[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / MachineBasicBlock.cpp
blob7fd51c86e264c1286ff6fc735a6918114bff851d
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/LiveIntervals.h"
15 #include "llvm/CodeGen/LivePhysRegs.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <algorithm>
37 using namespace llvm;
39 #define DEBUG_TYPE "codegen"
41 static cl::opt<bool> PrintSlotIndexes(
42 "print-slotindexes",
43 cl::desc("When printing machine IR, annotate instructions and blocks with "
44 "SlotIndexes when available"),
45 cl::init(true), cl::Hidden);
47 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
48 : BB(B), Number(-1), xParent(&MF) {
49 Insts.Parent = this;
50 if (B)
51 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
54 MachineBasicBlock::~MachineBasicBlock() = default;
56 /// Return the MCSymbol for this basic block.
57 MCSymbol *MachineBasicBlock::getSymbol() const {
58 if (!CachedMCSymbol) {
59 const MachineFunction *MF = getParent();
60 MCContext &Ctx = MF->getContext();
62 // We emit a non-temporary symbol -- with a descriptive name -- if it begins
63 // a section (with basic block sections). Otherwise we fall back to use temp
64 // label.
65 if (MF->hasBBSections() && isBeginSection()) {
66 SmallString<5> Suffix;
67 if (SectionID == MBBSectionID::ColdSectionID) {
68 Suffix += ".cold";
69 } else if (SectionID == MBBSectionID::ExceptionSectionID) {
70 Suffix += ".eh";
71 } else {
72 // For symbols that represent basic block sections, we add ".__part." to
73 // allow tools like symbolizers to know that this represents a part of
74 // the original function.
75 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
77 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
78 } else {
79 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
80 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
81 Twine(MF->getFunctionNumber()) +
82 "_" + Twine(getNumber()));
85 return CachedMCSymbol;
88 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
89 if (!CachedEHCatchretMCSymbol) {
90 const MachineFunction *MF = getParent();
91 SmallString<128> SymbolName;
92 raw_svector_ostream(SymbolName)
93 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
94 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
96 return CachedEHCatchretMCSymbol;
99 MCSymbol *MachineBasicBlock::getEndSymbol() const {
100 if (!CachedEndMCSymbol) {
101 const MachineFunction *MF = getParent();
102 MCContext &Ctx = MF->getContext();
103 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
104 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
105 Twine(MF->getFunctionNumber()) +
106 "_" + Twine(getNumber()));
108 return CachedEndMCSymbol;
111 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
112 MBB.print(OS);
113 return OS;
116 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
117 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
120 /// When an MBB is added to an MF, we need to update the parent pointer of the
121 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
122 /// operand list for registers.
124 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
125 /// gets the next available unique MBB number. If it is removed from a
126 /// MachineFunction, it goes back to being #-1.
127 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
128 MachineBasicBlock *N) {
129 MachineFunction &MF = *N->getParent();
130 N->Number = MF.addToMBBNumbering(N);
132 // Make sure the instructions have their operands in the reginfo lists.
133 MachineRegisterInfo &RegInfo = MF.getRegInfo();
134 for (MachineInstr &MI : N->instrs())
135 MI.addRegOperandsToUseLists(RegInfo);
138 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
139 MachineBasicBlock *N) {
140 N->getParent()->removeFromMBBNumbering(N->Number);
141 N->Number = -1;
144 /// When we add an instruction to a basic block list, we update its parent
145 /// pointer and add its operands from reg use/def lists if appropriate.
146 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
147 assert(!N->getParent() && "machine instruction already in a basic block");
148 N->setParent(Parent);
150 // Add the instruction's register operands to their corresponding
151 // use/def lists.
152 MachineFunction *MF = Parent->getParent();
153 N->addRegOperandsToUseLists(MF->getRegInfo());
154 MF->handleInsertion(*N);
157 /// When we remove an instruction from a basic block list, we update its parent
158 /// pointer and remove its operands from reg use/def lists if appropriate.
159 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
160 assert(N->getParent() && "machine instruction not in a basic block");
162 // Remove from the use/def lists.
163 if (MachineFunction *MF = N->getMF()) {
164 MF->handleRemoval(*N);
165 N->removeRegOperandsFromUseLists(MF->getRegInfo());
168 N->setParent(nullptr);
171 /// When moving a range of instructions from one MBB list to another, we need to
172 /// update the parent pointers and the use/def lists.
173 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
174 instr_iterator First,
175 instr_iterator Last) {
176 assert(Parent->getParent() == FromList.Parent->getParent() &&
177 "cannot transfer MachineInstrs between MachineFunctions");
179 // If it's within the same BB, there's nothing to do.
180 if (this == &FromList)
181 return;
183 assert(Parent != FromList.Parent && "Two lists have the same parent?");
185 // If splicing between two blocks within the same function, just update the
186 // parent pointers.
187 for (; First != Last; ++First)
188 First->setParent(Parent);
191 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
192 assert(!MI->getParent() && "MI is still in a block!");
193 Parent->getParent()->deleteMachineInstr(MI);
196 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
197 instr_iterator I = instr_begin(), E = instr_end();
198 while (I != E && I->isPHI())
199 ++I;
200 assert((I == E || !I->isInsideBundle()) &&
201 "First non-phi MI cannot be inside a bundle!");
202 return I;
205 MachineBasicBlock::iterator
206 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
207 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
209 iterator E = end();
210 while (I != E && (I->isPHI() || I->isPosition() ||
211 TII->isBasicBlockPrologue(*I)))
212 ++I;
213 // FIXME: This needs to change if we wish to bundle labels
214 // inside the bundle.
215 assert((I == E || !I->isInsideBundle()) &&
216 "First non-phi / non-label instruction is inside a bundle!");
217 return I;
220 MachineBasicBlock::iterator
221 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
222 bool SkipPseudoOp) {
223 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
225 iterator E = end();
226 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
227 (SkipPseudoOp && I->isPseudoProbe()) ||
228 TII->isBasicBlockPrologue(*I)))
229 ++I;
230 // FIXME: This needs to change if we wish to bundle labels / dbg_values
231 // inside the bundle.
232 assert((I == E || !I->isInsideBundle()) &&
233 "First non-phi / non-label / non-debug "
234 "instruction is inside a bundle!");
235 return I;
238 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
239 iterator B = begin(), E = end(), I = E;
240 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
241 ; /*noop */
242 while (I != E && !I->isTerminator())
243 ++I;
244 return I;
247 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
248 instr_iterator B = instr_begin(), E = instr_end(), I = E;
249 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
250 ; /*noop */
251 while (I != E && !I->isTerminator())
252 ++I;
253 return I;
256 MachineBasicBlock::iterator
257 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
258 // Skip over begin-of-block dbg_value instructions.
259 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
262 MachineBasicBlock::iterator
263 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
264 // Skip over end-of-block dbg_value instructions.
265 instr_iterator B = instr_begin(), I = instr_end();
266 while (I != B) {
267 --I;
268 // Return instruction that starts a bundle.
269 if (I->isDebugInstr() || I->isInsideBundle())
270 continue;
271 if (SkipPseudoOp && I->isPseudoProbe())
272 continue;
273 return I;
275 // The block is all debug values.
276 return end();
279 bool MachineBasicBlock::hasEHPadSuccessor() const {
280 for (const MachineBasicBlock *Succ : successors())
281 if (Succ->isEHPad())
282 return true;
283 return false;
286 bool MachineBasicBlock::isEntryBlock() const {
287 return getParent()->begin() == getIterator();
290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
291 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
292 print(dbgs());
294 #endif
296 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
297 for (const MachineBasicBlock *Succ : successors()) {
298 if (Succ->isInlineAsmBrIndirectTarget())
299 return true;
301 return false;
304 bool MachineBasicBlock::isLegalToHoistInto() const {
305 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
306 return false;
307 return true;
310 StringRef MachineBasicBlock::getName() const {
311 if (const BasicBlock *LBB = getBasicBlock())
312 return LBB->getName();
313 else
314 return StringRef("", 0);
317 /// Return a hopefully unique identifier for this block.
318 std::string MachineBasicBlock::getFullName() const {
319 std::string Name;
320 if (getParent())
321 Name = (getParent()->getName() + ":").str();
322 if (getBasicBlock())
323 Name += getBasicBlock()->getName();
324 else
325 Name += ("BB" + Twine(getNumber())).str();
326 return Name;
329 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
330 bool IsStandalone) const {
331 const MachineFunction *MF = getParent();
332 if (!MF) {
333 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
334 << " is null\n";
335 return;
337 const Function &F = MF->getFunction();
338 const Module *M = F.getParent();
339 ModuleSlotTracker MST(M);
340 MST.incorporateFunction(F);
341 print(OS, MST, Indexes, IsStandalone);
344 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
345 const SlotIndexes *Indexes,
346 bool IsStandalone) const {
347 const MachineFunction *MF = getParent();
348 if (!MF) {
349 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
350 << " is null\n";
351 return;
354 if (Indexes && PrintSlotIndexes)
355 OS << Indexes->getMBBStartIdx(this) << '\t';
357 printName(OS, PrintNameIr | PrintNameAttributes, &MST);
358 OS << ":\n";
360 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
361 const MachineRegisterInfo &MRI = MF->getRegInfo();
362 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
363 bool HasLineAttributes = false;
365 // Print the preds of this block according to the CFG.
366 if (!pred_empty() && IsStandalone) {
367 if (Indexes) OS << '\t';
368 // Don't indent(2), align with previous line attributes.
369 OS << "; predecessors: ";
370 ListSeparator LS;
371 for (auto *Pred : predecessors())
372 OS << LS << printMBBReference(*Pred);
373 OS << '\n';
374 HasLineAttributes = true;
377 if (!succ_empty()) {
378 if (Indexes) OS << '\t';
379 // Print the successors
380 OS.indent(2) << "successors: ";
381 ListSeparator LS;
382 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
383 OS << LS << printMBBReference(**I);
384 if (!Probs.empty())
385 OS << '('
386 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
387 << ')';
389 if (!Probs.empty() && IsStandalone) {
390 // Print human readable probabilities as comments.
391 OS << "; ";
392 ListSeparator LS;
393 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
394 const BranchProbability &BP = getSuccProbability(I);
395 OS << LS << printMBBReference(**I) << '('
396 << format("%.2f%%",
397 rint(((double)BP.getNumerator() / BP.getDenominator()) *
398 100.0 * 100.0) /
399 100.0)
400 << ')';
404 OS << '\n';
405 HasLineAttributes = true;
408 if (!livein_empty() && MRI.tracksLiveness()) {
409 if (Indexes) OS << '\t';
410 OS.indent(2) << "liveins: ";
412 ListSeparator LS;
413 for (const auto &LI : liveins()) {
414 OS << LS << printReg(LI.PhysReg, TRI);
415 if (!LI.LaneMask.all())
416 OS << ":0x" << PrintLaneMask(LI.LaneMask);
418 HasLineAttributes = true;
421 if (HasLineAttributes)
422 OS << '\n';
424 bool IsInBundle = false;
425 for (const MachineInstr &MI : instrs()) {
426 if (Indexes && PrintSlotIndexes) {
427 if (Indexes->hasIndex(MI))
428 OS << Indexes->getInstructionIndex(MI);
429 OS << '\t';
432 if (IsInBundle && !MI.isInsideBundle()) {
433 OS.indent(2) << "}\n";
434 IsInBundle = false;
437 OS.indent(IsInBundle ? 4 : 2);
438 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
439 /*AddNewLine=*/false, &TII);
441 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
442 OS << " {";
443 IsInBundle = true;
445 OS << '\n';
448 if (IsInBundle)
449 OS.indent(2) << "}\n";
451 if (IrrLoopHeaderWeight && IsStandalone) {
452 if (Indexes) OS << '\t';
453 OS.indent(2) << "; Irreducible loop header weight: "
454 << IrrLoopHeaderWeight.value() << '\n';
458 /// Print the basic block's name as:
460 /// bb.{number}[.{ir-name}] [(attributes...)]
462 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
463 /// (which is the default). If the IR block has no name, it is identified
464 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
466 /// When the \ref PrintNameAttributes flag is passed, additional attributes
467 /// of the block are printed when set.
469 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
470 /// the parts to print.
471 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
472 /// incorporate its own tracker when necessary to
473 /// determine the block's IR name.
474 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
475 ModuleSlotTracker *moduleSlotTracker) const {
476 os << "bb." << getNumber();
477 bool hasAttributes = false;
479 auto PrintBBRef = [&](const BasicBlock *bb) {
480 os << "%ir-block.";
481 if (bb->hasName()) {
482 os << bb->getName();
483 } else {
484 int slot = -1;
486 if (moduleSlotTracker) {
487 slot = moduleSlotTracker->getLocalSlot(bb);
488 } else if (bb->getParent()) {
489 ModuleSlotTracker tmpTracker(bb->getModule(), false);
490 tmpTracker.incorporateFunction(*bb->getParent());
491 slot = tmpTracker.getLocalSlot(bb);
494 if (slot == -1)
495 os << "<ir-block badref>";
496 else
497 os << slot;
501 if (printNameFlags & PrintNameIr) {
502 if (const auto *bb = getBasicBlock()) {
503 if (bb->hasName()) {
504 os << '.' << bb->getName();
505 } else {
506 hasAttributes = true;
507 os << " (";
508 PrintBBRef(bb);
513 if (printNameFlags & PrintNameAttributes) {
514 if (isMachineBlockAddressTaken()) {
515 os << (hasAttributes ? ", " : " (");
516 os << "machine-block-address-taken";
517 hasAttributes = true;
519 if (isIRBlockAddressTaken()) {
520 os << (hasAttributes ? ", " : " (");
521 os << "ir-block-address-taken ";
522 PrintBBRef(getAddressTakenIRBlock());
523 hasAttributes = true;
525 if (isEHPad()) {
526 os << (hasAttributes ? ", " : " (");
527 os << "landing-pad";
528 hasAttributes = true;
530 if (isInlineAsmBrIndirectTarget()) {
531 os << (hasAttributes ? ", " : " (");
532 os << "inlineasm-br-indirect-target";
533 hasAttributes = true;
535 if (isEHFuncletEntry()) {
536 os << (hasAttributes ? ", " : " (");
537 os << "ehfunclet-entry";
538 hasAttributes = true;
540 if (getAlignment() != Align(1)) {
541 os << (hasAttributes ? ", " : " (");
542 os << "align " << getAlignment().value();
543 hasAttributes = true;
545 if (getSectionID() != MBBSectionID(0)) {
546 os << (hasAttributes ? ", " : " (");
547 os << "bbsections ";
548 switch (getSectionID().Type) {
549 case MBBSectionID::SectionType::Exception:
550 os << "Exception";
551 break;
552 case MBBSectionID::SectionType::Cold:
553 os << "Cold";
554 break;
555 default:
556 os << getSectionID().Number;
558 hasAttributes = true;
562 if (hasAttributes)
563 os << ')';
566 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
567 bool /*PrintType*/) const {
568 OS << '%';
569 printName(OS, 0);
572 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
573 LiveInVector::iterator I = find_if(
574 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
575 if (I == LiveIns.end())
576 return;
578 I->LaneMask &= ~LaneMask;
579 if (I->LaneMask.none())
580 LiveIns.erase(I);
583 MachineBasicBlock::livein_iterator
584 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
585 // Get non-const version of iterator.
586 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
587 return LiveIns.erase(LI);
590 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
591 livein_iterator I = find_if(
592 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
593 return I != livein_end() && (I->LaneMask & LaneMask).any();
596 void MachineBasicBlock::sortUniqueLiveIns() {
597 llvm::sort(LiveIns,
598 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
599 return LI0.PhysReg < LI1.PhysReg;
601 // Liveins are sorted by physreg now we can merge their lanemasks.
602 LiveInVector::const_iterator I = LiveIns.begin();
603 LiveInVector::const_iterator J;
604 LiveInVector::iterator Out = LiveIns.begin();
605 for (; I != LiveIns.end(); ++Out, I = J) {
606 MCRegister PhysReg = I->PhysReg;
607 LaneBitmask LaneMask = I->LaneMask;
608 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
609 LaneMask |= J->LaneMask;
610 Out->PhysReg = PhysReg;
611 Out->LaneMask = LaneMask;
613 LiveIns.erase(Out, LiveIns.end());
616 Register
617 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
618 assert(getParent() && "MBB must be inserted in function");
619 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
620 assert(RC && "Register class is required");
621 assert((isEHPad() || this == &getParent()->front()) &&
622 "Only the entry block and landing pads can have physreg live ins");
624 bool LiveIn = isLiveIn(PhysReg);
625 iterator I = SkipPHIsAndLabels(begin()), E = end();
626 MachineRegisterInfo &MRI = getParent()->getRegInfo();
627 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
629 // Look for an existing copy.
630 if (LiveIn)
631 for (;I != E && I->isCopy(); ++I)
632 if (I->getOperand(1).getReg() == PhysReg) {
633 Register VirtReg = I->getOperand(0).getReg();
634 if (!MRI.constrainRegClass(VirtReg, RC))
635 llvm_unreachable("Incompatible live-in register class.");
636 return VirtReg;
639 // No luck, create a virtual register.
640 Register VirtReg = MRI.createVirtualRegister(RC);
641 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
642 .addReg(PhysReg, RegState::Kill);
643 if (!LiveIn)
644 addLiveIn(PhysReg);
645 return VirtReg;
648 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
649 getParent()->splice(NewAfter->getIterator(), getIterator());
652 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
653 getParent()->splice(++NewBefore->getIterator(), getIterator());
656 void MachineBasicBlock::updateTerminator(
657 MachineBasicBlock *PreviousLayoutSuccessor) {
658 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
659 << "\n");
661 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
662 // A block with no successors has no concerns with fall-through edges.
663 if (this->succ_empty())
664 return;
666 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
667 SmallVector<MachineOperand, 4> Cond;
668 DebugLoc DL = findBranchDebugLoc();
669 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
670 (void) B;
671 assert(!B && "UpdateTerminators requires analyzable predecessors!");
672 if (Cond.empty()) {
673 if (TBB) {
674 // The block has an unconditional branch. If its successor is now its
675 // layout successor, delete the branch.
676 if (isLayoutSuccessor(TBB))
677 TII->removeBranch(*this);
678 } else {
679 // The block has an unconditional fallthrough, or the end of the block is
680 // unreachable.
682 // Unfortunately, whether the end of the block is unreachable is not
683 // immediately obvious; we must fall back to checking the successor list,
684 // and assuming that if the passed in block is in the succesor list and
685 // not an EHPad, it must be the intended target.
686 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
687 PreviousLayoutSuccessor->isEHPad())
688 return;
690 // If the unconditional successor block is not the current layout
691 // successor, insert a branch to jump to it.
692 if (!isLayoutSuccessor(PreviousLayoutSuccessor))
693 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
695 return;
698 if (FBB) {
699 // The block has a non-fallthrough conditional branch. If one of its
700 // successors is its layout successor, rewrite it to a fallthrough
701 // conditional branch.
702 if (isLayoutSuccessor(TBB)) {
703 if (TII->reverseBranchCondition(Cond))
704 return;
705 TII->removeBranch(*this);
706 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
707 } else if (isLayoutSuccessor(FBB)) {
708 TII->removeBranch(*this);
709 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
711 return;
714 // We now know we're going to fallthrough to PreviousLayoutSuccessor.
715 assert(PreviousLayoutSuccessor);
716 assert(!PreviousLayoutSuccessor->isEHPad());
717 assert(isSuccessor(PreviousLayoutSuccessor));
719 if (PreviousLayoutSuccessor == TBB) {
720 // We had a fallthrough to the same basic block as the conditional jump
721 // targets. Remove the conditional jump, leaving an unconditional
722 // fallthrough or an unconditional jump.
723 TII->removeBranch(*this);
724 if (!isLayoutSuccessor(TBB)) {
725 Cond.clear();
726 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
728 return;
731 // The block has a fallthrough conditional branch.
732 if (isLayoutSuccessor(TBB)) {
733 if (TII->reverseBranchCondition(Cond)) {
734 // We can't reverse the condition, add an unconditional branch.
735 Cond.clear();
736 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
737 return;
739 TII->removeBranch(*this);
740 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
741 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
742 TII->removeBranch(*this);
743 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
747 void MachineBasicBlock::validateSuccProbs() const {
748 #ifndef NDEBUG
749 int64_t Sum = 0;
750 for (auto Prob : Probs)
751 Sum += Prob.getNumerator();
752 // Due to precision issue, we assume that the sum of probabilities is one if
753 // the difference between the sum of their numerators and the denominator is
754 // no greater than the number of successors.
755 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
756 Probs.size() &&
757 "The sum of successors's probabilities exceeds one.");
758 #endif // NDEBUG
761 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
762 BranchProbability Prob) {
763 // Probability list is either empty (if successor list isn't empty, this means
764 // disabled optimization) or has the same size as successor list.
765 if (!(Probs.empty() && !Successors.empty()))
766 Probs.push_back(Prob);
767 Successors.push_back(Succ);
768 Succ->addPredecessor(this);
771 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
772 // We need to make sure probability list is either empty or has the same size
773 // of successor list. When this function is called, we can safely delete all
774 // probability in the list.
775 Probs.clear();
776 Successors.push_back(Succ);
777 Succ->addPredecessor(this);
780 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
781 MachineBasicBlock *New,
782 bool NormalizeSuccProbs) {
783 succ_iterator OldI = llvm::find(successors(), Old);
784 assert(OldI != succ_end() && "Old is not a successor of this block!");
785 assert(!llvm::is_contained(successors(), New) &&
786 "New is already a successor of this block!");
788 // Add a new successor with equal probability as the original one. Note
789 // that we directly copy the probability using the iterator rather than
790 // getting a potentially synthetic probability computed when unknown. This
791 // preserves the probabilities as-is and then we can renormalize them and
792 // query them effectively afterward.
793 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
794 : *getProbabilityIterator(OldI));
795 if (NormalizeSuccProbs)
796 normalizeSuccProbs();
799 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
800 bool NormalizeSuccProbs) {
801 succ_iterator I = find(Successors, Succ);
802 removeSuccessor(I, NormalizeSuccProbs);
805 MachineBasicBlock::succ_iterator
806 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
807 assert(I != Successors.end() && "Not a current successor!");
809 // If probability list is empty it means we don't use it (disabled
810 // optimization).
811 if (!Probs.empty()) {
812 probability_iterator WI = getProbabilityIterator(I);
813 Probs.erase(WI);
814 if (NormalizeSuccProbs)
815 normalizeSuccProbs();
818 (*I)->removePredecessor(this);
819 return Successors.erase(I);
822 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
823 MachineBasicBlock *New) {
824 if (Old == New)
825 return;
827 succ_iterator E = succ_end();
828 succ_iterator NewI = E;
829 succ_iterator OldI = E;
830 for (succ_iterator I = succ_begin(); I != E; ++I) {
831 if (*I == Old) {
832 OldI = I;
833 if (NewI != E)
834 break;
836 if (*I == New) {
837 NewI = I;
838 if (OldI != E)
839 break;
842 assert(OldI != E && "Old is not a successor of this block");
844 // If New isn't already a successor, let it take Old's place.
845 if (NewI == E) {
846 Old->removePredecessor(this);
847 New->addPredecessor(this);
848 *OldI = New;
849 return;
852 // New is already a successor.
853 // Update its probability instead of adding a duplicate edge.
854 if (!Probs.empty()) {
855 auto ProbIter = getProbabilityIterator(NewI);
856 if (!ProbIter->isUnknown())
857 *ProbIter += *getProbabilityIterator(OldI);
859 removeSuccessor(OldI);
862 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
863 succ_iterator I) {
864 if (!Orig->Probs.empty())
865 addSuccessor(*I, Orig->getSuccProbability(I));
866 else
867 addSuccessorWithoutProb(*I);
870 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
871 Predecessors.push_back(Pred);
874 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
875 pred_iterator I = find(Predecessors, Pred);
876 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
877 Predecessors.erase(I);
880 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
881 if (this == FromMBB)
882 return;
884 while (!FromMBB->succ_empty()) {
885 MachineBasicBlock *Succ = *FromMBB->succ_begin();
887 // If probability list is empty it means we don't use it (disabled
888 // optimization).
889 if (!FromMBB->Probs.empty()) {
890 auto Prob = *FromMBB->Probs.begin();
891 addSuccessor(Succ, Prob);
892 } else
893 addSuccessorWithoutProb(Succ);
895 FromMBB->removeSuccessor(Succ);
899 void
900 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
901 if (this == FromMBB)
902 return;
904 while (!FromMBB->succ_empty()) {
905 MachineBasicBlock *Succ = *FromMBB->succ_begin();
906 if (!FromMBB->Probs.empty()) {
907 auto Prob = *FromMBB->Probs.begin();
908 addSuccessor(Succ, Prob);
909 } else
910 addSuccessorWithoutProb(Succ);
911 FromMBB->removeSuccessor(Succ);
913 // Fix up any PHI nodes in the successor.
914 Succ->replacePhiUsesWith(FromMBB, this);
916 normalizeSuccProbs();
919 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
920 return is_contained(predecessors(), MBB);
923 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
924 return is_contained(successors(), MBB);
927 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
928 MachineFunction::const_iterator I(this);
929 return std::next(I) == MachineFunction::const_iterator(MBB);
932 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
933 return Successors.size() == 1 ? Successors[0] : nullptr;
936 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
937 MachineFunction::iterator Fallthrough = getIterator();
938 ++Fallthrough;
939 // If FallthroughBlock is off the end of the function, it can't fall through.
940 if (Fallthrough == getParent()->end())
941 return nullptr;
943 // If FallthroughBlock isn't a successor, no fallthrough is possible.
944 if (!isSuccessor(&*Fallthrough))
945 return nullptr;
947 // Analyze the branches, if any, at the end of the block.
948 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
949 SmallVector<MachineOperand, 4> Cond;
950 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
951 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
952 // If we couldn't analyze the branch, examine the last instruction.
953 // If the block doesn't end in a known control barrier, assume fallthrough
954 // is possible. The isPredicated check is needed because this code can be
955 // called during IfConversion, where an instruction which is normally a
956 // Barrier is predicated and thus no longer an actual control barrier.
957 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
958 ? &*Fallthrough
959 : nullptr;
962 // If there is no branch, control always falls through.
963 if (!TBB) return &*Fallthrough;
965 // If there is some explicit branch to the fallthrough block, it can obviously
966 // reach, even though the branch should get folded to fall through implicitly.
967 if (MachineFunction::iterator(TBB) == Fallthrough ||
968 MachineFunction::iterator(FBB) == Fallthrough)
969 return &*Fallthrough;
971 // If it's an unconditional branch to some block not the fall through, it
972 // doesn't fall through.
973 if (Cond.empty()) return nullptr;
975 // Otherwise, if it is conditional and has no explicit false block, it falls
976 // through.
977 return (FBB == nullptr) ? &*Fallthrough : nullptr;
980 bool MachineBasicBlock::canFallThrough() {
981 return getFallThrough() != nullptr;
984 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
985 bool UpdateLiveIns,
986 LiveIntervals *LIS) {
987 MachineBasicBlock::iterator SplitPoint(&MI);
988 ++SplitPoint;
990 if (SplitPoint == end()) {
991 // Don't bother with a new block.
992 return this;
995 MachineFunction *MF = getParent();
997 LivePhysRegs LiveRegs;
998 if (UpdateLiveIns) {
999 // Make sure we add any physregs we define in the block as liveins to the
1000 // new block.
1001 MachineBasicBlock::iterator Prev(&MI);
1002 LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1003 LiveRegs.addLiveOuts(*this);
1004 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1005 LiveRegs.stepBackward(*I);
1008 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1010 MF->insert(++MachineFunction::iterator(this), SplitBB);
1011 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1013 SplitBB->transferSuccessorsAndUpdatePHIs(this);
1014 addSuccessor(SplitBB);
1016 if (UpdateLiveIns)
1017 addLiveIns(*SplitBB, LiveRegs);
1019 if (LIS)
1020 LIS->insertMBBInMaps(SplitBB);
1022 return SplitBB;
1025 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1026 MachineBasicBlock *Succ, Pass &P,
1027 std::vector<SparseBitVector<>> *LiveInSets) {
1028 if (!canSplitCriticalEdge(Succ))
1029 return nullptr;
1031 MachineFunction *MF = getParent();
1032 MachineBasicBlock *PrevFallthrough = getNextNode();
1033 DebugLoc DL; // FIXME: this is nowhere
1035 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1036 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1037 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1038 << " -- " << printMBBReference(*NMBB) << " -- "
1039 << printMBBReference(*Succ) << '\n');
1041 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1042 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1043 if (LIS)
1044 LIS->insertMBBInMaps(NMBB);
1045 else if (Indexes)
1046 Indexes->insertMBBInMaps(NMBB);
1048 // On some targets like Mips, branches may kill virtual registers. Make sure
1049 // that LiveVariables is properly updated after updateTerminator replaces the
1050 // terminators.
1051 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1053 // Collect a list of virtual registers killed by the terminators.
1054 SmallVector<Register, 4> KilledRegs;
1055 if (LV)
1056 for (MachineInstr &MI :
1057 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1058 for (MachineOperand &MO : MI.operands()) {
1059 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() ||
1060 MO.isUndef())
1061 continue;
1062 Register Reg = MO.getReg();
1063 if (Register::isPhysicalRegister(Reg) ||
1064 LV->getVarInfo(Reg).removeKill(MI)) {
1065 KilledRegs.push_back(Reg);
1066 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1067 MO.setIsKill(false);
1072 SmallVector<Register, 4> UsedRegs;
1073 if (LIS) {
1074 for (MachineInstr &MI :
1075 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1076 for (const MachineOperand &MO : MI.operands()) {
1077 if (!MO.isReg() || MO.getReg() == 0)
1078 continue;
1080 Register Reg = MO.getReg();
1081 if (!is_contained(UsedRegs, Reg))
1082 UsedRegs.push_back(Reg);
1087 ReplaceUsesOfBlockWith(Succ, NMBB);
1089 // If updateTerminator() removes instructions, we need to remove them from
1090 // SlotIndexes.
1091 SmallVector<MachineInstr*, 4> Terminators;
1092 if (Indexes) {
1093 for (MachineInstr &MI :
1094 llvm::make_range(getFirstInstrTerminator(), instr_end()))
1095 Terminators.push_back(&MI);
1098 // Since we replaced all uses of Succ with NMBB, that should also be treated
1099 // as the fallthrough successor
1100 if (Succ == PrevFallthrough)
1101 PrevFallthrough = NMBB;
1102 updateTerminator(PrevFallthrough);
1104 if (Indexes) {
1105 SmallVector<MachineInstr*, 4> NewTerminators;
1106 for (MachineInstr &MI :
1107 llvm::make_range(getFirstInstrTerminator(), instr_end()))
1108 NewTerminators.push_back(&MI);
1110 for (MachineInstr *Terminator : Terminators) {
1111 if (!is_contained(NewTerminators, Terminator))
1112 Indexes->removeMachineInstrFromMaps(*Terminator);
1116 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1117 NMBB->addSuccessor(Succ);
1118 if (!NMBB->isLayoutSuccessor(Succ)) {
1119 SmallVector<MachineOperand, 4> Cond;
1120 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1121 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1123 if (Indexes) {
1124 for (MachineInstr &MI : NMBB->instrs()) {
1125 // Some instructions may have been moved to NMBB by updateTerminator(),
1126 // so we first remove any instruction that already has an index.
1127 if (Indexes->hasIndex(MI))
1128 Indexes->removeMachineInstrFromMaps(MI);
1129 Indexes->insertMachineInstrInMaps(MI);
1134 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1135 Succ->replacePhiUsesWith(this, NMBB);
1137 // Inherit live-ins from the successor
1138 for (const auto &LI : Succ->liveins())
1139 NMBB->addLiveIn(LI);
1141 // Update LiveVariables.
1142 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1143 if (LV) {
1144 // Restore kills of virtual registers that were killed by the terminators.
1145 while (!KilledRegs.empty()) {
1146 Register Reg = KilledRegs.pop_back_val();
1147 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1148 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1149 continue;
1150 if (Register::isVirtualRegister(Reg))
1151 LV->getVarInfo(Reg).Kills.push_back(&*I);
1152 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1153 break;
1156 // Update relevant live-through information.
1157 if (LiveInSets != nullptr)
1158 LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1159 else
1160 LV->addNewBlock(NMBB, this, Succ);
1163 if (LIS) {
1164 // After splitting the edge and updating SlotIndexes, live intervals may be
1165 // in one of two situations, depending on whether this block was the last in
1166 // the function. If the original block was the last in the function, all
1167 // live intervals will end prior to the beginning of the new split block. If
1168 // the original block was not at the end of the function, all live intervals
1169 // will extend to the end of the new split block.
1171 bool isLastMBB =
1172 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1174 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1175 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1176 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1178 // Find the registers used from NMBB in PHIs in Succ.
1179 SmallSet<Register, 8> PHISrcRegs;
1180 for (MachineBasicBlock::instr_iterator
1181 I = Succ->instr_begin(), E = Succ->instr_end();
1182 I != E && I->isPHI(); ++I) {
1183 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1184 if (I->getOperand(ni+1).getMBB() == NMBB) {
1185 MachineOperand &MO = I->getOperand(ni);
1186 Register Reg = MO.getReg();
1187 PHISrcRegs.insert(Reg);
1188 if (MO.isUndef())
1189 continue;
1191 LiveInterval &LI = LIS->getInterval(Reg);
1192 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1193 assert(VNI &&
1194 "PHI sources should be live out of their predecessors.");
1195 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1200 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1201 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1202 Register Reg = Register::index2VirtReg(i);
1203 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1204 continue;
1206 LiveInterval &LI = LIS->getInterval(Reg);
1207 if (!LI.liveAt(PrevIndex))
1208 continue;
1210 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1211 if (isLiveOut && isLastMBB) {
1212 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1213 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1214 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1215 } else if (!isLiveOut && !isLastMBB) {
1216 LI.removeSegment(StartIndex, EndIndex);
1220 // Update all intervals for registers whose uses may have been modified by
1221 // updateTerminator().
1222 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1225 if (MachineDominatorTree *MDT =
1226 P.getAnalysisIfAvailable<MachineDominatorTree>())
1227 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1229 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1230 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1231 // If one or the other blocks were not in a loop, the new block is not
1232 // either, and thus LI doesn't need to be updated.
1233 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1234 if (TIL == DestLoop) {
1235 // Both in the same loop, the NMBB joins loop.
1236 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1237 } else if (TIL->contains(DestLoop)) {
1238 // Edge from an outer loop to an inner loop. Add to the outer loop.
1239 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1240 } else if (DestLoop->contains(TIL)) {
1241 // Edge from an inner loop to an outer loop. Add to the outer loop.
1242 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1243 } else {
1244 // Edge from two loops with no containment relation. Because these
1245 // are natural loops, we know that the destination block must be the
1246 // header of its loop (adding a branch into a loop elsewhere would
1247 // create an irreducible loop).
1248 assert(DestLoop->getHeader() == Succ &&
1249 "Should not create irreducible loops!");
1250 if (MachineLoop *P = DestLoop->getParentLoop())
1251 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1256 return NMBB;
1259 bool MachineBasicBlock::canSplitCriticalEdge(
1260 const MachineBasicBlock *Succ) const {
1261 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1262 // it in this generic function.
1263 if (Succ->isEHPad())
1264 return false;
1266 // Splitting the critical edge to a callbr's indirect block isn't advised.
1267 // Don't do it in this generic function.
1268 if (Succ->isInlineAsmBrIndirectTarget())
1269 return false;
1271 const MachineFunction *MF = getParent();
1272 // Performance might be harmed on HW that implements branching using exec mask
1273 // where both sides of the branches are always executed.
1274 if (MF->getTarget().requiresStructuredCFG())
1275 return false;
1277 // We may need to update this's terminator, but we can't do that if
1278 // analyzeBranch fails. If this uses a jump table, we won't touch it.
1279 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1280 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1281 SmallVector<MachineOperand, 4> Cond;
1282 // AnalyzeBanch should modify this, since we did not allow modification.
1283 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1284 /*AllowModify*/ false))
1285 return false;
1287 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1288 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1289 // case that we can't handle. Since this never happens in properly optimized
1290 // code, just skip those edges.
1291 if (TBB && TBB == FBB) {
1292 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1293 << printMBBReference(*this) << '\n');
1294 return false;
1296 return true;
1299 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1300 /// neighboring instructions so the bundle won't be broken by removing MI.
1301 static void unbundleSingleMI(MachineInstr *MI) {
1302 // Removing the first instruction in a bundle.
1303 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1304 MI->unbundleFromSucc();
1305 // Removing the last instruction in a bundle.
1306 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1307 MI->unbundleFromPred();
1308 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1309 // are already fine.
1312 MachineBasicBlock::instr_iterator
1313 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1314 unbundleSingleMI(&*I);
1315 return Insts.erase(I);
1318 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1319 unbundleSingleMI(MI);
1320 MI->clearFlag(MachineInstr::BundledPred);
1321 MI->clearFlag(MachineInstr::BundledSucc);
1322 return Insts.remove(MI);
1325 MachineBasicBlock::instr_iterator
1326 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1327 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1328 "Cannot insert instruction with bundle flags");
1329 // Set the bundle flags when inserting inside a bundle.
1330 if (I != instr_end() && I->isBundledWithPred()) {
1331 MI->setFlag(MachineInstr::BundledPred);
1332 MI->setFlag(MachineInstr::BundledSucc);
1334 return Insts.insert(I, MI);
1337 /// This method unlinks 'this' from the containing function, and returns it, but
1338 /// does not delete it.
1339 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1340 assert(getParent() && "Not embedded in a function!");
1341 getParent()->remove(this);
1342 return this;
1345 /// This method unlinks 'this' from the containing function, and deletes it.
1346 void MachineBasicBlock::eraseFromParent() {
1347 assert(getParent() && "Not embedded in a function!");
1348 getParent()->erase(this);
1351 /// Given a machine basic block that branched to 'Old', change the code and CFG
1352 /// so that it branches to 'New' instead.
1353 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1354 MachineBasicBlock *New) {
1355 assert(Old != New && "Cannot replace self with self!");
1357 MachineBasicBlock::instr_iterator I = instr_end();
1358 while (I != instr_begin()) {
1359 --I;
1360 if (!I->isTerminator()) break;
1362 // Scan the operands of this machine instruction, replacing any uses of Old
1363 // with New.
1364 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1365 if (I->getOperand(i).isMBB() &&
1366 I->getOperand(i).getMBB() == Old)
1367 I->getOperand(i).setMBB(New);
1370 // Update the successor information.
1371 replaceSuccessor(Old, New);
1374 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1375 MachineBasicBlock *New) {
1376 for (MachineInstr &MI : phis())
1377 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1378 MachineOperand &MO = MI.getOperand(i);
1379 if (MO.getMBB() == Old)
1380 MO.setMBB(New);
1384 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1385 /// instructions. Return UnknownLoc if there is none.
1386 DebugLoc
1387 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1388 // Skip debug declarations, we don't want a DebugLoc from them.
1389 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1390 if (MBBI != instr_end())
1391 return MBBI->getDebugLoc();
1392 return {};
1395 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1396 // Skip debug declarations, we don't want a DebugLoc from them.
1397 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1398 if (!MBBI->isDebugInstr())
1399 return MBBI->getDebugLoc();
1400 return {};
1403 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1404 /// instructions. Return UnknownLoc if there is none.
1405 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1406 if (MBBI == instr_begin()) return {};
1407 // Skip debug instructions, we don't want a DebugLoc from them.
1408 MBBI = prev_nodbg(MBBI, instr_begin());
1409 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1410 return {};
1413 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1414 if (MBBI == instr_rend())
1415 return {};
1416 // Skip debug declarations, we don't want a DebugLoc from them.
1417 MBBI = next_nodbg(MBBI, instr_rend());
1418 if (MBBI != instr_rend())
1419 return MBBI->getDebugLoc();
1420 return {};
1423 /// Find and return the merged DebugLoc of the branch instructions of the block.
1424 /// Return UnknownLoc if there is none.
1425 DebugLoc
1426 MachineBasicBlock::findBranchDebugLoc() {
1427 DebugLoc DL;
1428 auto TI = getFirstTerminator();
1429 while (TI != end() && !TI->isBranch())
1430 ++TI;
1432 if (TI != end()) {
1433 DL = TI->getDebugLoc();
1434 for (++TI ; TI != end() ; ++TI)
1435 if (TI->isBranch())
1436 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1438 return DL;
1441 /// Return probability of the edge from this block to MBB.
1442 BranchProbability
1443 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1444 if (Probs.empty())
1445 return BranchProbability(1, succ_size());
1447 const auto &Prob = *getProbabilityIterator(Succ);
1448 if (Prob.isUnknown()) {
1449 // For unknown probabilities, collect the sum of all known ones, and evenly
1450 // ditribute the complemental of the sum to each unknown probability.
1451 unsigned KnownProbNum = 0;
1452 auto Sum = BranchProbability::getZero();
1453 for (const auto &P : Probs) {
1454 if (!P.isUnknown()) {
1455 Sum += P;
1456 KnownProbNum++;
1459 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1460 } else
1461 return Prob;
1464 /// Set successor probability of a given iterator.
1465 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1466 BranchProbability Prob) {
1467 assert(!Prob.isUnknown());
1468 if (Probs.empty())
1469 return;
1470 *getProbabilityIterator(I) = Prob;
1473 /// Return probability iterator corresonding to the I successor iterator
1474 MachineBasicBlock::const_probability_iterator
1475 MachineBasicBlock::getProbabilityIterator(
1476 MachineBasicBlock::const_succ_iterator I) const {
1477 assert(Probs.size() == Successors.size() && "Async probability list!");
1478 const size_t index = std::distance(Successors.begin(), I);
1479 assert(index < Probs.size() && "Not a current successor!");
1480 return Probs.begin() + index;
1483 /// Return probability iterator corresonding to the I successor iterator.
1484 MachineBasicBlock::probability_iterator
1485 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1486 assert(Probs.size() == Successors.size() && "Async probability list!");
1487 const size_t index = std::distance(Successors.begin(), I);
1488 assert(index < Probs.size() && "Not a current successor!");
1489 return Probs.begin() + index;
1492 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1493 /// as of just before "MI".
1495 /// Search is localised to a neighborhood of
1496 /// Neighborhood instructions before (searching for defs or kills) and N
1497 /// instructions after (searching just for defs) MI.
1498 MachineBasicBlock::LivenessQueryResult
1499 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1500 MCRegister Reg, const_iterator Before,
1501 unsigned Neighborhood) const {
1502 unsigned N = Neighborhood;
1504 // Try searching forwards from Before, looking for reads or defs.
1505 const_iterator I(Before);
1506 for (; I != end() && N > 0; ++I) {
1507 if (I->isDebugOrPseudoInstr())
1508 continue;
1510 --N;
1512 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1514 // Register is live when we read it here.
1515 if (Info.Read)
1516 return LQR_Live;
1517 // Register is dead if we can fully overwrite or clobber it here.
1518 if (Info.FullyDefined || Info.Clobbered)
1519 return LQR_Dead;
1522 // If we reached the end, it is safe to clobber Reg at the end of a block of
1523 // no successor has it live in.
1524 if (I == end()) {
1525 for (MachineBasicBlock *S : successors()) {
1526 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1527 if (TRI->regsOverlap(LI.PhysReg, Reg))
1528 return LQR_Live;
1532 return LQR_Dead;
1536 N = Neighborhood;
1538 // Start by searching backwards from Before, looking for kills, reads or defs.
1539 I = const_iterator(Before);
1540 // If this is the first insn in the block, don't search backwards.
1541 if (I != begin()) {
1542 do {
1543 --I;
1545 if (I->isDebugOrPseudoInstr())
1546 continue;
1548 --N;
1550 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1552 // Defs happen after uses so they take precedence if both are present.
1554 // Register is dead after a dead def of the full register.
1555 if (Info.DeadDef)
1556 return LQR_Dead;
1557 // Register is (at least partially) live after a def.
1558 if (Info.Defined) {
1559 if (!Info.PartialDeadDef)
1560 return LQR_Live;
1561 // As soon as we saw a partial definition (dead or not),
1562 // we cannot tell if the value is partial live without
1563 // tracking the lanemasks. We are not going to do this,
1564 // so fall back on the remaining of the analysis.
1565 break;
1567 // Register is dead after a full kill or clobber and no def.
1568 if (Info.Killed || Info.Clobbered)
1569 return LQR_Dead;
1570 // Register must be live if we read it.
1571 if (Info.Read)
1572 return LQR_Live;
1574 } while (I != begin() && N > 0);
1577 // If all the instructions before this in the block are debug instructions,
1578 // skip over them.
1579 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1580 --I;
1582 // Did we get to the start of the block?
1583 if (I == begin()) {
1584 // If so, the register's state is definitely defined by the live-in state.
1585 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1586 if (TRI->regsOverlap(LI.PhysReg, Reg))
1587 return LQR_Live;
1589 return LQR_Dead;
1592 // At this point we have no idea of the liveness of the register.
1593 return LQR_Unknown;
1596 const uint32_t *
1597 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1598 // EH funclet entry does not preserve any registers.
1599 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1602 const uint32_t *
1603 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1604 // If we see a return block with successors, this must be a funclet return,
1605 // which does not preserve any registers. If there are no successors, we don't
1606 // care what kind of return it is, putting a mask after it is a no-op.
1607 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1610 void MachineBasicBlock::clearLiveIns() {
1611 LiveIns.clear();
1614 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1615 assert(getParent()->getProperties().hasProperty(
1616 MachineFunctionProperties::Property::TracksLiveness) &&
1617 "Liveness information is accurate");
1618 return LiveIns.begin();
1621 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1622 const MachineFunction &MF = *getParent();
1623 assert(MF.getProperties().hasProperty(
1624 MachineFunctionProperties::Property::TracksLiveness) &&
1625 "Liveness information is accurate");
1627 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1628 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1629 if (MF.getFunction().hasPersonalityFn()) {
1630 auto PersonalityFn = MF.getFunction().getPersonalityFn();
1631 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1632 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1635 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1638 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1639 unsigned Cntr = 0;
1640 auto R = instructionsWithoutDebug(begin(), end());
1641 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1642 if (++Cntr > Limit)
1643 return true;
1645 return false;
1648 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1649 const MBBSectionID
1650 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);