[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / PHIElimination.cpp
blob7709095cd6836db34cd99cd8767afa32d0124395
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions. This destroys SSA information, but is the desired input for
11 // some register allocators.
13 //===----------------------------------------------------------------------===//
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <iterator>
43 #include <utility>
45 using namespace llvm;
47 #define DEBUG_TYPE "phi-node-elimination"
49 static cl::opt<bool>
50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
51 cl::Hidden, cl::desc("Disable critical edge splitting "
52 "during PHI elimination"));
54 static cl::opt<bool>
55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
56 cl::Hidden, cl::desc("Split all critical edges during "
57 "PHI elimination"));
59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
60 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
61 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
63 namespace {
65 class PHIElimination : public MachineFunctionPass {
66 MachineRegisterInfo *MRI; // Machine register information
67 LiveVariables *LV;
68 LiveIntervals *LIS;
70 public:
71 static char ID; // Pass identification, replacement for typeid
73 PHIElimination() : MachineFunctionPass(ID) {
74 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77 bool runOnMachineFunction(MachineFunction &MF) override;
78 void getAnalysisUsage(AnalysisUsage &AU) const override;
80 private:
81 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
82 /// in predecessor basic blocks.
83 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
85 void LowerPHINode(MachineBasicBlock &MBB,
86 MachineBasicBlock::iterator LastPHIIt);
88 /// analyzePHINodes - Gather information about the PHI nodes in
89 /// here. In particular, we want to map the number of uses of a virtual
90 /// register which is used in a PHI node. We map that to the BB the
91 /// vreg is coming from. This is used later to determine when the vreg
92 /// is killed in the BB.
93 void analyzePHINodes(const MachineFunction& MF);
95 /// Split critical edges where necessary for good coalescer performance.
96 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
97 MachineLoopInfo *MLI,
98 std::vector<SparseBitVector<>> *LiveInSets);
100 // These functions are temporary abstractions around LiveVariables and
101 // LiveIntervals, so they can go away when LiveVariables does.
102 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
103 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
105 using BBVRegPair = std::pair<unsigned, Register>;
106 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
108 // Count the number of non-undef PHI uses of each register in each BB.
109 VRegPHIUse VRegPHIUseCount;
111 // Defs of PHI sources which are implicit_def.
112 SmallPtrSet<MachineInstr*, 4> ImpDefs;
114 // Map reusable lowered PHI node -> incoming join register.
115 using LoweredPHIMap =
116 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
117 LoweredPHIMap LoweredPHIs;
120 } // end anonymous namespace
122 STATISTIC(NumLowered, "Number of phis lowered");
123 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
124 STATISTIC(NumReused, "Number of reused lowered phis");
126 char PHIElimination::ID = 0;
128 char& llvm::PHIEliminationID = PHIElimination::ID;
130 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
131 "Eliminate PHI nodes for register allocation",
132 false, false)
133 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
134 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
135 "Eliminate PHI nodes for register allocation", false, false)
137 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
138 AU.addUsedIfAvailable<LiveVariables>();
139 AU.addPreserved<LiveVariables>();
140 AU.addPreserved<SlotIndexes>();
141 AU.addPreserved<LiveIntervals>();
142 AU.addPreserved<MachineDominatorTree>();
143 AU.addPreserved<MachineLoopInfo>();
144 MachineFunctionPass::getAnalysisUsage(AU);
147 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
148 MRI = &MF.getRegInfo();
149 LV = getAnalysisIfAvailable<LiveVariables>();
150 LIS = getAnalysisIfAvailable<LiveIntervals>();
152 bool Changed = false;
154 // Split critical edges to help the coalescer.
155 if (!DisableEdgeSplitting && (LV || LIS)) {
156 // A set of live-in regs for each MBB which is used to update LV
157 // efficiently also with large functions.
158 std::vector<SparseBitVector<>> LiveInSets;
159 if (LV) {
160 LiveInSets.resize(MF.size());
161 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
162 // Set the bit for this register for each MBB where it is
163 // live-through or live-in (killed).
164 unsigned VirtReg = Register::index2VirtReg(Index);
165 MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
166 if (!DefMI)
167 continue;
168 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
169 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
170 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
171 while (AliveBlockItr != EndItr) {
172 unsigned BlockNum = *(AliveBlockItr++);
173 LiveInSets[BlockNum].set(Index);
175 // The register is live into an MBB in which it is killed but not
176 // defined. See comment for VarInfo in LiveVariables.h.
177 MachineBasicBlock *DefMBB = DefMI->getParent();
178 if (VI.Kills.size() > 1 ||
179 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
180 for (auto *MI : VI.Kills)
181 LiveInSets[MI->getParent()->getNumber()].set(Index);
185 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
186 for (auto &MBB : MF)
187 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
190 // This pass takes the function out of SSA form.
191 MRI->leaveSSA();
193 // Populate VRegPHIUseCount
194 analyzePHINodes(MF);
196 // Eliminate PHI instructions by inserting copies into predecessor blocks.
197 for (auto &MBB : MF)
198 Changed |= EliminatePHINodes(MF, MBB);
200 // Remove dead IMPLICIT_DEF instructions.
201 for (MachineInstr *DefMI : ImpDefs) {
202 Register DefReg = DefMI->getOperand(0).getReg();
203 if (MRI->use_nodbg_empty(DefReg)) {
204 if (LIS)
205 LIS->RemoveMachineInstrFromMaps(*DefMI);
206 DefMI->eraseFromParent();
210 // Clean up the lowered PHI instructions.
211 for (auto &I : LoweredPHIs) {
212 if (LIS)
213 LIS->RemoveMachineInstrFromMaps(*I.first);
214 MF.deleteMachineInstr(I.first);
217 // TODO: we should use the incremental DomTree updater here.
218 if (Changed)
219 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
220 MDT->getBase().recalculate(MF);
222 LoweredPHIs.clear();
223 ImpDefs.clear();
224 VRegPHIUseCount.clear();
226 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
228 return Changed;
231 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
232 /// predecessor basic blocks.
233 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
234 MachineBasicBlock &MBB) {
235 if (MBB.empty() || !MBB.front().isPHI())
236 return false; // Quick exit for basic blocks without PHIs.
238 // Get an iterator to the last PHI node.
239 MachineBasicBlock::iterator LastPHIIt =
240 std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
242 while (MBB.front().isPHI())
243 LowerPHINode(MBB, LastPHIIt);
245 return true;
248 /// Return true if all defs of VirtReg are implicit-defs.
249 /// This includes registers with no defs.
250 static bool isImplicitlyDefined(unsigned VirtReg,
251 const MachineRegisterInfo &MRI) {
252 for (MachineInstr &DI : MRI.def_instructions(VirtReg))
253 if (!DI.isImplicitDef())
254 return false;
255 return true;
258 /// Return true if all sources of the phi node are implicit_def's, or undef's.
259 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
260 const MachineRegisterInfo &MRI) {
261 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
262 const MachineOperand &MO = MPhi.getOperand(I);
263 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
264 return false;
266 return true;
268 /// LowerPHINode - Lower the PHI node at the top of the specified block.
269 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
270 MachineBasicBlock::iterator LastPHIIt) {
271 ++NumLowered;
273 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
275 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
276 MachineInstr *MPhi = MBB.remove(&*MBB.begin());
278 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
279 Register DestReg = MPhi->getOperand(0).getReg();
280 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
281 bool isDead = MPhi->getOperand(0).isDead();
283 // Create a new register for the incoming PHI arguments.
284 MachineFunction &MF = *MBB.getParent();
285 unsigned IncomingReg = 0;
286 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
288 // Insert a register to register copy at the top of the current block (but
289 // after any remaining phi nodes) which copies the new incoming register
290 // into the phi node destination.
291 MachineInstr *PHICopy = nullptr;
292 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
293 if (allPhiOperandsUndefined(*MPhi, *MRI))
294 // If all sources of a PHI node are implicit_def or undef uses, just emit an
295 // implicit_def instead of a copy.
296 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
297 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
298 else {
299 // Can we reuse an earlier PHI node? This only happens for critical edges,
300 // typically those created by tail duplication.
301 unsigned &entry = LoweredPHIs[MPhi];
302 if (entry) {
303 // An identical PHI node was already lowered. Reuse the incoming register.
304 IncomingReg = entry;
305 reusedIncoming = true;
306 ++NumReused;
307 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
308 << *MPhi);
309 } else {
310 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
311 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
313 // Give the target possiblity to handle special cases fallthrough otherwise
314 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
315 IncomingReg, DestReg);
318 if (MPhi->peekDebugInstrNum()) {
319 // If referred to by debug-info, store where this PHI was.
320 MachineFunction *MF = MBB.getParent();
321 unsigned ID = MPhi->peekDebugInstrNum();
322 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
323 auto Res = MF->DebugPHIPositions.insert({ID, P});
324 assert(Res.second);
325 (void)Res;
328 // Update live variable information if there is any.
329 if (LV) {
330 if (IncomingReg) {
331 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
333 // Increment use count of the newly created virtual register.
334 LV->setPHIJoin(IncomingReg);
336 MachineInstr *OldKill = nullptr;
337 bool IsPHICopyAfterOldKill = false;
339 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
340 // Calculate whether the PHICopy is after the OldKill.
341 // In general, the PHICopy is inserted as the first non-phi instruction
342 // by default, so it's before the OldKill. But some Target hooks for
343 // createPHIDestinationCopy() may modify the default insert position of
344 // PHICopy.
345 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
346 I != E; ++I) {
347 if (I == PHICopy)
348 break;
350 if (I == OldKill) {
351 IsPHICopyAfterOldKill = true;
352 break;
357 // When we are reusing the incoming register and it has been marked killed
358 // by OldKill, if the PHICopy is after the OldKill, we should remove the
359 // killed flag from OldKill.
360 if (IsPHICopyAfterOldKill) {
361 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
362 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
363 LLVM_DEBUG(MBB.dump());
366 // Add information to LiveVariables to know that the first used incoming
367 // value or the resued incoming value whose PHICopy is after the OldKIll
368 // is killed. Note that because the value is defined in several places
369 // (once each for each incoming block), the "def" block and instruction
370 // fields for the VarInfo is not filled in.
371 if (!OldKill || IsPHICopyAfterOldKill)
372 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
375 // Since we are going to be deleting the PHI node, if it is the last use of
376 // any registers, or if the value itself is dead, we need to move this
377 // information over to the new copy we just inserted.
378 LV->removeVirtualRegistersKilled(*MPhi);
380 // If the result is dead, update LV.
381 if (isDead) {
382 LV->addVirtualRegisterDead(DestReg, *PHICopy);
383 LV->removeVirtualRegisterDead(DestReg, *MPhi);
387 // Update LiveIntervals for the new copy or implicit def.
388 if (LIS) {
389 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
391 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
392 if (IncomingReg) {
393 // Add the region from the beginning of MBB to the copy instruction to
394 // IncomingReg's live interval.
395 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
396 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
397 if (!IncomingVNI)
398 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
399 LIS->getVNInfoAllocator());
400 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
401 DestCopyIndex.getRegSlot(),
402 IncomingVNI));
405 LiveInterval &DestLI = LIS->getInterval(DestReg);
406 assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
407 if (DestLI.endIndex().isDead()) {
408 // A dead PHI's live range begins and ends at the start of the MBB, but
409 // the lowered copy, which will still be dead, needs to begin and end at
410 // the copy instruction.
411 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
412 assert(OrigDestVNI && "PHI destination should be live at block entry.");
413 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
414 DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
415 LIS->getVNInfoAllocator());
416 DestLI.removeValNo(OrigDestVNI);
417 } else {
418 // Otherwise, remove the region from the beginning of MBB to the copy
419 // instruction from DestReg's live interval.
420 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
421 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
422 assert(DestVNI && "PHI destination should be live at its definition.");
423 DestVNI->def = DestCopyIndex.getRegSlot();
427 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
428 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
429 if (!MPhi->getOperand(i).isUndef()) {
430 --VRegPHIUseCount[BBVRegPair(
431 MPhi->getOperand(i + 1).getMBB()->getNumber(),
432 MPhi->getOperand(i).getReg())];
436 // Now loop over all of the incoming arguments, changing them to copy into the
437 // IncomingReg register in the corresponding predecessor basic block.
438 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
439 for (int i = NumSrcs - 1; i >= 0; --i) {
440 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
441 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
442 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
443 isImplicitlyDefined(SrcReg, *MRI);
444 assert(Register::isVirtualRegister(SrcReg) &&
445 "Machine PHI Operands must all be virtual registers!");
447 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
448 // path the PHI.
449 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
451 // Check to make sure we haven't already emitted the copy for this block.
452 // This can happen because PHI nodes may have multiple entries for the same
453 // basic block.
454 if (!MBBsInsertedInto.insert(&opBlock).second)
455 continue; // If the copy has already been emitted, we're done.
457 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
458 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
459 assert(SrcRegDef->getOperand(0).isReg() &&
460 SrcRegDef->getOperand(0).isDef() &&
461 "Expected operand 0 to be a reg def!");
462 // Now that the PHI's use has been removed (as the instruction was
463 // removed) there should be no other uses of the SrcReg.
464 assert(MRI->use_empty(SrcReg) &&
465 "Expected a single use from UnspillableTerminator");
466 SrcRegDef->getOperand(0).setReg(IncomingReg);
468 // Update LiveVariables.
469 if (LV) {
470 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
471 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
472 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
473 SrcVI.AliveBlocks.clear();
476 continue;
479 // Find a safe location to insert the copy, this may be the first terminator
480 // in the block (or end()).
481 MachineBasicBlock::iterator InsertPos =
482 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
484 // Insert the copy.
485 MachineInstr *NewSrcInstr = nullptr;
486 if (!reusedIncoming && IncomingReg) {
487 if (SrcUndef) {
488 // The source register is undefined, so there is no need for a real
489 // COPY, but we still need to ensure joint dominance by defs.
490 // Insert an IMPLICIT_DEF instruction.
491 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
492 TII->get(TargetOpcode::IMPLICIT_DEF),
493 IncomingReg);
495 // Clean up the old implicit-def, if there even was one.
496 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
497 if (DefMI->isImplicitDef())
498 ImpDefs.insert(DefMI);
499 } else {
500 // Delete the debug location, since the copy is inserted into a
501 // different basic block.
502 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
503 SrcReg, SrcSubReg, IncomingReg);
507 // We only need to update the LiveVariables kill of SrcReg if this was the
508 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
509 // out of the predecessor. We can also ignore undef sources.
510 if (LV && !SrcUndef &&
511 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
512 !LV->isLiveOut(SrcReg, opBlock)) {
513 // We want to be able to insert a kill of the register if this PHI (aka,
514 // the copy we just inserted) is the last use of the source value. Live
515 // variable analysis conservatively handles this by saying that the value
516 // is live until the end of the block the PHI entry lives in. If the value
517 // really is dead at the PHI copy, there will be no successor blocks which
518 // have the value live-in.
520 // Okay, if we now know that the value is not live out of the block, we
521 // can add a kill marker in this block saying that it kills the incoming
522 // value!
524 // In our final twist, we have to decide which instruction kills the
525 // register. In most cases this is the copy, however, terminator
526 // instructions at the end of the block may also use the value. In this
527 // case, we should mark the last such terminator as being the killing
528 // block, not the copy.
529 MachineBasicBlock::iterator KillInst = opBlock.end();
530 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
531 ++Term) {
532 if (Term->readsRegister(SrcReg))
533 KillInst = Term;
536 if (KillInst == opBlock.end()) {
537 // No terminator uses the register.
539 if (reusedIncoming || !IncomingReg) {
540 // We may have to rewind a bit if we didn't insert a copy this time.
541 KillInst = InsertPos;
542 while (KillInst != opBlock.begin()) {
543 --KillInst;
544 if (KillInst->isDebugInstr())
545 continue;
546 if (KillInst->readsRegister(SrcReg))
547 break;
549 } else {
550 // We just inserted this copy.
551 KillInst = NewSrcInstr;
554 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
556 // Finally, mark it killed.
557 LV->addVirtualRegisterKilled(SrcReg, *KillInst);
559 // This vreg no longer lives all of the way through opBlock.
560 unsigned opBlockNum = opBlock.getNumber();
561 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
564 if (LIS) {
565 if (NewSrcInstr) {
566 LIS->InsertMachineInstrInMaps(*NewSrcInstr);
567 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
570 if (!SrcUndef &&
571 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
572 LiveInterval &SrcLI = LIS->getInterval(SrcReg);
574 bool isLiveOut = false;
575 for (MachineBasicBlock *Succ : opBlock.successors()) {
576 SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
577 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
579 // Definitions by other PHIs are not truly live-in for our purposes.
580 if (VNI && VNI->def != startIdx) {
581 isLiveOut = true;
582 break;
586 if (!isLiveOut) {
587 MachineBasicBlock::iterator KillInst = opBlock.end();
588 for (MachineBasicBlock::iterator Term = InsertPos;
589 Term != opBlock.end(); ++Term) {
590 if (Term->readsRegister(SrcReg))
591 KillInst = Term;
594 if (KillInst == opBlock.end()) {
595 // No terminator uses the register.
597 if (reusedIncoming || !IncomingReg) {
598 // We may have to rewind a bit if we didn't just insert a copy.
599 KillInst = InsertPos;
600 while (KillInst != opBlock.begin()) {
601 --KillInst;
602 if (KillInst->isDebugInstr())
603 continue;
604 if (KillInst->readsRegister(SrcReg))
605 break;
607 } else {
608 // We just inserted this copy.
609 KillInst = std::prev(InsertPos);
612 assert(KillInst->readsRegister(SrcReg) &&
613 "Cannot find kill instruction");
615 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
616 SrcLI.removeSegment(LastUseIndex.getRegSlot(),
617 LIS->getMBBEndIdx(&opBlock));
623 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
624 if (reusedIncoming || !IncomingReg) {
625 if (LIS)
626 LIS->RemoveMachineInstrFromMaps(*MPhi);
627 MF.deleteMachineInstr(MPhi);
631 /// analyzePHINodes - Gather information about the PHI nodes in here. In
632 /// particular, we want to map the number of uses of a virtual register which is
633 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
634 /// used later to determine when the vreg is killed in the BB.
635 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
636 for (const auto &MBB : MF) {
637 for (const auto &BBI : MBB) {
638 if (!BBI.isPHI())
639 break;
640 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
641 if (!BBI.getOperand(i).isUndef()) {
642 ++VRegPHIUseCount[BBVRegPair(
643 BBI.getOperand(i + 1).getMBB()->getNumber(),
644 BBI.getOperand(i).getReg())];
651 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
652 MachineBasicBlock &MBB,
653 MachineLoopInfo *MLI,
654 std::vector<SparseBitVector<>> *LiveInSets) {
655 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
656 return false; // Quick exit for basic blocks without PHIs.
658 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
659 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
661 bool Changed = false;
662 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
663 BBI != BBE && BBI->isPHI(); ++BBI) {
664 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
665 Register Reg = BBI->getOperand(i).getReg();
666 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
667 // Is there a critical edge from PreMBB to MBB?
668 if (PreMBB->succ_size() == 1)
669 continue;
671 // Avoid splitting backedges of loops. It would introduce small
672 // out-of-line blocks into the loop which is very bad for code placement.
673 if (PreMBB == &MBB && !SplitAllCriticalEdges)
674 continue;
675 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
676 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
677 continue;
679 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
680 // when the source register is live-out for some other reason than a phi
681 // use. That means the copy we will insert in PreMBB won't be a kill, and
682 // there is a risk it may not be coalesced away.
684 // If the copy would be a kill, there is no need to split the edge.
685 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
686 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
687 continue;
688 if (ShouldSplit) {
689 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
690 << printMBBReference(*PreMBB) << " -> "
691 << printMBBReference(MBB) << ": " << *BBI);
694 // If Reg is not live-in to MBB, it means it must be live-in to some
695 // other PreMBB successor, and we can avoid the interference by splitting
696 // the edge.
698 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
699 // is likely to be left after coalescing. If we are looking at a loop
700 // exiting edge, split it so we won't insert code in the loop, otherwise
701 // don't bother.
702 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
704 // Check for a loop exiting edge.
705 if (!ShouldSplit && CurLoop != PreLoop) {
706 LLVM_DEBUG({
707 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
708 if (PreLoop)
709 dbgs() << "PreLoop: " << *PreLoop;
710 if (CurLoop)
711 dbgs() << "CurLoop: " << *CurLoop;
713 // This edge could be entering a loop, exiting a loop, or it could be
714 // both: Jumping directly form one loop to the header of a sibling
715 // loop.
716 // Split unless this edge is entering CurLoop from an outer loop.
717 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
719 if (!ShouldSplit && !SplitAllCriticalEdges)
720 continue;
721 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
722 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
723 continue;
725 Changed = true;
726 ++NumCriticalEdgesSplit;
729 return Changed;
732 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
733 assert((LV || LIS) &&
734 "isLiveIn() requires either LiveVariables or LiveIntervals");
735 if (LIS)
736 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
737 else
738 return LV->isLiveIn(Reg, *MBB);
741 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
742 const MachineBasicBlock *MBB) {
743 assert((LV || LIS) &&
744 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
745 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
746 // so that a register used only in a PHI is not live out of the block. In
747 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
748 // in the predecessor basic block, so that a register used only in a PHI is live
749 // out of the block.
750 if (LIS) {
751 const LiveInterval &LI = LIS->getInterval(Reg);
752 for (const MachineBasicBlock *SI : MBB->successors())
753 if (LI.liveAt(LIS->getMBBStartIdx(SI)))
754 return true;
755 return false;
756 } else {
757 return LV->isLiveOut(Reg, *MBB);