1 //===- MachineFunction.cpp ------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Collect native machine code information for a function. This allows
10 // target-specific information about the generated code to be stored with each
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/GraphWriter.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetMachine.h"
73 #include <type_traits>
77 #include "LiveDebugValues/LiveDebugValues.h"
81 #define DEBUG_TYPE "codegen"
83 static cl::opt
<unsigned> AlignAllFunctions(
84 "align-all-functions",
85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86 "means align on 16B boundaries)."),
87 cl::init(0), cl::Hidden
);
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop
) {
90 using P
= MachineFunctionProperties::Property
;
94 case P::FailedISel
: return "FailedISel";
95 case P::IsSSA
: return "IsSSA";
96 case P::Legalized
: return "Legalized";
97 case P::NoPHIs
: return "NoPHIs";
98 case P::NoVRegs
: return "NoVRegs";
99 case P::RegBankSelected
: return "RegBankSelected";
100 case P::Selected
: return "Selected";
101 case P::TracksLiveness
: return "TracksLiveness";
102 case P::TiedOpsRewritten
: return "TiedOpsRewritten";
103 case P::FailsVerification
: return "FailsVerification";
104 case P::TracksDebugUserValues
: return "TracksDebugUserValues";
107 llvm_unreachable("Invalid machine function property");
110 void setUnsafeStackSize(const Function
&F
, MachineFrameInfo
&FrameInfo
) {
111 if (!F
.hasFnAttribute(Attribute::SafeStack
))
115 dyn_cast_or_null
<MDTuple
>(F
.getMetadata(LLVMContext::MD_annotation
));
117 if (!Existing
|| Existing
->getNumOperands() != 2)
120 auto *MetadataName
= "unsafe-stack-size";
121 if (auto &N
= Existing
->getOperand(0)) {
122 if (cast
<MDString
>(N
.get())->getString() == MetadataName
) {
123 if (auto &Op
= Existing
->getOperand(1)) {
124 auto Val
= mdconst::extract
<ConstantInt
>(Op
)->getZExtValue();
125 FrameInfo
.setUnsafeStackSize(Val
);
131 // Pin the vtable to this file.
132 void MachineFunction::Delegate::anchor() {}
134 void MachineFunctionProperties::print(raw_ostream
&OS
) const {
135 const char *Separator
= "";
136 for (BitVector::size_type I
= 0; I
< Properties
.size(); ++I
) {
139 OS
<< Separator
<< getPropertyName(static_cast<Property
>(I
));
144 //===----------------------------------------------------------------------===//
145 // MachineFunction implementation
146 //===----------------------------------------------------------------------===//
148 // Out-of-line virtual method.
149 MachineFunctionInfo::~MachineFunctionInfo() = default;
151 void ilist_alloc_traits
<MachineBasicBlock
>::deleteNode(MachineBasicBlock
*MBB
) {
152 MBB
->getParent()->deleteMachineBasicBlock(MBB
);
155 static inline Align
getFnStackAlignment(const TargetSubtargetInfo
*STI
,
157 if (auto MA
= F
.getFnStackAlign())
159 return STI
->getFrameLowering()->getStackAlign();
162 MachineFunction::MachineFunction(Function
&F
, const LLVMTargetMachine
&Target
,
163 const TargetSubtargetInfo
&STI
,
164 unsigned FunctionNum
, MachineModuleInfo
&mmi
)
165 : F(F
), Target(Target
), STI(&STI
), Ctx(mmi
.getContext()), MMI(mmi
) {
166 FunctionNumber
= FunctionNum
;
170 void MachineFunction::handleInsertion(MachineInstr
&MI
) {
172 TheDelegate
->MF_HandleInsertion(MI
);
175 void MachineFunction::handleRemoval(MachineInstr
&MI
) {
177 TheDelegate
->MF_HandleRemoval(MI
);
180 void MachineFunction::init() {
181 // Assume the function starts in SSA form with correct liveness.
182 Properties
.set(MachineFunctionProperties::Property::IsSSA
);
183 Properties
.set(MachineFunctionProperties::Property::TracksLiveness
);
184 if (STI
->getRegisterInfo())
185 RegInfo
= new (Allocator
) MachineRegisterInfo(this);
190 // We can realign the stack if the target supports it and the user hasn't
191 // explicitly asked us not to.
192 bool CanRealignSP
= STI
->getFrameLowering()->isStackRealignable() &&
193 !F
.hasFnAttribute("no-realign-stack");
194 FrameInfo
= new (Allocator
) MachineFrameInfo(
195 getFnStackAlignment(STI
, F
), /*StackRealignable=*/CanRealignSP
,
196 /*ForcedRealign=*/CanRealignSP
&&
197 F
.hasFnAttribute(Attribute::StackAlignment
));
199 setUnsafeStackSize(F
, *FrameInfo
);
201 if (F
.hasFnAttribute(Attribute::StackAlignment
))
202 FrameInfo
->ensureMaxAlignment(*F
.getFnStackAlign());
204 ConstantPool
= new (Allocator
) MachineConstantPool(getDataLayout());
205 Alignment
= STI
->getTargetLowering()->getMinFunctionAlignment();
207 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
208 // FIXME: Use Function::hasOptSize().
209 if (!F
.hasFnAttribute(Attribute::OptimizeForSize
))
210 Alignment
= std::max(Alignment
,
211 STI
->getTargetLowering()->getPrefFunctionAlignment());
213 if (AlignAllFunctions
)
214 Alignment
= Align(1ULL << AlignAllFunctions
);
216 JumpTableInfo
= nullptr;
218 if (isFuncletEHPersonality(classifyEHPersonality(
219 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
220 WinEHInfo
= new (Allocator
) WinEHFuncInfo();
223 if (isScopedEHPersonality(classifyEHPersonality(
224 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
225 WasmEHInfo
= new (Allocator
) WasmEHFuncInfo();
228 assert(Target
.isCompatibleDataLayout(getDataLayout()) &&
229 "Can't create a MachineFunction using a Module with a "
230 "Target-incompatible DataLayout attached\n");
232 PSVManager
= std::make_unique
<PseudoSourceValueManager
>(getTarget());
235 MachineFunction::~MachineFunction() {
239 void MachineFunction::clear() {
241 // Don't call destructors on MachineInstr and MachineOperand. All of their
242 // memory comes from the BumpPtrAllocator which is about to be purged.
244 // Do call MachineBasicBlock destructors, it contains std::vectors.
245 for (iterator I
= begin(), E
= end(); I
!= E
; I
= BasicBlocks
.erase(I
))
246 I
->Insts
.clearAndLeakNodesUnsafely();
247 MBBNumbering
.clear();
249 InstructionRecycler
.clear(Allocator
);
250 OperandRecycler
.clear(Allocator
);
251 BasicBlockRecycler
.clear(Allocator
);
252 CodeViewAnnotations
.clear();
253 VariableDbgInfos
.clear();
255 RegInfo
->~MachineRegisterInfo();
256 Allocator
.Deallocate(RegInfo
);
259 MFInfo
->~MachineFunctionInfo();
260 Allocator
.Deallocate(MFInfo
);
263 FrameInfo
->~MachineFrameInfo();
264 Allocator
.Deallocate(FrameInfo
);
266 ConstantPool
->~MachineConstantPool();
267 Allocator
.Deallocate(ConstantPool
);
270 JumpTableInfo
->~MachineJumpTableInfo();
271 Allocator
.Deallocate(JumpTableInfo
);
275 WinEHInfo
->~WinEHFuncInfo();
276 Allocator
.Deallocate(WinEHInfo
);
280 WasmEHInfo
->~WasmEHFuncInfo();
281 Allocator
.Deallocate(WasmEHInfo
);
285 const DataLayout
&MachineFunction::getDataLayout() const {
286 return F
.getParent()->getDataLayout();
289 /// Get the JumpTableInfo for this function.
290 /// If it does not already exist, allocate one.
291 MachineJumpTableInfo
*MachineFunction::
292 getOrCreateJumpTableInfo(unsigned EntryKind
) {
293 if (JumpTableInfo
) return JumpTableInfo
;
295 JumpTableInfo
= new (Allocator
)
296 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind
)EntryKind
);
297 return JumpTableInfo
;
300 DenormalMode
MachineFunction::getDenormalMode(const fltSemantics
&FPType
) const {
301 return F
.getDenormalMode(FPType
);
304 /// Should we be emitting segmented stack stuff for the function
305 bool MachineFunction::shouldSplitStack() const {
306 return getFunction().hasFnAttribute("split-stack");
309 [[nodiscard
]] unsigned
310 MachineFunction::addFrameInst(const MCCFIInstruction
&Inst
) {
311 FrameInstructions
.push_back(Inst
);
312 return FrameInstructions
.size() - 1;
315 /// This discards all of the MachineBasicBlock numbers and recomputes them.
316 /// This guarantees that the MBB numbers are sequential, dense, and match the
317 /// ordering of the blocks within the function. If a specific MachineBasicBlock
318 /// is specified, only that block and those after it are renumbered.
319 void MachineFunction::RenumberBlocks(MachineBasicBlock
*MBB
) {
320 if (empty()) { MBBNumbering
.clear(); return; }
321 MachineFunction::iterator MBBI
, E
= end();
325 MBBI
= MBB
->getIterator();
327 // Figure out the block number this should have.
328 unsigned BlockNo
= 0;
330 BlockNo
= std::prev(MBBI
)->getNumber() + 1;
332 for (; MBBI
!= E
; ++MBBI
, ++BlockNo
) {
333 if (MBBI
->getNumber() != (int)BlockNo
) {
334 // Remove use of the old number.
335 if (MBBI
->getNumber() != -1) {
336 assert(MBBNumbering
[MBBI
->getNumber()] == &*MBBI
&&
337 "MBB number mismatch!");
338 MBBNumbering
[MBBI
->getNumber()] = nullptr;
341 // If BlockNo is already taken, set that block's number to -1.
342 if (MBBNumbering
[BlockNo
])
343 MBBNumbering
[BlockNo
]->setNumber(-1);
345 MBBNumbering
[BlockNo
] = &*MBBI
;
346 MBBI
->setNumber(BlockNo
);
350 // Okay, all the blocks are renumbered. If we have compactified the block
351 // numbering, shrink MBBNumbering now.
352 assert(BlockNo
<= MBBNumbering
.size() && "Mismatch!");
353 MBBNumbering
.resize(BlockNo
);
356 /// This method iterates over the basic blocks and assigns their IsBeginSection
357 /// and IsEndSection fields. This must be called after MBB layout is finalized
358 /// and the SectionID's are assigned to MBBs.
359 void MachineFunction::assignBeginEndSections() {
360 front().setIsBeginSection();
361 auto CurrentSectionID
= front().getSectionID();
362 for (auto MBBI
= std::next(begin()), E
= end(); MBBI
!= E
; ++MBBI
) {
363 if (MBBI
->getSectionID() == CurrentSectionID
)
365 MBBI
->setIsBeginSection();
366 std::prev(MBBI
)->setIsEndSection();
367 CurrentSectionID
= MBBI
->getSectionID();
369 back().setIsEndSection();
372 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
373 MachineInstr
*MachineFunction::CreateMachineInstr(const MCInstrDesc
&MCID
,
376 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
377 MachineInstr(*this, MCID
, std::move(DL
), NoImplicit
);
380 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
381 /// identical in all ways except the instruction has no parent, prev, or next.
383 MachineFunction::CloneMachineInstr(const MachineInstr
*Orig
) {
384 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
385 MachineInstr(*this, *Orig
);
388 MachineInstr
&MachineFunction::cloneMachineInstrBundle(
389 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertBefore
,
390 const MachineInstr
&Orig
) {
391 MachineInstr
*FirstClone
= nullptr;
392 MachineBasicBlock::const_instr_iterator I
= Orig
.getIterator();
394 MachineInstr
*Cloned
= CloneMachineInstr(&*I
);
395 MBB
.insert(InsertBefore
, Cloned
);
396 if (FirstClone
== nullptr) {
399 Cloned
->bundleWithPred();
402 if (!I
->isBundledWithSucc())
406 // Copy over call site info to the cloned instruction if needed. If Orig is in
407 // a bundle, copyCallSiteInfo takes care of finding the call instruction in
409 if (Orig
.shouldUpdateCallSiteInfo())
410 copyCallSiteInfo(&Orig
, FirstClone
);
414 /// Delete the given MachineInstr.
416 /// This function also serves as the MachineInstr destructor - the real
417 /// ~MachineInstr() destructor must be empty.
418 void MachineFunction::deleteMachineInstr(MachineInstr
*MI
) {
419 // Verify that a call site info is at valid state. This assertion should
420 // be triggered during the implementation of support for the
421 // call site info of a new architecture. If the assertion is triggered,
422 // back trace will tell where to insert a call to updateCallSiteInfo().
423 assert((!MI
->isCandidateForCallSiteEntry() ||
424 CallSitesInfo
.find(MI
) == CallSitesInfo
.end()) &&
425 "Call site info was not updated!");
426 // Strip it for parts. The operand array and the MI object itself are
427 // independently recyclable.
429 deallocateOperandArray(MI
->CapOperands
, MI
->Operands
);
430 // Don't call ~MachineInstr() which must be trivial anyway because
431 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
433 InstructionRecycler
.Deallocate(Allocator
, MI
);
436 /// Allocate a new MachineBasicBlock. Use this instead of
437 /// `new MachineBasicBlock'.
439 MachineFunction::CreateMachineBasicBlock(const BasicBlock
*bb
) {
440 return new (BasicBlockRecycler
.Allocate
<MachineBasicBlock
>(Allocator
))
441 MachineBasicBlock(*this, bb
);
444 /// Delete the given MachineBasicBlock.
445 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock
*MBB
) {
446 assert(MBB
->getParent() == this && "MBB parent mismatch!");
447 // Clean up any references to MBB in jump tables before deleting it.
449 JumpTableInfo
->RemoveMBBFromJumpTables(MBB
);
450 MBB
->~MachineBasicBlock();
451 BasicBlockRecycler
.Deallocate(Allocator
, MBB
);
454 MachineMemOperand
*MachineFunction::getMachineMemOperand(
455 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags f
, uint64_t s
,
456 Align base_alignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
457 SyncScope::ID SSID
, AtomicOrdering Ordering
,
458 AtomicOrdering FailureOrdering
) {
459 return new (Allocator
)
460 MachineMemOperand(PtrInfo
, f
, s
, base_alignment
, AAInfo
, Ranges
,
461 SSID
, Ordering
, FailureOrdering
);
464 MachineMemOperand
*MachineFunction::getMachineMemOperand(
465 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags f
, LLT MemTy
,
466 Align base_alignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
467 SyncScope::ID SSID
, AtomicOrdering Ordering
,
468 AtomicOrdering FailureOrdering
) {
469 return new (Allocator
)
470 MachineMemOperand(PtrInfo
, f
, MemTy
, base_alignment
, AAInfo
, Ranges
, SSID
,
471 Ordering
, FailureOrdering
);
474 MachineMemOperand
*MachineFunction::getMachineMemOperand(
475 const MachineMemOperand
*MMO
, const MachinePointerInfo
&PtrInfo
, uint64_t Size
) {
476 return new (Allocator
)
477 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Size
, MMO
->getBaseAlign(),
478 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
479 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
482 MachineMemOperand
*MachineFunction::getMachineMemOperand(
483 const MachineMemOperand
*MMO
, const MachinePointerInfo
&PtrInfo
, LLT Ty
) {
484 return new (Allocator
)
485 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Ty
, MMO
->getBaseAlign(),
486 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
487 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
491 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
492 int64_t Offset
, LLT Ty
) {
493 const MachinePointerInfo
&PtrInfo
= MMO
->getPointerInfo();
495 // If there is no pointer value, the offset isn't tracked so we need to adjust
496 // the base alignment.
497 Align Alignment
= PtrInfo
.V
.isNull()
498 ? commonAlignment(MMO
->getBaseAlign(), Offset
)
499 : MMO
->getBaseAlign();
501 // Do not preserve ranges, since we don't necessarily know what the high bits
503 return new (Allocator
) MachineMemOperand(
504 PtrInfo
.getWithOffset(Offset
), MMO
->getFlags(), Ty
, Alignment
,
505 MMO
->getAAInfo(), nullptr, MMO
->getSyncScopeID(),
506 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
510 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
511 const AAMDNodes
&AAInfo
) {
512 MachinePointerInfo MPI
= MMO
->getValue() ?
513 MachinePointerInfo(MMO
->getValue(), MMO
->getOffset()) :
514 MachinePointerInfo(MMO
->getPseudoValue(), MMO
->getOffset());
516 return new (Allocator
) MachineMemOperand(
517 MPI
, MMO
->getFlags(), MMO
->getSize(), MMO
->getBaseAlign(), AAInfo
,
518 MMO
->getRanges(), MMO
->getSyncScopeID(), MMO
->getSuccessOrdering(),
519 MMO
->getFailureOrdering());
523 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
524 MachineMemOperand::Flags Flags
) {
525 return new (Allocator
) MachineMemOperand(
526 MMO
->getPointerInfo(), Flags
, MMO
->getSize(), MMO
->getBaseAlign(),
527 MMO
->getAAInfo(), MMO
->getRanges(), MMO
->getSyncScopeID(),
528 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
531 MachineInstr::ExtraInfo
*MachineFunction::createMIExtraInfo(
532 ArrayRef
<MachineMemOperand
*> MMOs
, MCSymbol
*PreInstrSymbol
,
533 MCSymbol
*PostInstrSymbol
, MDNode
*HeapAllocMarker
) {
534 return MachineInstr::ExtraInfo::create(Allocator
, MMOs
, PreInstrSymbol
,
535 PostInstrSymbol
, HeapAllocMarker
);
538 const char *MachineFunction::createExternalSymbolName(StringRef Name
) {
539 char *Dest
= Allocator
.Allocate
<char>(Name
.size() + 1);
540 llvm::copy(Name
, Dest
);
541 Dest
[Name
.size()] = 0;
545 uint32_t *MachineFunction::allocateRegMask() {
546 unsigned NumRegs
= getSubtarget().getRegisterInfo()->getNumRegs();
547 unsigned Size
= MachineOperand::getRegMaskSize(NumRegs
);
548 uint32_t *Mask
= Allocator
.Allocate
<uint32_t>(Size
);
549 memset(Mask
, 0, Size
* sizeof(Mask
[0]));
553 ArrayRef
<int> MachineFunction::allocateShuffleMask(ArrayRef
<int> Mask
) {
554 int* AllocMask
= Allocator
.Allocate
<int>(Mask
.size());
555 copy(Mask
, AllocMask
);
556 return {AllocMask
, Mask
.size()};
559 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
560 LLVM_DUMP_METHOD
void MachineFunction::dump() const {
565 StringRef
MachineFunction::getName() const {
566 return getFunction().getName();
569 void MachineFunction::print(raw_ostream
&OS
, const SlotIndexes
*Indexes
) const {
570 OS
<< "# Machine code for function " << getName() << ": ";
571 getProperties().print(OS
);
574 // Print Frame Information
575 FrameInfo
->print(*this, OS
);
577 // Print JumpTable Information
579 JumpTableInfo
->print(OS
);
581 // Print Constant Pool
582 ConstantPool
->print(OS
);
584 const TargetRegisterInfo
*TRI
= getSubtarget().getRegisterInfo();
586 if (RegInfo
&& !RegInfo
->livein_empty()) {
587 OS
<< "Function Live Ins: ";
588 for (MachineRegisterInfo::livein_iterator
589 I
= RegInfo
->livein_begin(), E
= RegInfo
->livein_end(); I
!= E
; ++I
) {
590 OS
<< printReg(I
->first
, TRI
);
592 OS
<< " in " << printReg(I
->second
, TRI
);
593 if (std::next(I
) != E
)
599 ModuleSlotTracker
MST(getFunction().getParent());
600 MST
.incorporateFunction(getFunction());
601 for (const auto &BB
: *this) {
603 // If we print the whole function, print it at its most verbose level.
604 BB
.print(OS
, MST
, Indexes
, /*IsStandalone=*/true);
607 OS
<< "\n# End machine code for function " << getName() << ".\n\n";
610 /// True if this function needs frame moves for debug or exceptions.
611 bool MachineFunction::needsFrameMoves() const {
612 return getMMI().hasDebugInfo() ||
613 getTarget().Options
.ForceDwarfFrameSection
||
614 F
.needsUnwindTableEntry();
620 struct DOTGraphTraits
<const MachineFunction
*> : public DefaultDOTGraphTraits
{
621 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
623 static std::string
getGraphName(const MachineFunction
*F
) {
624 return ("CFG for '" + F
->getName() + "' function").str();
627 std::string
getNodeLabel(const MachineBasicBlock
*Node
,
628 const MachineFunction
*Graph
) {
631 raw_string_ostream
OSS(OutStr
);
634 OSS
<< printMBBReference(*Node
);
635 if (const BasicBlock
*BB
= Node
->getBasicBlock())
636 OSS
<< ": " << BB
->getName();
641 if (OutStr
[0] == '\n') OutStr
.erase(OutStr
.begin());
643 // Process string output to make it nicer...
644 for (unsigned i
= 0; i
!= OutStr
.length(); ++i
)
645 if (OutStr
[i
] == '\n') { // Left justify
647 OutStr
.insert(OutStr
.begin()+i
+1, 'l');
653 } // end namespace llvm
655 void MachineFunction::viewCFG() const
658 ViewGraph(this, "mf" + getName());
660 errs() << "MachineFunction::viewCFG is only available in debug builds on "
661 << "systems with Graphviz or gv!\n";
665 void MachineFunction::viewCFGOnly() const
668 ViewGraph(this, "mf" + getName(), true);
670 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
671 << "systems with Graphviz or gv!\n";
675 /// Add the specified physical register as a live-in value and
676 /// create a corresponding virtual register for it.
677 Register
MachineFunction::addLiveIn(MCRegister PReg
,
678 const TargetRegisterClass
*RC
) {
679 MachineRegisterInfo
&MRI
= getRegInfo();
680 Register VReg
= MRI
.getLiveInVirtReg(PReg
);
682 const TargetRegisterClass
*VRegRC
= MRI
.getRegClass(VReg
);
684 // A physical register can be added several times.
685 // Between two calls, the register class of the related virtual register
686 // may have been constrained to match some operation constraints.
687 // In that case, check that the current register class includes the
688 // physical register and is a sub class of the specified RC.
689 assert((VRegRC
== RC
|| (VRegRC
->contains(PReg
) &&
690 RC
->hasSubClassEq(VRegRC
))) &&
691 "Register class mismatch!");
694 VReg
= MRI
.createVirtualRegister(RC
);
695 MRI
.addLiveIn(PReg
, VReg
);
699 /// Return the MCSymbol for the specified non-empty jump table.
700 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
701 /// normal 'L' label is returned.
702 MCSymbol
*MachineFunction::getJTISymbol(unsigned JTI
, MCContext
&Ctx
,
703 bool isLinkerPrivate
) const {
704 const DataLayout
&DL
= getDataLayout();
705 assert(JumpTableInfo
&& "No jump tables");
706 assert(JTI
< JumpTableInfo
->getJumpTables().size() && "Invalid JTI!");
708 StringRef Prefix
= isLinkerPrivate
? DL
.getLinkerPrivateGlobalPrefix()
709 : DL
.getPrivateGlobalPrefix();
710 SmallString
<60> Name
;
711 raw_svector_ostream(Name
)
712 << Prefix
<< "JTI" << getFunctionNumber() << '_' << JTI
;
713 return Ctx
.getOrCreateSymbol(Name
);
716 /// Return a function-local symbol to represent the PIC base.
717 MCSymbol
*MachineFunction::getPICBaseSymbol() const {
718 const DataLayout
&DL
= getDataLayout();
719 return Ctx
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
720 Twine(getFunctionNumber()) + "$pb");
723 /// \name Exception Handling
727 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock
*LandingPad
) {
728 unsigned N
= LandingPads
.size();
729 for (unsigned i
= 0; i
< N
; ++i
) {
730 LandingPadInfo
&LP
= LandingPads
[i
];
731 if (LP
.LandingPadBlock
== LandingPad
)
735 LandingPads
.push_back(LandingPadInfo(LandingPad
));
736 return LandingPads
[N
];
739 void MachineFunction::addInvoke(MachineBasicBlock
*LandingPad
,
740 MCSymbol
*BeginLabel
, MCSymbol
*EndLabel
) {
741 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
742 LP
.BeginLabels
.push_back(BeginLabel
);
743 LP
.EndLabels
.push_back(EndLabel
);
746 MCSymbol
*MachineFunction::addLandingPad(MachineBasicBlock
*LandingPad
) {
747 MCSymbol
*LandingPadLabel
= Ctx
.createTempSymbol();
748 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
749 LP
.LandingPadLabel
= LandingPadLabel
;
751 const Instruction
*FirstI
= LandingPad
->getBasicBlock()->getFirstNonPHI();
752 if (const auto *LPI
= dyn_cast
<LandingPadInst
>(FirstI
)) {
754 dyn_cast
<Function
>(F
.getPersonalityFn()->stripPointerCasts()))
755 getMMI().addPersonality(PF
);
757 if (LPI
->isCleanup())
758 addCleanup(LandingPad
);
760 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
761 // correct, but we need to do it this way because of how the DWARF EH
762 // emitter processes the clauses.
763 for (unsigned I
= LPI
->getNumClauses(); I
!= 0; --I
) {
764 Value
*Val
= LPI
->getClause(I
- 1);
765 if (LPI
->isCatch(I
- 1)) {
766 addCatchTypeInfo(LandingPad
,
767 dyn_cast
<GlobalValue
>(Val
->stripPointerCasts()));
769 // Add filters in a list.
770 auto *CVal
= cast
<Constant
>(Val
);
771 SmallVector
<const GlobalValue
*, 4> FilterList
;
772 for (const Use
&U
: CVal
->operands())
773 FilterList
.push_back(cast
<GlobalValue
>(U
->stripPointerCasts()));
775 addFilterTypeInfo(LandingPad
, FilterList
);
779 } else if (const auto *CPI
= dyn_cast
<CatchPadInst
>(FirstI
)) {
780 for (unsigned I
= CPI
->getNumArgOperands(); I
!= 0; --I
) {
781 Value
*TypeInfo
= CPI
->getArgOperand(I
- 1)->stripPointerCasts();
782 addCatchTypeInfo(LandingPad
, dyn_cast
<GlobalValue
>(TypeInfo
));
786 assert(isa
<CleanupPadInst
>(FirstI
) && "Invalid landingpad!");
789 return LandingPadLabel
;
792 void MachineFunction::addCatchTypeInfo(MachineBasicBlock
*LandingPad
,
793 ArrayRef
<const GlobalValue
*> TyInfo
) {
794 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
795 for (const GlobalValue
*GV
: llvm::reverse(TyInfo
))
796 LP
.TypeIds
.push_back(getTypeIDFor(GV
));
799 void MachineFunction::addFilterTypeInfo(MachineBasicBlock
*LandingPad
,
800 ArrayRef
<const GlobalValue
*> TyInfo
) {
801 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
802 std::vector
<unsigned> IdsInFilter(TyInfo
.size());
803 for (unsigned I
= 0, E
= TyInfo
.size(); I
!= E
; ++I
)
804 IdsInFilter
[I
] = getTypeIDFor(TyInfo
[I
]);
805 LP
.TypeIds
.push_back(getFilterIDFor(IdsInFilter
));
808 void MachineFunction::tidyLandingPads(DenseMap
<MCSymbol
*, uintptr_t> *LPMap
,
809 bool TidyIfNoBeginLabels
) {
810 for (unsigned i
= 0; i
!= LandingPads
.size(); ) {
811 LandingPadInfo
&LandingPad
= LandingPads
[i
];
812 if (LandingPad
.LandingPadLabel
&&
813 !LandingPad
.LandingPadLabel
->isDefined() &&
814 (!LPMap
|| (*LPMap
)[LandingPad
.LandingPadLabel
] == 0))
815 LandingPad
.LandingPadLabel
= nullptr;
817 // Special case: we *should* emit LPs with null LP MBB. This indicates
819 if (!LandingPad
.LandingPadLabel
&& LandingPad
.LandingPadBlock
) {
820 LandingPads
.erase(LandingPads
.begin() + i
);
824 if (TidyIfNoBeginLabels
) {
825 for (unsigned j
= 0, e
= LandingPads
[i
].BeginLabels
.size(); j
!= e
; ++j
) {
826 MCSymbol
*BeginLabel
= LandingPad
.BeginLabels
[j
];
827 MCSymbol
*EndLabel
= LandingPad
.EndLabels
[j
];
828 if ((BeginLabel
->isDefined() || (LPMap
&& (*LPMap
)[BeginLabel
] != 0)) &&
829 (EndLabel
->isDefined() || (LPMap
&& (*LPMap
)[EndLabel
] != 0)))
832 LandingPad
.BeginLabels
.erase(LandingPad
.BeginLabels
.begin() + j
);
833 LandingPad
.EndLabels
.erase(LandingPad
.EndLabels
.begin() + j
);
838 // Remove landing pads with no try-ranges.
839 if (LandingPads
[i
].BeginLabels
.empty()) {
840 LandingPads
.erase(LandingPads
.begin() + i
);
845 // If there is no landing pad, ensure that the list of typeids is empty.
846 // If the only typeid is a cleanup, this is the same as having no typeids.
847 if (!LandingPad
.LandingPadBlock
||
848 (LandingPad
.TypeIds
.size() == 1 && !LandingPad
.TypeIds
[0]))
849 LandingPad
.TypeIds
.clear();
854 void MachineFunction::addCleanup(MachineBasicBlock
*LandingPad
) {
855 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
856 LP
.TypeIds
.push_back(0);
859 void MachineFunction::setCallSiteLandingPad(MCSymbol
*Sym
,
860 ArrayRef
<unsigned> Sites
) {
861 LPadToCallSiteMap
[Sym
].append(Sites
.begin(), Sites
.end());
864 unsigned MachineFunction::getTypeIDFor(const GlobalValue
*TI
) {
865 for (unsigned i
= 0, N
= TypeInfos
.size(); i
!= N
; ++i
)
866 if (TypeInfos
[i
] == TI
) return i
+ 1;
868 TypeInfos
.push_back(TI
);
869 return TypeInfos
.size();
872 int MachineFunction::getFilterIDFor(std::vector
<unsigned> &TyIds
) {
873 // If the new filter coincides with the tail of an existing filter, then
874 // re-use the existing filter. Folding filters more than this requires
875 // re-ordering filters and/or their elements - probably not worth it.
876 for (unsigned i
: FilterEnds
) {
877 unsigned j
= TyIds
.size();
880 if (FilterIds
[--i
] != TyIds
[--j
])
884 // The new filter coincides with range [i, end) of the existing filter.
890 // Add the new filter.
891 int FilterID
= -(1 + FilterIds
.size());
892 FilterIds
.reserve(FilterIds
.size() + TyIds
.size() + 1);
893 llvm::append_range(FilterIds
, TyIds
);
894 FilterEnds
.push_back(FilterIds
.size());
895 FilterIds
.push_back(0); // terminator
899 MachineFunction::CallSiteInfoMap::iterator
900 MachineFunction::getCallSiteInfo(const MachineInstr
*MI
) {
901 assert(MI
->isCandidateForCallSiteEntry() &&
902 "Call site info refers only to call (MI) candidates");
904 if (!Target
.Options
.EmitCallSiteInfo
)
905 return CallSitesInfo
.end();
906 return CallSitesInfo
.find(MI
);
909 /// Return the call machine instruction or find a call within bundle.
910 static const MachineInstr
*getCallInstr(const MachineInstr
*MI
) {
914 for (const auto &BMI
: make_range(getBundleStart(MI
->getIterator()),
915 getBundleEnd(MI
->getIterator())))
916 if (BMI
.isCandidateForCallSiteEntry())
919 llvm_unreachable("Unexpected bundle without a call site candidate");
922 void MachineFunction::eraseCallSiteInfo(const MachineInstr
*MI
) {
923 assert(MI
->shouldUpdateCallSiteInfo() &&
924 "Call site info refers only to call (MI) candidates or "
925 "candidates inside bundles");
927 const MachineInstr
*CallMI
= getCallInstr(MI
);
928 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(CallMI
);
929 if (CSIt
== CallSitesInfo
.end())
931 CallSitesInfo
.erase(CSIt
);
934 void MachineFunction::copyCallSiteInfo(const MachineInstr
*Old
,
935 const MachineInstr
*New
) {
936 assert(Old
->shouldUpdateCallSiteInfo() &&
937 "Call site info refers only to call (MI) candidates or "
938 "candidates inside bundles");
940 if (!New
->isCandidateForCallSiteEntry())
941 return eraseCallSiteInfo(Old
);
943 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
944 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
945 if (CSIt
== CallSitesInfo
.end())
948 CallSiteInfo CSInfo
= CSIt
->second
;
949 CallSitesInfo
[New
] = CSInfo
;
952 void MachineFunction::moveCallSiteInfo(const MachineInstr
*Old
,
953 const MachineInstr
*New
) {
954 assert(Old
->shouldUpdateCallSiteInfo() &&
955 "Call site info refers only to call (MI) candidates or "
956 "candidates inside bundles");
958 if (!New
->isCandidateForCallSiteEntry())
959 return eraseCallSiteInfo(Old
);
961 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
962 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
963 if (CSIt
== CallSitesInfo
.end())
966 CallSiteInfo CSInfo
= std::move(CSIt
->second
);
967 CallSitesInfo
.erase(CSIt
);
968 CallSitesInfo
[New
] = CSInfo
;
971 void MachineFunction::setDebugInstrNumberingCount(unsigned Num
) {
972 DebugInstrNumberingCount
= Num
;
975 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A
,
976 DebugInstrOperandPair B
,
978 // Catch any accidental self-loops.
979 assert(A
.first
!= B
.first
);
980 // Don't allow any substitutions _from_ the memory operand number.
981 assert(A
.second
!= DebugOperandMemNumber
);
983 DebugValueSubstitutions
.push_back({A
, B
, Subreg
});
986 void MachineFunction::substituteDebugValuesForInst(const MachineInstr
&Old
,
988 unsigned MaxOperand
) {
989 // If the Old instruction wasn't tracked at all, there is no work to do.
990 unsigned OldInstrNum
= Old
.peekDebugInstrNum();
994 // Iterate over all operands looking for defs to create substitutions for.
995 // Avoid creating new instr numbers unless we create a new substitution.
996 // While this has no functional effect, it risks confusing someone reading
998 // Examine all the operands, or the first N specified by the caller.
999 MaxOperand
= std::min(MaxOperand
, Old
.getNumOperands());
1000 for (unsigned int I
= 0; I
< MaxOperand
; ++I
) {
1001 const auto &OldMO
= Old
.getOperand(I
);
1002 auto &NewMO
= New
.getOperand(I
);
1005 if (!OldMO
.isReg() || !OldMO
.isDef())
1007 assert(NewMO
.isDef());
1009 unsigned NewInstrNum
= New
.getDebugInstrNum();
1010 makeDebugValueSubstitution(std::make_pair(OldInstrNum
, I
),
1011 std::make_pair(NewInstrNum
, I
));
1015 auto MachineFunction::salvageCopySSA(
1016 MachineInstr
&MI
, DenseMap
<Register
, DebugInstrOperandPair
> &DbgPHICache
)
1017 -> DebugInstrOperandPair
{
1018 const TargetInstrInfo
&TII
= *getSubtarget().getInstrInfo();
1020 // Check whether this copy-like instruction has already been salvaged into
1023 if (auto CopyDstSrc
= TII
.isCopyInstr(MI
)) {
1024 Dest
= CopyDstSrc
->Destination
->getReg();
1026 assert(MI
.isSubregToReg());
1027 Dest
= MI
.getOperand(0).getReg();
1030 auto CacheIt
= DbgPHICache
.find(Dest
);
1031 if (CacheIt
!= DbgPHICache
.end())
1032 return CacheIt
->second
;
1034 // Calculate the instruction number to use, or install a DBG_PHI.
1035 auto OperandPair
= salvageCopySSAImpl(MI
);
1036 DbgPHICache
.insert({Dest
, OperandPair
});
1040 auto MachineFunction::salvageCopySSAImpl(MachineInstr
&MI
)
1041 -> DebugInstrOperandPair
{
1042 MachineRegisterInfo
&MRI
= getRegInfo();
1043 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
1044 const TargetInstrInfo
&TII
= *getSubtarget().getInstrInfo();
1046 // Chase the value read by a copy-like instruction back to the instruction
1047 // that ultimately _defines_ that value. This may pass:
1048 // * Through multiple intermediate copies, including subregister moves /
1050 // * Copies from physical registers that must then be traced back to the
1051 // defining instruction,
1052 // * Or, physical registers may be live-in to (only) the entry block, which
1053 // requires a DBG_PHI to be created.
1054 // We can pursue this problem in that order: trace back through copies,
1055 // optionally through a physical register, to a defining instruction. We
1056 // should never move from physreg to vreg. As we're still in SSA form, no need
1057 // to worry about partial definitions of registers.
1059 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1060 // returns the register read and any subregister identifying which part is
1062 auto GetRegAndSubreg
=
1063 [&](const MachineInstr
&Cpy
) -> std::pair
<Register
, unsigned> {
1064 Register NewReg
, OldReg
;
1067 OldReg
= Cpy
.getOperand(0).getReg();
1068 NewReg
= Cpy
.getOperand(1).getReg();
1069 SubReg
= Cpy
.getOperand(1).getSubReg();
1070 } else if (Cpy
.isSubregToReg()) {
1071 OldReg
= Cpy
.getOperand(0).getReg();
1072 NewReg
= Cpy
.getOperand(2).getReg();
1073 SubReg
= Cpy
.getOperand(3).getImm();
1075 auto CopyDetails
= *TII
.isCopyInstr(Cpy
);
1076 const MachineOperand
&Src
= *CopyDetails
.Source
;
1077 const MachineOperand
&Dest
= *CopyDetails
.Destination
;
1078 OldReg
= Dest
.getReg();
1079 NewReg
= Src
.getReg();
1080 SubReg
= Src
.getSubReg();
1083 return {NewReg
, SubReg
};
1086 // First seek either the defining instruction, or a copy from a physreg.
1087 // During search, the current state is the current copy instruction, and which
1088 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1089 // deal with those later.
1090 auto State
= GetRegAndSubreg(MI
);
1091 auto CurInst
= MI
.getIterator();
1092 SmallVector
<unsigned, 4> SubregsSeen
;
1094 // If we've found a copy from a physreg, first portion of search is over.
1095 if (!State
.first
.isVirtual())
1098 // Record any subregister qualifier.
1100 SubregsSeen
.push_back(State
.second
);
1102 assert(MRI
.hasOneDef(State
.first
));
1103 MachineInstr
&Inst
= *MRI
.def_begin(State
.first
)->getParent();
1104 CurInst
= Inst
.getIterator();
1106 // Any non-copy instruction is the defining instruction we're seeking.
1107 if (!Inst
.isCopyLike() && !TII
.isCopyInstr(Inst
))
1109 State
= GetRegAndSubreg(Inst
);
1112 // Helper lambda to apply additional subregister substitutions to a known
1113 // instruction/operand pair. Adds new (fake) substitutions so that we can
1114 // record the subregister. FIXME: this isn't very space efficient if multiple
1115 // values are tracked back through the same copies; cache something later.
1116 auto ApplySubregisters
=
1117 [&](DebugInstrOperandPair P
) -> DebugInstrOperandPair
{
1118 for (unsigned Subreg
: reverse(SubregsSeen
)) {
1119 // Fetch a new instruction number, not attached to an actual instruction.
1120 unsigned NewInstrNumber
= getNewDebugInstrNum();
1121 // Add a substitution from the "new" number to the known one, with a
1122 // qualifying subreg.
1123 makeDebugValueSubstitution({NewInstrNumber
, 0}, P
, Subreg
);
1124 // Return the new number; to find the underlying value, consumers need to
1125 // deal with the qualifying subreg.
1126 P
= {NewInstrNumber
, 0};
1131 // If we managed to find the defining instruction after COPYs, return an
1132 // instruction / operand pair after adding subregister qualifiers.
1133 if (State
.first
.isVirtual()) {
1134 // Virtual register def -- we can just look up where this happens.
1135 MachineInstr
*Inst
= MRI
.def_begin(State
.first
)->getParent();
1136 for (auto &MO
: Inst
->operands()) {
1137 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != State
.first
)
1139 return ApplySubregisters(
1140 {Inst
->getDebugInstrNum(), Inst
->getOperandNo(&MO
)});
1143 llvm_unreachable("Vreg def with no corresponding operand?");
1146 // Our search ended in a copy from a physreg: walk back up the function
1147 // looking for whatever defines the physreg.
1148 assert(CurInst
->isCopyLike() || TII
.isCopyInstr(*CurInst
));
1149 State
= GetRegAndSubreg(*CurInst
);
1150 Register RegToSeek
= State
.first
;
1152 auto RMII
= CurInst
->getReverseIterator();
1153 auto PrevInstrs
= make_range(RMII
, CurInst
->getParent()->instr_rend());
1154 for (auto &ToExamine
: PrevInstrs
) {
1155 for (auto &MO
: ToExamine
.operands()) {
1156 // Test for operand that defines something aliasing RegToSeek.
1157 if (!MO
.isReg() || !MO
.isDef() ||
1158 !TRI
.regsOverlap(RegToSeek
, MO
.getReg()))
1161 return ApplySubregisters(
1162 {ToExamine
.getDebugInstrNum(), ToExamine
.getOperandNo(&MO
)});
1166 MachineBasicBlock
&InsertBB
= *CurInst
->getParent();
1168 // We reached the start of the block before finding a defining instruction.
1169 // There are numerous scenarios where this can happen:
1170 // * Constant physical registers,
1171 // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1172 // * Arguments in the entry block,
1173 // * Exception handling landing pads.
1174 // Validating all of them is too difficult, so just insert a DBG_PHI reading
1175 // the variable value at this position, rather than checking it makes sense.
1177 // Create DBG_PHI for specified physreg.
1178 auto Builder
= BuildMI(InsertBB
, InsertBB
.getFirstNonPHI(), DebugLoc(),
1179 TII
.get(TargetOpcode::DBG_PHI
));
1180 Builder
.addReg(State
.first
);
1181 unsigned NewNum
= getNewDebugInstrNum();
1182 Builder
.addImm(NewNum
);
1183 return ApplySubregisters({NewNum
, 0u});
1186 void MachineFunction::finalizeDebugInstrRefs() {
1187 auto *TII
= getSubtarget().getInstrInfo();
1189 auto MakeUndefDbgValue
= [&](MachineInstr
&MI
) {
1190 const MCInstrDesc
&RefII
= TII
->get(TargetOpcode::DBG_VALUE
);
1192 MI
.getOperand(0).setReg(0);
1193 MI
.getOperand(1).ChangeToRegister(0, false);
1196 DenseMap
<Register
, DebugInstrOperandPair
> ArgDbgPHIs
;
1197 for (auto &MBB
: *this) {
1198 for (auto &MI
: MBB
) {
1199 if (!MI
.isDebugRef() || !MI
.getOperand(0).isReg())
1202 Register Reg
= MI
.getOperand(0).getReg();
1204 // Some vregs can be deleted as redundant in the meantime. Mark those
1205 // as DBG_VALUE $noreg. Additionally, some normal instructions are
1206 // quickly deleted, leaving dangling references to vregs with no def.
1207 if (Reg
== 0 || !RegInfo
->hasOneDef(Reg
)) {
1208 MakeUndefDbgValue(MI
);
1212 assert(Reg
.isVirtual());
1213 MachineInstr
&DefMI
= *RegInfo
->def_instr_begin(Reg
);
1215 // If we've found a copy-like instruction, follow it back to the
1216 // instruction that defines the source value, see salvageCopySSA docs
1217 // for why this is important.
1218 if (DefMI
.isCopyLike() || TII
->isCopyInstr(DefMI
)) {
1219 auto Result
= salvageCopySSA(DefMI
, ArgDbgPHIs
);
1220 MI
.getOperand(0).ChangeToImmediate(Result
.first
);
1221 MI
.getOperand(1).setImm(Result
.second
);
1223 // Otherwise, identify the operand number that the VReg refers to.
1224 unsigned OperandIdx
= 0;
1225 for (const auto &MO
: DefMI
.operands()) {
1226 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == Reg
)
1230 assert(OperandIdx
< DefMI
.getNumOperands());
1232 // Morph this instr ref to point at the given instruction and operand.
1233 unsigned ID
= DefMI
.getDebugInstrNum();
1234 MI
.getOperand(0).ChangeToImmediate(ID
);
1235 MI
.getOperand(1).setImm(OperandIdx
);
1241 bool MachineFunction::useDebugInstrRef() const {
1242 // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1243 // have optimized code inlined into this unoptimized code, however with
1244 // fewer and less aggressive optimizations happening, coverage and accuracy
1245 // should not suffer.
1246 if (getTarget().getOptLevel() == CodeGenOpt::None
)
1249 // Don't use instr-ref if this function is marked optnone.
1250 if (F
.hasFnAttribute(Attribute::OptimizeNone
))
1253 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1259 // Use one million as a high / reserved number.
1260 const unsigned MachineFunction::DebugOperandMemNumber
= 1000000;
1264 //===----------------------------------------------------------------------===//
1265 // MachineJumpTableInfo implementation
1266 //===----------------------------------------------------------------------===//
1268 /// Return the size of each entry in the jump table.
1269 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout
&TD
) const {
1270 // The size of a jump table entry is 4 bytes unless the entry is just the
1271 // address of a block, in which case it is the pointer size.
1272 switch (getEntryKind()) {
1273 case MachineJumpTableInfo::EK_BlockAddress
:
1274 return TD
.getPointerSize();
1275 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1277 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1278 case MachineJumpTableInfo::EK_LabelDifference32
:
1279 case MachineJumpTableInfo::EK_Custom32
:
1281 case MachineJumpTableInfo::EK_Inline
:
1284 llvm_unreachable("Unknown jump table encoding!");
1287 /// Return the alignment of each entry in the jump table.
1288 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout
&TD
) const {
1289 // The alignment of a jump table entry is the alignment of int32 unless the
1290 // entry is just the address of a block, in which case it is the pointer
1292 switch (getEntryKind()) {
1293 case MachineJumpTableInfo::EK_BlockAddress
:
1294 return TD
.getPointerABIAlignment(0).value();
1295 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1296 return TD
.getABIIntegerTypeAlignment(64).value();
1297 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1298 case MachineJumpTableInfo::EK_LabelDifference32
:
1299 case MachineJumpTableInfo::EK_Custom32
:
1300 return TD
.getABIIntegerTypeAlignment(32).value();
1301 case MachineJumpTableInfo::EK_Inline
:
1304 llvm_unreachable("Unknown jump table encoding!");
1307 /// Create a new jump table entry in the jump table info.
1308 unsigned MachineJumpTableInfo::createJumpTableIndex(
1309 const std::vector
<MachineBasicBlock
*> &DestBBs
) {
1310 assert(!DestBBs
.empty() && "Cannot create an empty jump table!");
1311 JumpTables
.push_back(MachineJumpTableEntry(DestBBs
));
1312 return JumpTables
.size()-1;
1315 /// If Old is the target of any jump tables, update the jump tables to branch
1317 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock
*Old
,
1318 MachineBasicBlock
*New
) {
1319 assert(Old
!= New
&& "Not making a change?");
1320 bool MadeChange
= false;
1321 for (size_t i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
)
1322 ReplaceMBBInJumpTable(i
, Old
, New
);
1326 /// If MBB is present in any jump tables, remove it.
1327 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock
*MBB
) {
1328 bool MadeChange
= false;
1329 for (MachineJumpTableEntry
&JTE
: JumpTables
) {
1330 auto removeBeginItr
= std::remove(JTE
.MBBs
.begin(), JTE
.MBBs
.end(), MBB
);
1331 MadeChange
|= (removeBeginItr
!= JTE
.MBBs
.end());
1332 JTE
.MBBs
.erase(removeBeginItr
, JTE
.MBBs
.end());
1337 /// If Old is a target of the jump tables, update the jump table to branch to
1339 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx
,
1340 MachineBasicBlock
*Old
,
1341 MachineBasicBlock
*New
) {
1342 assert(Old
!= New
&& "Not making a change?");
1343 bool MadeChange
= false;
1344 MachineJumpTableEntry
&JTE
= JumpTables
[Idx
];
1345 for (MachineBasicBlock
*&MBB
: JTE
.MBBs
)
1353 void MachineJumpTableInfo::print(raw_ostream
&OS
) const {
1354 if (JumpTables
.empty()) return;
1356 OS
<< "Jump Tables:\n";
1358 for (unsigned i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
) {
1359 OS
<< printJumpTableEntryReference(i
) << ':';
1360 for (const MachineBasicBlock
*MBB
: JumpTables
[i
].MBBs
)
1361 OS
<< ' ' << printMBBReference(*MBB
);
1369 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1370 LLVM_DUMP_METHOD
void MachineJumpTableInfo::dump() const { print(dbgs()); }
1373 Printable
llvm::printJumpTableEntryReference(unsigned Idx
) {
1374 return Printable([Idx
](raw_ostream
&OS
) { OS
<< "%jump-table." << Idx
; });
1377 //===----------------------------------------------------------------------===//
1378 // MachineConstantPool implementation
1379 //===----------------------------------------------------------------------===//
1381 void MachineConstantPoolValue::anchor() {}
1383 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout
&DL
) const {
1384 return DL
.getTypeAllocSize(Ty
);
1387 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout
&DL
) const {
1388 if (isMachineConstantPoolEntry())
1389 return Val
.MachineCPVal
->getSizeInBytes(DL
);
1390 return DL
.getTypeAllocSize(Val
.ConstVal
->getType());
1393 bool MachineConstantPoolEntry::needsRelocation() const {
1394 if (isMachineConstantPoolEntry())
1396 return Val
.ConstVal
->needsDynamicRelocation();
1400 MachineConstantPoolEntry::getSectionKind(const DataLayout
*DL
) const {
1401 if (needsRelocation())
1402 return SectionKind::getReadOnlyWithRel();
1403 switch (getSizeInBytes(*DL
)) {
1405 return SectionKind::getMergeableConst4();
1407 return SectionKind::getMergeableConst8();
1409 return SectionKind::getMergeableConst16();
1411 return SectionKind::getMergeableConst32();
1413 return SectionKind::getReadOnly();
1417 MachineConstantPool::~MachineConstantPool() {
1418 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1419 // so keep track of which we've deleted to avoid double deletions.
1420 DenseSet
<MachineConstantPoolValue
*> Deleted
;
1421 for (const MachineConstantPoolEntry
&C
: Constants
)
1422 if (C
.isMachineConstantPoolEntry()) {
1423 Deleted
.insert(C
.Val
.MachineCPVal
);
1424 delete C
.Val
.MachineCPVal
;
1426 for (MachineConstantPoolValue
*CPV
: MachineCPVsSharingEntries
) {
1427 if (Deleted
.count(CPV
) == 0)
1432 /// Test whether the given two constants can be allocated the same constant pool
1434 static bool CanShareConstantPoolEntry(const Constant
*A
, const Constant
*B
,
1435 const DataLayout
&DL
) {
1436 // Handle the trivial case quickly.
1437 if (A
== B
) return true;
1439 // If they have the same type but weren't the same constant, quickly
1441 if (A
->getType() == B
->getType()) return false;
1443 // We can't handle structs or arrays.
1444 if (isa
<StructType
>(A
->getType()) || isa
<ArrayType
>(A
->getType()) ||
1445 isa
<StructType
>(B
->getType()) || isa
<ArrayType
>(B
->getType()))
1448 // For now, only support constants with the same size.
1449 uint64_t StoreSize
= DL
.getTypeStoreSize(A
->getType());
1450 if (StoreSize
!= DL
.getTypeStoreSize(B
->getType()) || StoreSize
> 128)
1453 Type
*IntTy
= IntegerType::get(A
->getContext(), StoreSize
*8);
1455 // Try constant folding a bitcast of both instructions to an integer. If we
1456 // get two identical ConstantInt's, then we are good to share them. We use
1457 // the constant folding APIs to do this so that we get the benefit of
1459 if (isa
<PointerType
>(A
->getType()))
1460 A
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1461 const_cast<Constant
*>(A
), IntTy
, DL
);
1462 else if (A
->getType() != IntTy
)
1463 A
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(A
),
1465 if (isa
<PointerType
>(B
->getType()))
1466 B
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1467 const_cast<Constant
*>(B
), IntTy
, DL
);
1468 else if (B
->getType() != IntTy
)
1469 B
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(B
),
1475 /// Create a new entry in the constant pool or return an existing one.
1476 /// User must specify the log2 of the minimum required alignment for the object.
1477 unsigned MachineConstantPool::getConstantPoolIndex(const Constant
*C
,
1479 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1481 // Check to see if we already have this constant.
1483 // FIXME, this could be made much more efficient for large constant pools.
1484 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
)
1485 if (!Constants
[i
].isMachineConstantPoolEntry() &&
1486 CanShareConstantPoolEntry(Constants
[i
].Val
.ConstVal
, C
, DL
)) {
1487 if (Constants
[i
].getAlign() < Alignment
)
1488 Constants
[i
].Alignment
= Alignment
;
1492 Constants
.push_back(MachineConstantPoolEntry(C
, Alignment
));
1493 return Constants
.size()-1;
1496 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue
*V
,
1498 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1500 // Check to see if we already have this constant.
1502 // FIXME, this could be made much more efficient for large constant pools.
1503 int Idx
= V
->getExistingMachineCPValue(this, Alignment
);
1505 MachineCPVsSharingEntries
.insert(V
);
1506 return (unsigned)Idx
;
1509 Constants
.push_back(MachineConstantPoolEntry(V
, Alignment
));
1510 return Constants
.size()-1;
1513 void MachineConstantPool::print(raw_ostream
&OS
) const {
1514 if (Constants
.empty()) return;
1516 OS
<< "Constant Pool:\n";
1517 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
) {
1518 OS
<< " cp#" << i
<< ": ";
1519 if (Constants
[i
].isMachineConstantPoolEntry())
1520 Constants
[i
].Val
.MachineCPVal
->print(OS
);
1522 Constants
[i
].Val
.ConstVal
->printAsOperand(OS
, /*PrintType=*/false);
1523 OS
<< ", align=" << Constants
[i
].getAlign().value();
1528 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1529 LLVM_DUMP_METHOD
void MachineConstantPool::dump() const { print(dbgs()); }