[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / MachinePipeliner.cpp
blobe561e0af20c957edbda94748909e532b09b6b902
1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
30 //===----------------------------------------------------------------------===//
32 #include "llvm/CodeGen/MachinePipeliner.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/PriorityQueue.h"
38 #include "llvm/ADT/SetOperations.h"
39 #include "llvm/ADT/SetVector.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/SmallSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/iterator_range.h"
45 #include "llvm/Analysis/AliasAnalysis.h"
46 #include "llvm/Analysis/MemoryLocation.h"
47 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/CodeGen/DFAPacketizer.h"
50 #include "llvm/CodeGen/LiveIntervals.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineDominators.h"
53 #include "llvm/CodeGen/MachineFunction.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/MachineInstr.h"
56 #include "llvm/CodeGen/MachineInstrBuilder.h"
57 #include "llvm/CodeGen/MachineLoopInfo.h"
58 #include "llvm/CodeGen/MachineMemOperand.h"
59 #include "llvm/CodeGen/MachineOperand.h"
60 #include "llvm/CodeGen/MachineRegisterInfo.h"
61 #include "llvm/CodeGen/ModuloSchedule.h"
62 #include "llvm/CodeGen/RegisterPressure.h"
63 #include "llvm/CodeGen/ScheduleDAG.h"
64 #include "llvm/CodeGen/ScheduleDAGMutation.h"
65 #include "llvm/CodeGen/TargetOpcodes.h"
66 #include "llvm/CodeGen/TargetRegisterInfo.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/Config/llvm-config.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/MC/LaneBitmask.h"
72 #include "llvm/MC/MCInstrDesc.h"
73 #include "llvm/MC/MCInstrItineraries.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <climits>
84 #include <cstdint>
85 #include <deque>
86 #include <functional>
87 #include <iterator>
88 #include <map>
89 #include <memory>
90 #include <tuple>
91 #include <utility>
92 #include <vector>
94 using namespace llvm;
96 #define DEBUG_TYPE "pipeliner"
98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
99 STATISTIC(NumPipelined, "Number of loops software pipelined");
100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
110 /// A command line option to turn software pipelining on or off.
111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
112 cl::desc("Enable Software Pipelining"));
114 /// A command line option to enable SWP at -Os.
115 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
116 cl::desc("Enable SWP at Os."), cl::Hidden,
117 cl::init(false));
119 /// A command line argument to limit minimum initial interval for pipelining.
120 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
121 cl::desc("Size limit for the MII."),
122 cl::Hidden, cl::init(27));
124 /// A command line argument to limit the number of stages in the pipeline.
125 static cl::opt<int>
126 SwpMaxStages("pipeliner-max-stages",
127 cl::desc("Maximum stages allowed in the generated scheduled."),
128 cl::Hidden, cl::init(3));
130 /// A command line option to disable the pruning of chain dependences due to
131 /// an unrelated Phi.
132 static cl::opt<bool>
133 SwpPruneDeps("pipeliner-prune-deps",
134 cl::desc("Prune dependences between unrelated Phi nodes."),
135 cl::Hidden, cl::init(true));
137 /// A command line option to disable the pruning of loop carried order
138 /// dependences.
139 static cl::opt<bool>
140 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
141 cl::desc("Prune loop carried order dependences."),
142 cl::Hidden, cl::init(true));
144 #ifndef NDEBUG
145 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
146 #endif
148 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
149 cl::ReallyHidden,
150 cl::desc("Ignore RecMII"));
152 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
153 cl::init(false));
154 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
155 cl::init(false));
157 static cl::opt<bool> EmitTestAnnotations(
158 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
159 cl::desc("Instead of emitting the pipelined code, annotate instructions "
160 "with the generated schedule for feeding into the "
161 "-modulo-schedule-test pass"));
163 static cl::opt<bool> ExperimentalCodeGen(
164 "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
165 cl::desc(
166 "Use the experimental peeling code generator for software pipelining"));
168 namespace llvm {
170 // A command line option to enable the CopyToPhi DAG mutation.
171 cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
172 cl::init(true),
173 cl::desc("Enable CopyToPhi DAG Mutation"));
175 } // end namespace llvm
177 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
178 char MachinePipeliner::ID = 0;
179 #ifndef NDEBUG
180 int MachinePipeliner::NumTries = 0;
181 #endif
182 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
184 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
185 "Modulo Software Pipelining", false, false)
186 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
187 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
189 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
190 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
191 "Modulo Software Pipelining", false, false)
193 /// The "main" function for implementing Swing Modulo Scheduling.
194 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
195 if (skipFunction(mf.getFunction()))
196 return false;
198 if (!EnableSWP)
199 return false;
201 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
202 !EnableSWPOptSize.getPosition())
203 return false;
205 if (!mf.getSubtarget().enableMachinePipeliner())
206 return false;
208 // Cannot pipeline loops without instruction itineraries if we are using
209 // DFA for the pipeliner.
210 if (mf.getSubtarget().useDFAforSMS() &&
211 (!mf.getSubtarget().getInstrItineraryData() ||
212 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
213 return false;
215 MF = &mf;
216 MLI = &getAnalysis<MachineLoopInfo>();
217 MDT = &getAnalysis<MachineDominatorTree>();
218 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
219 TII = MF->getSubtarget().getInstrInfo();
220 RegClassInfo.runOnMachineFunction(*MF);
222 for (const auto &L : *MLI)
223 scheduleLoop(*L);
225 return false;
228 /// Attempt to perform the SMS algorithm on the specified loop. This function is
229 /// the main entry point for the algorithm. The function identifies candidate
230 /// loops, calculates the minimum initiation interval, and attempts to schedule
231 /// the loop.
232 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
233 bool Changed = false;
234 for (const auto &InnerLoop : L)
235 Changed |= scheduleLoop(*InnerLoop);
237 #ifndef NDEBUG
238 // Stop trying after reaching the limit (if any).
239 int Limit = SwpLoopLimit;
240 if (Limit >= 0) {
241 if (NumTries >= SwpLoopLimit)
242 return Changed;
243 NumTries++;
245 #endif
247 setPragmaPipelineOptions(L);
248 if (!canPipelineLoop(L)) {
249 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
250 ORE->emit([&]() {
251 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
252 L.getStartLoc(), L.getHeader())
253 << "Failed to pipeline loop";
256 LI.LoopPipelinerInfo.reset();
257 return Changed;
260 ++NumTrytoPipeline;
262 Changed = swingModuloScheduler(L);
264 LI.LoopPipelinerInfo.reset();
265 return Changed;
268 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
269 // Reset the pragma for the next loop in iteration.
270 disabledByPragma = false;
271 II_setByPragma = 0;
273 MachineBasicBlock *LBLK = L.getTopBlock();
275 if (LBLK == nullptr)
276 return;
278 const BasicBlock *BBLK = LBLK->getBasicBlock();
279 if (BBLK == nullptr)
280 return;
282 const Instruction *TI = BBLK->getTerminator();
283 if (TI == nullptr)
284 return;
286 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
287 if (LoopID == nullptr)
288 return;
290 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
291 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
293 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
294 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
296 if (MD == nullptr)
297 continue;
299 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
301 if (S == nullptr)
302 continue;
304 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
305 assert(MD->getNumOperands() == 2 &&
306 "Pipeline initiation interval hint metadata should have two operands.");
307 II_setByPragma =
308 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
309 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
310 } else if (S->getString() == "llvm.loop.pipeline.disable") {
311 disabledByPragma = true;
316 /// Return true if the loop can be software pipelined. The algorithm is
317 /// restricted to loops with a single basic block. Make sure that the
318 /// branch in the loop can be analyzed.
319 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
320 if (L.getNumBlocks() != 1) {
321 ORE->emit([&]() {
322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
323 L.getStartLoc(), L.getHeader())
324 << "Not a single basic block: "
325 << ore::NV("NumBlocks", L.getNumBlocks());
327 return false;
330 if (disabledByPragma) {
331 ORE->emit([&]() {
332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
333 L.getStartLoc(), L.getHeader())
334 << "Disabled by Pragma.";
336 return false;
339 // Check if the branch can't be understood because we can't do pipelining
340 // if that's the case.
341 LI.TBB = nullptr;
342 LI.FBB = nullptr;
343 LI.BrCond.clear();
344 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
346 NumFailBranch++;
347 ORE->emit([&]() {
348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
349 L.getStartLoc(), L.getHeader())
350 << "The branch can't be understood";
352 return false;
355 LI.LoopInductionVar = nullptr;
356 LI.LoopCompare = nullptr;
357 LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock());
358 if (!LI.LoopPipelinerInfo) {
359 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
360 NumFailLoop++;
361 ORE->emit([&]() {
362 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
363 L.getStartLoc(), L.getHeader())
364 << "The loop structure is not supported";
366 return false;
369 if (!L.getLoopPreheader()) {
370 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
371 NumFailPreheader++;
372 ORE->emit([&]() {
373 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
374 L.getStartLoc(), L.getHeader())
375 << "No loop preheader found";
377 return false;
380 // Remove any subregisters from inputs to phi nodes.
381 preprocessPhiNodes(*L.getHeader());
382 return true;
385 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
386 MachineRegisterInfo &MRI = MF->getRegInfo();
387 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
389 for (MachineInstr &PI : B.phis()) {
390 MachineOperand &DefOp = PI.getOperand(0);
391 assert(DefOp.getSubReg() == 0);
392 auto *RC = MRI.getRegClass(DefOp.getReg());
394 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
395 MachineOperand &RegOp = PI.getOperand(i);
396 if (RegOp.getSubReg() == 0)
397 continue;
399 // If the operand uses a subregister, replace it with a new register
400 // without subregisters, and generate a copy to the new register.
401 Register NewReg = MRI.createVirtualRegister(RC);
402 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
403 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
404 const DebugLoc &DL = PredB.findDebugLoc(At);
405 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
406 .addReg(RegOp.getReg(), getRegState(RegOp),
407 RegOp.getSubReg());
408 Slots.insertMachineInstrInMaps(*Copy);
409 RegOp.setReg(NewReg);
410 RegOp.setSubReg(0);
415 /// The SMS algorithm consists of the following main steps:
416 /// 1. Computation and analysis of the dependence graph.
417 /// 2. Ordering of the nodes (instructions).
418 /// 3. Attempt to Schedule the loop.
419 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
420 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
422 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
423 II_setByPragma, LI.LoopPipelinerInfo.get());
425 MachineBasicBlock *MBB = L.getHeader();
426 // The kernel should not include any terminator instructions. These
427 // will be added back later.
428 SMS.startBlock(MBB);
430 // Compute the number of 'real' instructions in the basic block by
431 // ignoring terminators.
432 unsigned size = MBB->size();
433 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
434 E = MBB->instr_end();
435 I != E; ++I, --size)
438 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
439 SMS.schedule();
440 SMS.exitRegion();
442 SMS.finishBlock();
443 return SMS.hasNewSchedule();
446 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
447 AU.addRequired<AAResultsWrapperPass>();
448 AU.addPreserved<AAResultsWrapperPass>();
449 AU.addRequired<MachineLoopInfo>();
450 AU.addRequired<MachineDominatorTree>();
451 AU.addRequired<LiveIntervals>();
452 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
453 MachineFunctionPass::getAnalysisUsage(AU);
456 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
457 if (II_setByPragma > 0)
458 MII = II_setByPragma;
459 else
460 MII = std::max(ResMII, RecMII);
463 void SwingSchedulerDAG::setMAX_II() {
464 if (II_setByPragma > 0)
465 MAX_II = II_setByPragma;
466 else
467 MAX_II = MII + 10;
470 /// We override the schedule function in ScheduleDAGInstrs to implement the
471 /// scheduling part of the Swing Modulo Scheduling algorithm.
472 void SwingSchedulerDAG::schedule() {
473 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
474 buildSchedGraph(AA);
475 addLoopCarriedDependences(AA);
476 updatePhiDependences();
477 Topo.InitDAGTopologicalSorting();
478 changeDependences();
479 postprocessDAG();
480 LLVM_DEBUG(dump());
482 NodeSetType NodeSets;
483 findCircuits(NodeSets);
484 NodeSetType Circuits = NodeSets;
486 // Calculate the MII.
487 unsigned ResMII = calculateResMII();
488 unsigned RecMII = calculateRecMII(NodeSets);
490 fuseRecs(NodeSets);
492 // This flag is used for testing and can cause correctness problems.
493 if (SwpIgnoreRecMII)
494 RecMII = 0;
496 setMII(ResMII, RecMII);
497 setMAX_II();
499 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
500 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
502 // Can't schedule a loop without a valid MII.
503 if (MII == 0) {
504 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
505 NumFailZeroMII++;
506 Pass.ORE->emit([&]() {
507 return MachineOptimizationRemarkAnalysis(
508 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
509 << "Invalid Minimal Initiation Interval: 0";
511 return;
514 // Don't pipeline large loops.
515 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
516 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
517 << ", we don't pipeline large loops\n");
518 NumFailLargeMaxMII++;
519 Pass.ORE->emit([&]() {
520 return MachineOptimizationRemarkAnalysis(
521 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
522 << "Minimal Initiation Interval too large: "
523 << ore::NV("MII", (int)MII) << " > "
524 << ore::NV("SwpMaxMii", SwpMaxMii) << "."
525 << "Refer to -pipeliner-max-mii.";
527 return;
530 computeNodeFunctions(NodeSets);
532 registerPressureFilter(NodeSets);
534 colocateNodeSets(NodeSets);
536 checkNodeSets(NodeSets);
538 LLVM_DEBUG({
539 for (auto &I : NodeSets) {
540 dbgs() << " Rec NodeSet ";
541 I.dump();
545 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
547 groupRemainingNodes(NodeSets);
549 removeDuplicateNodes(NodeSets);
551 LLVM_DEBUG({
552 for (auto &I : NodeSets) {
553 dbgs() << " NodeSet ";
554 I.dump();
558 computeNodeOrder(NodeSets);
560 // check for node order issues
561 checkValidNodeOrder(Circuits);
563 SMSchedule Schedule(Pass.MF);
564 Scheduled = schedulePipeline(Schedule);
566 if (!Scheduled){
567 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
568 NumFailNoSchedule++;
569 Pass.ORE->emit([&]() {
570 return MachineOptimizationRemarkAnalysis(
571 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
572 << "Unable to find schedule";
574 return;
577 unsigned numStages = Schedule.getMaxStageCount();
578 // No need to generate pipeline if there are no overlapped iterations.
579 if (numStages == 0) {
580 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
581 NumFailZeroStage++;
582 Pass.ORE->emit([&]() {
583 return MachineOptimizationRemarkAnalysis(
584 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
585 << "No need to pipeline - no overlapped iterations in schedule.";
587 return;
589 // Check that the maximum stage count is less than user-defined limit.
590 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
591 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
592 << " : too many stages, abort\n");
593 NumFailLargeMaxStage++;
594 Pass.ORE->emit([&]() {
595 return MachineOptimizationRemarkAnalysis(
596 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
597 << "Too many stages in schedule: "
598 << ore::NV("numStages", (int)numStages) << " > "
599 << ore::NV("SwpMaxStages", SwpMaxStages)
600 << ". Refer to -pipeliner-max-stages.";
602 return;
605 Pass.ORE->emit([&]() {
606 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
607 Loop.getHeader())
608 << "Pipelined succesfully!";
611 // Generate the schedule as a ModuloSchedule.
612 DenseMap<MachineInstr *, int> Cycles, Stages;
613 std::vector<MachineInstr *> OrderedInsts;
614 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
615 ++Cycle) {
616 for (SUnit *SU : Schedule.getInstructions(Cycle)) {
617 OrderedInsts.push_back(SU->getInstr());
618 Cycles[SU->getInstr()] = Cycle;
619 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
622 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
623 for (auto &KV : NewMIs) {
624 Cycles[KV.first] = Cycles[KV.second];
625 Stages[KV.first] = Stages[KV.second];
626 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
629 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
630 std::move(Stages));
631 if (EmitTestAnnotations) {
632 assert(NewInstrChanges.empty() &&
633 "Cannot serialize a schedule with InstrChanges!");
634 ModuloScheduleTestAnnotater MSTI(MF, MS);
635 MSTI.annotate();
636 return;
638 // The experimental code generator can't work if there are InstChanges.
639 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
640 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
641 MSE.expand();
642 } else {
643 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
644 MSE.expand();
645 MSE.cleanup();
647 ++NumPipelined;
650 /// Clean up after the software pipeliner runs.
651 void SwingSchedulerDAG::finishBlock() {
652 for (auto &KV : NewMIs)
653 MF.deleteMachineInstr(KV.second);
654 NewMIs.clear();
656 // Call the superclass.
657 ScheduleDAGInstrs::finishBlock();
660 /// Return the register values for the operands of a Phi instruction.
661 /// This function assume the instruction is a Phi.
662 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
663 unsigned &InitVal, unsigned &LoopVal) {
664 assert(Phi.isPHI() && "Expecting a Phi.");
666 InitVal = 0;
667 LoopVal = 0;
668 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
669 if (Phi.getOperand(i + 1).getMBB() != Loop)
670 InitVal = Phi.getOperand(i).getReg();
671 else
672 LoopVal = Phi.getOperand(i).getReg();
674 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
677 /// Return the Phi register value that comes the loop block.
678 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
679 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
680 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
681 return Phi.getOperand(i).getReg();
682 return 0;
685 /// Return true if SUb can be reached from SUa following the chain edges.
686 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
687 SmallPtrSet<SUnit *, 8> Visited;
688 SmallVector<SUnit *, 8> Worklist;
689 Worklist.push_back(SUa);
690 while (!Worklist.empty()) {
691 const SUnit *SU = Worklist.pop_back_val();
692 for (const auto &SI : SU->Succs) {
693 SUnit *SuccSU = SI.getSUnit();
694 if (SI.getKind() == SDep::Order) {
695 if (Visited.count(SuccSU))
696 continue;
697 if (SuccSU == SUb)
698 return true;
699 Worklist.push_back(SuccSU);
700 Visited.insert(SuccSU);
704 return false;
707 /// Return true if the instruction causes a chain between memory
708 /// references before and after it.
709 static bool isDependenceBarrier(MachineInstr &MI) {
710 return MI.isCall() || MI.mayRaiseFPException() ||
711 MI.hasUnmodeledSideEffects() ||
712 (MI.hasOrderedMemoryRef() &&
713 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
716 /// Return the underlying objects for the memory references of an instruction.
717 /// This function calls the code in ValueTracking, but first checks that the
718 /// instruction has a memory operand.
719 static void getUnderlyingObjects(const MachineInstr *MI,
720 SmallVectorImpl<const Value *> &Objs) {
721 if (!MI->hasOneMemOperand())
722 return;
723 MachineMemOperand *MM = *MI->memoperands_begin();
724 if (!MM->getValue())
725 return;
726 getUnderlyingObjects(MM->getValue(), Objs);
727 for (const Value *V : Objs) {
728 if (!isIdentifiedObject(V)) {
729 Objs.clear();
730 return;
732 Objs.push_back(V);
736 /// Add a chain edge between a load and store if the store can be an
737 /// alias of the load on a subsequent iteration, i.e., a loop carried
738 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
739 /// but that code doesn't create loop carried dependences.
740 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
741 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
742 Value *UnknownValue =
743 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
744 for (auto &SU : SUnits) {
745 MachineInstr &MI = *SU.getInstr();
746 if (isDependenceBarrier(MI))
747 PendingLoads.clear();
748 else if (MI.mayLoad()) {
749 SmallVector<const Value *, 4> Objs;
750 ::getUnderlyingObjects(&MI, Objs);
751 if (Objs.empty())
752 Objs.push_back(UnknownValue);
753 for (const auto *V : Objs) {
754 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
755 SUs.push_back(&SU);
757 } else if (MI.mayStore()) {
758 SmallVector<const Value *, 4> Objs;
759 ::getUnderlyingObjects(&MI, Objs);
760 if (Objs.empty())
761 Objs.push_back(UnknownValue);
762 for (const auto *V : Objs) {
763 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
764 PendingLoads.find(V);
765 if (I == PendingLoads.end())
766 continue;
767 for (auto *Load : I->second) {
768 if (isSuccOrder(Load, &SU))
769 continue;
770 MachineInstr &LdMI = *Load->getInstr();
771 // First, perform the cheaper check that compares the base register.
772 // If they are the same and the load offset is less than the store
773 // offset, then mark the dependence as loop carried potentially.
774 const MachineOperand *BaseOp1, *BaseOp2;
775 int64_t Offset1, Offset2;
776 bool Offset1IsScalable, Offset2IsScalable;
777 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
778 Offset1IsScalable, TRI) &&
779 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
780 Offset2IsScalable, TRI)) {
781 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
782 Offset1IsScalable == Offset2IsScalable &&
783 (int)Offset1 < (int)Offset2) {
784 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
785 "What happened to the chain edge?");
786 SDep Dep(Load, SDep::Barrier);
787 Dep.setLatency(1);
788 SU.addPred(Dep);
789 continue;
792 // Second, the more expensive check that uses alias analysis on the
793 // base registers. If they alias, and the load offset is less than
794 // the store offset, the mark the dependence as loop carried.
795 if (!AA) {
796 SDep Dep(Load, SDep::Barrier);
797 Dep.setLatency(1);
798 SU.addPred(Dep);
799 continue;
801 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
802 MachineMemOperand *MMO2 = *MI.memoperands_begin();
803 if (!MMO1->getValue() || !MMO2->getValue()) {
804 SDep Dep(Load, SDep::Barrier);
805 Dep.setLatency(1);
806 SU.addPred(Dep);
807 continue;
809 if (MMO1->getValue() == MMO2->getValue() &&
810 MMO1->getOffset() <= MMO2->getOffset()) {
811 SDep Dep(Load, SDep::Barrier);
812 Dep.setLatency(1);
813 SU.addPred(Dep);
814 continue;
816 if (!AA->isNoAlias(
817 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
818 MemoryLocation::getAfter(MMO2->getValue(),
819 MMO2->getAAInfo()))) {
820 SDep Dep(Load, SDep::Barrier);
821 Dep.setLatency(1);
822 SU.addPred(Dep);
830 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
831 /// processes dependences for PHIs. This function adds true dependences
832 /// from a PHI to a use, and a loop carried dependence from the use to the
833 /// PHI. The loop carried dependence is represented as an anti dependence
834 /// edge. This function also removes chain dependences between unrelated
835 /// PHIs.
836 void SwingSchedulerDAG::updatePhiDependences() {
837 SmallVector<SDep, 4> RemoveDeps;
838 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
840 // Iterate over each DAG node.
841 for (SUnit &I : SUnits) {
842 RemoveDeps.clear();
843 // Set to true if the instruction has an operand defined by a Phi.
844 unsigned HasPhiUse = 0;
845 unsigned HasPhiDef = 0;
846 MachineInstr *MI = I.getInstr();
847 // Iterate over each operand, and we process the definitions.
848 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
849 MOE = MI->operands_end();
850 MOI != MOE; ++MOI) {
851 if (!MOI->isReg())
852 continue;
853 Register Reg = MOI->getReg();
854 if (MOI->isDef()) {
855 // If the register is used by a Phi, then create an anti dependence.
856 for (MachineRegisterInfo::use_instr_iterator
857 UI = MRI.use_instr_begin(Reg),
858 UE = MRI.use_instr_end();
859 UI != UE; ++UI) {
860 MachineInstr *UseMI = &*UI;
861 SUnit *SU = getSUnit(UseMI);
862 if (SU != nullptr && UseMI->isPHI()) {
863 if (!MI->isPHI()) {
864 SDep Dep(SU, SDep::Anti, Reg);
865 Dep.setLatency(1);
866 I.addPred(Dep);
867 } else {
868 HasPhiDef = Reg;
869 // Add a chain edge to a dependent Phi that isn't an existing
870 // predecessor.
871 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
872 I.addPred(SDep(SU, SDep::Barrier));
876 } else if (MOI->isUse()) {
877 // If the register is defined by a Phi, then create a true dependence.
878 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
879 if (DefMI == nullptr)
880 continue;
881 SUnit *SU = getSUnit(DefMI);
882 if (SU != nullptr && DefMI->isPHI()) {
883 if (!MI->isPHI()) {
884 SDep Dep(SU, SDep::Data, Reg);
885 Dep.setLatency(0);
886 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
887 I.addPred(Dep);
888 } else {
889 HasPhiUse = Reg;
890 // Add a chain edge to a dependent Phi that isn't an existing
891 // predecessor.
892 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
893 I.addPred(SDep(SU, SDep::Barrier));
898 // Remove order dependences from an unrelated Phi.
899 if (!SwpPruneDeps)
900 continue;
901 for (auto &PI : I.Preds) {
902 MachineInstr *PMI = PI.getSUnit()->getInstr();
903 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
904 if (I.getInstr()->isPHI()) {
905 if (PMI->getOperand(0).getReg() == HasPhiUse)
906 continue;
907 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
908 continue;
910 RemoveDeps.push_back(PI);
913 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
914 I.removePred(RemoveDeps[i]);
918 /// Iterate over each DAG node and see if we can change any dependences
919 /// in order to reduce the recurrence MII.
920 void SwingSchedulerDAG::changeDependences() {
921 // See if an instruction can use a value from the previous iteration.
922 // If so, we update the base and offset of the instruction and change
923 // the dependences.
924 for (SUnit &I : SUnits) {
925 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
926 int64_t NewOffset = 0;
927 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
928 NewOffset))
929 continue;
931 // Get the MI and SUnit for the instruction that defines the original base.
932 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
933 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
934 if (!DefMI)
935 continue;
936 SUnit *DefSU = getSUnit(DefMI);
937 if (!DefSU)
938 continue;
939 // Get the MI and SUnit for the instruction that defins the new base.
940 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
941 if (!LastMI)
942 continue;
943 SUnit *LastSU = getSUnit(LastMI);
944 if (!LastSU)
945 continue;
947 if (Topo.IsReachable(&I, LastSU))
948 continue;
950 // Remove the dependence. The value now depends on a prior iteration.
951 SmallVector<SDep, 4> Deps;
952 for (const SDep &P : I.Preds)
953 if (P.getSUnit() == DefSU)
954 Deps.push_back(P);
955 for (int i = 0, e = Deps.size(); i != e; i++) {
956 Topo.RemovePred(&I, Deps[i].getSUnit());
957 I.removePred(Deps[i]);
959 // Remove the chain dependence between the instructions.
960 Deps.clear();
961 for (auto &P : LastSU->Preds)
962 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
963 Deps.push_back(P);
964 for (int i = 0, e = Deps.size(); i != e; i++) {
965 Topo.RemovePred(LastSU, Deps[i].getSUnit());
966 LastSU->removePred(Deps[i]);
969 // Add a dependence between the new instruction and the instruction
970 // that defines the new base.
971 SDep Dep(&I, SDep::Anti, NewBase);
972 Topo.AddPred(LastSU, &I);
973 LastSU->addPred(Dep);
975 // Remember the base and offset information so that we can update the
976 // instruction during code generation.
977 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
981 namespace {
983 // FuncUnitSorter - Comparison operator used to sort instructions by
984 // the number of functional unit choices.
985 struct FuncUnitSorter {
986 const InstrItineraryData *InstrItins;
987 const MCSubtargetInfo *STI;
988 DenseMap<InstrStage::FuncUnits, unsigned> Resources;
990 FuncUnitSorter(const TargetSubtargetInfo &TSI)
991 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
993 // Compute the number of functional unit alternatives needed
994 // at each stage, and take the minimum value. We prioritize the
995 // instructions by the least number of choices first.
996 unsigned minFuncUnits(const MachineInstr *Inst,
997 InstrStage::FuncUnits &F) const {
998 unsigned SchedClass = Inst->getDesc().getSchedClass();
999 unsigned min = UINT_MAX;
1000 if (InstrItins && !InstrItins->isEmpty()) {
1001 for (const InstrStage &IS :
1002 make_range(InstrItins->beginStage(SchedClass),
1003 InstrItins->endStage(SchedClass))) {
1004 InstrStage::FuncUnits funcUnits = IS.getUnits();
1005 unsigned numAlternatives = countPopulation(funcUnits);
1006 if (numAlternatives < min) {
1007 min = numAlternatives;
1008 F = funcUnits;
1011 return min;
1013 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1014 const MCSchedClassDesc *SCDesc =
1015 STI->getSchedModel().getSchedClassDesc(SchedClass);
1016 if (!SCDesc->isValid())
1017 // No valid Schedule Class Desc for schedClass, should be
1018 // Pseudo/PostRAPseudo
1019 return min;
1021 for (const MCWriteProcResEntry &PRE :
1022 make_range(STI->getWriteProcResBegin(SCDesc),
1023 STI->getWriteProcResEnd(SCDesc))) {
1024 if (!PRE.Cycles)
1025 continue;
1026 const MCProcResourceDesc *ProcResource =
1027 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1028 unsigned NumUnits = ProcResource->NumUnits;
1029 if (NumUnits < min) {
1030 min = NumUnits;
1031 F = PRE.ProcResourceIdx;
1034 return min;
1036 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1039 // Compute the critical resources needed by the instruction. This
1040 // function records the functional units needed by instructions that
1041 // must use only one functional unit. We use this as a tie breaker
1042 // for computing the resource MII. The instrutions that require
1043 // the same, highly used, functional unit have high priority.
1044 void calcCriticalResources(MachineInstr &MI) {
1045 unsigned SchedClass = MI.getDesc().getSchedClass();
1046 if (InstrItins && !InstrItins->isEmpty()) {
1047 for (const InstrStage &IS :
1048 make_range(InstrItins->beginStage(SchedClass),
1049 InstrItins->endStage(SchedClass))) {
1050 InstrStage::FuncUnits FuncUnits = IS.getUnits();
1051 if (countPopulation(FuncUnits) == 1)
1052 Resources[FuncUnits]++;
1054 return;
1056 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1057 const MCSchedClassDesc *SCDesc =
1058 STI->getSchedModel().getSchedClassDesc(SchedClass);
1059 if (!SCDesc->isValid())
1060 // No valid Schedule Class Desc for schedClass, should be
1061 // Pseudo/PostRAPseudo
1062 return;
1064 for (const MCWriteProcResEntry &PRE :
1065 make_range(STI->getWriteProcResBegin(SCDesc),
1066 STI->getWriteProcResEnd(SCDesc))) {
1067 if (!PRE.Cycles)
1068 continue;
1069 Resources[PRE.ProcResourceIdx]++;
1071 return;
1073 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1076 /// Return true if IS1 has less priority than IS2.
1077 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1078 InstrStage::FuncUnits F1 = 0, F2 = 0;
1079 unsigned MFUs1 = minFuncUnits(IS1, F1);
1080 unsigned MFUs2 = minFuncUnits(IS2, F2);
1081 if (MFUs1 == MFUs2)
1082 return Resources.lookup(F1) < Resources.lookup(F2);
1083 return MFUs1 > MFUs2;
1087 } // end anonymous namespace
1089 /// Calculate the resource constrained minimum initiation interval for the
1090 /// specified loop. We use the DFA to model the resources needed for
1091 /// each instruction, and we ignore dependences. A different DFA is created
1092 /// for each cycle that is required. When adding a new instruction, we attempt
1093 /// to add it to each existing DFA, until a legal space is found. If the
1094 /// instruction cannot be reserved in an existing DFA, we create a new one.
1095 unsigned SwingSchedulerDAG::calculateResMII() {
1097 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1098 SmallVector<ResourceManager*, 8> Resources;
1099 MachineBasicBlock *MBB = Loop.getHeader();
1100 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1102 // Sort the instructions by the number of available choices for scheduling,
1103 // least to most. Use the number of critical resources as the tie breaker.
1104 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1105 for (MachineInstr &MI :
1106 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator()))
1107 FUS.calcCriticalResources(MI);
1108 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1109 FuncUnitOrder(FUS);
1111 for (MachineInstr &MI :
1112 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator()))
1113 FuncUnitOrder.push(&MI);
1115 while (!FuncUnitOrder.empty()) {
1116 MachineInstr *MI = FuncUnitOrder.top();
1117 FuncUnitOrder.pop();
1118 if (TII->isZeroCost(MI->getOpcode()))
1119 continue;
1120 // Attempt to reserve the instruction in an existing DFA. At least one
1121 // DFA is needed for each cycle.
1122 unsigned NumCycles = getSUnit(MI)->Latency;
1123 unsigned ReservedCycles = 0;
1124 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1125 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1126 LLVM_DEBUG({
1127 dbgs() << "Trying to reserve resource for " << NumCycles
1128 << " cycles for \n";
1129 MI->dump();
1131 for (unsigned C = 0; C < NumCycles; ++C)
1132 while (RI != RE) {
1133 if ((*RI)->canReserveResources(*MI)) {
1134 (*RI)->reserveResources(*MI);
1135 ++ReservedCycles;
1136 break;
1138 RI++;
1140 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1141 << ", NumCycles:" << NumCycles << "\n");
1142 // Add new DFAs, if needed, to reserve resources.
1143 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1144 LLVM_DEBUG(if (SwpDebugResource) dbgs()
1145 << "NewResource created to reserve resources"
1146 << "\n");
1147 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1148 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1149 NewResource->reserveResources(*MI);
1150 Resources.push_back(NewResource);
1153 int Resmii = Resources.size();
1154 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
1155 // Delete the memory for each of the DFAs that were created earlier.
1156 for (ResourceManager *RI : Resources) {
1157 ResourceManager *D = RI;
1158 delete D;
1160 Resources.clear();
1161 return Resmii;
1164 /// Calculate the recurrence-constrainted minimum initiation interval.
1165 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1166 /// for each circuit. The II needs to satisfy the inequality
1167 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1168 /// II that satisfies the inequality, and the RecMII is the maximum
1169 /// of those values.
1170 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1171 unsigned RecMII = 0;
1173 for (NodeSet &Nodes : NodeSets) {
1174 if (Nodes.empty())
1175 continue;
1177 unsigned Delay = Nodes.getLatency();
1178 unsigned Distance = 1;
1180 // ii = ceil(delay / distance)
1181 unsigned CurMII = (Delay + Distance - 1) / Distance;
1182 Nodes.setRecMII(CurMII);
1183 if (CurMII > RecMII)
1184 RecMII = CurMII;
1187 return RecMII;
1190 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1191 /// but we do this to find the circuits, and then change them back.
1192 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1193 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1194 for (SUnit &SU : SUnits) {
1195 for (SDep &Pred : SU.Preds)
1196 if (Pred.getKind() == SDep::Anti)
1197 DepsAdded.push_back(std::make_pair(&SU, Pred));
1199 for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1200 // Remove this anti dependency and add one in the reverse direction.
1201 SUnit *SU = P.first;
1202 SDep &D = P.second;
1203 SUnit *TargetSU = D.getSUnit();
1204 unsigned Reg = D.getReg();
1205 unsigned Lat = D.getLatency();
1206 SU->removePred(D);
1207 SDep Dep(SU, SDep::Anti, Reg);
1208 Dep.setLatency(Lat);
1209 TargetSU->addPred(Dep);
1213 /// Create the adjacency structure of the nodes in the graph.
1214 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1215 SwingSchedulerDAG *DAG) {
1216 BitVector Added(SUnits.size());
1217 DenseMap<int, int> OutputDeps;
1218 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1219 Added.reset();
1220 // Add any successor to the adjacency matrix and exclude duplicates.
1221 for (auto &SI : SUnits[i].Succs) {
1222 // Only create a back-edge on the first and last nodes of a dependence
1223 // chain. This records any chains and adds them later.
1224 if (SI.getKind() == SDep::Output) {
1225 int N = SI.getSUnit()->NodeNum;
1226 int BackEdge = i;
1227 auto Dep = OutputDeps.find(BackEdge);
1228 if (Dep != OutputDeps.end()) {
1229 BackEdge = Dep->second;
1230 OutputDeps.erase(Dep);
1232 OutputDeps[N] = BackEdge;
1234 // Do not process a boundary node, an artificial node.
1235 // A back-edge is processed only if it goes to a Phi.
1236 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1237 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1238 continue;
1239 int N = SI.getSUnit()->NodeNum;
1240 if (!Added.test(N)) {
1241 AdjK[i].push_back(N);
1242 Added.set(N);
1245 // A chain edge between a store and a load is treated as a back-edge in the
1246 // adjacency matrix.
1247 for (auto &PI : SUnits[i].Preds) {
1248 if (!SUnits[i].getInstr()->mayStore() ||
1249 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1250 continue;
1251 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1252 int N = PI.getSUnit()->NodeNum;
1253 if (!Added.test(N)) {
1254 AdjK[i].push_back(N);
1255 Added.set(N);
1260 // Add back-edges in the adjacency matrix for the output dependences.
1261 for (auto &OD : OutputDeps)
1262 if (!Added.test(OD.second)) {
1263 AdjK[OD.first].push_back(OD.second);
1264 Added.set(OD.second);
1268 /// Identify an elementary circuit in the dependence graph starting at the
1269 /// specified node.
1270 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1271 bool HasBackedge) {
1272 SUnit *SV = &SUnits[V];
1273 bool F = false;
1274 Stack.insert(SV);
1275 Blocked.set(V);
1277 for (auto W : AdjK[V]) {
1278 if (NumPaths > MaxPaths)
1279 break;
1280 if (W < S)
1281 continue;
1282 if (W == S) {
1283 if (!HasBackedge)
1284 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1285 F = true;
1286 ++NumPaths;
1287 break;
1288 } else if (!Blocked.test(W)) {
1289 if (circuit(W, S, NodeSets,
1290 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1291 F = true;
1295 if (F)
1296 unblock(V);
1297 else {
1298 for (auto W : AdjK[V]) {
1299 if (W < S)
1300 continue;
1301 B[W].insert(SV);
1304 Stack.pop_back();
1305 return F;
1308 /// Unblock a node in the circuit finding algorithm.
1309 void SwingSchedulerDAG::Circuits::unblock(int U) {
1310 Blocked.reset(U);
1311 SmallPtrSet<SUnit *, 4> &BU = B[U];
1312 while (!BU.empty()) {
1313 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1314 assert(SI != BU.end() && "Invalid B set.");
1315 SUnit *W = *SI;
1316 BU.erase(W);
1317 if (Blocked.test(W->NodeNum))
1318 unblock(W->NodeNum);
1322 /// Identify all the elementary circuits in the dependence graph using
1323 /// Johnson's circuit algorithm.
1324 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1325 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1326 // but we do this to find the circuits, and then change them back.
1327 swapAntiDependences(SUnits);
1329 Circuits Cir(SUnits, Topo);
1330 // Create the adjacency structure.
1331 Cir.createAdjacencyStructure(this);
1332 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1333 Cir.reset();
1334 Cir.circuit(i, i, NodeSets);
1337 // Change the dependences back so that we've created a DAG again.
1338 swapAntiDependences(SUnits);
1341 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1342 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1343 // additional copies that are needed across iterations. An artificial dependence
1344 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1346 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1347 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1348 // PHI-------True-Dep------> USEOfPhi
1350 // The mutation creates
1351 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1353 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1354 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1355 // late to avoid additional copies across iterations. The possible scheduling
1356 // order would be
1357 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1359 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1360 for (SUnit &SU : DAG->SUnits) {
1361 // Find the COPY/REG_SEQUENCE instruction.
1362 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1363 continue;
1365 // Record the loop carried PHIs.
1366 SmallVector<SUnit *, 4> PHISUs;
1367 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1368 SmallVector<SUnit *, 4> SrcSUs;
1370 for (auto &Dep : SU.Preds) {
1371 SUnit *TmpSU = Dep.getSUnit();
1372 MachineInstr *TmpMI = TmpSU->getInstr();
1373 SDep::Kind DepKind = Dep.getKind();
1374 // Save the loop carried PHI.
1375 if (DepKind == SDep::Anti && TmpMI->isPHI())
1376 PHISUs.push_back(TmpSU);
1377 // Save the source of COPY/REG_SEQUENCE.
1378 // If the source has no pre-decessors, we will end up creating cycles.
1379 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1380 SrcSUs.push_back(TmpSU);
1383 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1384 continue;
1386 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1387 // SUnit to the container.
1388 SmallVector<SUnit *, 8> UseSUs;
1389 // Do not use iterator based loop here as we are updating the container.
1390 for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1391 for (auto &Dep : PHISUs[Index]->Succs) {
1392 if (Dep.getKind() != SDep::Data)
1393 continue;
1395 SUnit *TmpSU = Dep.getSUnit();
1396 MachineInstr *TmpMI = TmpSU->getInstr();
1397 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1398 PHISUs.push_back(TmpSU);
1399 continue;
1401 UseSUs.push_back(TmpSU);
1405 if (UseSUs.size() == 0)
1406 continue;
1408 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1409 // Add the artificial dependencies if it does not form a cycle.
1410 for (auto *I : UseSUs) {
1411 for (auto *Src : SrcSUs) {
1412 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1413 Src->addPred(SDep(I, SDep::Artificial));
1414 SDAG->Topo.AddPred(Src, I);
1421 /// Return true for DAG nodes that we ignore when computing the cost functions.
1422 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1423 /// in the calculation of the ASAP, ALAP, etc functions.
1424 static bool ignoreDependence(const SDep &D, bool isPred) {
1425 if (D.isArtificial() || D.getSUnit()->isBoundaryNode())
1426 return true;
1427 return D.getKind() == SDep::Anti && isPred;
1430 /// Compute several functions need to order the nodes for scheduling.
1431 /// ASAP - Earliest time to schedule a node.
1432 /// ALAP - Latest time to schedule a node.
1433 /// MOV - Mobility function, difference between ALAP and ASAP.
1434 /// D - Depth of each node.
1435 /// H - Height of each node.
1436 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1437 ScheduleInfo.resize(SUnits.size());
1439 LLVM_DEBUG({
1440 for (int I : Topo) {
1441 const SUnit &SU = SUnits[I];
1442 dumpNode(SU);
1446 int maxASAP = 0;
1447 // Compute ASAP and ZeroLatencyDepth.
1448 for (int I : Topo) {
1449 int asap = 0;
1450 int zeroLatencyDepth = 0;
1451 SUnit *SU = &SUnits[I];
1452 for (const SDep &P : SU->Preds) {
1453 SUnit *pred = P.getSUnit();
1454 if (P.getLatency() == 0)
1455 zeroLatencyDepth =
1456 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1457 if (ignoreDependence(P, true))
1458 continue;
1459 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
1460 getDistance(pred, SU, P) * MII));
1462 maxASAP = std::max(maxASAP, asap);
1463 ScheduleInfo[I].ASAP = asap;
1464 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1467 // Compute ALAP, ZeroLatencyHeight, and MOV.
1468 for (int I : llvm::reverse(Topo)) {
1469 int alap = maxASAP;
1470 int zeroLatencyHeight = 0;
1471 SUnit *SU = &SUnits[I];
1472 for (const SDep &S : SU->Succs) {
1473 SUnit *succ = S.getSUnit();
1474 if (succ->isBoundaryNode())
1475 continue;
1476 if (S.getLatency() == 0)
1477 zeroLatencyHeight =
1478 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1479 if (ignoreDependence(S, true))
1480 continue;
1481 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
1482 getDistance(SU, succ, S) * MII));
1485 ScheduleInfo[I].ALAP = alap;
1486 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1489 // After computing the node functions, compute the summary for each node set.
1490 for (NodeSet &I : NodeSets)
1491 I.computeNodeSetInfo(this);
1493 LLVM_DEBUG({
1494 for (unsigned i = 0; i < SUnits.size(); i++) {
1495 dbgs() << "\tNode " << i << ":\n";
1496 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1497 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1498 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1499 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1500 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1501 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1502 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1507 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1508 /// as the predecessors of the elements of NodeOrder that are not also in
1509 /// NodeOrder.
1510 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1511 SmallSetVector<SUnit *, 8> &Preds,
1512 const NodeSet *S = nullptr) {
1513 Preds.clear();
1514 for (const SUnit *SU : NodeOrder) {
1515 for (const SDep &Pred : SU->Preds) {
1516 if (S && S->count(Pred.getSUnit()) == 0)
1517 continue;
1518 if (ignoreDependence(Pred, true))
1519 continue;
1520 if (NodeOrder.count(Pred.getSUnit()) == 0)
1521 Preds.insert(Pred.getSUnit());
1523 // Back-edges are predecessors with an anti-dependence.
1524 for (const SDep &Succ : SU->Succs) {
1525 if (Succ.getKind() != SDep::Anti)
1526 continue;
1527 if (S && S->count(Succ.getSUnit()) == 0)
1528 continue;
1529 if (NodeOrder.count(Succ.getSUnit()) == 0)
1530 Preds.insert(Succ.getSUnit());
1533 return !Preds.empty();
1536 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1537 /// as the successors of the elements of NodeOrder that are not also in
1538 /// NodeOrder.
1539 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1540 SmallSetVector<SUnit *, 8> &Succs,
1541 const NodeSet *S = nullptr) {
1542 Succs.clear();
1543 for (const SUnit *SU : NodeOrder) {
1544 for (const SDep &Succ : SU->Succs) {
1545 if (S && S->count(Succ.getSUnit()) == 0)
1546 continue;
1547 if (ignoreDependence(Succ, false))
1548 continue;
1549 if (NodeOrder.count(Succ.getSUnit()) == 0)
1550 Succs.insert(Succ.getSUnit());
1552 for (const SDep &Pred : SU->Preds) {
1553 if (Pred.getKind() != SDep::Anti)
1554 continue;
1555 if (S && S->count(Pred.getSUnit()) == 0)
1556 continue;
1557 if (NodeOrder.count(Pred.getSUnit()) == 0)
1558 Succs.insert(Pred.getSUnit());
1561 return !Succs.empty();
1564 /// Return true if there is a path from the specified node to any of the nodes
1565 /// in DestNodes. Keep track and return the nodes in any path.
1566 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1567 SetVector<SUnit *> &DestNodes,
1568 SetVector<SUnit *> &Exclude,
1569 SmallPtrSet<SUnit *, 8> &Visited) {
1570 if (Cur->isBoundaryNode())
1571 return false;
1572 if (Exclude.contains(Cur))
1573 return false;
1574 if (DestNodes.contains(Cur))
1575 return true;
1576 if (!Visited.insert(Cur).second)
1577 return Path.contains(Cur);
1578 bool FoundPath = false;
1579 for (auto &SI : Cur->Succs)
1580 if (!ignoreDependence(SI, false))
1581 FoundPath |=
1582 computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1583 for (auto &PI : Cur->Preds)
1584 if (PI.getKind() == SDep::Anti)
1585 FoundPath |=
1586 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1587 if (FoundPath)
1588 Path.insert(Cur);
1589 return FoundPath;
1592 /// Compute the live-out registers for the instructions in a node-set.
1593 /// The live-out registers are those that are defined in the node-set,
1594 /// but not used. Except for use operands of Phis.
1595 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1596 NodeSet &NS) {
1597 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1598 MachineRegisterInfo &MRI = MF.getRegInfo();
1599 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1600 SmallSet<unsigned, 4> Uses;
1601 for (SUnit *SU : NS) {
1602 const MachineInstr *MI = SU->getInstr();
1603 if (MI->isPHI())
1604 continue;
1605 for (const MachineOperand &MO : MI->operands())
1606 if (MO.isReg() && MO.isUse()) {
1607 Register Reg = MO.getReg();
1608 if (Register::isVirtualRegister(Reg))
1609 Uses.insert(Reg);
1610 else if (MRI.isAllocatable(Reg))
1611 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1612 ++Units)
1613 Uses.insert(*Units);
1616 for (SUnit *SU : NS)
1617 for (const MachineOperand &MO : SU->getInstr()->operands())
1618 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1619 Register Reg = MO.getReg();
1620 if (Register::isVirtualRegister(Reg)) {
1621 if (!Uses.count(Reg))
1622 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1623 LaneBitmask::getNone()));
1624 } else if (MRI.isAllocatable(Reg)) {
1625 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1626 ++Units)
1627 if (!Uses.count(*Units))
1628 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1629 LaneBitmask::getNone()));
1632 RPTracker.addLiveRegs(LiveOutRegs);
1635 /// A heuristic to filter nodes in recurrent node-sets if the register
1636 /// pressure of a set is too high.
1637 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1638 for (auto &NS : NodeSets) {
1639 // Skip small node-sets since they won't cause register pressure problems.
1640 if (NS.size() <= 2)
1641 continue;
1642 IntervalPressure RecRegPressure;
1643 RegPressureTracker RecRPTracker(RecRegPressure);
1644 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1645 computeLiveOuts(MF, RecRPTracker, NS);
1646 RecRPTracker.closeBottom();
1648 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1649 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1650 return A->NodeNum > B->NodeNum;
1653 for (auto &SU : SUnits) {
1654 // Since we're computing the register pressure for a subset of the
1655 // instructions in a block, we need to set the tracker for each
1656 // instruction in the node-set. The tracker is set to the instruction
1657 // just after the one we're interested in.
1658 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1659 RecRPTracker.setPos(std::next(CurInstI));
1661 RegPressureDelta RPDelta;
1662 ArrayRef<PressureChange> CriticalPSets;
1663 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1664 CriticalPSets,
1665 RecRegPressure.MaxSetPressure);
1666 if (RPDelta.Excess.isValid()) {
1667 LLVM_DEBUG(
1668 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1669 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1670 << ":" << RPDelta.Excess.getUnitInc() << "\n");
1671 NS.setExceedPressure(SU);
1672 break;
1674 RecRPTracker.recede();
1679 /// A heuristic to colocate node sets that have the same set of
1680 /// successors.
1681 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1682 unsigned Colocate = 0;
1683 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1684 NodeSet &N1 = NodeSets[i];
1685 SmallSetVector<SUnit *, 8> S1;
1686 if (N1.empty() || !succ_L(N1, S1))
1687 continue;
1688 for (int j = i + 1; j < e; ++j) {
1689 NodeSet &N2 = NodeSets[j];
1690 if (N1.compareRecMII(N2) != 0)
1691 continue;
1692 SmallSetVector<SUnit *, 8> S2;
1693 if (N2.empty() || !succ_L(N2, S2))
1694 continue;
1695 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1696 N1.setColocate(++Colocate);
1697 N2.setColocate(Colocate);
1698 break;
1704 /// Check if the existing node-sets are profitable. If not, then ignore the
1705 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1706 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1707 /// then it's best to try to schedule all instructions together instead of
1708 /// starting with the recurrent node-sets.
1709 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1710 // Look for loops with a large MII.
1711 if (MII < 17)
1712 return;
1713 // Check if the node-set contains only a simple add recurrence.
1714 for (auto &NS : NodeSets) {
1715 if (NS.getRecMII() > 2)
1716 return;
1717 if (NS.getMaxDepth() > MII)
1718 return;
1720 NodeSets.clear();
1721 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1724 /// Add the nodes that do not belong to a recurrence set into groups
1725 /// based upon connected components.
1726 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1727 SetVector<SUnit *> NodesAdded;
1728 SmallPtrSet<SUnit *, 8> Visited;
1729 // Add the nodes that are on a path between the previous node sets and
1730 // the current node set.
1731 for (NodeSet &I : NodeSets) {
1732 SmallSetVector<SUnit *, 8> N;
1733 // Add the nodes from the current node set to the previous node set.
1734 if (succ_L(I, N)) {
1735 SetVector<SUnit *> Path;
1736 for (SUnit *NI : N) {
1737 Visited.clear();
1738 computePath(NI, Path, NodesAdded, I, Visited);
1740 if (!Path.empty())
1741 I.insert(Path.begin(), Path.end());
1743 // Add the nodes from the previous node set to the current node set.
1744 N.clear();
1745 if (succ_L(NodesAdded, N)) {
1746 SetVector<SUnit *> Path;
1747 for (SUnit *NI : N) {
1748 Visited.clear();
1749 computePath(NI, Path, I, NodesAdded, Visited);
1751 if (!Path.empty())
1752 I.insert(Path.begin(), Path.end());
1754 NodesAdded.insert(I.begin(), I.end());
1757 // Create a new node set with the connected nodes of any successor of a node
1758 // in a recurrent set.
1759 NodeSet NewSet;
1760 SmallSetVector<SUnit *, 8> N;
1761 if (succ_L(NodesAdded, N))
1762 for (SUnit *I : N)
1763 addConnectedNodes(I, NewSet, NodesAdded);
1764 if (!NewSet.empty())
1765 NodeSets.push_back(NewSet);
1767 // Create a new node set with the connected nodes of any predecessor of a node
1768 // in a recurrent set.
1769 NewSet.clear();
1770 if (pred_L(NodesAdded, N))
1771 for (SUnit *I : N)
1772 addConnectedNodes(I, NewSet, NodesAdded);
1773 if (!NewSet.empty())
1774 NodeSets.push_back(NewSet);
1776 // Create new nodes sets with the connected nodes any remaining node that
1777 // has no predecessor.
1778 for (SUnit &SU : SUnits) {
1779 if (NodesAdded.count(&SU) == 0) {
1780 NewSet.clear();
1781 addConnectedNodes(&SU, NewSet, NodesAdded);
1782 if (!NewSet.empty())
1783 NodeSets.push_back(NewSet);
1788 /// Add the node to the set, and add all of its connected nodes to the set.
1789 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1790 SetVector<SUnit *> &NodesAdded) {
1791 NewSet.insert(SU);
1792 NodesAdded.insert(SU);
1793 for (auto &SI : SU->Succs) {
1794 SUnit *Successor = SI.getSUnit();
1795 if (!SI.isArtificial() && !Successor->isBoundaryNode() &&
1796 NodesAdded.count(Successor) == 0)
1797 addConnectedNodes(Successor, NewSet, NodesAdded);
1799 for (auto &PI : SU->Preds) {
1800 SUnit *Predecessor = PI.getSUnit();
1801 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1802 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1806 /// Return true if Set1 contains elements in Set2. The elements in common
1807 /// are returned in a different container.
1808 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1809 SmallSetVector<SUnit *, 8> &Result) {
1810 Result.clear();
1811 for (SUnit *SU : Set1) {
1812 if (Set2.count(SU) != 0)
1813 Result.insert(SU);
1815 return !Result.empty();
1818 /// Merge the recurrence node sets that have the same initial node.
1819 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1820 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1821 ++I) {
1822 NodeSet &NI = *I;
1823 for (NodeSetType::iterator J = I + 1; J != E;) {
1824 NodeSet &NJ = *J;
1825 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1826 if (NJ.compareRecMII(NI) > 0)
1827 NI.setRecMII(NJ.getRecMII());
1828 for (SUnit *SU : *J)
1829 I->insert(SU);
1830 NodeSets.erase(J);
1831 E = NodeSets.end();
1832 } else {
1833 ++J;
1839 /// Remove nodes that have been scheduled in previous NodeSets.
1840 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1841 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1842 ++I)
1843 for (NodeSetType::iterator J = I + 1; J != E;) {
1844 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1846 if (J->empty()) {
1847 NodeSets.erase(J);
1848 E = NodeSets.end();
1849 } else {
1850 ++J;
1855 /// Compute an ordered list of the dependence graph nodes, which
1856 /// indicates the order that the nodes will be scheduled. This is a
1857 /// two-level algorithm. First, a partial order is created, which
1858 /// consists of a list of sets ordered from highest to lowest priority.
1859 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1860 SmallSetVector<SUnit *, 8> R;
1861 NodeOrder.clear();
1863 for (auto &Nodes : NodeSets) {
1864 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1865 OrderKind Order;
1866 SmallSetVector<SUnit *, 8> N;
1867 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1868 R.insert(N.begin(), N.end());
1869 Order = BottomUp;
1870 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1871 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1872 R.insert(N.begin(), N.end());
1873 Order = TopDown;
1874 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1875 } else if (isIntersect(N, Nodes, R)) {
1876 // If some of the successors are in the existing node-set, then use the
1877 // top-down ordering.
1878 Order = TopDown;
1879 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1880 } else if (NodeSets.size() == 1) {
1881 for (const auto &N : Nodes)
1882 if (N->Succs.size() == 0)
1883 R.insert(N);
1884 Order = BottomUp;
1885 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1886 } else {
1887 // Find the node with the highest ASAP.
1888 SUnit *maxASAP = nullptr;
1889 for (SUnit *SU : Nodes) {
1890 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1891 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1892 maxASAP = SU;
1894 R.insert(maxASAP);
1895 Order = BottomUp;
1896 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1899 while (!R.empty()) {
1900 if (Order == TopDown) {
1901 // Choose the node with the maximum height. If more than one, choose
1902 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1903 // choose the node with the lowest MOV.
1904 while (!R.empty()) {
1905 SUnit *maxHeight = nullptr;
1906 for (SUnit *I : R) {
1907 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1908 maxHeight = I;
1909 else if (getHeight(I) == getHeight(maxHeight) &&
1910 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1911 maxHeight = I;
1912 else if (getHeight(I) == getHeight(maxHeight) &&
1913 getZeroLatencyHeight(I) ==
1914 getZeroLatencyHeight(maxHeight) &&
1915 getMOV(I) < getMOV(maxHeight))
1916 maxHeight = I;
1918 NodeOrder.insert(maxHeight);
1919 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1920 R.remove(maxHeight);
1921 for (const auto &I : maxHeight->Succs) {
1922 if (Nodes.count(I.getSUnit()) == 0)
1923 continue;
1924 if (NodeOrder.contains(I.getSUnit()))
1925 continue;
1926 if (ignoreDependence(I, false))
1927 continue;
1928 R.insert(I.getSUnit());
1930 // Back-edges are predecessors with an anti-dependence.
1931 for (const auto &I : maxHeight->Preds) {
1932 if (I.getKind() != SDep::Anti)
1933 continue;
1934 if (Nodes.count(I.getSUnit()) == 0)
1935 continue;
1936 if (NodeOrder.contains(I.getSUnit()))
1937 continue;
1938 R.insert(I.getSUnit());
1941 Order = BottomUp;
1942 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1943 SmallSetVector<SUnit *, 8> N;
1944 if (pred_L(NodeOrder, N, &Nodes))
1945 R.insert(N.begin(), N.end());
1946 } else {
1947 // Choose the node with the maximum depth. If more than one, choose
1948 // the node with the maximum ZeroLatencyDepth. If still more than one,
1949 // choose the node with the lowest MOV.
1950 while (!R.empty()) {
1951 SUnit *maxDepth = nullptr;
1952 for (SUnit *I : R) {
1953 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1954 maxDepth = I;
1955 else if (getDepth(I) == getDepth(maxDepth) &&
1956 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1957 maxDepth = I;
1958 else if (getDepth(I) == getDepth(maxDepth) &&
1959 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1960 getMOV(I) < getMOV(maxDepth))
1961 maxDepth = I;
1963 NodeOrder.insert(maxDepth);
1964 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1965 R.remove(maxDepth);
1966 if (Nodes.isExceedSU(maxDepth)) {
1967 Order = TopDown;
1968 R.clear();
1969 R.insert(Nodes.getNode(0));
1970 break;
1972 for (const auto &I : maxDepth->Preds) {
1973 if (Nodes.count(I.getSUnit()) == 0)
1974 continue;
1975 if (NodeOrder.contains(I.getSUnit()))
1976 continue;
1977 R.insert(I.getSUnit());
1979 // Back-edges are predecessors with an anti-dependence.
1980 for (const auto &I : maxDepth->Succs) {
1981 if (I.getKind() != SDep::Anti)
1982 continue;
1983 if (Nodes.count(I.getSUnit()) == 0)
1984 continue;
1985 if (NodeOrder.contains(I.getSUnit()))
1986 continue;
1987 R.insert(I.getSUnit());
1990 Order = TopDown;
1991 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
1992 SmallSetVector<SUnit *, 8> N;
1993 if (succ_L(NodeOrder, N, &Nodes))
1994 R.insert(N.begin(), N.end());
1997 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2000 LLVM_DEBUG({
2001 dbgs() << "Node order: ";
2002 for (SUnit *I : NodeOrder)
2003 dbgs() << " " << I->NodeNum << " ";
2004 dbgs() << "\n";
2008 /// Process the nodes in the computed order and create the pipelined schedule
2009 /// of the instructions, if possible. Return true if a schedule is found.
2010 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2012 if (NodeOrder.empty()){
2013 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2014 return false;
2017 bool scheduleFound = false;
2018 // Keep increasing II until a valid schedule is found.
2019 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2020 Schedule.reset();
2021 Schedule.setInitiationInterval(II);
2022 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2024 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2025 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2026 do {
2027 SUnit *SU = *NI;
2029 // Compute the schedule time for the instruction, which is based
2030 // upon the scheduled time for any predecessors/successors.
2031 int EarlyStart = INT_MIN;
2032 int LateStart = INT_MAX;
2033 // These values are set when the size of the schedule window is limited
2034 // due to chain dependences.
2035 int SchedEnd = INT_MAX;
2036 int SchedStart = INT_MIN;
2037 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2038 II, this);
2039 LLVM_DEBUG({
2040 dbgs() << "\n";
2041 dbgs() << "Inst (" << SU->NodeNum << ") ";
2042 SU->getInstr()->dump();
2043 dbgs() << "\n";
2045 LLVM_DEBUG({
2046 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2047 LateStart, SchedEnd, SchedStart);
2050 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2051 SchedStart > LateStart)
2052 scheduleFound = false;
2053 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2054 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2055 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2056 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2057 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2058 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2059 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2060 SchedEnd =
2061 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2062 // When scheduling a Phi it is better to start at the late cycle and go
2063 // backwards. The default order may insert the Phi too far away from
2064 // its first dependence.
2065 if (SU->getInstr()->isPHI())
2066 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2067 else
2068 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2069 } else {
2070 int FirstCycle = Schedule.getFirstCycle();
2071 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2072 FirstCycle + getASAP(SU) + II - 1, II);
2074 // Even if we find a schedule, make sure the schedule doesn't exceed the
2075 // allowable number of stages. We keep trying if this happens.
2076 if (scheduleFound)
2077 if (SwpMaxStages > -1 &&
2078 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2079 scheduleFound = false;
2081 LLVM_DEBUG({
2082 if (!scheduleFound)
2083 dbgs() << "\tCan't schedule\n";
2085 } while (++NI != NE && scheduleFound);
2087 // If a schedule is found, ensure non-pipelined instructions are in stage 0
2088 if (scheduleFound)
2089 scheduleFound =
2090 Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo);
2092 // If a schedule is found, check if it is a valid schedule too.
2093 if (scheduleFound)
2094 scheduleFound = Schedule.isValidSchedule(this);
2097 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2098 << " (II=" << Schedule.getInitiationInterval()
2099 << ")\n");
2101 if (scheduleFound) {
2102 scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule);
2103 if (!scheduleFound)
2104 dbgs() << "Target rejected schedule\n";
2107 if (scheduleFound) {
2108 Schedule.finalizeSchedule(this);
2109 Pass.ORE->emit([&]() {
2110 return MachineOptimizationRemarkAnalysis(
2111 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2112 << "Schedule found with Initiation Interval: "
2113 << ore::NV("II", Schedule.getInitiationInterval())
2114 << ", MaxStageCount: "
2115 << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2117 } else
2118 Schedule.reset();
2120 return scheduleFound && Schedule.getMaxStageCount() > 0;
2123 /// Return true if we can compute the amount the instruction changes
2124 /// during each iteration. Set Delta to the amount of the change.
2125 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2126 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2127 const MachineOperand *BaseOp;
2128 int64_t Offset;
2129 bool OffsetIsScalable;
2130 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2131 return false;
2133 // FIXME: This algorithm assumes instructions have fixed-size offsets.
2134 if (OffsetIsScalable)
2135 return false;
2137 if (!BaseOp->isReg())
2138 return false;
2140 Register BaseReg = BaseOp->getReg();
2142 MachineRegisterInfo &MRI = MF.getRegInfo();
2143 // Check if there is a Phi. If so, get the definition in the loop.
2144 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2145 if (BaseDef && BaseDef->isPHI()) {
2146 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2147 BaseDef = MRI.getVRegDef(BaseReg);
2149 if (!BaseDef)
2150 return false;
2152 int D = 0;
2153 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2154 return false;
2156 Delta = D;
2157 return true;
2160 /// Check if we can change the instruction to use an offset value from the
2161 /// previous iteration. If so, return true and set the base and offset values
2162 /// so that we can rewrite the load, if necessary.
2163 /// v1 = Phi(v0, v3)
2164 /// v2 = load v1, 0
2165 /// v3 = post_store v1, 4, x
2166 /// This function enables the load to be rewritten as v2 = load v3, 4.
2167 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2168 unsigned &BasePos,
2169 unsigned &OffsetPos,
2170 unsigned &NewBase,
2171 int64_t &Offset) {
2172 // Get the load instruction.
2173 if (TII->isPostIncrement(*MI))
2174 return false;
2175 unsigned BasePosLd, OffsetPosLd;
2176 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2177 return false;
2178 Register BaseReg = MI->getOperand(BasePosLd).getReg();
2180 // Look for the Phi instruction.
2181 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2182 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2183 if (!Phi || !Phi->isPHI())
2184 return false;
2185 // Get the register defined in the loop block.
2186 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2187 if (!PrevReg)
2188 return false;
2190 // Check for the post-increment load/store instruction.
2191 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2192 if (!PrevDef || PrevDef == MI)
2193 return false;
2195 if (!TII->isPostIncrement(*PrevDef))
2196 return false;
2198 unsigned BasePos1 = 0, OffsetPos1 = 0;
2199 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2200 return false;
2202 // Make sure that the instructions do not access the same memory location in
2203 // the next iteration.
2204 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2205 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2206 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2207 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2208 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2209 MF.deleteMachineInstr(NewMI);
2210 if (!Disjoint)
2211 return false;
2213 // Set the return value once we determine that we return true.
2214 BasePos = BasePosLd;
2215 OffsetPos = OffsetPosLd;
2216 NewBase = PrevReg;
2217 Offset = StoreOffset;
2218 return true;
2221 /// Apply changes to the instruction if needed. The changes are need
2222 /// to improve the scheduling and depend up on the final schedule.
2223 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2224 SMSchedule &Schedule) {
2225 SUnit *SU = getSUnit(MI);
2226 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2227 InstrChanges.find(SU);
2228 if (It != InstrChanges.end()) {
2229 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2230 unsigned BasePos, OffsetPos;
2231 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2232 return;
2233 Register BaseReg = MI->getOperand(BasePos).getReg();
2234 MachineInstr *LoopDef = findDefInLoop(BaseReg);
2235 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2236 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2237 int BaseStageNum = Schedule.stageScheduled(SU);
2238 int BaseCycleNum = Schedule.cycleScheduled(SU);
2239 if (BaseStageNum < DefStageNum) {
2240 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2241 int OffsetDiff = DefStageNum - BaseStageNum;
2242 if (DefCycleNum < BaseCycleNum) {
2243 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2244 if (OffsetDiff > 0)
2245 --OffsetDiff;
2247 int64_t NewOffset =
2248 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2249 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2250 SU->setInstr(NewMI);
2251 MISUnitMap[NewMI] = SU;
2252 NewMIs[MI] = NewMI;
2257 /// Return the instruction in the loop that defines the register.
2258 /// If the definition is a Phi, then follow the Phi operand to
2259 /// the instruction in the loop.
2260 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2261 SmallPtrSet<MachineInstr *, 8> Visited;
2262 MachineInstr *Def = MRI.getVRegDef(Reg);
2263 while (Def->isPHI()) {
2264 if (!Visited.insert(Def).second)
2265 break;
2266 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2267 if (Def->getOperand(i + 1).getMBB() == BB) {
2268 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2269 break;
2272 return Def;
2275 /// Return true for an order or output dependence that is loop carried
2276 /// potentially. A dependence is loop carried if the destination defines a valu
2277 /// that may be used or defined by the source in a subsequent iteration.
2278 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2279 bool isSucc) {
2280 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2281 Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode())
2282 return false;
2284 if (!SwpPruneLoopCarried)
2285 return true;
2287 if (Dep.getKind() == SDep::Output)
2288 return true;
2290 MachineInstr *SI = Source->getInstr();
2291 MachineInstr *DI = Dep.getSUnit()->getInstr();
2292 if (!isSucc)
2293 std::swap(SI, DI);
2294 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2296 // Assume ordered loads and stores may have a loop carried dependence.
2297 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2298 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2299 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2300 return true;
2302 // Only chain dependences between a load and store can be loop carried.
2303 if (!DI->mayStore() || !SI->mayLoad())
2304 return false;
2306 unsigned DeltaS, DeltaD;
2307 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2308 return true;
2310 const MachineOperand *BaseOpS, *BaseOpD;
2311 int64_t OffsetS, OffsetD;
2312 bool OffsetSIsScalable, OffsetDIsScalable;
2313 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2314 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2315 TRI) ||
2316 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2317 TRI))
2318 return true;
2320 assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2321 "Expected offsets to be byte offsets");
2323 if (!BaseOpS->isIdenticalTo(*BaseOpD))
2324 return true;
2326 // Check that the base register is incremented by a constant value for each
2327 // iteration.
2328 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2329 if (!Def || !Def->isPHI())
2330 return true;
2331 unsigned InitVal = 0;
2332 unsigned LoopVal = 0;
2333 getPhiRegs(*Def, BB, InitVal, LoopVal);
2334 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2335 int D = 0;
2336 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2337 return true;
2339 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2340 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2342 // This is the main test, which checks the offset values and the loop
2343 // increment value to determine if the accesses may be loop carried.
2344 if (AccessSizeS == MemoryLocation::UnknownSize ||
2345 AccessSizeD == MemoryLocation::UnknownSize)
2346 return true;
2348 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2349 return true;
2351 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2354 void SwingSchedulerDAG::postprocessDAG() {
2355 for (auto &M : Mutations)
2356 M->apply(this);
2359 /// Try to schedule the node at the specified StartCycle and continue
2360 /// until the node is schedule or the EndCycle is reached. This function
2361 /// returns true if the node is scheduled. This routine may search either
2362 /// forward or backward for a place to insert the instruction based upon
2363 /// the relative values of StartCycle and EndCycle.
2364 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2365 bool forward = true;
2366 LLVM_DEBUG({
2367 dbgs() << "Trying to insert node between " << StartCycle << " and "
2368 << EndCycle << " II: " << II << "\n";
2370 if (StartCycle > EndCycle)
2371 forward = false;
2373 // The terminating condition depends on the direction.
2374 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2375 for (int curCycle = StartCycle; curCycle != termCycle;
2376 forward ? ++curCycle : --curCycle) {
2378 // Add the already scheduled instructions at the specified cycle to the
2379 // DFA.
2380 ProcItinResources.clearResources();
2381 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2382 checkCycle <= LastCycle; checkCycle += II) {
2383 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2385 for (SUnit *CI : cycleInstrs) {
2386 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode()))
2387 continue;
2388 assert(ProcItinResources.canReserveResources(*CI->getInstr()) &&
2389 "These instructions have already been scheduled.");
2390 ProcItinResources.reserveResources(*CI->getInstr());
2393 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2394 ProcItinResources.canReserveResources(*SU->getInstr())) {
2395 LLVM_DEBUG({
2396 dbgs() << "\tinsert at cycle " << curCycle << " ";
2397 SU->getInstr()->dump();
2400 ScheduledInstrs[curCycle].push_back(SU);
2401 InstrToCycle.insert(std::make_pair(SU, curCycle));
2402 if (curCycle > LastCycle)
2403 LastCycle = curCycle;
2404 if (curCycle < FirstCycle)
2405 FirstCycle = curCycle;
2406 return true;
2408 LLVM_DEBUG({
2409 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2410 SU->getInstr()->dump();
2413 return false;
2416 // Return the cycle of the earliest scheduled instruction in the chain.
2417 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2418 SmallPtrSet<SUnit *, 8> Visited;
2419 SmallVector<SDep, 8> Worklist;
2420 Worklist.push_back(Dep);
2421 int EarlyCycle = INT_MAX;
2422 while (!Worklist.empty()) {
2423 const SDep &Cur = Worklist.pop_back_val();
2424 SUnit *PrevSU = Cur.getSUnit();
2425 if (Visited.count(PrevSU))
2426 continue;
2427 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2428 if (it == InstrToCycle.end())
2429 continue;
2430 EarlyCycle = std::min(EarlyCycle, it->second);
2431 for (const auto &PI : PrevSU->Preds)
2432 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2433 Worklist.push_back(PI);
2434 Visited.insert(PrevSU);
2436 return EarlyCycle;
2439 // Return the cycle of the latest scheduled instruction in the chain.
2440 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2441 SmallPtrSet<SUnit *, 8> Visited;
2442 SmallVector<SDep, 8> Worklist;
2443 Worklist.push_back(Dep);
2444 int LateCycle = INT_MIN;
2445 while (!Worklist.empty()) {
2446 const SDep &Cur = Worklist.pop_back_val();
2447 SUnit *SuccSU = Cur.getSUnit();
2448 if (Visited.count(SuccSU) || SuccSU->isBoundaryNode())
2449 continue;
2450 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2451 if (it == InstrToCycle.end())
2452 continue;
2453 LateCycle = std::max(LateCycle, it->second);
2454 for (const auto &SI : SuccSU->Succs)
2455 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2456 Worklist.push_back(SI);
2457 Visited.insert(SuccSU);
2459 return LateCycle;
2462 /// If an instruction has a use that spans multiple iterations, then
2463 /// return true. These instructions are characterized by having a back-ege
2464 /// to a Phi, which contains a reference to another Phi.
2465 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2466 for (auto &P : SU->Preds)
2467 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2468 for (auto &S : P.getSUnit()->Succs)
2469 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2470 return P.getSUnit();
2471 return nullptr;
2474 /// Compute the scheduling start slot for the instruction. The start slot
2475 /// depends on any predecessor or successor nodes scheduled already.
2476 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2477 int *MinEnd, int *MaxStart, int II,
2478 SwingSchedulerDAG *DAG) {
2479 // Iterate over each instruction that has been scheduled already. The start
2480 // slot computation depends on whether the previously scheduled instruction
2481 // is a predecessor or successor of the specified instruction.
2482 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2484 // Iterate over each instruction in the current cycle.
2485 for (SUnit *I : getInstructions(cycle)) {
2486 // Because we're processing a DAG for the dependences, we recognize
2487 // the back-edge in recurrences by anti dependences.
2488 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2489 const SDep &Dep = SU->Preds[i];
2490 if (Dep.getSUnit() == I) {
2491 if (!DAG->isBackedge(SU, Dep)) {
2492 int EarlyStart = cycle + Dep.getLatency() -
2493 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2494 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2495 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2496 int End = earliestCycleInChain(Dep) + (II - 1);
2497 *MinEnd = std::min(*MinEnd, End);
2499 } else {
2500 int LateStart = cycle - Dep.getLatency() +
2501 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2502 *MinLateStart = std::min(*MinLateStart, LateStart);
2505 // For instruction that requires multiple iterations, make sure that
2506 // the dependent instruction is not scheduled past the definition.
2507 SUnit *BE = multipleIterations(I, DAG);
2508 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2509 !SU->isPred(I))
2510 *MinLateStart = std::min(*MinLateStart, cycle);
2512 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2513 if (SU->Succs[i].getSUnit() == I) {
2514 const SDep &Dep = SU->Succs[i];
2515 if (!DAG->isBackedge(SU, Dep)) {
2516 int LateStart = cycle - Dep.getLatency() +
2517 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2518 *MinLateStart = std::min(*MinLateStart, LateStart);
2519 if (DAG->isLoopCarriedDep(SU, Dep)) {
2520 int Start = latestCycleInChain(Dep) + 1 - II;
2521 *MaxStart = std::max(*MaxStart, Start);
2523 } else {
2524 int EarlyStart = cycle + Dep.getLatency() -
2525 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2526 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2534 /// Order the instructions within a cycle so that the definitions occur
2535 /// before the uses. Returns true if the instruction is added to the start
2536 /// of the list, or false if added to the end.
2537 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2538 std::deque<SUnit *> &Insts) {
2539 MachineInstr *MI = SU->getInstr();
2540 bool OrderBeforeUse = false;
2541 bool OrderAfterDef = false;
2542 bool OrderBeforeDef = false;
2543 unsigned MoveDef = 0;
2544 unsigned MoveUse = 0;
2545 int StageInst1 = stageScheduled(SU);
2547 unsigned Pos = 0;
2548 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2549 ++I, ++Pos) {
2550 for (MachineOperand &MO : MI->operands()) {
2551 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2552 continue;
2554 Register Reg = MO.getReg();
2555 unsigned BasePos, OffsetPos;
2556 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2557 if (MI->getOperand(BasePos).getReg() == Reg)
2558 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2559 Reg = NewReg;
2560 bool Reads, Writes;
2561 std::tie(Reads, Writes) =
2562 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2563 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2564 OrderBeforeUse = true;
2565 if (MoveUse == 0)
2566 MoveUse = Pos;
2567 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2568 // Add the instruction after the scheduled instruction.
2569 OrderAfterDef = true;
2570 MoveDef = Pos;
2571 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2572 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2573 OrderBeforeUse = true;
2574 if (MoveUse == 0)
2575 MoveUse = Pos;
2576 } else {
2577 OrderAfterDef = true;
2578 MoveDef = Pos;
2580 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2581 OrderBeforeUse = true;
2582 if (MoveUse == 0)
2583 MoveUse = Pos;
2584 if (MoveUse != 0) {
2585 OrderAfterDef = true;
2586 MoveDef = Pos - 1;
2588 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2589 // Add the instruction before the scheduled instruction.
2590 OrderBeforeUse = true;
2591 if (MoveUse == 0)
2592 MoveUse = Pos;
2593 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2594 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2595 if (MoveUse == 0) {
2596 OrderBeforeDef = true;
2597 MoveUse = Pos;
2601 // Check for order dependences between instructions. Make sure the source
2602 // is ordered before the destination.
2603 for (auto &S : SU->Succs) {
2604 if (S.getSUnit() != *I)
2605 continue;
2606 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2607 OrderBeforeUse = true;
2608 if (Pos < MoveUse)
2609 MoveUse = Pos;
2611 // We did not handle HW dependences in previous for loop,
2612 // and we normally set Latency = 0 for Anti deps,
2613 // so may have nodes in same cycle with Anti denpendent on HW regs.
2614 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2615 OrderBeforeUse = true;
2616 if ((MoveUse == 0) || (Pos < MoveUse))
2617 MoveUse = Pos;
2620 for (auto &P : SU->Preds) {
2621 if (P.getSUnit() != *I)
2622 continue;
2623 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2624 OrderAfterDef = true;
2625 MoveDef = Pos;
2630 // A circular dependence.
2631 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2632 OrderBeforeUse = false;
2634 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2635 // to a loop-carried dependence.
2636 if (OrderBeforeDef)
2637 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2639 // The uncommon case when the instruction order needs to be updated because
2640 // there is both a use and def.
2641 if (OrderBeforeUse && OrderAfterDef) {
2642 SUnit *UseSU = Insts.at(MoveUse);
2643 SUnit *DefSU = Insts.at(MoveDef);
2644 if (MoveUse > MoveDef) {
2645 Insts.erase(Insts.begin() + MoveUse);
2646 Insts.erase(Insts.begin() + MoveDef);
2647 } else {
2648 Insts.erase(Insts.begin() + MoveDef);
2649 Insts.erase(Insts.begin() + MoveUse);
2651 orderDependence(SSD, UseSU, Insts);
2652 orderDependence(SSD, SU, Insts);
2653 orderDependence(SSD, DefSU, Insts);
2654 return;
2656 // Put the new instruction first if there is a use in the list. Otherwise,
2657 // put it at the end of the list.
2658 if (OrderBeforeUse)
2659 Insts.push_front(SU);
2660 else
2661 Insts.push_back(SU);
2664 /// Return true if the scheduled Phi has a loop carried operand.
2665 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2666 if (!Phi.isPHI())
2667 return false;
2668 assert(Phi.isPHI() && "Expecting a Phi.");
2669 SUnit *DefSU = SSD->getSUnit(&Phi);
2670 unsigned DefCycle = cycleScheduled(DefSU);
2671 int DefStage = stageScheduled(DefSU);
2673 unsigned InitVal = 0;
2674 unsigned LoopVal = 0;
2675 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2676 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2677 if (!UseSU)
2678 return true;
2679 if (UseSU->getInstr()->isPHI())
2680 return true;
2681 unsigned LoopCycle = cycleScheduled(UseSU);
2682 int LoopStage = stageScheduled(UseSU);
2683 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2686 /// Return true if the instruction is a definition that is loop carried
2687 /// and defines the use on the next iteration.
2688 /// v1 = phi(v2, v3)
2689 /// (Def) v3 = op v1
2690 /// (MO) = v1
2691 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2692 /// register.
2693 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2694 MachineInstr *Def, MachineOperand &MO) {
2695 if (!MO.isReg())
2696 return false;
2697 if (Def->isPHI())
2698 return false;
2699 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2700 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2701 return false;
2702 if (!isLoopCarried(SSD, *Phi))
2703 return false;
2704 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2705 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2706 MachineOperand &DMO = Def->getOperand(i);
2707 if (!DMO.isReg() || !DMO.isDef())
2708 continue;
2709 if (DMO.getReg() == LoopReg)
2710 return true;
2712 return false;
2715 /// Determine transitive dependences of unpipelineable instructions
2716 SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
2717 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2718 SmallSet<SUnit *, 8> DoNotPipeline;
2719 SmallVector<SUnit *, 8> Worklist;
2721 for (auto &SU : SSD->SUnits)
2722 if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr()))
2723 Worklist.push_back(&SU);
2725 while (!Worklist.empty()) {
2726 auto SU = Worklist.pop_back_val();
2727 if (DoNotPipeline.count(SU))
2728 continue;
2729 LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
2730 DoNotPipeline.insert(SU);
2731 for (auto &Dep : SU->Preds)
2732 Worklist.push_back(Dep.getSUnit());
2733 if (SU->getInstr()->isPHI())
2734 for (auto &Dep : SU->Succs)
2735 if (Dep.getKind() == SDep::Anti)
2736 Worklist.push_back(Dep.getSUnit());
2738 return DoNotPipeline;
2741 // Determine all instructions upon which any unpipelineable instruction depends
2742 // and ensure that they are in stage 0. If unable to do so, return false.
2743 bool SMSchedule::normalizeNonPipelinedInstructions(
2744 SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
2745 SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
2747 int NewLastCycle = INT_MIN;
2748 for (SUnit &SU : SSD->SUnits) {
2749 if (!SU.isInstr())
2750 continue;
2751 if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) {
2752 NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]);
2753 continue;
2756 // Put the non-pipelined instruction as early as possible in the schedule
2757 int NewCycle = getFirstCycle();
2758 for (auto &Dep : SU.Preds)
2759 NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle);
2761 int OldCycle = InstrToCycle[&SU];
2762 if (OldCycle != NewCycle) {
2763 InstrToCycle[&SU] = NewCycle;
2764 auto &OldS = getInstructions(OldCycle);
2765 llvm::erase_value(OldS, &SU);
2766 getInstructions(NewCycle).emplace_back(&SU);
2767 LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
2768 << ") is not pipelined; moving from cycle " << OldCycle
2769 << " to " << NewCycle << " Instr:" << *SU.getInstr());
2771 NewLastCycle = std::max(NewLastCycle, NewCycle);
2773 LastCycle = NewLastCycle;
2774 return true;
2777 // Check if the generated schedule is valid. This function checks if
2778 // an instruction that uses a physical register is scheduled in a
2779 // different stage than the definition. The pipeliner does not handle
2780 // physical register values that may cross a basic block boundary.
2781 // Furthermore, if a physical def/use pair is assigned to the same
2782 // cycle, orderDependence does not guarantee def/use ordering, so that
2783 // case should be considered invalid. (The test checks for both
2784 // earlier and same-cycle use to be more robust.)
2785 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2786 for (SUnit &SU : SSD->SUnits) {
2787 if (!SU.hasPhysRegDefs)
2788 continue;
2789 int StageDef = stageScheduled(&SU);
2790 int CycleDef = InstrToCycle[&SU];
2791 assert(StageDef != -1 && "Instruction should have been scheduled.");
2792 for (auto &SI : SU.Succs)
2793 if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode())
2794 if (Register::isPhysicalRegister(SI.getReg())) {
2795 if (stageScheduled(SI.getSUnit()) != StageDef)
2796 return false;
2797 if (InstrToCycle[SI.getSUnit()] <= CycleDef)
2798 return false;
2801 return true;
2804 /// A property of the node order in swing-modulo-scheduling is
2805 /// that for nodes outside circuits the following holds:
2806 /// none of them is scheduled after both a successor and a
2807 /// predecessor.
2808 /// The method below checks whether the property is met.
2809 /// If not, debug information is printed and statistics information updated.
2810 /// Note that we do not use an assert statement.
2811 /// The reason is that although an invalid node oder may prevent
2812 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2813 /// it does not lead to the generation of incorrect code.
2814 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2816 // a sorted vector that maps each SUnit to its index in the NodeOrder
2817 typedef std::pair<SUnit *, unsigned> UnitIndex;
2818 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2820 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2821 Indices.push_back(std::make_pair(NodeOrder[i], i));
2823 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2824 return std::get<0>(i1) < std::get<0>(i2);
2827 // sort, so that we can perform a binary search
2828 llvm::sort(Indices, CompareKey);
2830 bool Valid = true;
2831 (void)Valid;
2832 // for each SUnit in the NodeOrder, check whether
2833 // it appears after both a successor and a predecessor
2834 // of the SUnit. If this is the case, and the SUnit
2835 // is not part of circuit, then the NodeOrder is not
2836 // valid.
2837 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2838 SUnit *SU = NodeOrder[i];
2839 unsigned Index = i;
2841 bool PredBefore = false;
2842 bool SuccBefore = false;
2844 SUnit *Succ;
2845 SUnit *Pred;
2846 (void)Succ;
2847 (void)Pred;
2849 for (SDep &PredEdge : SU->Preds) {
2850 SUnit *PredSU = PredEdge.getSUnit();
2851 unsigned PredIndex = std::get<1>(
2852 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2853 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2854 PredBefore = true;
2855 Pred = PredSU;
2856 break;
2860 for (SDep &SuccEdge : SU->Succs) {
2861 SUnit *SuccSU = SuccEdge.getSUnit();
2862 // Do not process a boundary node, it was not included in NodeOrder,
2863 // hence not in Indices either, call to std::lower_bound() below will
2864 // return Indices.end().
2865 if (SuccSU->isBoundaryNode())
2866 continue;
2867 unsigned SuccIndex = std::get<1>(
2868 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2869 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2870 SuccBefore = true;
2871 Succ = SuccSU;
2872 break;
2876 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2877 // instructions in circuits are allowed to be scheduled
2878 // after both a successor and predecessor.
2879 bool InCircuit = llvm::any_of(
2880 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2881 if (InCircuit)
2882 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2883 else {
2884 Valid = false;
2885 NumNodeOrderIssues++;
2886 LLVM_DEBUG(dbgs() << "Predecessor ";);
2888 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2889 << " are scheduled before node " << SU->NodeNum
2890 << "\n";);
2894 LLVM_DEBUG({
2895 if (!Valid)
2896 dbgs() << "Invalid node order found!\n";
2900 /// Attempt to fix the degenerate cases when the instruction serialization
2901 /// causes the register lifetimes to overlap. For example,
2902 /// p' = store_pi(p, b)
2903 /// = load p, offset
2904 /// In this case p and p' overlap, which means that two registers are needed.
2905 /// Instead, this function changes the load to use p' and updates the offset.
2906 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2907 unsigned OverlapReg = 0;
2908 unsigned NewBaseReg = 0;
2909 for (SUnit *SU : Instrs) {
2910 MachineInstr *MI = SU->getInstr();
2911 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2912 const MachineOperand &MO = MI->getOperand(i);
2913 // Look for an instruction that uses p. The instruction occurs in the
2914 // same cycle but occurs later in the serialized order.
2915 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2916 // Check that the instruction appears in the InstrChanges structure,
2917 // which contains instructions that can have the offset updated.
2918 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2919 InstrChanges.find(SU);
2920 if (It != InstrChanges.end()) {
2921 unsigned BasePos, OffsetPos;
2922 // Update the base register and adjust the offset.
2923 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2924 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2925 NewMI->getOperand(BasePos).setReg(NewBaseReg);
2926 int64_t NewOffset =
2927 MI->getOperand(OffsetPos).getImm() - It->second.second;
2928 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2929 SU->setInstr(NewMI);
2930 MISUnitMap[NewMI] = SU;
2931 NewMIs[MI] = NewMI;
2934 OverlapReg = 0;
2935 NewBaseReg = 0;
2936 break;
2938 // Look for an instruction of the form p' = op(p), which uses and defines
2939 // two virtual registers that get allocated to the same physical register.
2940 unsigned TiedUseIdx = 0;
2941 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2942 // OverlapReg is p in the example above.
2943 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2944 // NewBaseReg is p' in the example above.
2945 NewBaseReg = MI->getOperand(i).getReg();
2946 break;
2952 /// After the schedule has been formed, call this function to combine
2953 /// the instructions from the different stages/cycles. That is, this
2954 /// function creates a schedule that represents a single iteration.
2955 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2956 // Move all instructions to the first stage from later stages.
2957 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2958 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2959 ++stage) {
2960 std::deque<SUnit *> &cycleInstrs =
2961 ScheduledInstrs[cycle + (stage * InitiationInterval)];
2962 for (SUnit *SU : llvm::reverse(cycleInstrs))
2963 ScheduledInstrs[cycle].push_front(SU);
2967 // Erase all the elements in the later stages. Only one iteration should
2968 // remain in the scheduled list, and it contains all the instructions.
2969 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2970 ScheduledInstrs.erase(cycle);
2972 // Change the registers in instruction as specified in the InstrChanges
2973 // map. We need to use the new registers to create the correct order.
2974 for (const SUnit &SU : SSD->SUnits)
2975 SSD->applyInstrChange(SU.getInstr(), *this);
2977 // Reorder the instructions in each cycle to fix and improve the
2978 // generated code.
2979 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2980 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2981 std::deque<SUnit *> newOrderPhi;
2982 for (SUnit *SU : cycleInstrs) {
2983 if (SU->getInstr()->isPHI())
2984 newOrderPhi.push_back(SU);
2986 std::deque<SUnit *> newOrderI;
2987 for (SUnit *SU : cycleInstrs) {
2988 if (!SU->getInstr()->isPHI())
2989 orderDependence(SSD, SU, newOrderI);
2991 // Replace the old order with the new order.
2992 cycleInstrs.swap(newOrderPhi);
2993 llvm::append_range(cycleInstrs, newOrderI);
2994 SSD->fixupRegisterOverlaps(cycleInstrs);
2997 LLVM_DEBUG(dump(););
3000 void NodeSet::print(raw_ostream &os) const {
3001 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
3002 << " depth " << MaxDepth << " col " << Colocate << "\n";
3003 for (const auto &I : Nodes)
3004 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
3005 os << "\n";
3008 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3009 /// Print the schedule information to the given output.
3010 void SMSchedule::print(raw_ostream &os) const {
3011 // Iterate over each cycle.
3012 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3013 // Iterate over each instruction in the cycle.
3014 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3015 for (SUnit *CI : cycleInstrs->second) {
3016 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3017 os << "(" << CI->NodeNum << ") ";
3018 CI->getInstr()->print(os);
3019 os << "\n";
3024 /// Utility function used for debugging to print the schedule.
3025 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
3026 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
3028 #endif
3030 void ResourceManager::initProcResourceVectors(
3031 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
3032 unsigned ProcResourceID = 0;
3034 // We currently limit the resource kinds to 64 and below so that we can use
3035 // uint64_t for Masks
3036 assert(SM.getNumProcResourceKinds() < 64 &&
3037 "Too many kinds of resources, unsupported");
3038 // Create a unique bitmask for every processor resource unit.
3039 // Skip resource at index 0, since it always references 'InvalidUnit'.
3040 Masks.resize(SM.getNumProcResourceKinds());
3041 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3042 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3043 if (Desc.SubUnitsIdxBegin)
3044 continue;
3045 Masks[I] = 1ULL << ProcResourceID;
3046 ProcResourceID++;
3048 // Create a unique bitmask for every processor resource group.
3049 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3050 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
3051 if (!Desc.SubUnitsIdxBegin)
3052 continue;
3053 Masks[I] = 1ULL << ProcResourceID;
3054 for (unsigned U = 0; U < Desc.NumUnits; ++U)
3055 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
3056 ProcResourceID++;
3058 LLVM_DEBUG({
3059 if (SwpShowResMask) {
3060 dbgs() << "ProcResourceDesc:\n";
3061 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
3062 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
3063 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
3064 ProcResource->Name, I, Masks[I],
3065 ProcResource->NumUnits);
3067 dbgs() << " -----------------\n";
3072 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3074 LLVM_DEBUG({
3075 if (SwpDebugResource)
3076 dbgs() << "canReserveResources:\n";
3078 if (UseDFA)
3079 return DFAResources->canReserveResources(MID);
3081 unsigned InsnClass = MID->getSchedClass();
3082 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3083 if (!SCDesc->isValid()) {
3084 LLVM_DEBUG({
3085 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3086 dbgs() << "isPseudo:" << MID->isPseudo() << "\n";
3088 return true;
3091 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3092 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3093 for (; I != E; ++I) {
3094 if (!I->Cycles)
3095 continue;
3096 const MCProcResourceDesc *ProcResource =
3097 SM.getProcResource(I->ProcResourceIdx);
3098 unsigned NumUnits = ProcResource->NumUnits;
3099 LLVM_DEBUG({
3100 if (SwpDebugResource)
3101 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3102 ProcResource->Name, I->ProcResourceIdx,
3103 ProcResourceCount[I->ProcResourceIdx], NumUnits,
3104 I->Cycles);
3106 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3107 return false;
3109 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
3110 return true;
3113 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3114 LLVM_DEBUG({
3115 if (SwpDebugResource)
3116 dbgs() << "reserveResources:\n";
3118 if (UseDFA)
3119 return DFAResources->reserveResources(MID);
3121 unsigned InsnClass = MID->getSchedClass();
3122 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3123 if (!SCDesc->isValid()) {
3124 LLVM_DEBUG({
3125 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3126 dbgs() << "isPseudo:" << MID->isPseudo() << "\n";
3128 return;
3130 for (const MCWriteProcResEntry &PRE :
3131 make_range(STI->getWriteProcResBegin(SCDesc),
3132 STI->getWriteProcResEnd(SCDesc))) {
3133 if (!PRE.Cycles)
3134 continue;
3135 ++ProcResourceCount[PRE.ProcResourceIdx];
3136 LLVM_DEBUG({
3137 if (SwpDebugResource) {
3138 const MCProcResourceDesc *ProcResource =
3139 SM.getProcResource(PRE.ProcResourceIdx);
3140 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3141 ProcResource->Name, PRE.ProcResourceIdx,
3142 ProcResourceCount[PRE.ProcResourceIdx],
3143 ProcResource->NumUnits, PRE.Cycles);
3147 LLVM_DEBUG({
3148 if (SwpDebugResource)
3149 dbgs() << "reserveResources: done!\n\n";
3153 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3154 return canReserveResources(&MI.getDesc());
3157 void ResourceManager::reserveResources(const MachineInstr &MI) {
3158 return reserveResources(&MI.getDesc());
3161 void ResourceManager::clearResources() {
3162 if (UseDFA)
3163 return DFAResources->clearResources();
3164 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);