[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / PeepholeOptimizer.cpp
blob31e37c4cd7e3e018fac6397c7cfc646509241365
1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Perform peephole optimizations on the machine code:
11 // - Optimize Extensions
13 // Optimization of sign / zero extension instructions. It may be extended to
14 // handle other instructions with similar properties.
16 // On some targets, some instructions, e.g. X86 sign / zero extension, may
17 // leave the source value in the lower part of the result. This optimization
18 // will replace some uses of the pre-extension value with uses of the
19 // sub-register of the results.
21 // - Optimize Comparisons
23 // Optimization of comparison instructions. For instance, in this code:
25 // sub r1, 1
26 // cmp r1, 0
27 // bz L1
29 // If the "sub" instruction all ready sets (or could be modified to set) the
30 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
31 // eliminate the "cmp" instruction.
33 // Another instance, in this code:
35 // sub r1, r3 | sub r1, imm
36 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37 // bge L1
39 // If the branch instruction can use flag from "sub", then we can replace
40 // "sub" with "subs" and eliminate the "cmp" instruction.
42 // - Optimize Loads:
44 // Loads that can be folded into a later instruction. A load is foldable
45 // if it loads to virtual registers and the virtual register defined has
46 // a single use.
48 // - Optimize Copies and Bitcast (more generally, target specific copies):
50 // Rewrite copies and bitcasts to avoid cross register bank copies
51 // when possible.
52 // E.g., Consider the following example, where capital and lower
53 // letters denote different register file:
54 // b = copy A <-- cross-bank copy
55 // C = copy b <-- cross-bank copy
56 // =>
57 // b = copy A <-- cross-bank copy
58 // C = copy A <-- same-bank copy
60 // E.g., for bitcast:
61 // b = bitcast A <-- cross-bank copy
62 // C = bitcast b <-- cross-bank copy
63 // =>
64 // b = bitcast A <-- cross-bank copy
65 // C = copy A <-- same-bank copy
66 //===----------------------------------------------------------------------===//
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/CodeGen/MachineBasicBlock.h"
75 #include "llvm/CodeGen/MachineDominators.h"
76 #include "llvm/CodeGen/MachineFunction.h"
77 #include "llvm/CodeGen/MachineFunctionPass.h"
78 #include "llvm/CodeGen/MachineInstr.h"
79 #include "llvm/CodeGen/MachineInstrBuilder.h"
80 #include "llvm/CodeGen/MachineLoopInfo.h"
81 #include "llvm/CodeGen/MachineOperand.h"
82 #include "llvm/CodeGen/MachineRegisterInfo.h"
83 #include "llvm/CodeGen/TargetInstrInfo.h"
84 #include "llvm/CodeGen/TargetOpcodes.h"
85 #include "llvm/CodeGen/TargetRegisterInfo.h"
86 #include "llvm/CodeGen/TargetSubtargetInfo.h"
87 #include "llvm/InitializePasses.h"
88 #include "llvm/MC/LaneBitmask.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include <cassert>
95 #include <cstdint>
96 #include <memory>
97 #include <utility>
99 using namespace llvm;
100 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
101 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103 #define DEBUG_TYPE "peephole-opt"
105 // Optimize Extensions
106 static cl::opt<bool>
107 Aggressive("aggressive-ext-opt", cl::Hidden,
108 cl::desc("Aggressive extension optimization"));
110 static cl::opt<bool>
111 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
112 cl::desc("Disable the peephole optimizer"));
114 /// Specifiy whether or not the value tracking looks through
115 /// complex instructions. When this is true, the value tracker
116 /// bails on everything that is not a copy or a bitcast.
117 static cl::opt<bool>
118 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
119 cl::desc("Disable advanced copy optimization"));
121 static cl::opt<bool> DisableNAPhysCopyOpt(
122 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
123 cl::desc("Disable non-allocatable physical register copy optimization"));
125 // Limit the number of PHI instructions to process
126 // in PeepholeOptimizer::getNextSource.
127 static cl::opt<unsigned> RewritePHILimit(
128 "rewrite-phi-limit", cl::Hidden, cl::init(10),
129 cl::desc("Limit the length of PHI chains to lookup"));
131 // Limit the length of recurrence chain when evaluating the benefit of
132 // commuting operands.
133 static cl::opt<unsigned> MaxRecurrenceChain(
134 "recurrence-chain-limit", cl::Hidden, cl::init(3),
135 cl::desc("Maximum length of recurrence chain when evaluating the benefit "
136 "of commuting operands"));
139 STATISTIC(NumReuse, "Number of extension results reused");
140 STATISTIC(NumCmps, "Number of compares eliminated");
141 STATISTIC(NumImmFold, "Number of move immediate folded");
142 STATISTIC(NumLoadFold, "Number of loads folded");
143 STATISTIC(NumSelects, "Number of selects optimized");
144 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
145 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
146 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148 namespace {
150 class ValueTrackerResult;
151 class RecurrenceInstr;
153 class PeepholeOptimizer : public MachineFunctionPass {
154 const TargetInstrInfo *TII;
155 const TargetRegisterInfo *TRI;
156 MachineRegisterInfo *MRI;
157 MachineDominatorTree *DT; // Machine dominator tree
158 MachineLoopInfo *MLI;
160 public:
161 static char ID; // Pass identification
163 PeepholeOptimizer() : MachineFunctionPass(ID) {
164 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
167 bool runOnMachineFunction(MachineFunction &MF) override;
169 void getAnalysisUsage(AnalysisUsage &AU) const override {
170 AU.setPreservesCFG();
171 MachineFunctionPass::getAnalysisUsage(AU);
172 AU.addRequired<MachineLoopInfo>();
173 AU.addPreserved<MachineLoopInfo>();
174 if (Aggressive) {
175 AU.addRequired<MachineDominatorTree>();
176 AU.addPreserved<MachineDominatorTree>();
180 MachineFunctionProperties getRequiredProperties() const override {
181 return MachineFunctionProperties()
182 .set(MachineFunctionProperties::Property::IsSSA);
185 /// Track Def -> Use info used for rewriting copies.
186 using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
188 /// Sequence of instructions that formulate recurrence cycle.
189 using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
191 private:
192 bool optimizeCmpInstr(MachineInstr &MI);
193 bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
194 SmallPtrSetImpl<MachineInstr*> &LocalMIs);
195 bool optimizeSelect(MachineInstr &MI,
196 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197 bool optimizeCondBranch(MachineInstr &MI);
198 bool optimizeCoalescableCopy(MachineInstr &MI);
199 bool optimizeUncoalescableCopy(MachineInstr &MI,
200 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
201 bool optimizeRecurrence(MachineInstr &PHI);
202 bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
203 bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
204 DenseMap<Register, MachineInstr *> &ImmDefMIs);
205 bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
206 DenseMap<Register, MachineInstr *> &ImmDefMIs);
208 /// Finds recurrence cycles, but only ones that formulated around
209 /// a def operand and a use operand that are tied. If there is a use
210 /// operand commutable with the tied use operand, find recurrence cycle
211 /// along that operand as well.
212 bool findTargetRecurrence(Register Reg,
213 const SmallSet<Register, 2> &TargetReg,
214 RecurrenceCycle &RC);
216 /// If copy instruction \p MI is a virtual register copy or a copy of a
217 /// constant physical register to a virtual register, track it in the
218 /// set \p CopyMIs. If this virtual register was previously seen as a
219 /// copy, replace the uses of this copy with the previously seen copy's
220 /// destination register.
221 bool foldRedundantCopy(MachineInstr &MI,
222 DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs);
224 /// Is the register \p Reg a non-allocatable physical register?
225 bool isNAPhysCopy(Register Reg);
227 /// If copy instruction \p MI is a non-allocatable virtual<->physical
228 /// register copy, track it in the \p NAPhysToVirtMIs map. If this
229 /// non-allocatable physical register was previously copied to a virtual
230 /// registered and hasn't been clobbered, the virt->phys copy can be
231 /// deleted.
232 bool foldRedundantNAPhysCopy(
233 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
235 bool isLoadFoldable(MachineInstr &MI,
236 SmallSet<Register, 16> &FoldAsLoadDefCandidates);
238 /// Check whether \p MI is understood by the register coalescer
239 /// but may require some rewriting.
240 bool isCoalescableCopy(const MachineInstr &MI) {
241 // SubregToRegs are not interesting, because they are already register
242 // coalescer friendly.
243 return MI.isCopy() || (!DisableAdvCopyOpt &&
244 (MI.isRegSequence() || MI.isInsertSubreg() ||
245 MI.isExtractSubreg()));
248 /// Check whether \p MI is a copy like instruction that is
249 /// not recognized by the register coalescer.
250 bool isUncoalescableCopy(const MachineInstr &MI) {
251 return MI.isBitcast() ||
252 (!DisableAdvCopyOpt &&
253 (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
254 MI.isExtractSubregLike()));
257 MachineInstr &rewriteSource(MachineInstr &CopyLike,
258 RegSubRegPair Def, RewriteMapTy &RewriteMap);
261 /// Helper class to hold instructions that are inside recurrence cycles.
262 /// The recurrence cycle is formulated around 1) a def operand and its
263 /// tied use operand, or 2) a def operand and a use operand that is commutable
264 /// with another use operand which is tied to the def operand. In the latter
265 /// case, index of the tied use operand and the commutable use operand are
266 /// maintained with CommutePair.
267 class RecurrenceInstr {
268 public:
269 using IndexPair = std::pair<unsigned, unsigned>;
271 RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
272 RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
273 : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
275 MachineInstr *getMI() const { return MI; }
276 Optional<IndexPair> getCommutePair() const { return CommutePair; }
278 private:
279 MachineInstr *MI;
280 Optional<IndexPair> CommutePair;
283 /// Helper class to hold a reply for ValueTracker queries.
284 /// Contains the returned sources for a given search and the instructions
285 /// where the sources were tracked from.
286 class ValueTrackerResult {
287 private:
288 /// Track all sources found by one ValueTracker query.
289 SmallVector<RegSubRegPair, 2> RegSrcs;
291 /// Instruction using the sources in 'RegSrcs'.
292 const MachineInstr *Inst = nullptr;
294 public:
295 ValueTrackerResult() = default;
297 ValueTrackerResult(Register Reg, unsigned SubReg) {
298 addSource(Reg, SubReg);
301 bool isValid() const { return getNumSources() > 0; }
303 void setInst(const MachineInstr *I) { Inst = I; }
304 const MachineInstr *getInst() const { return Inst; }
306 void clear() {
307 RegSrcs.clear();
308 Inst = nullptr;
311 void addSource(Register SrcReg, unsigned SrcSubReg) {
312 RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
315 void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
316 assert(Idx < getNumSources() && "Reg pair source out of index");
317 RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
320 int getNumSources() const { return RegSrcs.size(); }
322 RegSubRegPair getSrc(int Idx) const {
323 return RegSrcs[Idx];
326 Register getSrcReg(int Idx) const {
327 assert(Idx < getNumSources() && "Reg source out of index");
328 return RegSrcs[Idx].Reg;
331 unsigned getSrcSubReg(int Idx) const {
332 assert(Idx < getNumSources() && "SubReg source out of index");
333 return RegSrcs[Idx].SubReg;
336 bool operator==(const ValueTrackerResult &Other) const {
337 if (Other.getInst() != getInst())
338 return false;
340 if (Other.getNumSources() != getNumSources())
341 return false;
343 for (int i = 0, e = Other.getNumSources(); i != e; ++i)
344 if (Other.getSrcReg(i) != getSrcReg(i) ||
345 Other.getSrcSubReg(i) != getSrcSubReg(i))
346 return false;
347 return true;
351 /// Helper class to track the possible sources of a value defined by
352 /// a (chain of) copy related instructions.
353 /// Given a definition (instruction and definition index), this class
354 /// follows the use-def chain to find successive suitable sources.
355 /// The given source can be used to rewrite the definition into
356 /// def = COPY src.
358 /// For instance, let us consider the following snippet:
359 /// v0 =
360 /// v2 = INSERT_SUBREG v1, v0, sub0
361 /// def = COPY v2.sub0
363 /// Using a ValueTracker for def = COPY v2.sub0 will give the following
364 /// suitable sources:
365 /// v2.sub0 and v0.
366 /// Then, def can be rewritten into def = COPY v0.
367 class ValueTracker {
368 private:
369 /// The current point into the use-def chain.
370 const MachineInstr *Def = nullptr;
372 /// The index of the definition in Def.
373 unsigned DefIdx = 0;
375 /// The sub register index of the definition.
376 unsigned DefSubReg;
378 /// The register where the value can be found.
379 Register Reg;
381 /// MachineRegisterInfo used to perform tracking.
382 const MachineRegisterInfo &MRI;
384 /// Optional TargetInstrInfo used to perform some complex tracking.
385 const TargetInstrInfo *TII;
387 /// Dispatcher to the right underlying implementation of getNextSource.
388 ValueTrackerResult getNextSourceImpl();
390 /// Specialized version of getNextSource for Copy instructions.
391 ValueTrackerResult getNextSourceFromCopy();
393 /// Specialized version of getNextSource for Bitcast instructions.
394 ValueTrackerResult getNextSourceFromBitcast();
396 /// Specialized version of getNextSource for RegSequence instructions.
397 ValueTrackerResult getNextSourceFromRegSequence();
399 /// Specialized version of getNextSource for InsertSubreg instructions.
400 ValueTrackerResult getNextSourceFromInsertSubreg();
402 /// Specialized version of getNextSource for ExtractSubreg instructions.
403 ValueTrackerResult getNextSourceFromExtractSubreg();
405 /// Specialized version of getNextSource for SubregToReg instructions.
406 ValueTrackerResult getNextSourceFromSubregToReg();
408 /// Specialized version of getNextSource for PHI instructions.
409 ValueTrackerResult getNextSourceFromPHI();
411 public:
412 /// Create a ValueTracker instance for the value defined by \p Reg.
413 /// \p DefSubReg represents the sub register index the value tracker will
414 /// track. It does not need to match the sub register index used in the
415 /// definition of \p Reg.
416 /// If \p Reg is a physical register, a value tracker constructed with
417 /// this constructor will not find any alternative source.
418 /// Indeed, when \p Reg is a physical register that constructor does not
419 /// know which definition of \p Reg it should track.
420 /// Use the next constructor to track a physical register.
421 ValueTracker(Register Reg, unsigned DefSubReg,
422 const MachineRegisterInfo &MRI,
423 const TargetInstrInfo *TII = nullptr)
424 : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
425 if (!Reg.isPhysical()) {
426 Def = MRI.getVRegDef(Reg);
427 DefIdx = MRI.def_begin(Reg).getOperandNo();
431 /// Following the use-def chain, get the next available source
432 /// for the tracked value.
433 /// \return A ValueTrackerResult containing a set of registers
434 /// and sub registers with tracked values. A ValueTrackerResult with
435 /// an empty set of registers means no source was found.
436 ValueTrackerResult getNextSource();
439 } // end anonymous namespace
441 char PeepholeOptimizer::ID = 0;
443 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
445 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
446 "Peephole Optimizations", false, false)
447 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
448 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
449 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
450 "Peephole Optimizations", false, false)
452 /// If instruction is a copy-like instruction, i.e. it reads a single register
453 /// and writes a single register and it does not modify the source, and if the
454 /// source value is preserved as a sub-register of the result, then replace all
455 /// reachable uses of the source with the subreg of the result.
457 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
458 /// the code. Since this code does not currently share EXTRACTs, just ignore all
459 /// debug uses.
460 bool PeepholeOptimizer::
461 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
462 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
463 Register SrcReg, DstReg;
464 unsigned SubIdx;
465 if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
466 return false;
468 if (DstReg.isPhysical() || SrcReg.isPhysical())
469 return false;
471 if (MRI->hasOneNonDBGUse(SrcReg))
472 // No other uses.
473 return false;
475 // Ensure DstReg can get a register class that actually supports
476 // sub-registers. Don't change the class until we commit.
477 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
478 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
479 if (!DstRC)
480 return false;
482 // The ext instr may be operating on a sub-register of SrcReg as well.
483 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
484 // register.
485 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
486 // SrcReg:SubIdx should be replaced.
487 bool UseSrcSubIdx =
488 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
490 // The source has other uses. See if we can replace the other uses with use of
491 // the result of the extension.
492 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
493 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
494 ReachedBBs.insert(UI.getParent());
496 // Uses that are in the same BB of uses of the result of the instruction.
497 SmallVector<MachineOperand*, 8> Uses;
499 // Uses that the result of the instruction can reach.
500 SmallVector<MachineOperand*, 8> ExtendedUses;
502 bool ExtendLife = true;
503 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
504 MachineInstr *UseMI = UseMO.getParent();
505 if (UseMI == &MI)
506 continue;
508 if (UseMI->isPHI()) {
509 ExtendLife = false;
510 continue;
513 // Only accept uses of SrcReg:SubIdx.
514 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
515 continue;
517 // It's an error to translate this:
519 // %reg1025 = <sext> %reg1024
520 // ...
521 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
523 // into this:
525 // %reg1025 = <sext> %reg1024
526 // ...
527 // %reg1027 = COPY %reg1025:4
528 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
530 // The problem here is that SUBREG_TO_REG is there to assert that an
531 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
532 // the COPY here, it will give us the value after the <sext>, not the
533 // original value of %reg1024 before <sext>.
534 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
535 continue;
537 MachineBasicBlock *UseMBB = UseMI->getParent();
538 if (UseMBB == &MBB) {
539 // Local uses that come after the extension.
540 if (!LocalMIs.count(UseMI))
541 Uses.push_back(&UseMO);
542 } else if (ReachedBBs.count(UseMBB)) {
543 // Non-local uses where the result of the extension is used. Always
544 // replace these unless it's a PHI.
545 Uses.push_back(&UseMO);
546 } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
547 // We may want to extend the live range of the extension result in order
548 // to replace these uses.
549 ExtendedUses.push_back(&UseMO);
550 } else {
551 // Both will be live out of the def MBB anyway. Don't extend live range of
552 // the extension result.
553 ExtendLife = false;
554 break;
558 if (ExtendLife && !ExtendedUses.empty())
559 // Extend the liveness of the extension result.
560 Uses.append(ExtendedUses.begin(), ExtendedUses.end());
562 // Now replace all uses.
563 bool Changed = false;
564 if (!Uses.empty()) {
565 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
567 // Look for PHI uses of the extended result, we don't want to extend the
568 // liveness of a PHI input. It breaks all kinds of assumptions down
569 // stream. A PHI use is expected to be the kill of its source values.
570 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
571 if (UI.isPHI())
572 PHIBBs.insert(UI.getParent());
574 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
575 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
576 MachineOperand *UseMO = Uses[i];
577 MachineInstr *UseMI = UseMO->getParent();
578 MachineBasicBlock *UseMBB = UseMI->getParent();
579 if (PHIBBs.count(UseMBB))
580 continue;
582 // About to add uses of DstReg, clear DstReg's kill flags.
583 if (!Changed) {
584 MRI->clearKillFlags(DstReg);
585 MRI->constrainRegClass(DstReg, DstRC);
588 // SubReg defs are illegal in machine SSA phase,
589 // we should not generate SubReg defs.
591 // For example, for the instructions:
593 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
594 // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc
596 // We should generate:
598 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
599 // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0
600 // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0
602 if (UseSrcSubIdx)
603 RC = MRI->getRegClass(UseMI->getOperand(0).getReg());
605 Register NewVR = MRI->createVirtualRegister(RC);
606 BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
607 TII->get(TargetOpcode::COPY), NewVR)
608 .addReg(DstReg, 0, SubIdx);
609 if (UseSrcSubIdx)
610 UseMO->setSubReg(0);
612 UseMO->setReg(NewVR);
613 ++NumReuse;
614 Changed = true;
618 return Changed;
621 /// If the instruction is a compare and the previous instruction it's comparing
622 /// against already sets (or could be modified to set) the same flag as the
623 /// compare, then we can remove the comparison and use the flag from the
624 /// previous instruction.
625 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
626 // If this instruction is a comparison against zero and isn't comparing a
627 // physical register, we can try to optimize it.
628 Register SrcReg, SrcReg2;
629 int64_t CmpMask, CmpValue;
630 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
631 SrcReg.isPhysical() || SrcReg2.isPhysical())
632 return false;
634 // Attempt to optimize the comparison instruction.
635 LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
636 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
637 LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n");
638 ++NumCmps;
639 return true;
642 return false;
645 /// Optimize a select instruction.
646 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
647 SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
648 unsigned TrueOp = 0;
649 unsigned FalseOp = 0;
650 bool Optimizable = false;
651 SmallVector<MachineOperand, 4> Cond;
652 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
653 return false;
654 if (!Optimizable)
655 return false;
656 if (!TII->optimizeSelect(MI, LocalMIs))
657 return false;
658 LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
659 MI.eraseFromParent();
660 ++NumSelects;
661 return true;
664 /// Check if a simpler conditional branch can be generated.
665 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
666 return TII->optimizeCondBranch(MI);
669 /// Try to find the next source that share the same register file
670 /// for the value defined by \p Reg and \p SubReg.
671 /// When true is returned, the \p RewriteMap can be used by the client to
672 /// retrieve all Def -> Use along the way up to the next source. Any found
673 /// Use that is not itself a key for another entry, is the next source to
674 /// use. During the search for the next source, multiple sources can be found
675 /// given multiple incoming sources of a PHI instruction. In this case, we
676 /// look in each PHI source for the next source; all found next sources must
677 /// share the same register file as \p Reg and \p SubReg. The client should
678 /// then be capable to rewrite all intermediate PHIs to get the next source.
679 /// \return False if no alternative sources are available. True otherwise.
680 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
681 RewriteMapTy &RewriteMap) {
682 // Do not try to find a new source for a physical register.
683 // So far we do not have any motivating example for doing that.
684 // Thus, instead of maintaining untested code, we will revisit that if
685 // that changes at some point.
686 Register Reg = RegSubReg.Reg;
687 if (Reg.isPhysical())
688 return false;
689 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
691 SmallVector<RegSubRegPair, 4> SrcToLook;
692 RegSubRegPair CurSrcPair = RegSubReg;
693 SrcToLook.push_back(CurSrcPair);
695 unsigned PHICount = 0;
696 do {
697 CurSrcPair = SrcToLook.pop_back_val();
698 // As explained above, do not handle physical registers
699 if (Register::isPhysicalRegister(CurSrcPair.Reg))
700 return false;
702 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
704 // Follow the chain of copies until we find a more suitable source, a phi
705 // or have to abort.
706 while (true) {
707 ValueTrackerResult Res = ValTracker.getNextSource();
708 // Abort at the end of a chain (without finding a suitable source).
709 if (!Res.isValid())
710 return false;
712 // Insert the Def -> Use entry for the recently found source.
713 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
714 if (CurSrcRes.isValid()) {
715 assert(CurSrcRes == Res && "ValueTrackerResult found must match");
716 // An existent entry with multiple sources is a PHI cycle we must avoid.
717 // Otherwise it's an entry with a valid next source we already found.
718 if (CurSrcRes.getNumSources() > 1) {
719 LLVM_DEBUG(dbgs()
720 << "findNextSource: found PHI cycle, aborting...\n");
721 return false;
723 break;
725 RewriteMap.insert(std::make_pair(CurSrcPair, Res));
727 // ValueTrackerResult usually have one source unless it's the result from
728 // a PHI instruction. Add the found PHI edges to be looked up further.
729 unsigned NumSrcs = Res.getNumSources();
730 if (NumSrcs > 1) {
731 PHICount++;
732 if (PHICount >= RewritePHILimit) {
733 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
734 return false;
737 for (unsigned i = 0; i < NumSrcs; ++i)
738 SrcToLook.push_back(Res.getSrc(i));
739 break;
742 CurSrcPair = Res.getSrc(0);
743 // Do not extend the live-ranges of physical registers as they add
744 // constraints to the register allocator. Moreover, if we want to extend
745 // the live-range of a physical register, unlike SSA virtual register,
746 // we will have to check that they aren't redefine before the related use.
747 if (Register::isPhysicalRegister(CurSrcPair.Reg))
748 return false;
750 // Keep following the chain if the value isn't any better yet.
751 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
752 if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
753 CurSrcPair.SubReg))
754 continue;
756 // We currently cannot deal with subreg operands on PHI instructions
757 // (see insertPHI()).
758 if (PHICount > 0 && CurSrcPair.SubReg != 0)
759 continue;
761 // We found a suitable source, and are done with this chain.
762 break;
764 } while (!SrcToLook.empty());
766 // If we did not find a more suitable source, there is nothing to optimize.
767 return CurSrcPair.Reg != Reg;
770 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
771 /// guaranteed to have the same register class. This is necessary whenever we
772 /// successfully traverse a PHI instruction and find suitable sources coming
773 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
774 /// suitable to be used in a new COPY instruction.
775 static MachineInstr &
776 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
777 const SmallVectorImpl<RegSubRegPair> &SrcRegs,
778 MachineInstr &OrigPHI) {
779 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
781 const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
782 // NewRC is only correct if no subregisters are involved. findNextSource()
783 // should have rejected those cases already.
784 assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
785 Register NewVR = MRI.createVirtualRegister(NewRC);
786 MachineBasicBlock *MBB = OrigPHI.getParent();
787 MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
788 TII.get(TargetOpcode::PHI), NewVR);
790 unsigned MBBOpIdx = 2;
791 for (const RegSubRegPair &RegPair : SrcRegs) {
792 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
793 MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
794 // Since we're extended the lifetime of RegPair.Reg, clear the
795 // kill flags to account for that and make RegPair.Reg reaches
796 // the new PHI.
797 MRI.clearKillFlags(RegPair.Reg);
798 MBBOpIdx += 2;
801 return *MIB;
804 namespace {
806 /// Interface to query instructions amenable to copy rewriting.
807 class Rewriter {
808 protected:
809 MachineInstr &CopyLike;
810 unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten.
811 public:
812 Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
813 virtual ~Rewriter() = default;
815 /// Get the next rewritable source (SrcReg, SrcSubReg) and
816 /// the related value that it affects (DstReg, DstSubReg).
817 /// A source is considered rewritable if its register class and the
818 /// register class of the related DstReg may not be register
819 /// coalescer friendly. In other words, given a copy-like instruction
820 /// not all the arguments may be returned at rewritable source, since
821 /// some arguments are none to be register coalescer friendly.
823 /// Each call of this method moves the current source to the next
824 /// rewritable source.
825 /// For instance, let CopyLike be the instruction to rewrite.
826 /// CopyLike has one definition and one source:
827 /// dst.dstSubIdx = CopyLike src.srcSubIdx.
829 /// The first call will give the first rewritable source, i.e.,
830 /// the only source this instruction has:
831 /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
832 /// This source defines the whole definition, i.e.,
833 /// (DstReg, DstSubReg) = (dst, dstSubIdx).
835 /// The second and subsequent calls will return false, as there is only one
836 /// rewritable source.
838 /// \return True if a rewritable source has been found, false otherwise.
839 /// The output arguments are valid if and only if true is returned.
840 virtual bool getNextRewritableSource(RegSubRegPair &Src,
841 RegSubRegPair &Dst) = 0;
843 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
844 /// \return True if the rewriting was possible, false otherwise.
845 virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
848 /// Rewriter for COPY instructions.
849 class CopyRewriter : public Rewriter {
850 public:
851 CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
852 assert(MI.isCopy() && "Expected copy instruction");
854 virtual ~CopyRewriter() = default;
856 bool getNextRewritableSource(RegSubRegPair &Src,
857 RegSubRegPair &Dst) override {
858 // CurrentSrcIdx > 0 means this function has already been called.
859 if (CurrentSrcIdx > 0)
860 return false;
861 // This is the first call to getNextRewritableSource.
862 // Move the CurrentSrcIdx to remember that we made that call.
863 CurrentSrcIdx = 1;
864 // The rewritable source is the argument.
865 const MachineOperand &MOSrc = CopyLike.getOperand(1);
866 Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
867 // What we track are the alternative sources of the definition.
868 const MachineOperand &MODef = CopyLike.getOperand(0);
869 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
870 return true;
873 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
874 if (CurrentSrcIdx != 1)
875 return false;
876 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
877 MOSrc.setReg(NewReg);
878 MOSrc.setSubReg(NewSubReg);
879 return true;
883 /// Helper class to rewrite uncoalescable copy like instructions
884 /// into new COPY (coalescable friendly) instructions.
885 class UncoalescableRewriter : public Rewriter {
886 unsigned NumDefs; ///< Number of defs in the bitcast.
888 public:
889 UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
890 NumDefs = MI.getDesc().getNumDefs();
893 /// \see See Rewriter::getNextRewritableSource()
894 /// All such sources need to be considered rewritable in order to
895 /// rewrite a uncoalescable copy-like instruction. This method return
896 /// each definition that must be checked if rewritable.
897 bool getNextRewritableSource(RegSubRegPair &Src,
898 RegSubRegPair &Dst) override {
899 // Find the next non-dead definition and continue from there.
900 if (CurrentSrcIdx == NumDefs)
901 return false;
903 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
904 ++CurrentSrcIdx;
905 if (CurrentSrcIdx == NumDefs)
906 return false;
909 // What we track are the alternative sources of the definition.
910 Src = RegSubRegPair(0, 0);
911 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
912 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
914 CurrentSrcIdx++;
915 return true;
918 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
919 return false;
923 /// Specialized rewriter for INSERT_SUBREG instruction.
924 class InsertSubregRewriter : public Rewriter {
925 public:
926 InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
927 assert(MI.isInsertSubreg() && "Invalid instruction");
930 /// \see See Rewriter::getNextRewritableSource()
931 /// Here CopyLike has the following form:
932 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
933 /// Src1 has the same register class has dst, hence, there is
934 /// nothing to rewrite.
935 /// Src2.src2SubIdx, may not be register coalescer friendly.
936 /// Therefore, the first call to this method returns:
937 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
938 /// (DstReg, DstSubReg) = (dst, subIdx).
940 /// Subsequence calls will return false.
941 bool getNextRewritableSource(RegSubRegPair &Src,
942 RegSubRegPair &Dst) override {
943 // If we already get the only source we can rewrite, return false.
944 if (CurrentSrcIdx == 2)
945 return false;
946 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
947 CurrentSrcIdx = 2;
948 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
949 Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
950 const MachineOperand &MODef = CopyLike.getOperand(0);
952 // We want to track something that is compatible with the
953 // partial definition.
954 if (MODef.getSubReg())
955 // Bail if we have to compose sub-register indices.
956 return false;
957 Dst = RegSubRegPair(MODef.getReg(),
958 (unsigned)CopyLike.getOperand(3).getImm());
959 return true;
962 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
963 if (CurrentSrcIdx != 2)
964 return false;
965 // We are rewriting the inserted reg.
966 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
967 MO.setReg(NewReg);
968 MO.setSubReg(NewSubReg);
969 return true;
973 /// Specialized rewriter for EXTRACT_SUBREG instruction.
974 class ExtractSubregRewriter : public Rewriter {
975 const TargetInstrInfo &TII;
977 public:
978 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
979 : Rewriter(MI), TII(TII) {
980 assert(MI.isExtractSubreg() && "Invalid instruction");
983 /// \see Rewriter::getNextRewritableSource()
984 /// Here CopyLike has the following form:
985 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
986 /// There is only one rewritable source: Src.subIdx,
987 /// which defines dst.dstSubIdx.
988 bool getNextRewritableSource(RegSubRegPair &Src,
989 RegSubRegPair &Dst) override {
990 // If we already get the only source we can rewrite, return false.
991 if (CurrentSrcIdx == 1)
992 return false;
993 // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
994 CurrentSrcIdx = 1;
995 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
996 // If we have to compose sub-register indices, bail out.
997 if (MOExtractedReg.getSubReg())
998 return false;
1000 Src = RegSubRegPair(MOExtractedReg.getReg(),
1001 CopyLike.getOperand(2).getImm());
1003 // We want to track something that is compatible with the definition.
1004 const MachineOperand &MODef = CopyLike.getOperand(0);
1005 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1006 return true;
1009 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1010 // The only source we can rewrite is the input register.
1011 if (CurrentSrcIdx != 1)
1012 return false;
1014 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1016 // If we find a source that does not require to extract something,
1017 // rewrite the operation with a copy.
1018 if (!NewSubReg) {
1019 // Move the current index to an invalid position.
1020 // We do not want another call to this method to be able
1021 // to do any change.
1022 CurrentSrcIdx = -1;
1023 // Rewrite the operation as a COPY.
1024 // Get rid of the sub-register index.
1025 CopyLike.removeOperand(2);
1026 // Morph the operation into a COPY.
1027 CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1028 return true;
1030 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1031 return true;
1035 /// Specialized rewriter for REG_SEQUENCE instruction.
1036 class RegSequenceRewriter : public Rewriter {
1037 public:
1038 RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1039 assert(MI.isRegSequence() && "Invalid instruction");
1042 /// \see Rewriter::getNextRewritableSource()
1043 /// Here CopyLike has the following form:
1044 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1045 /// Each call will return a different source, walking all the available
1046 /// source.
1048 /// The first call returns:
1049 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1050 /// (DstReg, DstSubReg) = (dst, subIdx1).
1052 /// The second call returns:
1053 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1054 /// (DstReg, DstSubReg) = (dst, subIdx2).
1056 /// And so on, until all the sources have been traversed, then
1057 /// it returns false.
1058 bool getNextRewritableSource(RegSubRegPair &Src,
1059 RegSubRegPair &Dst) override {
1060 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1062 // If this is the first call, move to the first argument.
1063 if (CurrentSrcIdx == 0) {
1064 CurrentSrcIdx = 1;
1065 } else {
1066 // Otherwise, move to the next argument and check that it is valid.
1067 CurrentSrcIdx += 2;
1068 if (CurrentSrcIdx >= CopyLike.getNumOperands())
1069 return false;
1071 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1072 Src.Reg = MOInsertedReg.getReg();
1073 // If we have to compose sub-register indices, bail out.
1074 if ((Src.SubReg = MOInsertedReg.getSubReg()))
1075 return false;
1077 // We want to track something that is compatible with the related
1078 // partial definition.
1079 Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1081 const MachineOperand &MODef = CopyLike.getOperand(0);
1082 Dst.Reg = MODef.getReg();
1083 // If we have to compose sub-registers, bail.
1084 return MODef.getSubReg() == 0;
1087 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1088 // We cannot rewrite out of bound operands.
1089 // Moreover, rewritable sources are at odd positions.
1090 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1091 return false;
1093 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1094 MO.setReg(NewReg);
1095 MO.setSubReg(NewSubReg);
1096 return true;
1100 } // end anonymous namespace
1102 /// Get the appropriated Rewriter for \p MI.
1103 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1104 /// rewriter works for \p MI.
1105 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1106 // Handle uncoalescable copy-like instructions.
1107 if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1108 MI.isExtractSubregLike())
1109 return new UncoalescableRewriter(MI);
1111 switch (MI.getOpcode()) {
1112 default:
1113 return nullptr;
1114 case TargetOpcode::COPY:
1115 return new CopyRewriter(MI);
1116 case TargetOpcode::INSERT_SUBREG:
1117 return new InsertSubregRewriter(MI);
1118 case TargetOpcode::EXTRACT_SUBREG:
1119 return new ExtractSubregRewriter(MI, TII);
1120 case TargetOpcode::REG_SEQUENCE:
1121 return new RegSequenceRewriter(MI);
1125 /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
1126 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1127 /// multiple sources for a given \p Def are found along the way, we found a
1128 /// PHI instructions that needs to be rewritten.
1129 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1130 /// with coalescable copies.
1131 static RegSubRegPair
1132 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1133 RegSubRegPair Def,
1134 const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1135 bool HandleMultipleSources = true) {
1136 RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1137 while (true) {
1138 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1139 // If there are no entries on the map, LookupSrc is the new source.
1140 if (!Res.isValid())
1141 return LookupSrc;
1143 // There's only one source for this definition, keep searching...
1144 unsigned NumSrcs = Res.getNumSources();
1145 if (NumSrcs == 1) {
1146 LookupSrc.Reg = Res.getSrcReg(0);
1147 LookupSrc.SubReg = Res.getSrcSubReg(0);
1148 continue;
1151 // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1152 if (!HandleMultipleSources)
1153 break;
1155 // Multiple sources, recurse into each source to find a new source
1156 // for it. Then, rewrite the PHI accordingly to its new edges.
1157 SmallVector<RegSubRegPair, 4> NewPHISrcs;
1158 for (unsigned i = 0; i < NumSrcs; ++i) {
1159 RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1160 NewPHISrcs.push_back(
1161 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1164 // Build the new PHI node and return its def register as the new source.
1165 MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1166 MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1167 LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1168 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI);
1169 LLVM_DEBUG(dbgs() << " With: " << NewPHI);
1170 const MachineOperand &MODef = NewPHI.getOperand(0);
1171 return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1174 return RegSubRegPair(0, 0);
1177 /// Optimize generic copy instructions to avoid cross register bank copy.
1178 /// The optimization looks through a chain of copies and tries to find a source
1179 /// that has a compatible register class.
1180 /// Two register classes are considered to be compatible if they share the same
1181 /// register bank.
1182 /// New copies issued by this optimization are register allocator
1183 /// friendly. This optimization does not remove any copy as it may
1184 /// overconstrain the register allocator, but replaces some operands
1185 /// when possible.
1186 /// \pre isCoalescableCopy(*MI) is true.
1187 /// \return True, when \p MI has been rewritten. False otherwise.
1188 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1189 assert(isCoalescableCopy(MI) && "Invalid argument");
1190 assert(MI.getDesc().getNumDefs() == 1 &&
1191 "Coalescer can understand multiple defs?!");
1192 const MachineOperand &MODef = MI.getOperand(0);
1193 // Do not rewrite physical definitions.
1194 if (Register::isPhysicalRegister(MODef.getReg()))
1195 return false;
1197 bool Changed = false;
1198 // Get the right rewriter for the current copy.
1199 std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1200 // If none exists, bail out.
1201 if (!CpyRewriter)
1202 return false;
1203 // Rewrite each rewritable source.
1204 RegSubRegPair Src;
1205 RegSubRegPair TrackPair;
1206 while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1207 // Keep track of PHI nodes and its incoming edges when looking for sources.
1208 RewriteMapTy RewriteMap;
1209 // Try to find a more suitable source. If we failed to do so, or get the
1210 // actual source, move to the next source.
1211 if (!findNextSource(TrackPair, RewriteMap))
1212 continue;
1214 // Get the new source to rewrite. TODO: Only enable handling of multiple
1215 // sources (PHIs) once we have a motivating example and testcases for it.
1216 RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1217 /*HandleMultipleSources=*/false);
1218 if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1219 continue;
1221 // Rewrite source.
1222 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1223 // We may have extended the live-range of NewSrc, account for that.
1224 MRI->clearKillFlags(NewSrc.Reg);
1225 Changed = true;
1228 // TODO: We could have a clean-up method to tidy the instruction.
1229 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1230 // => v0 = COPY v1
1231 // Currently we haven't seen motivating example for that and we
1232 // want to avoid untested code.
1233 NumRewrittenCopies += Changed;
1234 return Changed;
1237 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1238 /// and create a new COPY instruction. More info about RewriteMap in
1239 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1240 /// Uncoalescable copies, since they are copy like instructions that aren't
1241 /// recognized by the register allocator.
1242 MachineInstr &
1243 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1244 RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1245 assert(!Register::isPhysicalRegister(Def.Reg) &&
1246 "We do not rewrite physical registers");
1248 // Find the new source to use in the COPY rewrite.
1249 RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1251 // Insert the COPY.
1252 const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1253 Register NewVReg = MRI->createVirtualRegister(DefRC);
1255 MachineInstr *NewCopy =
1256 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1257 TII->get(TargetOpcode::COPY), NewVReg)
1258 .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1260 if (Def.SubReg) {
1261 NewCopy->getOperand(0).setSubReg(Def.SubReg);
1262 NewCopy->getOperand(0).setIsUndef();
1265 LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1266 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike);
1267 LLVM_DEBUG(dbgs() << " With: " << *NewCopy);
1268 MRI->replaceRegWith(Def.Reg, NewVReg);
1269 MRI->clearKillFlags(NewVReg);
1271 // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1272 // account for that.
1273 MRI->clearKillFlags(NewSrc.Reg);
1275 return *NewCopy;
1278 /// Optimize copy-like instructions to create
1279 /// register coalescer friendly instruction.
1280 /// The optimization tries to kill-off the \p MI by looking
1281 /// through a chain of copies to find a source that has a compatible
1282 /// register class.
1283 /// If such a source is found, it replace \p MI by a generic COPY
1284 /// operation.
1285 /// \pre isUncoalescableCopy(*MI) is true.
1286 /// \return True, when \p MI has been optimized. In that case, \p MI has
1287 /// been removed from its parent.
1288 /// All COPY instructions created, are inserted in \p LocalMIs.
1289 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1290 MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1291 assert(isUncoalescableCopy(MI) && "Invalid argument");
1292 UncoalescableRewriter CpyRewriter(MI);
1294 // Rewrite each rewritable source by generating new COPYs. This works
1295 // differently from optimizeCoalescableCopy since it first makes sure that all
1296 // definitions can be rewritten.
1297 RewriteMapTy RewriteMap;
1298 RegSubRegPair Src;
1299 RegSubRegPair Def;
1300 SmallVector<RegSubRegPair, 4> RewritePairs;
1301 while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1302 // If a physical register is here, this is probably for a good reason.
1303 // Do not rewrite that.
1304 if (Register::isPhysicalRegister(Def.Reg))
1305 return false;
1307 // If we do not know how to rewrite this definition, there is no point
1308 // in trying to kill this instruction.
1309 if (!findNextSource(Def, RewriteMap))
1310 return false;
1312 RewritePairs.push_back(Def);
1315 // The change is possible for all defs, do it.
1316 for (const RegSubRegPair &Def : RewritePairs) {
1317 // Rewrite the "copy" in a way the register coalescer understands.
1318 MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1319 LocalMIs.insert(&NewCopy);
1322 // MI is now dead.
1323 LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1324 MI.eraseFromParent();
1325 ++NumUncoalescableCopies;
1326 return true;
1329 /// Check whether MI is a candidate for folding into a later instruction.
1330 /// We only fold loads to virtual registers and the virtual register defined
1331 /// has a single user.
1332 bool PeepholeOptimizer::isLoadFoldable(
1333 MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1334 if (!MI.canFoldAsLoad() || !MI.mayLoad())
1335 return false;
1336 const MCInstrDesc &MCID = MI.getDesc();
1337 if (MCID.getNumDefs() != 1)
1338 return false;
1340 Register Reg = MI.getOperand(0).getReg();
1341 // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1342 // loads. It should be checked when processing uses of the load, since
1343 // uses can be removed during peephole.
1344 if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1345 MRI->hasOneNonDBGUser(Reg)) {
1346 FoldAsLoadDefCandidates.insert(Reg);
1347 return true;
1349 return false;
1352 bool PeepholeOptimizer::isMoveImmediate(
1353 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1354 DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1355 const MCInstrDesc &MCID = MI.getDesc();
1356 if (!MI.isMoveImmediate())
1357 return false;
1358 if (MCID.getNumDefs() != 1)
1359 return false;
1360 Register Reg = MI.getOperand(0).getReg();
1361 if (Reg.isVirtual()) {
1362 ImmDefMIs.insert(std::make_pair(Reg, &MI));
1363 ImmDefRegs.insert(Reg);
1364 return true;
1367 return false;
1370 /// Try folding register operands that are defined by move immediate
1371 /// instructions, i.e. a trivial constant folding optimization, if
1372 /// and only if the def and use are in the same BB.
1373 bool PeepholeOptimizer::foldImmediate(
1374 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1375 DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1376 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1377 MachineOperand &MO = MI.getOperand(i);
1378 if (!MO.isReg() || MO.isDef())
1379 continue;
1380 Register Reg = MO.getReg();
1381 if (!Reg.isVirtual())
1382 continue;
1383 if (ImmDefRegs.count(Reg) == 0)
1384 continue;
1385 DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg);
1386 assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1387 if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1388 ++NumImmFold;
1389 return true;
1392 return false;
1395 // FIXME: This is very simple and misses some cases which should be handled when
1396 // motivating examples are found.
1398 // The copy rewriting logic should look at uses as well as defs and be able to
1399 // eliminate copies across blocks.
1401 // Later copies that are subregister extracts will also not be eliminated since
1402 // only the first copy is considered.
1404 // e.g.
1405 // %1 = COPY %0
1406 // %2 = COPY %0:sub1
1408 // Should replace %2 uses with %1:sub1
1409 bool PeepholeOptimizer::foldRedundantCopy(
1410 MachineInstr &MI, DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs) {
1411 assert(MI.isCopy() && "expected a COPY machine instruction");
1413 Register SrcReg = MI.getOperand(1).getReg();
1414 unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1415 if (!SrcReg.isVirtual() && !MRI->isConstantPhysReg(SrcReg))
1416 return false;
1418 Register DstReg = MI.getOperand(0).getReg();
1419 if (!DstReg.isVirtual())
1420 return false;
1422 RegSubRegPair SrcPair(SrcReg, SrcSubReg);
1424 if (CopyMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1425 // First copy of this reg seen.
1426 return false;
1429 MachineInstr *PrevCopy = CopyMIs.find(SrcPair)->second;
1431 assert(SrcSubReg == PrevCopy->getOperand(1).getSubReg() &&
1432 "Unexpected mismatching subreg!");
1434 Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1436 // Only replace if the copy register class is the same.
1438 // TODO: If we have multiple copies to different register classes, we may want
1439 // to track multiple copies of the same source register.
1440 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1441 return false;
1443 MRI->replaceRegWith(DstReg, PrevDstReg);
1445 // Lifetime of the previous copy has been extended.
1446 MRI->clearKillFlags(PrevDstReg);
1447 return true;
1450 bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1451 return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1454 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1455 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) {
1456 assert(MI.isCopy() && "expected a COPY machine instruction");
1458 if (DisableNAPhysCopyOpt)
1459 return false;
1461 Register DstReg = MI.getOperand(0).getReg();
1462 Register SrcReg = MI.getOperand(1).getReg();
1463 if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
1464 // %vreg = COPY $physreg
1465 // Avoid using a datastructure which can track multiple live non-allocatable
1466 // phys->virt copies since LLVM doesn't seem to do this.
1467 NAPhysToVirtMIs.insert({SrcReg, &MI});
1468 return false;
1471 if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1472 return false;
1474 // $physreg = COPY %vreg
1475 auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1476 if (PrevCopy == NAPhysToVirtMIs.end()) {
1477 // We can't remove the copy: there was an intervening clobber of the
1478 // non-allocatable physical register after the copy to virtual.
1479 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1480 << MI);
1481 return false;
1484 Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1485 if (PrevDstReg == SrcReg) {
1486 // Remove the virt->phys copy: we saw the virtual register definition, and
1487 // the non-allocatable physical register's state hasn't changed since then.
1488 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1489 ++NumNAPhysCopies;
1490 return true;
1493 // Potential missed optimization opportunity: we saw a different virtual
1494 // register get a copy of the non-allocatable physical register, and we only
1495 // track one such copy. Avoid getting confused by this new non-allocatable
1496 // physical register definition, and remove it from the tracked copies.
1497 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1498 NAPhysToVirtMIs.erase(PrevCopy);
1499 return false;
1502 /// \bried Returns true if \p MO is a virtual register operand.
1503 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1504 return MO.isReg() && MO.getReg().isVirtual();
1507 bool PeepholeOptimizer::findTargetRecurrence(
1508 Register Reg, const SmallSet<Register, 2> &TargetRegs,
1509 RecurrenceCycle &RC) {
1510 // Recurrence found if Reg is in TargetRegs.
1511 if (TargetRegs.count(Reg))
1512 return true;
1514 // TODO: Curerntly, we only allow the last instruction of the recurrence
1515 // cycle (the instruction that feeds the PHI instruction) to have more than
1516 // one uses to guarantee that commuting operands does not tie registers
1517 // with overlapping live range. Once we have actual live range info of
1518 // each register, this constraint can be relaxed.
1519 if (!MRI->hasOneNonDBGUse(Reg))
1520 return false;
1522 // Give up if the reccurrence chain length is longer than the limit.
1523 if (RC.size() >= MaxRecurrenceChain)
1524 return false;
1526 MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1527 unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1529 // Only interested in recurrences whose instructions have only one def, which
1530 // is a virtual register.
1531 if (MI.getDesc().getNumDefs() != 1)
1532 return false;
1534 MachineOperand &DefOp = MI.getOperand(0);
1535 if (!isVirtualRegisterOperand(DefOp))
1536 return false;
1538 // Check if def operand of MI is tied to any use operand. We are only
1539 // interested in the case that all the instructions in the recurrence chain
1540 // have there def operand tied with one of the use operand.
1541 unsigned TiedUseIdx;
1542 if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1543 return false;
1545 if (Idx == TiedUseIdx) {
1546 RC.push_back(RecurrenceInstr(&MI));
1547 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1548 } else {
1549 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1550 unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1551 if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1552 RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1553 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1557 return false;
1560 /// Phi instructions will eventually be lowered to copy instructions.
1561 /// If phi is in a loop header, a recurrence may formulated around the source
1562 /// and destination of the phi. For such case commuting operands of the
1563 /// instructions in the recurrence may enable coalescing of the copy instruction
1564 /// generated from the phi. For example, if there is a recurrence of
1566 /// LoopHeader:
1567 /// %1 = phi(%0, %100)
1568 /// LoopLatch:
1569 /// %0<def, tied1> = ADD %2<def, tied0>, %1
1571 /// , the fact that %0 and %2 are in the same tied operands set makes
1572 /// the coalescing of copy instruction generated from the phi in
1573 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1574 /// %2 have overlapping live range. This introduces additional move
1575 /// instruction to the final assembly. However, if we commute %2 and
1576 /// %1 of ADD instruction, the redundant move instruction can be
1577 /// avoided.
1578 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1579 SmallSet<Register, 2> TargetRegs;
1580 for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1581 MachineOperand &MO = PHI.getOperand(Idx);
1582 assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1583 TargetRegs.insert(MO.getReg());
1586 bool Changed = false;
1587 RecurrenceCycle RC;
1588 if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1589 // Commutes operands of instructions in RC if necessary so that the copy to
1590 // be generated from PHI can be coalesced.
1591 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1592 for (auto &RI : RC) {
1593 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1594 auto CP = RI.getCommutePair();
1595 if (CP) {
1596 Changed = true;
1597 TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1598 (*CP).second);
1599 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1604 return Changed;
1607 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1608 if (skipFunction(MF.getFunction()))
1609 return false;
1611 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1612 LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1614 if (DisablePeephole)
1615 return false;
1617 TII = MF.getSubtarget().getInstrInfo();
1618 TRI = MF.getSubtarget().getRegisterInfo();
1619 MRI = &MF.getRegInfo();
1620 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1621 MLI = &getAnalysis<MachineLoopInfo>();
1623 bool Changed = false;
1625 for (MachineBasicBlock &MBB : MF) {
1626 bool SeenMoveImm = false;
1628 // During this forward scan, at some point it needs to answer the question
1629 // "given a pointer to an MI in the current BB, is it located before or
1630 // after the current instruction".
1631 // To perform this, the following set keeps track of the MIs already seen
1632 // during the scan, if a MI is not in the set, it is assumed to be located
1633 // after. Newly created MIs have to be inserted in the set as well.
1634 SmallPtrSet<MachineInstr*, 16> LocalMIs;
1635 SmallSet<Register, 4> ImmDefRegs;
1636 DenseMap<Register, MachineInstr *> ImmDefMIs;
1637 SmallSet<Register, 16> FoldAsLoadDefCandidates;
1639 // Track when a non-allocatable physical register is copied to a virtual
1640 // register so that useless moves can be removed.
1642 // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1643 // without any intervening re-definition of $physreg.
1644 DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1646 // Set of copies to virtual registers keyed by source register. Never
1647 // holds any physreg which requires def tracking.
1648 DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs;
1650 bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1652 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1653 MII != MIE; ) {
1654 MachineInstr *MI = &*MII;
1655 // We may be erasing MI below, increment MII now.
1656 ++MII;
1657 LocalMIs.insert(MI);
1659 // Skip debug instructions. They should not affect this peephole
1660 // optimization.
1661 if (MI->isDebugInstr())
1662 continue;
1664 if (MI->isPosition())
1665 continue;
1667 if (IsLoopHeader && MI->isPHI()) {
1668 if (optimizeRecurrence(*MI)) {
1669 Changed = true;
1670 continue;
1674 if (!MI->isCopy()) {
1675 for (const MachineOperand &MO : MI->operands()) {
1676 // Visit all operands: definitions can be implicit or explicit.
1677 if (MO.isReg()) {
1678 Register Reg = MO.getReg();
1679 if (MO.isDef() && isNAPhysCopy(Reg)) {
1680 const auto &Def = NAPhysToVirtMIs.find(Reg);
1681 if (Def != NAPhysToVirtMIs.end()) {
1682 // A new definition of the non-allocatable physical register
1683 // invalidates previous copies.
1684 LLVM_DEBUG(dbgs()
1685 << "NAPhysCopy: invalidating because of " << *MI);
1686 NAPhysToVirtMIs.erase(Def);
1689 } else if (MO.isRegMask()) {
1690 const uint32_t *RegMask = MO.getRegMask();
1691 for (auto &RegMI : NAPhysToVirtMIs) {
1692 Register Def = RegMI.first;
1693 if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1694 LLVM_DEBUG(dbgs()
1695 << "NAPhysCopy: invalidating because of " << *MI);
1696 NAPhysToVirtMIs.erase(Def);
1703 if (MI->isImplicitDef() || MI->isKill())
1704 continue;
1706 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1707 // Blow away all non-allocatable physical registers knowledge since we
1708 // don't know what's correct anymore.
1710 // FIXME: handle explicit asm clobbers.
1711 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1712 << *MI);
1713 NAPhysToVirtMIs.clear();
1716 if ((isUncoalescableCopy(*MI) &&
1717 optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1718 (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1719 (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1720 // MI is deleted.
1721 LocalMIs.erase(MI);
1722 Changed = true;
1723 continue;
1726 if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1727 Changed = true;
1728 continue;
1731 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1732 // MI is just rewritten.
1733 Changed = true;
1734 continue;
1737 if (MI->isCopy() && (foldRedundantCopy(*MI, CopySrcMIs) ||
1738 foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1739 LocalMIs.erase(MI);
1740 LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1741 MI->eraseFromParent();
1742 Changed = true;
1743 continue;
1746 if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1747 SeenMoveImm = true;
1748 } else {
1749 Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1750 // optimizeExtInstr might have created new instructions after MI
1751 // and before the already incremented MII. Adjust MII so that the
1752 // next iteration sees the new instructions.
1753 MII = MI;
1754 ++MII;
1755 if (SeenMoveImm)
1756 Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1759 // Check whether MI is a load candidate for folding into a later
1760 // instruction. If MI is not a candidate, check whether we can fold an
1761 // earlier load into MI.
1762 if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1763 !FoldAsLoadDefCandidates.empty()) {
1765 // We visit each operand even after successfully folding a previous
1766 // one. This allows us to fold multiple loads into a single
1767 // instruction. We do assume that optimizeLoadInstr doesn't insert
1768 // foldable uses earlier in the argument list. Since we don't restart
1769 // iteration, we'd miss such cases.
1770 const MCInstrDesc &MIDesc = MI->getDesc();
1771 for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1772 ++i) {
1773 const MachineOperand &MOp = MI->getOperand(i);
1774 if (!MOp.isReg())
1775 continue;
1776 Register FoldAsLoadDefReg = MOp.getReg();
1777 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1778 // We need to fold load after optimizeCmpInstr, since
1779 // optimizeCmpInstr can enable folding by converting SUB to CMP.
1780 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1781 // we need it for markUsesInDebugValueAsUndef().
1782 Register FoldedReg = FoldAsLoadDefReg;
1783 MachineInstr *DefMI = nullptr;
1784 if (MachineInstr *FoldMI =
1785 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1786 // Update LocalMIs since we replaced MI with FoldMI and deleted
1787 // DefMI.
1788 LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1789 LLVM_DEBUG(dbgs() << " With: " << *FoldMI);
1790 LocalMIs.erase(MI);
1791 LocalMIs.erase(DefMI);
1792 LocalMIs.insert(FoldMI);
1793 // Update the call site info.
1794 if (MI->shouldUpdateCallSiteInfo())
1795 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1796 MI->eraseFromParent();
1797 DefMI->eraseFromParent();
1798 MRI->markUsesInDebugValueAsUndef(FoldedReg);
1799 FoldAsLoadDefCandidates.erase(FoldedReg);
1800 ++NumLoadFold;
1802 // MI is replaced with FoldMI so we can continue trying to fold
1803 Changed = true;
1804 MI = FoldMI;
1810 // If we run into an instruction we can't fold across, discard
1811 // the load candidates. Note: We might be able to fold *into* this
1812 // instruction, so this needs to be after the folding logic.
1813 if (MI->isLoadFoldBarrier()) {
1814 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1815 FoldAsLoadDefCandidates.clear();
1820 return Changed;
1823 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1824 assert(Def->isCopy() && "Invalid definition");
1825 // Copy instruction are supposed to be: Def = Src.
1826 // If someone breaks this assumption, bad things will happen everywhere.
1827 // There may be implicit uses preventing the copy to be moved across
1828 // some target specific register definitions
1829 assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1830 "Invalid number of operands");
1831 assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1833 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1834 // If we look for a different subreg, it means we want a subreg of src.
1835 // Bails as we do not support composing subregs yet.
1836 return ValueTrackerResult();
1837 // Otherwise, we want the whole source.
1838 const MachineOperand &Src = Def->getOperand(1);
1839 if (Src.isUndef())
1840 return ValueTrackerResult();
1841 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1844 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1845 assert(Def->isBitcast() && "Invalid definition");
1847 // Bail if there are effects that a plain copy will not expose.
1848 if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1849 return ValueTrackerResult();
1851 // Bitcasts with more than one def are not supported.
1852 if (Def->getDesc().getNumDefs() != 1)
1853 return ValueTrackerResult();
1854 const MachineOperand DefOp = Def->getOperand(DefIdx);
1855 if (DefOp.getSubReg() != DefSubReg)
1856 // If we look for a different subreg, it means we want a subreg of the src.
1857 // Bails as we do not support composing subregs yet.
1858 return ValueTrackerResult();
1860 unsigned SrcIdx = Def->getNumOperands();
1861 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1862 ++OpIdx) {
1863 const MachineOperand &MO = Def->getOperand(OpIdx);
1864 if (!MO.isReg() || !MO.getReg())
1865 continue;
1866 // Ignore dead implicit defs.
1867 if (MO.isImplicit() && MO.isDead())
1868 continue;
1869 assert(!MO.isDef() && "We should have skipped all the definitions by now");
1870 if (SrcIdx != EndOpIdx)
1871 // Multiple sources?
1872 return ValueTrackerResult();
1873 SrcIdx = OpIdx;
1876 // In some rare case, Def has no input, SrcIdx is out of bound,
1877 // getOperand(SrcIdx) will fail below.
1878 if (SrcIdx >= Def->getNumOperands())
1879 return ValueTrackerResult();
1881 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1882 // will break the assumed guarantees for the upper bits.
1883 for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1884 if (UseMI.isSubregToReg())
1885 return ValueTrackerResult();
1888 const MachineOperand &Src = Def->getOperand(SrcIdx);
1889 if (Src.isUndef())
1890 return ValueTrackerResult();
1891 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1894 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1895 assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1896 "Invalid definition");
1898 if (Def->getOperand(DefIdx).getSubReg())
1899 // If we are composing subregs, bail out.
1900 // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1901 // This should almost never happen as the SSA property is tracked at
1902 // the register level (as opposed to the subreg level).
1903 // I.e.,
1904 // Def.sub0 =
1905 // Def.sub1 =
1906 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1907 // Def. Thus, it must not be generated.
1908 // However, some code could theoretically generates a single
1909 // Def.sub0 (i.e, not defining the other subregs) and we would
1910 // have this case.
1911 // If we can ascertain (or force) that this never happens, we could
1912 // turn that into an assertion.
1913 return ValueTrackerResult();
1915 if (!TII)
1916 // We could handle the REG_SEQUENCE here, but we do not want to
1917 // duplicate the code from the generic TII.
1918 return ValueTrackerResult();
1920 SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1921 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1922 return ValueTrackerResult();
1924 // We are looking at:
1925 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1926 // Check if one of the operand defines the subreg we are interested in.
1927 for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1928 if (RegSeqInput.SubIdx == DefSubReg)
1929 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1932 // If the subreg we are tracking is super-defined by another subreg,
1933 // we could follow this value. However, this would require to compose
1934 // the subreg and we do not do that for now.
1935 return ValueTrackerResult();
1938 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1939 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1940 "Invalid definition");
1942 if (Def->getOperand(DefIdx).getSubReg())
1943 // If we are composing subreg, bail out.
1944 // Same remark as getNextSourceFromRegSequence.
1945 // I.e., this may be turned into an assert.
1946 return ValueTrackerResult();
1948 if (!TII)
1949 // We could handle the REG_SEQUENCE here, but we do not want to
1950 // duplicate the code from the generic TII.
1951 return ValueTrackerResult();
1953 RegSubRegPair BaseReg;
1954 RegSubRegPairAndIdx InsertedReg;
1955 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1956 return ValueTrackerResult();
1958 // We are looking at:
1959 // Def = INSERT_SUBREG v0, v1, sub1
1960 // There are two cases:
1961 // 1. DefSubReg == sub1, get v1.
1962 // 2. DefSubReg != sub1, the value may be available through v0.
1964 // #1 Check if the inserted register matches the required sub index.
1965 if (InsertedReg.SubIdx == DefSubReg) {
1966 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1968 // #2 Otherwise, if the sub register we are looking for is not partial
1969 // defined by the inserted element, we can look through the main
1970 // register (v0).
1971 const MachineOperand &MODef = Def->getOperand(DefIdx);
1972 // If the result register (Def) and the base register (v0) do not
1973 // have the same register class or if we have to compose
1974 // subregisters, bail out.
1975 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1976 BaseReg.SubReg)
1977 return ValueTrackerResult();
1979 // Get the TRI and check if the inserted sub-register overlaps with the
1980 // sub-register we are tracking.
1981 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1982 if (!TRI ||
1983 !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1984 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1985 return ValueTrackerResult();
1986 // At this point, the value is available in v0 via the same subreg
1987 // we used for Def.
1988 return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1991 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1992 assert((Def->isExtractSubreg() ||
1993 Def->isExtractSubregLike()) && "Invalid definition");
1994 // We are looking at:
1995 // Def = EXTRACT_SUBREG v0, sub0
1997 // Bail if we have to compose sub registers.
1998 // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1999 if (DefSubReg)
2000 return ValueTrackerResult();
2002 if (!TII)
2003 // We could handle the EXTRACT_SUBREG here, but we do not want to
2004 // duplicate the code from the generic TII.
2005 return ValueTrackerResult();
2007 RegSubRegPairAndIdx ExtractSubregInputReg;
2008 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
2009 return ValueTrackerResult();
2011 // Bail if we have to compose sub registers.
2012 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2013 if (ExtractSubregInputReg.SubReg)
2014 return ValueTrackerResult();
2015 // Otherwise, the value is available in the v0.sub0.
2016 return ValueTrackerResult(ExtractSubregInputReg.Reg,
2017 ExtractSubregInputReg.SubIdx);
2020 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2021 assert(Def->isSubregToReg() && "Invalid definition");
2022 // We are looking at:
2023 // Def = SUBREG_TO_REG Imm, v0, sub0
2025 // Bail if we have to compose sub registers.
2026 // If DefSubReg != sub0, we would have to check that all the bits
2027 // we track are included in sub0 and if yes, we would have to
2028 // determine the right subreg in v0.
2029 if (DefSubReg != Def->getOperand(3).getImm())
2030 return ValueTrackerResult();
2031 // Bail if we have to compose sub registers.
2032 // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2033 if (Def->getOperand(2).getSubReg())
2034 return ValueTrackerResult();
2036 return ValueTrackerResult(Def->getOperand(2).getReg(),
2037 Def->getOperand(3).getImm());
2040 /// Explore each PHI incoming operand and return its sources.
2041 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2042 assert(Def->isPHI() && "Invalid definition");
2043 ValueTrackerResult Res;
2045 // If we look for a different subreg, bail as we do not support composing
2046 // subregs yet.
2047 if (Def->getOperand(0).getSubReg() != DefSubReg)
2048 return ValueTrackerResult();
2050 // Return all register sources for PHI instructions.
2051 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2052 const MachineOperand &MO = Def->getOperand(i);
2053 assert(MO.isReg() && "Invalid PHI instruction");
2054 // We have no code to deal with undef operands. They shouldn't happen in
2055 // normal programs anyway.
2056 if (MO.isUndef())
2057 return ValueTrackerResult();
2058 Res.addSource(MO.getReg(), MO.getSubReg());
2061 return Res;
2064 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2065 assert(Def && "This method needs a valid definition");
2067 assert(((Def->getOperand(DefIdx).isDef() &&
2068 (DefIdx < Def->getDesc().getNumDefs() ||
2069 Def->getDesc().isVariadic())) ||
2070 Def->getOperand(DefIdx).isImplicit()) &&
2071 "Invalid DefIdx");
2072 if (Def->isCopy())
2073 return getNextSourceFromCopy();
2074 if (Def->isBitcast())
2075 return getNextSourceFromBitcast();
2076 // All the remaining cases involve "complex" instructions.
2077 // Bail if we did not ask for the advanced tracking.
2078 if (DisableAdvCopyOpt)
2079 return ValueTrackerResult();
2080 if (Def->isRegSequence() || Def->isRegSequenceLike())
2081 return getNextSourceFromRegSequence();
2082 if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2083 return getNextSourceFromInsertSubreg();
2084 if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2085 return getNextSourceFromExtractSubreg();
2086 if (Def->isSubregToReg())
2087 return getNextSourceFromSubregToReg();
2088 if (Def->isPHI())
2089 return getNextSourceFromPHI();
2090 return ValueTrackerResult();
2093 ValueTrackerResult ValueTracker::getNextSource() {
2094 // If we reach a point where we cannot move up in the use-def chain,
2095 // there is nothing we can get.
2096 if (!Def)
2097 return ValueTrackerResult();
2099 ValueTrackerResult Res = getNextSourceImpl();
2100 if (Res.isValid()) {
2101 // Update definition, definition index, and subregister for the
2102 // next call of getNextSource.
2103 // Update the current register.
2104 bool OneRegSrc = Res.getNumSources() == 1;
2105 if (OneRegSrc)
2106 Reg = Res.getSrcReg(0);
2107 // Update the result before moving up in the use-def chain
2108 // with the instruction containing the last found sources.
2109 Res.setInst(Def);
2111 // If we can still move up in the use-def chain, move to the next
2112 // definition.
2113 if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
2114 MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2115 if (DI != MRI.def_end()) {
2116 Def = DI->getParent();
2117 DefIdx = DI.getOperandNo();
2118 DefSubReg = Res.getSrcSubReg(0);
2119 } else {
2120 Def = nullptr;
2122 return Res;
2125 // If we end up here, this means we will not be able to find another source
2126 // for the next iteration. Make sure any new call to getNextSource bails out
2127 // early by cutting the use-def chain.
2128 Def = nullptr;
2129 return Res;