicBlock
*FromMBB
) {
884 while (!FromMBB
->succ_empty()) {
885 MachineBasicBlock
*Succ
= *FromMBB
->succ_begin();
887 // If probability list is empty it means we don't use it (disabled
889 if (!FromMBB
->Probs
.empty()) {
890 auto Prob
= *FromMBB
->Probs
.begin();
891 addSuccessor(Succ
, Prob
);
893 addSuccessorWithoutProb(Succ
);
895 FromMBB
->removeSuccessor(Succ
);
900 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock
*FromMBB
) {
904 while (!FromMBB
->succ_empty()) {
905 MachineBasicBlock
*Succ
= *FromMBB
->succ_begin();
906 if (!FromMBB
->Probs
.empty()) {
907 auto Prob
= *FromMBB
->Probs
.begin();
908 addSuccessor(Succ
, Prob
);
910 addSuccessorWithoutProb(Succ
);
911 FromMBB
->removeSuccessor(Succ
);
913 // Fix up any PHI nodes in the successor.
914 Succ
->replacePhiUsesWith(FromMBB
, this);
916 normalizeSuccProbs();
919 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock
*MBB
) const {
920 return is_contained(predecessors(), MBB
);
923 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock
*MBB
) const {
924 return is_contained(successors(), MBB
);
927 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock
*MBB
) const {
928 MachineFunction::const_iterator
I(this);
929 return std::next(I
) == MachineFunction::const_iterator(MBB
);
932 const MachineBasicBlock
*MachineBasicBlock::getSingleSuccessor() const {
933 return Successors
.size() == 1 ? Successors
[0] : nullptr;
936 MachineBasicBlock
*MachineBasicBlock::getFallThrough() {
937 MachineFunction::iterator Fallthrough
= getIterator();
939 // If FallthroughBlock is off the end of the function, it can't fall through.
940 if (Fallthrough
== getParent()->end())
943 // If FallthroughBlock isn't a successor, no fallthrough is possible.
944 if (!isSuccessor(&*Fallthrough
))
947 // Analyze the branches, if any, at the end of the block.
948 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
949 SmallVector
<MachineOperand
, 4> Cond
;
950 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
951 if (TII
->analyzeBranch(*this, TBB
, FBB
, Cond
)) {
952 // If we couldn't analyze the branch, examine the last instruction.
953 // If the block doesn't end in a known control barrier, assume fallthrough
954 // is possible. The isPredicated check is needed because this code can be
955 // called during IfConversion, where an instruction which is normally a
956 // Barrier is predicated and thus no longer an actual control barrier.
957 return (empty() || !back().isBarrier() || TII
->isPredicated(back()))
962 // If there is no branch, control always falls through.
963 if (!TBB
) return &*Fallthrough
;
965 // If there is some explicit branch to the fallthrough block, it can obviously
966 // reach, even though the branch should get folded to fall through implicitly.
967 if (MachineFunction::iterator(TBB
) == Fallthrough
||
968 MachineFunction::iterator(FBB
) == Fallthrough
)
969 return &*Fallthrough
;
971 // If it's an unconditional branch to some block not the fall through, it
972 // doesn't fall through.
973 if (Cond
.empty()) return nullptr;
975 // Otherwise, if it is conditional and has no explicit false block, it falls
977 return (FBB
== nullptr) ? &*Fallthrough
: nullptr;
980 bool MachineBasicBlock::canFallThrough() {
981 return getFallThrough() != nullptr;
984 MachineBasicBlock
*MachineBasicBlock::splitAt(MachineInstr
&MI
,
986 LiveIntervals
*LIS
) {
987 MachineBasicBlock::iterator
SplitPoint(&MI
);
990 if (SplitPoint
== end()) {
991 // Don't bother with a new block.
995 MachineFunction
*MF
= getParent();
997 LivePhysRegs LiveRegs
;
999 // Make sure we add any physregs we define in the block as liveins to the
1001 MachineBasicBlock::iterator
Prev(&MI
);
1002 LiveRegs
.init(*MF
->getSubtarget().getRegisterInfo());
1003 LiveRegs
.addLiveOuts(*this);
1004 for (auto I
= rbegin(), E
= Prev
.getReverse(); I
!= E
; ++I
)
1005 LiveRegs
.stepBackward(*I
);
1008 MachineBasicBlock
*SplitBB
= MF
->CreateMachineBasicBlock(getBasicBlock());
1010 MF
->insert(++MachineFunction::iterator(this), SplitBB
);
1011 SplitBB
->splice(SplitBB
->begin(), this, SplitPoint
, end());
1013 SplitBB
->transferSuccessorsAndUpdatePHIs(this);
1014 addSuccessor(SplitBB
);
1017 addLiveIns(*SplitBB
, LiveRegs
);
1020 LIS
->insertMBBInMaps(SplitBB
);
1025 MachineBasicBlock
*MachineBasicBlock::SplitCriticalEdge(
1026 MachineBasicBlock
*Succ
, Pass
&P
,
1027 std::vector
<SparseBitVector
<>> *LiveInSets
) {
1028 if (!canSplitCriticalEdge(Succ
))
1031 MachineFunction
*MF
= getParent();
1032 MachineBasicBlock
*PrevFallthrough
= getNextNode();
1033 DebugLoc DL
; // FIXME: this is nowhere
1035 MachineBasicBlock
*NMBB
= MF
->CreateMachineBasicBlock();
1036 MF
->insert(std::next(MachineFunction::iterator(this)), NMBB
);
1037 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1038 << " -- " << printMBBReference(*NMBB
) << " -- "
1039 << printMBBReference(*Succ
) << '\n');
1041 LiveIntervals
*LIS
= P
.getAnalysisIfAvailable
<LiveIntervals
>();
1042 SlotIndexes
*Indexes
= P
.getAnalysisIfAvailable
<SlotIndexes
>();
1044 LIS
->insertMBBInMaps(NMBB
);
1046 Indexes
->insertMBBInMaps(NMBB
);
1048 // On some targets like Mips, branches may kill virtual registers. Make sure
1049 // that LiveVariables is properly updated after updateTerminator replaces the
1051 LiveVariables
*LV
= P
.getAnalysisIfAvailable
<LiveVariables
>();
1053 // Collect a list of virtual registers killed by the terminators.
1054 SmallVector
<Register
, 4> KilledRegs
;
1056 for (MachineInstr
&MI
:
1057 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1058 for (MachineOperand
&MO
: MI
.operands()) {
1059 if (!MO
.isReg() || MO
.getReg() == 0 || !MO
.isUse() || !MO
.isKill() ||
1062 Register Reg
= MO
.getReg();
1063 if (Register::isPhysicalRegister(Reg
) ||
1064 LV
->getVarInfo(Reg
).removeKill(MI
)) {
1065 KilledRegs
.push_back(Reg
);
1066 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI
);
1067 MO
.setIsKill(false);
1072 SmallVector
<Register
, 4> UsedRegs
;
1074 for (MachineInstr
&MI
:
1075 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1076 for (const MachineOperand
&MO
: MI
.operands()) {
1077 if (!MO
.isReg() || MO
.getReg() == 0)
1080 Register Reg
= MO
.getReg();
1081 if (!is_contained(UsedRegs
, Reg
))
1082 UsedRegs
.push_back(Reg
);
1087 ReplaceUsesOfBlockWith(Succ
, NMBB
);
1089 // If updateTerminator() removes instructions, we need to remove them from
1091 SmallVector
<MachineInstr
*, 4> Terminators
;
1093 for (MachineInstr
&MI
:
1094 llvm::make_range(getFirstInstrTerminator(), instr_end()))
1095 Terminators
.push_back(&MI
);
1098 // Since we replaced all uses of Succ with NMBB, that should also be treated
1099 // as the fallthrough successor
1100 if (Succ
== PrevFallthrough
)
1101 PrevFallthrough
= NMBB
;
1102 updateTerminator(PrevFallthrough
);
1105 SmallVector
<MachineInstr
*, 4> NewTerminators
;
1106 for (MachineInstr
&MI
:
1107 llvm::make_range(getFirstInstrTerminator(), instr_end()))
1108 NewTerminators
.push_back(&MI
);
1110 for (MachineInstr
*Terminator
: Terminators
) {
1111 if (!is_contained(NewTerminators
, Terminator
))
1112 Indexes
->removeMachineInstrFromMaps(*Terminator
);
1116 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1117 NMBB
->addSuccessor(Succ
);
1118 if (!NMBB
->isLayoutSuccessor(Succ
)) {
1119 SmallVector
<MachineOperand
, 4> Cond
;
1120 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
1121 TII
->insertBranch(*NMBB
, Succ
, nullptr, Cond
, DL
);
1124 for (MachineInstr
&MI
: NMBB
->instrs()) {
1125 // Some instructions may have been moved to NMBB by updateTerminator(),
1126 // so we first remove any instruction that already has an index.
1127 if (Indexes
->hasIndex(MI
))
1128 Indexes
->removeMachineInstrFromMaps(MI
);
1129 Indexes
->insertMachineInstrInMaps(MI
);
1134 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1135 Succ
->replacePhiUsesWith(this, NMBB
);
1137 // Inherit live-ins from the successor
1138 for (const auto &LI
: Succ
->liveins())
1139 NMBB
->addLiveIn(LI
);
1141 // Update LiveVariables.
1142 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
1144 // Restore kills of virtual registers that were killed by the terminators.
1145 while (!KilledRegs
.empty()) {
1146 Register Reg
= KilledRegs
.pop_back_val();
1147 for (instr_iterator I
= instr_end(), E
= instr_begin(); I
!= E
;) {
1148 if (!(--I
)->addRegisterKilled(Reg
, TRI
, /* AddIfNotFound= */ false))
1150 if (Register::isVirtualRegister(Reg
))
1151 LV
->getVarInfo(Reg
).Kills
.push_back(&*I
);
1152 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I
);
1156 // Update relevant live-through information.
1157 if (LiveInSets
!= nullptr)
1158 LV
->addNewBlock(NMBB
, this, Succ
, *LiveInSets
);
1160 LV
->addNewBlock(NMBB
, this, Succ
);
1164 // After splitting the edge and updating SlotIndexes, live intervals may be
1165 // in one of two situations, depending on whether this block was the last in
1166 // the function. If the original block was the last in the function, all
1167 // live intervals will end prior to the beginning of the new split block. If
1168 // the original block was not at the end of the function, all live intervals
1169 // will extend to the end of the new split block.
1172 std::next(MachineFunction::iterator(NMBB
)) == getParent()->end();
1174 SlotIndex StartIndex
= Indexes
->getMBBEndIdx(this);
1175 SlotIndex PrevIndex
= StartIndex
.getPrevSlot();
1176 SlotIndex EndIndex
= Indexes
->getMBBEndIdx(NMBB
);
1178 // Find the registers used from NMBB in PHIs in Succ.
1179 SmallSet
<Register
, 8> PHISrcRegs
;
1180 for (MachineBasicBlock::instr_iterator
1181 I
= Succ
->instr_begin(), E
= Succ
->instr_end();
1182 I
!= E
&& I
->isPHI(); ++I
) {
1183 for (unsigned ni
= 1, ne
= I
->getNumOperands(); ni
!= ne
; ni
+= 2) {
1184 if (I
->getOperand(ni
+1).getMBB() == NMBB
) {
1185 MachineOperand
&MO
= I
->getOperand(ni
);
1186 Register Reg
= MO
.getReg();
1187 PHISrcRegs
.insert(Reg
);
1191 LiveInterval
&LI
= LIS
->getInterval(Reg
);
1192 VNInfo
*VNI
= LI
.getVNInfoAt(PrevIndex
);
1194 "PHI sources should be live out of their predecessors.");
1195 LI
.addSegment(LiveInterval::Segment(StartIndex
, EndIndex
, VNI
));
1200 MachineRegisterInfo
*MRI
= &getParent()->getRegInfo();
1201 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
1202 Register Reg
= Register::index2VirtReg(i
);
1203 if (PHISrcRegs
.count(Reg
) || !LIS
->hasInterval(Reg
))
1206 LiveInterval
&LI
= LIS
->getInterval(Reg
);
1207 if (!LI
.liveAt(PrevIndex
))
1210 bool isLiveOut
= LI
.liveAt(LIS
->getMBBStartIdx(Succ
));
1211 if (isLiveOut
&& isLastMBB
) {
1212 VNInfo
*VNI
= LI
.getVNInfoAt(PrevIndex
);
1213 assert(VNI
&& "LiveInterval should have VNInfo where it is live.");
1214 LI
.addSegment(LiveInterval::Segment(StartIndex
, EndIndex
, VNI
));
1215 } else if (!isLiveOut
&& !isLastMBB
) {
1216 LI
.removeSegment(StartIndex
, EndIndex
);
1220 // Update all intervals for registers whose uses may have been modified by
1221 // updateTerminator().
1222 LIS
->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs
);
1225 if (MachineDominatorTree
*MDT
=
1226 P
.getAnalysisIfAvailable
<MachineDominatorTree
>())
1227 MDT
->recordSplitCriticalEdge(this, Succ
, NMBB
);
1229 if (MachineLoopInfo
*MLI
= P
.getAnalysisIfAvailable
<MachineLoopInfo
>())
1230 if (MachineLoop
*TIL
= MLI
->getLoopFor(this)) {
1231 // If one or the other blocks were not in a loop, the new block is not
1232 // either, and thus LI doesn't need to be updated.
1233 if (MachineLoop
*DestLoop
= MLI
->getLoopFor(Succ
)) {
1234 if (TIL
== DestLoop
) {
1235 // Both in the same loop, the NMBB joins loop.
1236 DestLoop
->addBasicBlockToLoop(NMBB
, MLI
->getBase());
1237 } else if (TIL
->contains(DestLoop
)) {
1238 // Edge from an outer loop to an inner loop. Add to the outer loop.
1239 TIL
->addBasicBlockToLoop(NMBB
, MLI
->getBase());
1240 } else if (DestLoop
->contains(TIL
)) {
1241 // Edge from an inner loop to an outer loop. Add to the outer loop.
1242 DestLoop
->addBasicBlockToLoop(NMBB
, MLI
->getBase());
1244 // Edge from two loops with no containment relation. Because these
1245 // are natural loops, we know that the destination block must be the
1246 // header of its loop (adding a branch into a loop elsewhere would
1247 // create an irreducible loop).
1248 assert(DestLoop
->getHeader() == Succ
&&
1249 "Should not create irreducible loops!");
1250 if (MachineLoop
*P
= DestLoop
->getParentLoop())
1251 P
->addBasicBlockToLoop(NMBB
, MLI
->getBase());
1259 bool MachineBasicBlock::canSplitCriticalEdge(
1260 const MachineBasicBlock
*Succ
) const {
1261 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1262 // it in this generic function.
1263 if (Succ
->isEHPad())
1266 // Splitting the critical edge to a callbr's indirect block isn't advised.
1267 // Don't do it in this generic function.
1268 if (Succ
->isInlineAsmBrIndirectTarget())
1271 const MachineFunction
*MF
= getParent();
1272 // Performance might be harmed on HW that implements branching using exec mask
1273 // where both sides of the branches are always executed.
1274 if (MF
->getTarget().requiresStructuredCFG())
1277 // We may need to update this's terminator, but we can't do that if
1278 // analyzeBranch fails. If this uses a jump table, we won't touch it.
1279 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1280 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1281 SmallVector
<MachineOperand
, 4> Cond
;
1282 // AnalyzeBanch should modify this, since we did not allow modification.
1283 if (TII
->analyzeBranch(*const_cast<MachineBasicBlock
*>(this), TBB
, FBB
, Cond
,
1284 /*AllowModify*/ false))
1287 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1288 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1289 // case that we can't handle. Since this never happens in properly optimized
1290 // code, just skip those edges.
1291 if (TBB
&& TBB
== FBB
) {
1292 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1293 << printMBBReference(*this) << '\n');
1299 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1300 /// neighboring instructions so the bundle won't be broken by removing MI.
1301 static void unbundleSingleMI(MachineInstr
*MI
) {
1302 // Removing the first instruction in a bundle.
1303 if (MI
->isBundledWithSucc() && !MI
->isBundledWithPred())
1304 MI
->unbundleFromSucc();
1305 // Removing the last instruction in a bundle.
1306 if (MI
->isBundledWithPred() && !MI
->isBundledWithSucc())
1307 MI
->unbundleFromPred();
1308 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1309 // are already fine.
1312 MachineBasicBlock::instr_iterator
1313 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I
) {
1314 unbundleSingleMI(&*I
);
1315 return Insts
.erase(I
);
1318 MachineInstr
*MachineBasicBlock::remove_instr(MachineInstr
*MI
) {
1319 unbundleSingleMI(MI
);
1320 MI
->clearFlag(MachineInstr::BundledPred
);
1321 MI
->clearFlag(MachineInstr::BundledSucc
);
1322 return Insts
.remove(MI
);
1325 MachineBasicBlock::instr_iterator
1326 MachineBasicBlock::insert(instr_iterator I
, MachineInstr
*MI
) {
1327 assert(!MI
->isBundledWithPred() && !MI
->isBundledWithSucc() &&
1328 "Cannot insert instruction with bundle flags");
1329 // Set the bundle flags when inserting inside a bundle.
1330 if (I
!= instr_end() && I
->isBundledWithPred()) {
1331 MI
->setFlag(MachineInstr::BundledPred
);
1332 MI
->setFlag(MachineInstr::BundledSucc
);
1334 return Insts
.insert(I
, MI
);
1337 /// This method unlinks 'this' from the containing function, and returns it, but
1338 /// does not delete it.
1339 MachineBasicBlock
*MachineBasicBlock::removeFromParent() {
1340 assert(getParent() && "Not embedded in a function!");
1341 getParent()->remove(this);
1345 /// This method unlinks 'this' from the containing function, and deletes it.
1346 void MachineBasicBlock::eraseFromParent() {
1347 assert(getParent() && "Not embedded in a function!");
1348 getParent()->erase(this);
1351 /// Given a machine basic block that branched to 'Old', change the code and CFG
1352 /// so that it branches to 'New' instead.
1353 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock
*Old
,
1354 MachineBasicBlock
*New
) {
1355 assert(Old
!= New
&& "Cannot replace self with self!");
1357 MachineBasicBlock::instr_iterator I
= instr_end();
1358 while (I
!= instr_begin()) {
1360 if (!I
->isTerminator()) break;
1362 // Scan the operands of this machine instruction, replacing any uses of Old
1364 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
1365 if (I
->getOperand(i
).isMBB() &&
1366 I
->getOperand(i
).getMBB() == Old
)
1367 I
->getOperand(i
).setMBB(New
);
1370 // Update the successor information.
1371 replaceSuccessor(Old
, New
);
1374 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock
*Old
,
1375 MachineBasicBlock
*New
) {
1376 for (MachineInstr
&MI
: phis())
1377 for (unsigned i
= 2, e
= MI
.getNumOperands() + 1; i
!= e
; i
+= 2) {
1378 MachineOperand
&MO
= MI
.getOperand(i
);
1379 if (MO
.getMBB() == Old
)
1384 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1385 /// instructions. Return UnknownLoc if there is none.
1387 MachineBasicBlock::findDebugLoc(instr_iterator MBBI
) {
1388 // Skip debug declarations, we don't want a DebugLoc from them.
1389 MBBI
= skipDebugInstructionsForward(MBBI
, instr_end());
1390 if (MBBI
!= instr_end())
1391 return MBBI
->getDebugLoc();
1395 DebugLoc
MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI
) {
1396 // Skip debug declarations, we don't want a DebugLoc from them.
1397 MBBI
= skipDebugInstructionsBackward(MBBI
, instr_rbegin());
1398 if (!MBBI
->isDebugInstr())
1399 return MBBI
->getDebugLoc();
1403 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1404 /// instructions. Return UnknownLoc if there is none.
1405 DebugLoc
MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI
) {
1406 if (MBBI
== instr_begin()) return {};
1407 // Skip debug instructions, we don't want a DebugLoc from them.
1408 MBBI
= prev_nodbg(MBBI
, instr_begin());
1409 if (!MBBI
->isDebugInstr()) return MBBI
->getDebugLoc();
1413 DebugLoc
MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI
) {
1414 if (MBBI
== instr_rend())
1416 // Skip debug declarations, we don't want a DebugLoc from them.
1417 MBBI
= next_nodbg(MBBI
, instr_rend());
1418 if (MBBI
!= instr_rend())
1419 return MBBI
->getDebugLoc();
1423 /// Find and return the merged DebugLoc of the branch instructions of the block.
1424 /// Return UnknownLoc if there is none.
1426 MachineBasicBlock::findBranchDebugLoc() {
1428 auto TI
= getFirstTerminator();
1429 while (TI
!= end() && !TI
->isBranch())
1433 DL
= TI
->getDebugLoc();
1434 for (++TI
; TI
!= end() ; ++TI
)
1436 DL
= DILocation::getMergedLocation(DL
, TI
->getDebugLoc());
1441 /// Return probability of the edge from this block to MBB.
1443 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ
) const {
1445 return BranchProbability(1, succ_size());
1447 const auto &Prob
= *getProbabilityIterator(Succ
);
1448 if (Prob
.isUnknown()) {
1449 // For unknown probabilities, collect the sum of all known ones, and evenly
1450 // ditribute the complemental of the sum to each unknown probability.
1451 unsigned KnownProbNum
= 0;
1452 auto Sum
= BranchProbability::getZero();
1453 for (const auto &P
: Probs
) {
1454 if (!P
.isUnknown()) {
1459 return Sum
.getCompl() / (Probs
.size() - KnownProbNum
);
1464 /// Set successor probability of a given iterator.
1465 void MachineBasicBlock::setSuccProbability(succ_iterator I
,
1466 BranchProbability Prob
) {
1467 assert(!Prob
.isUnknown());
1470 *getProbabilityIterator(I
) = Prob
;
1473 /// Return probability iterator corresonding to the I successor iterator
1474 MachineBasicBlock::const_probability_iterator
1475 MachineBasicBlock::getProbabilityIterator(
1476 MachineBasicBlock::const_succ_iterator I
) const {
1477 assert(Probs
.size() == Successors
.size() && "Async probability list!");
1478 const size_t index
= std::distance(Successors
.begin(), I
);
1479 assert(index
< Probs
.size() && "Not a current successor!");
1480 return Probs
.begin() + index
;
1483 /// Return probability iterator corresonding to the I successor iterator.
1484 MachineBasicBlock::probability_iterator
1485 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I
) {
1486 assert(Probs
.size() == Successors
.size() && "Async probability list!");
1487 const size_t index
= std::distance(Successors
.begin(), I
);
1488 assert(index
< Probs
.size() && "Not a current successor!");
1489 return Probs
.begin() + index
;
1492 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1493 /// as of just before "MI".
1495 /// Search is localised to a neighborhood of
1496 /// Neighborhood instructions before (searching for defs or kills) and N
1497 /// instructions after (searching just for defs) MI.
1498 MachineBasicBlock::LivenessQueryResult
1499 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo
*TRI
,
1500 MCRegister Reg
, const_iterator Before
,
1501 unsigned Neighborhood
) const {
1502 unsigned N
= Neighborhood
;
1504 // Try searching forwards from Before, looking for reads or defs.
1505 const_iterator
I(Before
);
1506 for (; I
!= end() && N
> 0; ++I
) {
1507 if (I
->isDebugOrPseudoInstr())
1512 PhysRegInfo Info
= AnalyzePhysRegInBundle(*I
, Reg
, TRI
);
1514 // Register is live when we read it here.
1517 // Register is dead if we can fully overwrite or clobber it here.
1518 if (Info
.FullyDefined
|| Info
.Clobbered
)
1522 // If we reached the end, it is safe to clobber Reg at the end of a block of
1523 // no successor has it live in.
1525 for (MachineBasicBlock
*S
: successors()) {
1526 for (const MachineBasicBlock::RegisterMaskPair
&LI
: S
->liveins()) {
1527 if (TRI
->regsOverlap(LI
.PhysReg
, Reg
))
1538 // Start by searching backwards from Before, looking for kills, reads or defs.
1539 I
= const_iterator(Before
);
1540 // If this is the first insn in the block, don't search backwards.
1545 if (I
->isDebugOrPseudoInstr())
1550 PhysRegInfo Info
= AnalyzePhysRegInBundle(*I
, Reg
, TRI
);
1552 // Defs happen after uses so they take precedence if both are present.
1554 // Register is dead after a dead def of the full register.
1557 // Register is (at least partially) live after a def.
1559 if (!Info
.PartialDeadDef
)
1561 // As soon as we saw a partial definition (dead or not),
1562 // we cannot tell if the value is partial live without
1563 // tracking the lanemasks. We are not going to do this,
1564 // so fall back on the remaining of the analysis.
1567 // Register is dead after a full kill or clobber and no def.
1568 if (Info
.Killed
|| Info
.Clobbered
)
1570 // Register must be live if we read it.
1574 } while (I
!= begin() && N
> 0);
1577 // If all the instructions before this in the block are debug instructions,
1579 while (I
!= begin() && std::prev(I
)->isDebugOrPseudoInstr())
1582 // Did we get to the start of the block?
1584 // If so, the register's state is definitely defined by the live-in state.
1585 for (const MachineBasicBlock::RegisterMaskPair
&LI
: liveins())
1586 if (TRI
->regsOverlap(LI
.PhysReg
, Reg
))
1592 // At this point we have no idea of the liveness of the register.
1597 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo
*TRI
) const {
1598 // EH funclet entry does not preserve any registers.
1599 return isEHFuncletEntry() ? TRI
->getNoPreservedMask() : nullptr;
1603 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo
*TRI
) const {
1604 // If we see a return block with successors, this must be a funclet return,
1605 // which does not preserve any registers. If there are no successors, we don't
1606 // care what kind of return it is, putting a mask after it is a no-op.
1607 return isReturnBlock() && !succ_empty() ? TRI
->getNoPreservedMask() : nullptr;
1610 void MachineBasicBlock::clearLiveIns() {
1614 MachineBasicBlock::livein_iterator
MachineBasicBlock::livein_begin() const {
1615 assert(getParent()->getProperties().hasProperty(
1616 MachineFunctionProperties::Property::TracksLiveness
) &&
1617 "Liveness information is accurate");
1618 return LiveIns
.begin();
1621 MachineBasicBlock::liveout_iterator
MachineBasicBlock::liveout_begin() const {
1622 const MachineFunction
&MF
= *getParent();
1623 assert(MF
.getProperties().hasProperty(
1624 MachineFunctionProperties::Property::TracksLiveness
) &&
1625 "Liveness information is accurate");
1627 const TargetLowering
&TLI
= *MF
.getSubtarget().getTargetLowering();
1628 MCPhysReg ExceptionPointer
= 0, ExceptionSelector
= 0;
1629 if (MF
.getFunction().hasPersonalityFn()) {
1630 auto PersonalityFn
= MF
.getFunction().getPersonalityFn();
1631 ExceptionPointer
= TLI
.getExceptionPointerRegister(PersonalityFn
);
1632 ExceptionSelector
= TLI
.getExceptionSelectorRegister(PersonalityFn
);
1635 return liveout_iterator(*this, ExceptionPointer
, ExceptionSelector
, false);
1638 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit
) const {
1640 auto R
= instructionsWithoutDebug(begin(), end());
1641 for (auto I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
) {
1648 const MBBSectionID
MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold
);
1650 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception
);