1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions. This destroys SSA information, but is the desired input for
11 // some register allocators.
13 //===----------------------------------------------------------------------===//
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
47 #define DEBUG_TYPE "phi-node-elimination"
50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
51 cl::Hidden
, cl::desc("Disable critical edge splitting "
52 "during PHI elimination"));
55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
56 cl::Hidden
, cl::desc("Split all critical edges during "
59 static cl::opt
<bool> NoPhiElimLiveOutEarlyExit(
60 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden
,
61 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
65 class PHIElimination
: public MachineFunctionPass
{
66 MachineRegisterInfo
*MRI
; // Machine register information
71 static char ID
; // Pass identification, replacement for typeid
73 PHIElimination() : MachineFunctionPass(ID
) {
74 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77 bool runOnMachineFunction(MachineFunction
&MF
) override
;
78 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
81 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
82 /// in predecessor basic blocks.
83 bool EliminatePHINodes(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
85 void LowerPHINode(MachineBasicBlock
&MBB
,
86 MachineBasicBlock::iterator LastPHIIt
);
88 /// analyzePHINodes - Gather information about the PHI nodes in
89 /// here. In particular, we want to map the number of uses of a virtual
90 /// register which is used in a PHI node. We map that to the BB the
91 /// vreg is coming from. This is used later to determine when the vreg
92 /// is killed in the BB.
93 void analyzePHINodes(const MachineFunction
& MF
);
95 /// Split critical edges where necessary for good coalescer performance.
96 bool SplitPHIEdges(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
98 std::vector
<SparseBitVector
<>> *LiveInSets
);
100 // These functions are temporary abstractions around LiveVariables and
101 // LiveIntervals, so they can go away when LiveVariables does.
102 bool isLiveIn(Register Reg
, const MachineBasicBlock
*MBB
);
103 bool isLiveOutPastPHIs(Register Reg
, const MachineBasicBlock
*MBB
);
105 using BBVRegPair
= std::pair
<unsigned, Register
>;
106 using VRegPHIUse
= DenseMap
<BBVRegPair
, unsigned>;
108 // Count the number of non-undef PHI uses of each register in each BB.
109 VRegPHIUse VRegPHIUseCount
;
111 // Defs of PHI sources which are implicit_def.
112 SmallPtrSet
<MachineInstr
*, 4> ImpDefs
;
114 // Map reusable lowered PHI node -> incoming join register.
115 using LoweredPHIMap
=
116 DenseMap
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
>;
117 LoweredPHIMap LoweredPHIs
;
120 } // end anonymous namespace
122 STATISTIC(NumLowered
, "Number of phis lowered");
123 STATISTIC(NumCriticalEdgesSplit
, "Number of critical edges split");
124 STATISTIC(NumReused
, "Number of reused lowered phis");
126 char PHIElimination::ID
= 0;
128 char& llvm::PHIEliminationID
= PHIElimination::ID
;
130 INITIALIZE_PASS_BEGIN(PHIElimination
, DEBUG_TYPE
,
131 "Eliminate PHI nodes for register allocation",
133 INITIALIZE_PASS_DEPENDENCY(LiveVariables
)
134 INITIALIZE_PASS_END(PHIElimination
, DEBUG_TYPE
,
135 "Eliminate PHI nodes for register allocation", false, false)
137 void PHIElimination::getAnalysisUsage(AnalysisUsage
&AU
) const {
138 AU
.addUsedIfAvailable
<LiveVariables
>();
139 AU
.addPreserved
<LiveVariables
>();
140 AU
.addPreserved
<SlotIndexes
>();
141 AU
.addPreserved
<LiveIntervals
>();
142 AU
.addPreserved
<MachineDominatorTree
>();
143 AU
.addPreserved
<MachineLoopInfo
>();
144 MachineFunctionPass::getAnalysisUsage(AU
);
147 bool PHIElimination::runOnMachineFunction(MachineFunction
&MF
) {
148 MRI
= &MF
.getRegInfo();
149 LV
= getAnalysisIfAvailable
<LiveVariables
>();
150 LIS
= getAnalysisIfAvailable
<LiveIntervals
>();
152 bool Changed
= false;
154 // Split critical edges to help the coalescer.
155 if (!DisableEdgeSplitting
&& (LV
|| LIS
)) {
156 // A set of live-in regs for each MBB which is used to update LV
157 // efficiently also with large functions.
158 std::vector
<SparseBitVector
<>> LiveInSets
;
160 LiveInSets
.resize(MF
.size());
161 for (unsigned Index
= 0, e
= MRI
->getNumVirtRegs(); Index
!= e
; ++Index
) {
162 // Set the bit for this register for each MBB where it is
163 // live-through or live-in (killed).
164 unsigned VirtReg
= Register::index2VirtReg(Index
);
165 MachineInstr
*DefMI
= MRI
->getVRegDef(VirtReg
);
168 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(VirtReg
);
169 SparseBitVector
<>::iterator AliveBlockItr
= VI
.AliveBlocks
.begin();
170 SparseBitVector
<>::iterator EndItr
= VI
.AliveBlocks
.end();
171 while (AliveBlockItr
!= EndItr
) {
172 unsigned BlockNum
= *(AliveBlockItr
++);
173 LiveInSets
[BlockNum
].set(Index
);
175 // The register is live into an MBB in which it is killed but not
176 // defined. See comment for VarInfo in LiveVariables.h.
177 MachineBasicBlock
*DefMBB
= DefMI
->getParent();
178 if (VI
.Kills
.size() > 1 ||
179 (!VI
.Kills
.empty() && VI
.Kills
.front()->getParent() != DefMBB
))
180 for (auto *MI
: VI
.Kills
)
181 LiveInSets
[MI
->getParent()->getNumber()].set(Index
);
185 MachineLoopInfo
*MLI
= getAnalysisIfAvailable
<MachineLoopInfo
>();
187 Changed
|= SplitPHIEdges(MF
, MBB
, MLI
, (LV
? &LiveInSets
: nullptr));
190 // This pass takes the function out of SSA form.
193 // Populate VRegPHIUseCount
196 // Eliminate PHI instructions by inserting copies into predecessor blocks.
198 Changed
|= EliminatePHINodes(MF
, MBB
);
200 // Remove dead IMPLICIT_DEF instructions.
201 for (MachineInstr
*DefMI
: ImpDefs
) {
202 Register DefReg
= DefMI
->getOperand(0).getReg();
203 if (MRI
->use_nodbg_empty(DefReg
)) {
205 LIS
->RemoveMachineInstrFromMaps(*DefMI
);
206 DefMI
->eraseFromParent();
210 // Clean up the lowered PHI instructions.
211 for (auto &I
: LoweredPHIs
) {
213 LIS
->RemoveMachineInstrFromMaps(*I
.first
);
214 MF
.deleteMachineInstr(I
.first
);
217 // TODO: we should use the incremental DomTree updater here.
219 if (auto *MDT
= getAnalysisIfAvailable
<MachineDominatorTree
>())
220 MDT
->getBase().recalculate(MF
);
224 VRegPHIUseCount
.clear();
226 MF
.getProperties().set(MachineFunctionProperties::Property::NoPHIs
);
231 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
232 /// predecessor basic blocks.
233 bool PHIElimination::EliminatePHINodes(MachineFunction
&MF
,
234 MachineBasicBlock
&MBB
) {
235 if (MBB
.empty() || !MBB
.front().isPHI())
236 return false; // Quick exit for basic blocks without PHIs.
238 // Get an iterator to the last PHI node.
239 MachineBasicBlock::iterator LastPHIIt
=
240 std::prev(MBB
.SkipPHIsAndLabels(MBB
.begin()));
242 while (MBB
.front().isPHI())
243 LowerPHINode(MBB
, LastPHIIt
);
248 /// Return true if all defs of VirtReg are implicit-defs.
249 /// This includes registers with no defs.
250 static bool isImplicitlyDefined(unsigned VirtReg
,
251 const MachineRegisterInfo
&MRI
) {
252 for (MachineInstr
&DI
: MRI
.def_instructions(VirtReg
))
253 if (!DI
.isImplicitDef())
258 /// Return true if all sources of the phi node are implicit_def's, or undef's.
259 static bool allPhiOperandsUndefined(const MachineInstr
&MPhi
,
260 const MachineRegisterInfo
&MRI
) {
261 for (unsigned I
= 1, E
= MPhi
.getNumOperands(); I
!= E
; I
+= 2) {
262 const MachineOperand
&MO
= MPhi
.getOperand(I
);
263 if (!isImplicitlyDefined(MO
.getReg(), MRI
) && !MO
.isUndef())
268 /// LowerPHINode - Lower the PHI node at the top of the specified block.
269 void PHIElimination::LowerPHINode(MachineBasicBlock
&MBB
,
270 MachineBasicBlock::iterator LastPHIIt
) {
273 MachineBasicBlock::iterator AfterPHIsIt
= std::next(LastPHIIt
);
275 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
276 MachineInstr
*MPhi
= MBB
.remove(&*MBB
.begin());
278 unsigned NumSrcs
= (MPhi
->getNumOperands() - 1) / 2;
279 Register DestReg
= MPhi
->getOperand(0).getReg();
280 assert(MPhi
->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
281 bool isDead
= MPhi
->getOperand(0).isDead();
283 // Create a new register for the incoming PHI arguments.
284 MachineFunction
&MF
= *MBB
.getParent();
285 unsigned IncomingReg
= 0;
286 bool reusedIncoming
= false; // Is IncomingReg reused from an earlier PHI?
288 // Insert a register to register copy at the top of the current block (but
289 // after any remaining phi nodes) which copies the new incoming register
290 // into the phi node destination.
291 MachineInstr
*PHICopy
= nullptr;
292 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
293 if (allPhiOperandsUndefined(*MPhi
, *MRI
))
294 // If all sources of a PHI node are implicit_def or undef uses, just emit an
295 // implicit_def instead of a copy.
296 PHICopy
= BuildMI(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
297 TII
->get(TargetOpcode::IMPLICIT_DEF
), DestReg
);
299 // Can we reuse an earlier PHI node? This only happens for critical edges,
300 // typically those created by tail duplication.
301 unsigned &entry
= LoweredPHIs
[MPhi
];
303 // An identical PHI node was already lowered. Reuse the incoming register.
305 reusedIncoming
= true;
307 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg
) << " for "
310 const TargetRegisterClass
*RC
= MF
.getRegInfo().getRegClass(DestReg
);
311 entry
= IncomingReg
= MF
.getRegInfo().createVirtualRegister(RC
);
313 // Give the target possiblity to handle special cases fallthrough otherwise
314 PHICopy
= TII
->createPHIDestinationCopy(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
315 IncomingReg
, DestReg
);
318 if (MPhi
->peekDebugInstrNum()) {
319 // If referred to by debug-info, store where this PHI was.
320 MachineFunction
*MF
= MBB
.getParent();
321 unsigned ID
= MPhi
->peekDebugInstrNum();
322 auto P
= MachineFunction::DebugPHIRegallocPos(&MBB
, IncomingReg
, 0);
323 auto Res
= MF
->DebugPHIPositions
.insert({ID
, P
});
328 // Update live variable information if there is any.
331 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(IncomingReg
);
333 // Increment use count of the newly created virtual register.
334 LV
->setPHIJoin(IncomingReg
);
336 MachineInstr
*OldKill
= nullptr;
337 bool IsPHICopyAfterOldKill
= false;
339 if (reusedIncoming
&& (OldKill
= VI
.findKill(&MBB
))) {
340 // Calculate whether the PHICopy is after the OldKill.
341 // In general, the PHICopy is inserted as the first non-phi instruction
342 // by default, so it's before the OldKill. But some Target hooks for
343 // createPHIDestinationCopy() may modify the default insert position of
345 for (auto I
= MBB
.SkipPHIsAndLabels(MBB
.begin()), E
= MBB
.end();
351 IsPHICopyAfterOldKill
= true;
357 // When we are reusing the incoming register and it has been marked killed
358 // by OldKill, if the PHICopy is after the OldKill, we should remove the
359 // killed flag from OldKill.
360 if (IsPHICopyAfterOldKill
) {
361 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill
);
362 LV
->removeVirtualRegisterKilled(IncomingReg
, *OldKill
);
363 LLVM_DEBUG(MBB
.dump());
366 // Add information to LiveVariables to know that the first used incoming
367 // value or the resued incoming value whose PHICopy is after the OldKIll
368 // is killed. Note that because the value is defined in several places
369 // (once each for each incoming block), the "def" block and instruction
370 // fields for the VarInfo is not filled in.
371 if (!OldKill
|| IsPHICopyAfterOldKill
)
372 LV
->addVirtualRegisterKilled(IncomingReg
, *PHICopy
);
375 // Since we are going to be deleting the PHI node, if it is the last use of
376 // any registers, or if the value itself is dead, we need to move this
377 // information over to the new copy we just inserted.
378 LV
->removeVirtualRegistersKilled(*MPhi
);
380 // If the result is dead, update LV.
382 LV
->addVirtualRegisterDead(DestReg
, *PHICopy
);
383 LV
->removeVirtualRegisterDead(DestReg
, *MPhi
);
387 // Update LiveIntervals for the new copy or implicit def.
389 SlotIndex DestCopyIndex
= LIS
->InsertMachineInstrInMaps(*PHICopy
);
391 SlotIndex MBBStartIndex
= LIS
->getMBBStartIdx(&MBB
);
393 // Add the region from the beginning of MBB to the copy instruction to
394 // IncomingReg's live interval.
395 LiveInterval
&IncomingLI
= LIS
->createEmptyInterval(IncomingReg
);
396 VNInfo
*IncomingVNI
= IncomingLI
.getVNInfoAt(MBBStartIndex
);
398 IncomingVNI
= IncomingLI
.getNextValue(MBBStartIndex
,
399 LIS
->getVNInfoAllocator());
400 IncomingLI
.addSegment(LiveInterval::Segment(MBBStartIndex
,
401 DestCopyIndex
.getRegSlot(),
405 LiveInterval
&DestLI
= LIS
->getInterval(DestReg
);
406 assert(!DestLI
.empty() && "PHIs should have nonempty LiveIntervals.");
407 if (DestLI
.endIndex().isDead()) {
408 // A dead PHI's live range begins and ends at the start of the MBB, but
409 // the lowered copy, which will still be dead, needs to begin and end at
410 // the copy instruction.
411 VNInfo
*OrigDestVNI
= DestLI
.getVNInfoAt(MBBStartIndex
);
412 assert(OrigDestVNI
&& "PHI destination should be live at block entry.");
413 DestLI
.removeSegment(MBBStartIndex
, MBBStartIndex
.getDeadSlot());
414 DestLI
.createDeadDef(DestCopyIndex
.getRegSlot(),
415 LIS
->getVNInfoAllocator());
416 DestLI
.removeValNo(OrigDestVNI
);
418 // Otherwise, remove the region from the beginning of MBB to the copy
419 // instruction from DestReg's live interval.
420 DestLI
.removeSegment(MBBStartIndex
, DestCopyIndex
.getRegSlot());
421 VNInfo
*DestVNI
= DestLI
.getVNInfoAt(DestCopyIndex
.getRegSlot());
422 assert(DestVNI
&& "PHI destination should be live at its definition.");
423 DestVNI
->def
= DestCopyIndex
.getRegSlot();
427 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
428 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2) {
429 if (!MPhi
->getOperand(i
).isUndef()) {
430 --VRegPHIUseCount
[BBVRegPair(
431 MPhi
->getOperand(i
+ 1).getMBB()->getNumber(),
432 MPhi
->getOperand(i
).getReg())];
436 // Now loop over all of the incoming arguments, changing them to copy into the
437 // IncomingReg register in the corresponding predecessor basic block.
438 SmallPtrSet
<MachineBasicBlock
*, 8> MBBsInsertedInto
;
439 for (int i
= NumSrcs
- 1; i
>= 0; --i
) {
440 Register SrcReg
= MPhi
->getOperand(i
* 2 + 1).getReg();
441 unsigned SrcSubReg
= MPhi
->getOperand(i
*2+1).getSubReg();
442 bool SrcUndef
= MPhi
->getOperand(i
*2+1).isUndef() ||
443 isImplicitlyDefined(SrcReg
, *MRI
);
444 assert(Register::isVirtualRegister(SrcReg
) &&
445 "Machine PHI Operands must all be virtual registers!");
447 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
449 MachineBasicBlock
&opBlock
= *MPhi
->getOperand(i
*2+2).getMBB();
451 // Check to make sure we haven't already emitted the copy for this block.
452 // This can happen because PHI nodes may have multiple entries for the same
454 if (!MBBsInsertedInto
.insert(&opBlock
).second
)
455 continue; // If the copy has already been emitted, we're done.
457 MachineInstr
*SrcRegDef
= MRI
->getVRegDef(SrcReg
);
458 if (SrcRegDef
&& TII
->isUnspillableTerminator(SrcRegDef
)) {
459 assert(SrcRegDef
->getOperand(0).isReg() &&
460 SrcRegDef
->getOperand(0).isDef() &&
461 "Expected operand 0 to be a reg def!");
462 // Now that the PHI's use has been removed (as the instruction was
463 // removed) there should be no other uses of the SrcReg.
464 assert(MRI
->use_empty(SrcReg
) &&
465 "Expected a single use from UnspillableTerminator");
466 SrcRegDef
->getOperand(0).setReg(IncomingReg
);
468 // Update LiveVariables.
470 LiveVariables::VarInfo
&SrcVI
= LV
->getVarInfo(SrcReg
);
471 LiveVariables::VarInfo
&IncomingVI
= LV
->getVarInfo(IncomingReg
);
472 IncomingVI
.AliveBlocks
= std::move(SrcVI
.AliveBlocks
);
473 SrcVI
.AliveBlocks
.clear();
479 // Find a safe location to insert the copy, this may be the first terminator
480 // in the block (or end()).
481 MachineBasicBlock::iterator InsertPos
=
482 findPHICopyInsertPoint(&opBlock
, &MBB
, SrcReg
);
485 MachineInstr
*NewSrcInstr
= nullptr;
486 if (!reusedIncoming
&& IncomingReg
) {
488 // The source register is undefined, so there is no need for a real
489 // COPY, but we still need to ensure joint dominance by defs.
490 // Insert an IMPLICIT_DEF instruction.
491 NewSrcInstr
= BuildMI(opBlock
, InsertPos
, MPhi
->getDebugLoc(),
492 TII
->get(TargetOpcode::IMPLICIT_DEF
),
495 // Clean up the old implicit-def, if there even was one.
496 if (MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
))
497 if (DefMI
->isImplicitDef())
498 ImpDefs
.insert(DefMI
);
500 // Delete the debug location, since the copy is inserted into a
501 // different basic block.
502 NewSrcInstr
= TII
->createPHISourceCopy(opBlock
, InsertPos
, nullptr,
503 SrcReg
, SrcSubReg
, IncomingReg
);
507 // We only need to update the LiveVariables kill of SrcReg if this was the
508 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
509 // out of the predecessor. We can also ignore undef sources.
510 if (LV
&& !SrcUndef
&&
511 !VRegPHIUseCount
[BBVRegPair(opBlock
.getNumber(), SrcReg
)] &&
512 !LV
->isLiveOut(SrcReg
, opBlock
)) {
513 // We want to be able to insert a kill of the register if this PHI (aka,
514 // the copy we just inserted) is the last use of the source value. Live
515 // variable analysis conservatively handles this by saying that the value
516 // is live until the end of the block the PHI entry lives in. If the value
517 // really is dead at the PHI copy, there will be no successor blocks which
518 // have the value live-in.
520 // Okay, if we now know that the value is not live out of the block, we
521 // can add a kill marker in this block saying that it kills the incoming
524 // In our final twist, we have to decide which instruction kills the
525 // register. In most cases this is the copy, however, terminator
526 // instructions at the end of the block may also use the value. In this
527 // case, we should mark the last such terminator as being the killing
528 // block, not the copy.
529 MachineBasicBlock::iterator KillInst
= opBlock
.end();
530 for (MachineBasicBlock::iterator Term
= InsertPos
; Term
!= opBlock
.end();
532 if (Term
->readsRegister(SrcReg
))
536 if (KillInst
== opBlock
.end()) {
537 // No terminator uses the register.
539 if (reusedIncoming
|| !IncomingReg
) {
540 // We may have to rewind a bit if we didn't insert a copy this time.
541 KillInst
= InsertPos
;
542 while (KillInst
!= opBlock
.begin()) {
544 if (KillInst
->isDebugInstr())
546 if (KillInst
->readsRegister(SrcReg
))
550 // We just inserted this copy.
551 KillInst
= NewSrcInstr
;
554 assert(KillInst
->readsRegister(SrcReg
) && "Cannot find kill instruction");
556 // Finally, mark it killed.
557 LV
->addVirtualRegisterKilled(SrcReg
, *KillInst
);
559 // This vreg no longer lives all of the way through opBlock.
560 unsigned opBlockNum
= opBlock
.getNumber();
561 LV
->getVarInfo(SrcReg
).AliveBlocks
.reset(opBlockNum
);
566 LIS
->InsertMachineInstrInMaps(*NewSrcInstr
);
567 LIS
->addSegmentToEndOfBlock(IncomingReg
, *NewSrcInstr
);
571 !VRegPHIUseCount
[BBVRegPair(opBlock
.getNumber(), SrcReg
)]) {
572 LiveInterval
&SrcLI
= LIS
->getInterval(SrcReg
);
574 bool isLiveOut
= false;
575 for (MachineBasicBlock
*Succ
: opBlock
.successors()) {
576 SlotIndex startIdx
= LIS
->getMBBStartIdx(Succ
);
577 VNInfo
*VNI
= SrcLI
.getVNInfoAt(startIdx
);
579 // Definitions by other PHIs are not truly live-in for our purposes.
580 if (VNI
&& VNI
->def
!= startIdx
) {
587 MachineBasicBlock::iterator KillInst
= opBlock
.end();
588 for (MachineBasicBlock::iterator Term
= InsertPos
;
589 Term
!= opBlock
.end(); ++Term
) {
590 if (Term
->readsRegister(SrcReg
))
594 if (KillInst
== opBlock
.end()) {
595 // No terminator uses the register.
597 if (reusedIncoming
|| !IncomingReg
) {
598 // We may have to rewind a bit if we didn't just insert a copy.
599 KillInst
= InsertPos
;
600 while (KillInst
!= opBlock
.begin()) {
602 if (KillInst
->isDebugInstr())
604 if (KillInst
->readsRegister(SrcReg
))
608 // We just inserted this copy.
609 KillInst
= std::prev(InsertPos
);
612 assert(KillInst
->readsRegister(SrcReg
) &&
613 "Cannot find kill instruction");
615 SlotIndex LastUseIndex
= LIS
->getInstructionIndex(*KillInst
);
616 SrcLI
.removeSegment(LastUseIndex
.getRegSlot(),
617 LIS
->getMBBEndIdx(&opBlock
));
623 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
624 if (reusedIncoming
|| !IncomingReg
) {
626 LIS
->RemoveMachineInstrFromMaps(*MPhi
);
627 MF
.deleteMachineInstr(MPhi
);
631 /// analyzePHINodes - Gather information about the PHI nodes in here. In
632 /// particular, we want to map the number of uses of a virtual register which is
633 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
634 /// used later to determine when the vreg is killed in the BB.
635 void PHIElimination::analyzePHINodes(const MachineFunction
& MF
) {
636 for (const auto &MBB
: MF
) {
637 for (const auto &BBI
: MBB
) {
640 for (unsigned i
= 1, e
= BBI
.getNumOperands(); i
!= e
; i
+= 2) {
641 if (!BBI
.getOperand(i
).isUndef()) {
642 ++VRegPHIUseCount
[BBVRegPair(
643 BBI
.getOperand(i
+ 1).getMBB()->getNumber(),
644 BBI
.getOperand(i
).getReg())];
651 bool PHIElimination::SplitPHIEdges(MachineFunction
&MF
,
652 MachineBasicBlock
&MBB
,
653 MachineLoopInfo
*MLI
,
654 std::vector
<SparseBitVector
<>> *LiveInSets
) {
655 if (MBB
.empty() || !MBB
.front().isPHI() || MBB
.isEHPad())
656 return false; // Quick exit for basic blocks without PHIs.
658 const MachineLoop
*CurLoop
= MLI
? MLI
->getLoopFor(&MBB
) : nullptr;
659 bool IsLoopHeader
= CurLoop
&& &MBB
== CurLoop
->getHeader();
661 bool Changed
= false;
662 for (MachineBasicBlock::iterator BBI
= MBB
.begin(), BBE
= MBB
.end();
663 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
) {
664 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2) {
665 Register Reg
= BBI
->getOperand(i
).getReg();
666 MachineBasicBlock
*PreMBB
= BBI
->getOperand(i
+1).getMBB();
667 // Is there a critical edge from PreMBB to MBB?
668 if (PreMBB
->succ_size() == 1)
671 // Avoid splitting backedges of loops. It would introduce small
672 // out-of-line blocks into the loop which is very bad for code placement.
673 if (PreMBB
== &MBB
&& !SplitAllCriticalEdges
)
675 const MachineLoop
*PreLoop
= MLI
? MLI
->getLoopFor(PreMBB
) : nullptr;
676 if (IsLoopHeader
&& PreLoop
== CurLoop
&& !SplitAllCriticalEdges
)
679 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
680 // when the source register is live-out for some other reason than a phi
681 // use. That means the copy we will insert in PreMBB won't be a kill, and
682 // there is a risk it may not be coalesced away.
684 // If the copy would be a kill, there is no need to split the edge.
685 bool ShouldSplit
= isLiveOutPastPHIs(Reg
, PreMBB
);
686 if (!ShouldSplit
&& !NoPhiElimLiveOutEarlyExit
)
689 LLVM_DEBUG(dbgs() << printReg(Reg
) << " live-out before critical edge "
690 << printMBBReference(*PreMBB
) << " -> "
691 << printMBBReference(MBB
) << ": " << *BBI
);
694 // If Reg is not live-in to MBB, it means it must be live-in to some
695 // other PreMBB successor, and we can avoid the interference by splitting
698 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
699 // is likely to be left after coalescing. If we are looking at a loop
700 // exiting edge, split it so we won't insert code in the loop, otherwise
702 ShouldSplit
= ShouldSplit
&& !isLiveIn(Reg
, &MBB
);
704 // Check for a loop exiting edge.
705 if (!ShouldSplit
&& CurLoop
!= PreLoop
) {
707 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
709 dbgs() << "PreLoop: " << *PreLoop
;
711 dbgs() << "CurLoop: " << *CurLoop
;
713 // This edge could be entering a loop, exiting a loop, or it could be
714 // both: Jumping directly form one loop to the header of a sibling
716 // Split unless this edge is entering CurLoop from an outer loop.
717 ShouldSplit
= PreLoop
&& !PreLoop
->contains(CurLoop
);
719 if (!ShouldSplit
&& !SplitAllCriticalEdges
)
721 if (!PreMBB
->SplitCriticalEdge(&MBB
, *this, LiveInSets
)) {
722 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
726 ++NumCriticalEdgesSplit
;
732 bool PHIElimination::isLiveIn(Register Reg
, const MachineBasicBlock
*MBB
) {
733 assert((LV
|| LIS
) &&
734 "isLiveIn() requires either LiveVariables or LiveIntervals");
736 return LIS
->isLiveInToMBB(LIS
->getInterval(Reg
), MBB
);
738 return LV
->isLiveIn(Reg
, *MBB
);
741 bool PHIElimination::isLiveOutPastPHIs(Register Reg
,
742 const MachineBasicBlock
*MBB
) {
743 assert((LV
|| LIS
) &&
744 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
745 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
746 // so that a register used only in a PHI is not live out of the block. In
747 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
748 // in the predecessor basic block, so that a register used only in a PHI is live
751 const LiveInterval
&LI
= LIS
->getInterval(Reg
);
752 for (const MachineBasicBlock
*SI
: MBB
->successors())
753 if (LI
.liveAt(LIS
->getMBBStartIdx(SI
)))
757 return LV
->isLiveOut(Reg
, *MBB
);