1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Perform peephole optimizations on the machine code:
11 // - Optimize Extensions
13 // Optimization of sign / zero extension instructions. It may be extended to
14 // handle other instructions with similar properties.
16 // On some targets, some instructions, e.g. X86 sign / zero extension, may
17 // leave the source value in the lower part of the result. This optimization
18 // will replace some uses of the pre-extension value with uses of the
19 // sub-register of the results.
21 // - Optimize Comparisons
23 // Optimization of comparison instructions. For instance, in this code:
29 // If the "sub" instruction all ready sets (or could be modified to set) the
30 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
31 // eliminate the "cmp" instruction.
33 // Another instance, in this code:
35 // sub r1, r3 | sub r1, imm
36 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm
39 // If the branch instruction can use flag from "sub", then we can replace
40 // "sub" with "subs" and eliminate the "cmp" instruction.
44 // Loads that can be folded into a later instruction. A load is foldable
45 // if it loads to virtual registers and the virtual register defined has
48 // - Optimize Copies and Bitcast (more generally, target specific copies):
50 // Rewrite copies and bitcasts to avoid cross register bank copies
52 // E.g., Consider the following example, where capital and lower
53 // letters denote different register file:
54 // b = copy A <-- cross-bank copy
55 // C = copy b <-- cross-bank copy
57 // b = copy A <-- cross-bank copy
58 // C = copy A <-- same-bank copy
61 // b = bitcast A <-- cross-bank copy
62 // C = bitcast b <-- cross-bank copy
64 // b = bitcast A <-- cross-bank copy
65 // C = copy A <-- same-bank copy
66 //===----------------------------------------------------------------------===//
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/CodeGen/MachineBasicBlock.h"
75 #include "llvm/CodeGen/MachineDominators.h"
76 #include "llvm/CodeGen/MachineFunction.h"
77 #include "llvm/CodeGen/MachineFunctionPass.h"
78 #include "llvm/CodeGen/MachineInstr.h"
79 #include "llvm/CodeGen/MachineInstrBuilder.h"
80 #include "llvm/CodeGen/MachineLoopInfo.h"
81 #include "llvm/CodeGen/MachineOperand.h"
82 #include "llvm/CodeGen/MachineRegisterInfo.h"
83 #include "llvm/CodeGen/TargetInstrInfo.h"
84 #include "llvm/CodeGen/TargetOpcodes.h"
85 #include "llvm/CodeGen/TargetRegisterInfo.h"
86 #include "llvm/CodeGen/TargetSubtargetInfo.h"
87 #include "llvm/InitializePasses.h"
88 #include "llvm/MC/LaneBitmask.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/raw_ostream.h"
100 using RegSubRegPair
= TargetInstrInfo::RegSubRegPair
;
101 using RegSubRegPairAndIdx
= TargetInstrInfo::RegSubRegPairAndIdx
;
103 #define DEBUG_TYPE "peephole-opt"
105 // Optimize Extensions
107 Aggressive("aggressive-ext-opt", cl::Hidden
,
108 cl::desc("Aggressive extension optimization"));
111 DisablePeephole("disable-peephole", cl::Hidden
, cl::init(false),
112 cl::desc("Disable the peephole optimizer"));
114 /// Specifiy whether or not the value tracking looks through
115 /// complex instructions. When this is true, the value tracker
116 /// bails on everything that is not a copy or a bitcast.
118 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden
, cl::init(false),
119 cl::desc("Disable advanced copy optimization"));
121 static cl::opt
<bool> DisableNAPhysCopyOpt(
122 "disable-non-allocatable-phys-copy-opt", cl::Hidden
, cl::init(false),
123 cl::desc("Disable non-allocatable physical register copy optimization"));
125 // Limit the number of PHI instructions to process
126 // in PeepholeOptimizer::getNextSource.
127 static cl::opt
<unsigned> RewritePHILimit(
128 "rewrite-phi-limit", cl::Hidden
, cl::init(10),
129 cl::desc("Limit the length of PHI chains to lookup"));
131 // Limit the length of recurrence chain when evaluating the benefit of
132 // commuting operands.
133 static cl::opt
<unsigned> MaxRecurrenceChain(
134 "recurrence-chain-limit", cl::Hidden
, cl::init(3),
135 cl::desc("Maximum length of recurrence chain when evaluating the benefit "
136 "of commuting operands"));
139 STATISTIC(NumReuse
, "Number of extension results reused");
140 STATISTIC(NumCmps
, "Number of compares eliminated");
141 STATISTIC(NumImmFold
, "Number of move immediate folded");
142 STATISTIC(NumLoadFold
, "Number of loads folded");
143 STATISTIC(NumSelects
, "Number of selects optimized");
144 STATISTIC(NumUncoalescableCopies
, "Number of uncoalescable copies optimized");
145 STATISTIC(NumRewrittenCopies
, "Number of copies rewritten");
146 STATISTIC(NumNAPhysCopies
, "Number of non-allocatable physical copies removed");
150 class ValueTrackerResult
;
151 class RecurrenceInstr
;
153 class PeepholeOptimizer
: public MachineFunctionPass
{
154 const TargetInstrInfo
*TII
;
155 const TargetRegisterInfo
*TRI
;
156 MachineRegisterInfo
*MRI
;
157 MachineDominatorTree
*DT
; // Machine dominator tree
158 MachineLoopInfo
*MLI
;
161 static char ID
; // Pass identification
163 PeepholeOptimizer() : MachineFunctionPass(ID
) {
164 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
167 bool runOnMachineFunction(MachineFunction
&MF
) override
;
169 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
170 AU
.setPreservesCFG();
171 MachineFunctionPass::getAnalysisUsage(AU
);
172 AU
.addRequired
<MachineLoopInfo
>();
173 AU
.addPreserved
<MachineLoopInfo
>();
175 AU
.addRequired
<MachineDominatorTree
>();
176 AU
.addPreserved
<MachineDominatorTree
>();
180 MachineFunctionProperties
getRequiredProperties() const override
{
181 return MachineFunctionProperties()
182 .set(MachineFunctionProperties::Property::IsSSA
);
185 /// Track Def -> Use info used for rewriting copies.
186 using RewriteMapTy
= SmallDenseMap
<RegSubRegPair
, ValueTrackerResult
>;
188 /// Sequence of instructions that formulate recurrence cycle.
189 using RecurrenceCycle
= SmallVector
<RecurrenceInstr
, 4>;
192 bool optimizeCmpInstr(MachineInstr
&MI
);
193 bool optimizeExtInstr(MachineInstr
&MI
, MachineBasicBlock
&MBB
,
194 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
);
195 bool optimizeSelect(MachineInstr
&MI
,
196 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
);
197 bool optimizeCondBranch(MachineInstr
&MI
);
198 bool optimizeCoalescableCopy(MachineInstr
&MI
);
199 bool optimizeUncoalescableCopy(MachineInstr
&MI
,
200 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
);
201 bool optimizeRecurrence(MachineInstr
&PHI
);
202 bool findNextSource(RegSubRegPair RegSubReg
, RewriteMapTy
&RewriteMap
);
203 bool isMoveImmediate(MachineInstr
&MI
, SmallSet
<Register
, 4> &ImmDefRegs
,
204 DenseMap
<Register
, MachineInstr
*> &ImmDefMIs
);
205 bool foldImmediate(MachineInstr
&MI
, SmallSet
<Register
, 4> &ImmDefRegs
,
206 DenseMap
<Register
, MachineInstr
*> &ImmDefMIs
);
208 /// Finds recurrence cycles, but only ones that formulated around
209 /// a def operand and a use operand that are tied. If there is a use
210 /// operand commutable with the tied use operand, find recurrence cycle
211 /// along that operand as well.
212 bool findTargetRecurrence(Register Reg
,
213 const SmallSet
<Register
, 2> &TargetReg
,
214 RecurrenceCycle
&RC
);
216 /// If copy instruction \p MI is a virtual register copy or a copy of a
217 /// constant physical register to a virtual register, track it in the
218 /// set \p CopyMIs. If this virtual register was previously seen as a
219 /// copy, replace the uses of this copy with the previously seen copy's
220 /// destination register.
221 bool foldRedundantCopy(MachineInstr
&MI
,
222 DenseMap
<RegSubRegPair
, MachineInstr
*> &CopyMIs
);
224 /// Is the register \p Reg a non-allocatable physical register?
225 bool isNAPhysCopy(Register Reg
);
227 /// If copy instruction \p MI is a non-allocatable virtual<->physical
228 /// register copy, track it in the \p NAPhysToVirtMIs map. If this
229 /// non-allocatable physical register was previously copied to a virtual
230 /// registered and hasn't been clobbered, the virt->phys copy can be
232 bool foldRedundantNAPhysCopy(
233 MachineInstr
&MI
, DenseMap
<Register
, MachineInstr
*> &NAPhysToVirtMIs
);
235 bool isLoadFoldable(MachineInstr
&MI
,
236 SmallSet
<Register
, 16> &FoldAsLoadDefCandidates
);
238 /// Check whether \p MI is understood by the register coalescer
239 /// but may require some rewriting.
240 bool isCoalescableCopy(const MachineInstr
&MI
) {
241 // SubregToRegs are not interesting, because they are already register
242 // coalescer friendly.
243 return MI
.isCopy() || (!DisableAdvCopyOpt
&&
244 (MI
.isRegSequence() || MI
.isInsertSubreg() ||
245 MI
.isExtractSubreg()));
248 /// Check whether \p MI is a copy like instruction that is
249 /// not recognized by the register coalescer.
250 bool isUncoalescableCopy(const MachineInstr
&MI
) {
251 return MI
.isBitcast() ||
252 (!DisableAdvCopyOpt
&&
253 (MI
.isRegSequenceLike() || MI
.isInsertSubregLike() ||
254 MI
.isExtractSubregLike()));
257 MachineInstr
&rewriteSource(MachineInstr
&CopyLike
,
258 RegSubRegPair Def
, RewriteMapTy
&RewriteMap
);
261 /// Helper class to hold instructions that are inside recurrence cycles.
262 /// The recurrence cycle is formulated around 1) a def operand and its
263 /// tied use operand, or 2) a def operand and a use operand that is commutable
264 /// with another use operand which is tied to the def operand. In the latter
265 /// case, index of the tied use operand and the commutable use operand are
266 /// maintained with CommutePair.
267 class RecurrenceInstr
{
269 using IndexPair
= std::pair
<unsigned, unsigned>;
271 RecurrenceInstr(MachineInstr
*MI
) : MI(MI
) {}
272 RecurrenceInstr(MachineInstr
*MI
, unsigned Idx1
, unsigned Idx2
)
273 : MI(MI
), CommutePair(std::make_pair(Idx1
, Idx2
)) {}
275 MachineInstr
*getMI() const { return MI
; }
276 Optional
<IndexPair
> getCommutePair() const { return CommutePair
; }
280 Optional
<IndexPair
> CommutePair
;
283 /// Helper class to hold a reply for ValueTracker queries.
284 /// Contains the returned sources for a given search and the instructions
285 /// where the sources were tracked from.
286 class ValueTrackerResult
{
288 /// Track all sources found by one ValueTracker query.
289 SmallVector
<RegSubRegPair
, 2> RegSrcs
;
291 /// Instruction using the sources in 'RegSrcs'.
292 const MachineInstr
*Inst
= nullptr;
295 ValueTrackerResult() = default;
297 ValueTrackerResult(Register Reg
, unsigned SubReg
) {
298 addSource(Reg
, SubReg
);
301 bool isValid() const { return getNumSources() > 0; }
303 void setInst(const MachineInstr
*I
) { Inst
= I
; }
304 const MachineInstr
*getInst() const { return Inst
; }
311 void addSource(Register SrcReg
, unsigned SrcSubReg
) {
312 RegSrcs
.push_back(RegSubRegPair(SrcReg
, SrcSubReg
));
315 void setSource(int Idx
, Register SrcReg
, unsigned SrcSubReg
) {
316 assert(Idx
< getNumSources() && "Reg pair source out of index");
317 RegSrcs
[Idx
] = RegSubRegPair(SrcReg
, SrcSubReg
);
320 int getNumSources() const { return RegSrcs
.size(); }
322 RegSubRegPair
getSrc(int Idx
) const {
326 Register
getSrcReg(int Idx
) const {
327 assert(Idx
< getNumSources() && "Reg source out of index");
328 return RegSrcs
[Idx
].Reg
;
331 unsigned getSrcSubReg(int Idx
) const {
332 assert(Idx
< getNumSources() && "SubReg source out of index");
333 return RegSrcs
[Idx
].SubReg
;
336 bool operator==(const ValueTrackerResult
&Other
) const {
337 if (Other
.getInst() != getInst())
340 if (Other
.getNumSources() != getNumSources())
343 for (int i
= 0, e
= Other
.getNumSources(); i
!= e
; ++i
)
344 if (Other
.getSrcReg(i
) != getSrcReg(i
) ||
345 Other
.getSrcSubReg(i
) != getSrcSubReg(i
))
351 /// Helper class to track the possible sources of a value defined by
352 /// a (chain of) copy related instructions.
353 /// Given a definition (instruction and definition index), this class
354 /// follows the use-def chain to find successive suitable sources.
355 /// The given source can be used to rewrite the definition into
358 /// For instance, let us consider the following snippet:
360 /// v2 = INSERT_SUBREG v1, v0, sub0
361 /// def = COPY v2.sub0
363 /// Using a ValueTracker for def = COPY v2.sub0 will give the following
364 /// suitable sources:
366 /// Then, def can be rewritten into def = COPY v0.
369 /// The current point into the use-def chain.
370 const MachineInstr
*Def
= nullptr;
372 /// The index of the definition in Def.
375 /// The sub register index of the definition.
378 /// The register where the value can be found.
381 /// MachineRegisterInfo used to perform tracking.
382 const MachineRegisterInfo
&MRI
;
384 /// Optional TargetInstrInfo used to perform some complex tracking.
385 const TargetInstrInfo
*TII
;
387 /// Dispatcher to the right underlying implementation of getNextSource.
388 ValueTrackerResult
getNextSourceImpl();
390 /// Specialized version of getNextSource for Copy instructions.
391 ValueTrackerResult
getNextSourceFromCopy();
393 /// Specialized version of getNextSource for Bitcast instructions.
394 ValueTrackerResult
getNextSourceFromBitcast();
396 /// Specialized version of getNextSource for RegSequence instructions.
397 ValueTrackerResult
getNextSourceFromRegSequence();
399 /// Specialized version of getNextSource for InsertSubreg instructions.
400 ValueTrackerResult
getNextSourceFromInsertSubreg();
402 /// Specialized version of getNextSource for ExtractSubreg instructions.
403 ValueTrackerResult
getNextSourceFromExtractSubreg();
405 /// Specialized version of getNextSource for SubregToReg instructions.
406 ValueTrackerResult
getNextSourceFromSubregToReg();
408 /// Specialized version of getNextSource for PHI instructions.
409 ValueTrackerResult
getNextSourceFromPHI();
412 /// Create a ValueTracker instance for the value defined by \p Reg.
413 /// \p DefSubReg represents the sub register index the value tracker will
414 /// track. It does not need to match the sub register index used in the
415 /// definition of \p Reg.
416 /// If \p Reg is a physical register, a value tracker constructed with
417 /// this constructor will not find any alternative source.
418 /// Indeed, when \p Reg is a physical register that constructor does not
419 /// know which definition of \p Reg it should track.
420 /// Use the next constructor to track a physical register.
421 ValueTracker(Register Reg
, unsigned DefSubReg
,
422 const MachineRegisterInfo
&MRI
,
423 const TargetInstrInfo
*TII
= nullptr)
424 : DefSubReg(DefSubReg
), Reg(Reg
), MRI(MRI
), TII(TII
) {
425 if (!Reg
.isPhysical()) {
426 Def
= MRI
.getVRegDef(Reg
);
427 DefIdx
= MRI
.def_begin(Reg
).getOperandNo();
431 /// Following the use-def chain, get the next available source
432 /// for the tracked value.
433 /// \return A ValueTrackerResult containing a set of registers
434 /// and sub registers with tracked values. A ValueTrackerResult with
435 /// an empty set of registers means no source was found.
436 ValueTrackerResult
getNextSource();
439 } // end anonymous namespace
441 char PeepholeOptimizer::ID
= 0;
443 char &llvm::PeepholeOptimizerID
= PeepholeOptimizer::ID
;
445 INITIALIZE_PASS_BEGIN(PeepholeOptimizer
, DEBUG_TYPE
,
446 "Peephole Optimizations", false, false)
447 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
448 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
449 INITIALIZE_PASS_END(PeepholeOptimizer
, DEBUG_TYPE
,
450 "Peephole Optimizations", false, false)
452 /// If instruction is a copy-like instruction, i.e. it reads a single register
453 /// and writes a single register and it does not modify the source, and if the
454 /// source value is preserved as a sub-register of the result, then replace all
455 /// reachable uses of the source with the subreg of the result.
457 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
458 /// the code. Since this code does not currently share EXTRACTs, just ignore all
460 bool PeepholeOptimizer::
461 optimizeExtInstr(MachineInstr
&MI
, MachineBasicBlock
&MBB
,
462 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
) {
463 Register SrcReg
, DstReg
;
465 if (!TII
->isCoalescableExtInstr(MI
, SrcReg
, DstReg
, SubIdx
))
468 if (DstReg
.isPhysical() || SrcReg
.isPhysical())
471 if (MRI
->hasOneNonDBGUse(SrcReg
))
475 // Ensure DstReg can get a register class that actually supports
476 // sub-registers. Don't change the class until we commit.
477 const TargetRegisterClass
*DstRC
= MRI
->getRegClass(DstReg
);
478 DstRC
= TRI
->getSubClassWithSubReg(DstRC
, SubIdx
);
482 // The ext instr may be operating on a sub-register of SrcReg as well.
483 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
485 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
486 // SrcReg:SubIdx should be replaced.
488 TRI
->getSubClassWithSubReg(MRI
->getRegClass(SrcReg
), SubIdx
) != nullptr;
490 // The source has other uses. See if we can replace the other uses with use of
491 // the result of the extension.
492 SmallPtrSet
<MachineBasicBlock
*, 4> ReachedBBs
;
493 for (MachineInstr
&UI
: MRI
->use_nodbg_instructions(DstReg
))
494 ReachedBBs
.insert(UI
.getParent());
496 // Uses that are in the same BB of uses of the result of the instruction.
497 SmallVector
<MachineOperand
*, 8> Uses
;
499 // Uses that the result of the instruction can reach.
500 SmallVector
<MachineOperand
*, 8> ExtendedUses
;
502 bool ExtendLife
= true;
503 for (MachineOperand
&UseMO
: MRI
->use_nodbg_operands(SrcReg
)) {
504 MachineInstr
*UseMI
= UseMO
.getParent();
508 if (UseMI
->isPHI()) {
513 // Only accept uses of SrcReg:SubIdx.
514 if (UseSrcSubIdx
&& UseMO
.getSubReg() != SubIdx
)
517 // It's an error to translate this:
519 // %reg1025 = <sext> %reg1024
521 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
525 // %reg1025 = <sext> %reg1024
527 // %reg1027 = COPY %reg1025:4
528 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
530 // The problem here is that SUBREG_TO_REG is there to assert that an
531 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
532 // the COPY here, it will give us the value after the <sext>, not the
533 // original value of %reg1024 before <sext>.
534 if (UseMI
->getOpcode() == TargetOpcode::SUBREG_TO_REG
)
537 MachineBasicBlock
*UseMBB
= UseMI
->getParent();
538 if (UseMBB
== &MBB
) {
539 // Local uses that come after the extension.
540 if (!LocalMIs
.count(UseMI
))
541 Uses
.push_back(&UseMO
);
542 } else if (ReachedBBs
.count(UseMBB
)) {
543 // Non-local uses where the result of the extension is used. Always
544 // replace these unless it's a PHI.
545 Uses
.push_back(&UseMO
);
546 } else if (Aggressive
&& DT
->dominates(&MBB
, UseMBB
)) {
547 // We may want to extend the live range of the extension result in order
548 // to replace these uses.
549 ExtendedUses
.push_back(&UseMO
);
551 // Both will be live out of the def MBB anyway. Don't extend live range of
552 // the extension result.
558 if (ExtendLife
&& !ExtendedUses
.empty())
559 // Extend the liveness of the extension result.
560 Uses
.append(ExtendedUses
.begin(), ExtendedUses
.end());
562 // Now replace all uses.
563 bool Changed
= false;
565 SmallPtrSet
<MachineBasicBlock
*, 4> PHIBBs
;
567 // Look for PHI uses of the extended result, we don't want to extend the
568 // liveness of a PHI input. It breaks all kinds of assumptions down
569 // stream. A PHI use is expected to be the kill of its source values.
570 for (MachineInstr
&UI
: MRI
->use_nodbg_instructions(DstReg
))
572 PHIBBs
.insert(UI
.getParent());
574 const TargetRegisterClass
*RC
= MRI
->getRegClass(SrcReg
);
575 for (unsigned i
= 0, e
= Uses
.size(); i
!= e
; ++i
) {
576 MachineOperand
*UseMO
= Uses
[i
];
577 MachineInstr
*UseMI
= UseMO
->getParent();
578 MachineBasicBlock
*UseMBB
= UseMI
->getParent();
579 if (PHIBBs
.count(UseMBB
))
582 // About to add uses of DstReg, clear DstReg's kill flags.
584 MRI
->clearKillFlags(DstReg
);
585 MRI
->constrainRegClass(DstReg
, DstRC
);
588 // SubReg defs are illegal in machine SSA phase,
589 // we should not generate SubReg defs.
591 // For example, for the instructions:
593 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
594 // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc
596 // We should generate:
598 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
599 // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0
600 // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0
603 RC
= MRI
->getRegClass(UseMI
->getOperand(0).getReg());
605 Register NewVR
= MRI
->createVirtualRegister(RC
);
606 BuildMI(*UseMBB
, UseMI
, UseMI
->getDebugLoc(),
607 TII
->get(TargetOpcode::COPY
), NewVR
)
608 .addReg(DstReg
, 0, SubIdx
);
612 UseMO
->setReg(NewVR
);
621 /// If the instruction is a compare and the previous instruction it's comparing
622 /// against already sets (or could be modified to set) the same flag as the
623 /// compare, then we can remove the comparison and use the flag from the
624 /// previous instruction.
625 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr
&MI
) {
626 // If this instruction is a comparison against zero and isn't comparing a
627 // physical register, we can try to optimize it.
628 Register SrcReg
, SrcReg2
;
629 int64_t CmpMask
, CmpValue
;
630 if (!TII
->analyzeCompare(MI
, SrcReg
, SrcReg2
, CmpMask
, CmpValue
) ||
631 SrcReg
.isPhysical() || SrcReg2
.isPhysical())
634 // Attempt to optimize the comparison instruction.
635 LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI
);
636 if (TII
->optimizeCompareInstr(MI
, SrcReg
, SrcReg2
, CmpMask
, CmpValue
, MRI
)) {
637 LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n");
645 /// Optimize a select instruction.
646 bool PeepholeOptimizer::optimizeSelect(MachineInstr
&MI
,
647 SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
) {
649 unsigned FalseOp
= 0;
650 bool Optimizable
= false;
651 SmallVector
<MachineOperand
, 4> Cond
;
652 if (TII
->analyzeSelect(MI
, Cond
, TrueOp
, FalseOp
, Optimizable
))
656 if (!TII
->optimizeSelect(MI
, LocalMIs
))
658 LLVM_DEBUG(dbgs() << "Deleting select: " << MI
);
659 MI
.eraseFromParent();
664 /// Check if a simpler conditional branch can be generated.
665 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr
&MI
) {
666 return TII
->optimizeCondBranch(MI
);
669 /// Try to find the next source that share the same register file
670 /// for the value defined by \p Reg and \p SubReg.
671 /// When true is returned, the \p RewriteMap can be used by the client to
672 /// retrieve all Def -> Use along the way up to the next source. Any found
673 /// Use that is not itself a key for another entry, is the next source to
674 /// use. During the search for the next source, multiple sources can be found
675 /// given multiple incoming sources of a PHI instruction. In this case, we
676 /// look in each PHI source for the next source; all found next sources must
677 /// share the same register file as \p Reg and \p SubReg. The client should
678 /// then be capable to rewrite all intermediate PHIs to get the next source.
679 /// \return False if no alternative sources are available. True otherwise.
680 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg
,
681 RewriteMapTy
&RewriteMap
) {
682 // Do not try to find a new source for a physical register.
683 // So far we do not have any motivating example for doing that.
684 // Thus, instead of maintaining untested code, we will revisit that if
685 // that changes at some point.
686 Register Reg
= RegSubReg
.Reg
;
687 if (Reg
.isPhysical())
689 const TargetRegisterClass
*DefRC
= MRI
->getRegClass(Reg
);
691 SmallVector
<RegSubRegPair
, 4> SrcToLook
;
692 RegSubRegPair CurSrcPair
= RegSubReg
;
693 SrcToLook
.push_back(CurSrcPair
);
695 unsigned PHICount
= 0;
697 CurSrcPair
= SrcToLook
.pop_back_val();
698 // As explained above, do not handle physical registers
699 if (Register::isPhysicalRegister(CurSrcPair
.Reg
))
702 ValueTracker
ValTracker(CurSrcPair
.Reg
, CurSrcPair
.SubReg
, *MRI
, TII
);
704 // Follow the chain of copies until we find a more suitable source, a phi
707 ValueTrackerResult Res
= ValTracker
.getNextSource();
708 // Abort at the end of a chain (without finding a suitable source).
712 // Insert the Def -> Use entry for the recently found source.
713 ValueTrackerResult CurSrcRes
= RewriteMap
.lookup(CurSrcPair
);
714 if (CurSrcRes
.isValid()) {
715 assert(CurSrcRes
== Res
&& "ValueTrackerResult found must match");
716 // An existent entry with multiple sources is a PHI cycle we must avoid.
717 // Otherwise it's an entry with a valid next source we already found.
718 if (CurSrcRes
.getNumSources() > 1) {
720 << "findNextSource: found PHI cycle, aborting...\n");
725 RewriteMap
.insert(std::make_pair(CurSrcPair
, Res
));
727 // ValueTrackerResult usually have one source unless it's the result from
728 // a PHI instruction. Add the found PHI edges to be looked up further.
729 unsigned NumSrcs
= Res
.getNumSources();
732 if (PHICount
>= RewritePHILimit
) {
733 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
737 for (unsigned i
= 0; i
< NumSrcs
; ++i
)
738 SrcToLook
.push_back(Res
.getSrc(i
));
742 CurSrcPair
= Res
.getSrc(0);
743 // Do not extend the live-ranges of physical registers as they add
744 // constraints to the register allocator. Moreover, if we want to extend
745 // the live-range of a physical register, unlike SSA virtual register,
746 // we will have to check that they aren't redefine before the related use.
747 if (Register::isPhysicalRegister(CurSrcPair
.Reg
))
750 // Keep following the chain if the value isn't any better yet.
751 const TargetRegisterClass
*SrcRC
= MRI
->getRegClass(CurSrcPair
.Reg
);
752 if (!TRI
->shouldRewriteCopySrc(DefRC
, RegSubReg
.SubReg
, SrcRC
,
756 // We currently cannot deal with subreg operands on PHI instructions
757 // (see insertPHI()).
758 if (PHICount
> 0 && CurSrcPair
.SubReg
!= 0)
761 // We found a suitable source, and are done with this chain.
764 } while (!SrcToLook
.empty());
766 // If we did not find a more suitable source, there is nothing to optimize.
767 return CurSrcPair
.Reg
!= Reg
;
770 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
771 /// guaranteed to have the same register class. This is necessary whenever we
772 /// successfully traverse a PHI instruction and find suitable sources coming
773 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
774 /// suitable to be used in a new COPY instruction.
775 static MachineInstr
&
776 insertPHI(MachineRegisterInfo
&MRI
, const TargetInstrInfo
&TII
,
777 const SmallVectorImpl
<RegSubRegPair
> &SrcRegs
,
778 MachineInstr
&OrigPHI
) {
779 assert(!SrcRegs
.empty() && "No sources to create a PHI instruction?");
781 const TargetRegisterClass
*NewRC
= MRI
.getRegClass(SrcRegs
[0].Reg
);
782 // NewRC is only correct if no subregisters are involved. findNextSource()
783 // should have rejected those cases already.
784 assert(SrcRegs
[0].SubReg
== 0 && "should not have subreg operand");
785 Register NewVR
= MRI
.createVirtualRegister(NewRC
);
786 MachineBasicBlock
*MBB
= OrigPHI
.getParent();
787 MachineInstrBuilder MIB
= BuildMI(*MBB
, &OrigPHI
, OrigPHI
.getDebugLoc(),
788 TII
.get(TargetOpcode::PHI
), NewVR
);
790 unsigned MBBOpIdx
= 2;
791 for (const RegSubRegPair
&RegPair
: SrcRegs
) {
792 MIB
.addReg(RegPair
.Reg
, 0, RegPair
.SubReg
);
793 MIB
.addMBB(OrigPHI
.getOperand(MBBOpIdx
).getMBB());
794 // Since we're extended the lifetime of RegPair.Reg, clear the
795 // kill flags to account for that and make RegPair.Reg reaches
797 MRI
.clearKillFlags(RegPair
.Reg
);
806 /// Interface to query instructions amenable to copy rewriting.
809 MachineInstr
&CopyLike
;
810 unsigned CurrentSrcIdx
= 0; ///< The index of the source being rewritten.
812 Rewriter(MachineInstr
&CopyLike
) : CopyLike(CopyLike
) {}
813 virtual ~Rewriter() = default;
815 /// Get the next rewritable source (SrcReg, SrcSubReg) and
816 /// the related value that it affects (DstReg, DstSubReg).
817 /// A source is considered rewritable if its register class and the
818 /// register class of the related DstReg may not be register
819 /// coalescer friendly. In other words, given a copy-like instruction
820 /// not all the arguments may be returned at rewritable source, since
821 /// some arguments are none to be register coalescer friendly.
823 /// Each call of this method moves the current source to the next
824 /// rewritable source.
825 /// For instance, let CopyLike be the instruction to rewrite.
826 /// CopyLike has one definition and one source:
827 /// dst.dstSubIdx = CopyLike src.srcSubIdx.
829 /// The first call will give the first rewritable source, i.e.,
830 /// the only source this instruction has:
831 /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
832 /// This source defines the whole definition, i.e.,
833 /// (DstReg, DstSubReg) = (dst, dstSubIdx).
835 /// The second and subsequent calls will return false, as there is only one
836 /// rewritable source.
838 /// \return True if a rewritable source has been found, false otherwise.
839 /// The output arguments are valid if and only if true is returned.
840 virtual bool getNextRewritableSource(RegSubRegPair
&Src
,
841 RegSubRegPair
&Dst
) = 0;
843 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
844 /// \return True if the rewriting was possible, false otherwise.
845 virtual bool RewriteCurrentSource(Register NewReg
, unsigned NewSubReg
) = 0;
848 /// Rewriter for COPY instructions.
849 class CopyRewriter
: public Rewriter
{
851 CopyRewriter(MachineInstr
&MI
) : Rewriter(MI
) {
852 assert(MI
.isCopy() && "Expected copy instruction");
854 virtual ~CopyRewriter() = default;
856 bool getNextRewritableSource(RegSubRegPair
&Src
,
857 RegSubRegPair
&Dst
) override
{
858 // CurrentSrcIdx > 0 means this function has already been called.
859 if (CurrentSrcIdx
> 0)
861 // This is the first call to getNextRewritableSource.
862 // Move the CurrentSrcIdx to remember that we made that call.
864 // The rewritable source is the argument.
865 const MachineOperand
&MOSrc
= CopyLike
.getOperand(1);
866 Src
= RegSubRegPair(MOSrc
.getReg(), MOSrc
.getSubReg());
867 // What we track are the alternative sources of the definition.
868 const MachineOperand
&MODef
= CopyLike
.getOperand(0);
869 Dst
= RegSubRegPair(MODef
.getReg(), MODef
.getSubReg());
873 bool RewriteCurrentSource(Register NewReg
, unsigned NewSubReg
) override
{
874 if (CurrentSrcIdx
!= 1)
876 MachineOperand
&MOSrc
= CopyLike
.getOperand(CurrentSrcIdx
);
877 MOSrc
.setReg(NewReg
);
878 MOSrc
.setSubReg(NewSubReg
);
883 /// Helper class to rewrite uncoalescable copy like instructions
884 /// into new COPY (coalescable friendly) instructions.
885 class UncoalescableRewriter
: public Rewriter
{
886 unsigned NumDefs
; ///< Number of defs in the bitcast.
889 UncoalescableRewriter(MachineInstr
&MI
) : Rewriter(MI
) {
890 NumDefs
= MI
.getDesc().getNumDefs();
893 /// \see See Rewriter::getNextRewritableSource()
894 /// All such sources need to be considered rewritable in order to
895 /// rewrite a uncoalescable copy-like instruction. This method return
896 /// each definition that must be checked if rewritable.
897 bool getNextRewritableSource(RegSubRegPair
&Src
,
898 RegSubRegPair
&Dst
) override
{
899 // Find the next non-dead definition and continue from there.
900 if (CurrentSrcIdx
== NumDefs
)
903 while (CopyLike
.getOperand(CurrentSrcIdx
).isDead()) {
905 if (CurrentSrcIdx
== NumDefs
)
909 // What we track are the alternative sources of the definition.
910 Src
= RegSubRegPair(0, 0);
911 const MachineOperand
&MODef
= CopyLike
.getOperand(CurrentSrcIdx
);
912 Dst
= RegSubRegPair(MODef
.getReg(), MODef
.getSubReg());
918 bool RewriteCurrentSource(Register NewReg
, unsigned NewSubReg
) override
{
923 /// Specialized rewriter for INSERT_SUBREG instruction.
924 class InsertSubregRewriter
: public Rewriter
{
926 InsertSubregRewriter(MachineInstr
&MI
) : Rewriter(MI
) {
927 assert(MI
.isInsertSubreg() && "Invalid instruction");
930 /// \see See Rewriter::getNextRewritableSource()
931 /// Here CopyLike has the following form:
932 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
933 /// Src1 has the same register class has dst, hence, there is
934 /// nothing to rewrite.
935 /// Src2.src2SubIdx, may not be register coalescer friendly.
936 /// Therefore, the first call to this method returns:
937 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
938 /// (DstReg, DstSubReg) = (dst, subIdx).
940 /// Subsequence calls will return false.
941 bool getNextRewritableSource(RegSubRegPair
&Src
,
942 RegSubRegPair
&Dst
) override
{
943 // If we already get the only source we can rewrite, return false.
944 if (CurrentSrcIdx
== 2)
946 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
948 const MachineOperand
&MOInsertedReg
= CopyLike
.getOperand(2);
949 Src
= RegSubRegPair(MOInsertedReg
.getReg(), MOInsertedReg
.getSubReg());
950 const MachineOperand
&MODef
= CopyLike
.getOperand(0);
952 // We want to track something that is compatible with the
953 // partial definition.
954 if (MODef
.getSubReg())
955 // Bail if we have to compose sub-register indices.
957 Dst
= RegSubRegPair(MODef
.getReg(),
958 (unsigned)CopyLike
.getOperand(3).getImm());
962 bool RewriteCurrentSource(Register NewReg
, unsigned NewSubReg
) override
{
963 if (CurrentSrcIdx
!= 2)
965 // We are rewriting the inserted reg.
966 MachineOperand
&MO
= CopyLike
.getOperand(CurrentSrcIdx
);
968 MO
.setSubReg(NewSubReg
);
973 /// Specialized rewriter for EXTRACT_SUBREG instruction.
974 class ExtractSubregRewriter
: public Rewriter
{
975 const TargetInstrInfo
&TII
;
978 ExtractSubregRewriter(MachineInstr
&MI
, const TargetInstrInfo
&TII
)
979 : Rewriter(MI
), TII(TII
) {
980 assert(MI
.isExtractSubreg() && "Invalid instruction");
983 /// \see Rewriter::getNextRewritableSource()
984 /// Here CopyLike has the following form:
985 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
986 /// There is only one rewritable source: Src.subIdx,
987 /// which defines dst.dstSubIdx.
988 bool getNextRewritableSource(RegSubRegPair
&Src
,
989 RegSubRegPair
&Dst
) override
{
990 // If we already get the only source we can rewrite, return false.
991 if (CurrentSrcIdx
== 1)
993 // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
995 const MachineOperand
&MOExtractedReg
= CopyLike
.getOperand(1);
996 // If we have to compose sub-register indices, bail out.
997 if (MOExtractedReg
.getSubReg())
1000 Src
= RegSubRegPair(MOExtractedReg
.getReg(),
1001 CopyLike
.getOperand(2).getImm());
1003 // We want to track something that is compatible with the definition.
1004 const MachineOperand
&MODef
= CopyLike
.getOperand(0);
1005 Dst
= RegSubRegPair(MODef
.getReg(), MODef
.getSubReg());
1009 bool RewriteCurrentSource(Register NewReg
, unsigned NewSubReg
) override
{
1010 // The only source we can rewrite is the input register.
1011 if (CurrentSrcIdx
!= 1)
1014 CopyLike
.getOperand(CurrentSrcIdx
).setReg(NewReg
);
1016 // If we find a source that does not require to extract something,
1017 // rewrite the operation with a copy.
1019 // Move the current index to an invalid position.
1020 // We do not want another call to this method to be able
1021 // to do any change.
1023 // Rewrite the operation as a COPY.
1024 // Get rid of the sub-register index.
1025 CopyLike
.removeOperand(2);
1026 // Morph the operation into a COPY.
1027 CopyLike
.setDesc(TII
.get(TargetOpcode::COPY
));
1030 CopyLike
.getOperand(CurrentSrcIdx
+ 1).setImm(NewSubReg
);
1035 /// Specialized rewriter for REG_SEQUENCE instruction.
1036 class RegSequenceRewriter
: public Rewriter
{
1038 RegSequenceRewriter(MachineInstr
&MI
) : Rewriter(MI
) {
1039 assert(MI
.isRegSequence() && "Invalid instruction");
1042 /// \see Rewriter::getNextRewritableSource()
1043 /// Here CopyLike has the following form:
1044 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1045 /// Each call will return a different source, walking all the available
1048 /// The first call returns:
1049 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1050 /// (DstReg, DstSubReg) = (dst, subIdx1).
1052 /// The second call returns:
1053 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1054 /// (DstReg, DstSubReg) = (dst, subIdx2).
1056 /// And so on, until all the sources have been traversed, then
1057 /// it returns false.
1058 bool getNextRewritableSource(RegSubRegPair
&Src
,
1059 RegSubRegPair
&Dst
) override
{
1060 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1062 // If this is the first call, move to the first argument.
1063 if (CurrentSrcIdx
== 0) {
1066 // Otherwise, move to the next argument and check that it is valid.
1068 if (CurrentSrcIdx
>= CopyLike
.getNumOperands())
1071 const MachineOperand
&MOInsertedReg
= CopyLike
.getOperand(CurrentSrcIdx
);
1072 Src
.Reg
= MOInsertedReg
.getReg();
1073 // If we have to compose sub-register indices, bail out.
1074 if ((Src
.SubReg
= MOInsertedReg
.getSubReg()))
1077 // We want to track something that is compatible with the related
1078 // partial definition.
1079 Dst
.SubReg
= CopyLike
.getOperand(CurrentSrcIdx
+ 1).getImm();
1081 const MachineOperand
&MODef
= CopyLike
.getOperand(0);
1082 Dst
.Reg
= MODef
.getReg();
1083 // If we have to compose sub-registers, bail.
1084 return MODef
.getSubReg() == 0;
1087 bool RewriteCurrentSource(Register NewReg
, unsigned NewSubReg
) override
{
1088 // We cannot rewrite out of bound operands.
1089 // Moreover, rewritable sources are at odd positions.
1090 if ((CurrentSrcIdx
& 1) != 1 || CurrentSrcIdx
> CopyLike
.getNumOperands())
1093 MachineOperand
&MO
= CopyLike
.getOperand(CurrentSrcIdx
);
1095 MO
.setSubReg(NewSubReg
);
1100 } // end anonymous namespace
1102 /// Get the appropriated Rewriter for \p MI.
1103 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1104 /// rewriter works for \p MI.
1105 static Rewriter
*getCopyRewriter(MachineInstr
&MI
, const TargetInstrInfo
&TII
) {
1106 // Handle uncoalescable copy-like instructions.
1107 if (MI
.isBitcast() || MI
.isRegSequenceLike() || MI
.isInsertSubregLike() ||
1108 MI
.isExtractSubregLike())
1109 return new UncoalescableRewriter(MI
);
1111 switch (MI
.getOpcode()) {
1114 case TargetOpcode::COPY
:
1115 return new CopyRewriter(MI
);
1116 case TargetOpcode::INSERT_SUBREG
:
1117 return new InsertSubregRewriter(MI
);
1118 case TargetOpcode::EXTRACT_SUBREG
:
1119 return new ExtractSubregRewriter(MI
, TII
);
1120 case TargetOpcode::REG_SEQUENCE
:
1121 return new RegSequenceRewriter(MI
);
1125 /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
1126 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1127 /// multiple sources for a given \p Def are found along the way, we found a
1128 /// PHI instructions that needs to be rewritten.
1129 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1130 /// with coalescable copies.
1131 static RegSubRegPair
1132 getNewSource(MachineRegisterInfo
*MRI
, const TargetInstrInfo
*TII
,
1134 const PeepholeOptimizer::RewriteMapTy
&RewriteMap
,
1135 bool HandleMultipleSources
= true) {
1136 RegSubRegPair
LookupSrc(Def
.Reg
, Def
.SubReg
);
1138 ValueTrackerResult Res
= RewriteMap
.lookup(LookupSrc
);
1139 // If there are no entries on the map, LookupSrc is the new source.
1143 // There's only one source for this definition, keep searching...
1144 unsigned NumSrcs
= Res
.getNumSources();
1146 LookupSrc
.Reg
= Res
.getSrcReg(0);
1147 LookupSrc
.SubReg
= Res
.getSrcSubReg(0);
1151 // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1152 if (!HandleMultipleSources
)
1155 // Multiple sources, recurse into each source to find a new source
1156 // for it. Then, rewrite the PHI accordingly to its new edges.
1157 SmallVector
<RegSubRegPair
, 4> NewPHISrcs
;
1158 for (unsigned i
= 0; i
< NumSrcs
; ++i
) {
1159 RegSubRegPair
PHISrc(Res
.getSrcReg(i
), Res
.getSrcSubReg(i
));
1160 NewPHISrcs
.push_back(
1161 getNewSource(MRI
, TII
, PHISrc
, RewriteMap
, HandleMultipleSources
));
1164 // Build the new PHI node and return its def register as the new source.
1165 MachineInstr
&OrigPHI
= const_cast<MachineInstr
&>(*Res
.getInst());
1166 MachineInstr
&NewPHI
= insertPHI(*MRI
, *TII
, NewPHISrcs
, OrigPHI
);
1167 LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1168 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI
);
1169 LLVM_DEBUG(dbgs() << " With: " << NewPHI
);
1170 const MachineOperand
&MODef
= NewPHI
.getOperand(0);
1171 return RegSubRegPair(MODef
.getReg(), MODef
.getSubReg());
1174 return RegSubRegPair(0, 0);
1177 /// Optimize generic copy instructions to avoid cross register bank copy.
1178 /// The optimization looks through a chain of copies and tries to find a source
1179 /// that has a compatible register class.
1180 /// Two register classes are considered to be compatible if they share the same
1182 /// New copies issued by this optimization are register allocator
1183 /// friendly. This optimization does not remove any copy as it may
1184 /// overconstrain the register allocator, but replaces some operands
1186 /// \pre isCoalescableCopy(*MI) is true.
1187 /// \return True, when \p MI has been rewritten. False otherwise.
1188 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr
&MI
) {
1189 assert(isCoalescableCopy(MI
) && "Invalid argument");
1190 assert(MI
.getDesc().getNumDefs() == 1 &&
1191 "Coalescer can understand multiple defs?!");
1192 const MachineOperand
&MODef
= MI
.getOperand(0);
1193 // Do not rewrite physical definitions.
1194 if (Register::isPhysicalRegister(MODef
.getReg()))
1197 bool Changed
= false;
1198 // Get the right rewriter for the current copy.
1199 std::unique_ptr
<Rewriter
> CpyRewriter(getCopyRewriter(MI
, *TII
));
1200 // If none exists, bail out.
1203 // Rewrite each rewritable source.
1205 RegSubRegPair TrackPair
;
1206 while (CpyRewriter
->getNextRewritableSource(Src
, TrackPair
)) {
1207 // Keep track of PHI nodes and its incoming edges when looking for sources.
1208 RewriteMapTy RewriteMap
;
1209 // Try to find a more suitable source. If we failed to do so, or get the
1210 // actual source, move to the next source.
1211 if (!findNextSource(TrackPair
, RewriteMap
))
1214 // Get the new source to rewrite. TODO: Only enable handling of multiple
1215 // sources (PHIs) once we have a motivating example and testcases for it.
1216 RegSubRegPair NewSrc
= getNewSource(MRI
, TII
, TrackPair
, RewriteMap
,
1217 /*HandleMultipleSources=*/false);
1218 if (Src
.Reg
== NewSrc
.Reg
|| NewSrc
.Reg
== 0)
1222 if (CpyRewriter
->RewriteCurrentSource(NewSrc
.Reg
, NewSrc
.SubReg
)) {
1223 // We may have extended the live-range of NewSrc, account for that.
1224 MRI
->clearKillFlags(NewSrc
.Reg
);
1228 // TODO: We could have a clean-up method to tidy the instruction.
1229 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1231 // Currently we haven't seen motivating example for that and we
1232 // want to avoid untested code.
1233 NumRewrittenCopies
+= Changed
;
1237 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1238 /// and create a new COPY instruction. More info about RewriteMap in
1239 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1240 /// Uncoalescable copies, since they are copy like instructions that aren't
1241 /// recognized by the register allocator.
1243 PeepholeOptimizer::rewriteSource(MachineInstr
&CopyLike
,
1244 RegSubRegPair Def
, RewriteMapTy
&RewriteMap
) {
1245 assert(!Register::isPhysicalRegister(Def
.Reg
) &&
1246 "We do not rewrite physical registers");
1248 // Find the new source to use in the COPY rewrite.
1249 RegSubRegPair NewSrc
= getNewSource(MRI
, TII
, Def
, RewriteMap
);
1252 const TargetRegisterClass
*DefRC
= MRI
->getRegClass(Def
.Reg
);
1253 Register NewVReg
= MRI
->createVirtualRegister(DefRC
);
1255 MachineInstr
*NewCopy
=
1256 BuildMI(*CopyLike
.getParent(), &CopyLike
, CopyLike
.getDebugLoc(),
1257 TII
->get(TargetOpcode::COPY
), NewVReg
)
1258 .addReg(NewSrc
.Reg
, 0, NewSrc
.SubReg
);
1261 NewCopy
->getOperand(0).setSubReg(Def
.SubReg
);
1262 NewCopy
->getOperand(0).setIsUndef();
1265 LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1266 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike
);
1267 LLVM_DEBUG(dbgs() << " With: " << *NewCopy
);
1268 MRI
->replaceRegWith(Def
.Reg
, NewVReg
);
1269 MRI
->clearKillFlags(NewVReg
);
1271 // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1272 // account for that.
1273 MRI
->clearKillFlags(NewSrc
.Reg
);
1278 /// Optimize copy-like instructions to create
1279 /// register coalescer friendly instruction.
1280 /// The optimization tries to kill-off the \p MI by looking
1281 /// through a chain of copies to find a source that has a compatible
1283 /// If such a source is found, it replace \p MI by a generic COPY
1285 /// \pre isUncoalescableCopy(*MI) is true.
1286 /// \return True, when \p MI has been optimized. In that case, \p MI has
1287 /// been removed from its parent.
1288 /// All COPY instructions created, are inserted in \p LocalMIs.
1289 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1290 MachineInstr
&MI
, SmallPtrSetImpl
<MachineInstr
*> &LocalMIs
) {
1291 assert(isUncoalescableCopy(MI
) && "Invalid argument");
1292 UncoalescableRewriter
CpyRewriter(MI
);
1294 // Rewrite each rewritable source by generating new COPYs. This works
1295 // differently from optimizeCoalescableCopy since it first makes sure that all
1296 // definitions can be rewritten.
1297 RewriteMapTy RewriteMap
;
1300 SmallVector
<RegSubRegPair
, 4> RewritePairs
;
1301 while (CpyRewriter
.getNextRewritableSource(Src
, Def
)) {
1302 // If a physical register is here, this is probably for a good reason.
1303 // Do not rewrite that.
1304 if (Register::isPhysicalRegister(Def
.Reg
))
1307 // If we do not know how to rewrite this definition, there is no point
1308 // in trying to kill this instruction.
1309 if (!findNextSource(Def
, RewriteMap
))
1312 RewritePairs
.push_back(Def
);
1315 // The change is possible for all defs, do it.
1316 for (const RegSubRegPair
&Def
: RewritePairs
) {
1317 // Rewrite the "copy" in a way the register coalescer understands.
1318 MachineInstr
&NewCopy
= rewriteSource(MI
, Def
, RewriteMap
);
1319 LocalMIs
.insert(&NewCopy
);
1323 LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI
);
1324 MI
.eraseFromParent();
1325 ++NumUncoalescableCopies
;
1329 /// Check whether MI is a candidate for folding into a later instruction.
1330 /// We only fold loads to virtual registers and the virtual register defined
1331 /// has a single user.
1332 bool PeepholeOptimizer::isLoadFoldable(
1333 MachineInstr
&MI
, SmallSet
<Register
, 16> &FoldAsLoadDefCandidates
) {
1334 if (!MI
.canFoldAsLoad() || !MI
.mayLoad())
1336 const MCInstrDesc
&MCID
= MI
.getDesc();
1337 if (MCID
.getNumDefs() != 1)
1340 Register Reg
= MI
.getOperand(0).getReg();
1341 // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1342 // loads. It should be checked when processing uses of the load, since
1343 // uses can be removed during peephole.
1344 if (Reg
.isVirtual() && !MI
.getOperand(0).getSubReg() &&
1345 MRI
->hasOneNonDBGUser(Reg
)) {
1346 FoldAsLoadDefCandidates
.insert(Reg
);
1352 bool PeepholeOptimizer::isMoveImmediate(
1353 MachineInstr
&MI
, SmallSet
<Register
, 4> &ImmDefRegs
,
1354 DenseMap
<Register
, MachineInstr
*> &ImmDefMIs
) {
1355 const MCInstrDesc
&MCID
= MI
.getDesc();
1356 if (!MI
.isMoveImmediate())
1358 if (MCID
.getNumDefs() != 1)
1360 Register Reg
= MI
.getOperand(0).getReg();
1361 if (Reg
.isVirtual()) {
1362 ImmDefMIs
.insert(std::make_pair(Reg
, &MI
));
1363 ImmDefRegs
.insert(Reg
);
1370 /// Try folding register operands that are defined by move immediate
1371 /// instructions, i.e. a trivial constant folding optimization, if
1372 /// and only if the def and use are in the same BB.
1373 bool PeepholeOptimizer::foldImmediate(
1374 MachineInstr
&MI
, SmallSet
<Register
, 4> &ImmDefRegs
,
1375 DenseMap
<Register
, MachineInstr
*> &ImmDefMIs
) {
1376 for (unsigned i
= 0, e
= MI
.getDesc().getNumOperands(); i
!= e
; ++i
) {
1377 MachineOperand
&MO
= MI
.getOperand(i
);
1378 if (!MO
.isReg() || MO
.isDef())
1380 Register Reg
= MO
.getReg();
1381 if (!Reg
.isVirtual())
1383 if (ImmDefRegs
.count(Reg
) == 0)
1385 DenseMap
<Register
, MachineInstr
*>::iterator II
= ImmDefMIs
.find(Reg
);
1386 assert(II
!= ImmDefMIs
.end() && "couldn't find immediate definition");
1387 if (TII
->FoldImmediate(MI
, *II
->second
, Reg
, MRI
)) {
1395 // FIXME: This is very simple and misses some cases which should be handled when
1396 // motivating examples are found.
1398 // The copy rewriting logic should look at uses as well as defs and be able to
1399 // eliminate copies across blocks.
1401 // Later copies that are subregister extracts will also not be eliminated since
1402 // only the first copy is considered.
1406 // %2 = COPY %0:sub1
1408 // Should replace %2 uses with %1:sub1
1409 bool PeepholeOptimizer::foldRedundantCopy(
1410 MachineInstr
&MI
, DenseMap
<RegSubRegPair
, MachineInstr
*> &CopyMIs
) {
1411 assert(MI
.isCopy() && "expected a COPY machine instruction");
1413 Register SrcReg
= MI
.getOperand(1).getReg();
1414 unsigned SrcSubReg
= MI
.getOperand(1).getSubReg();
1415 if (!SrcReg
.isVirtual() && !MRI
->isConstantPhysReg(SrcReg
))
1418 Register DstReg
= MI
.getOperand(0).getReg();
1419 if (!DstReg
.isVirtual())
1422 RegSubRegPair
SrcPair(SrcReg
, SrcSubReg
);
1424 if (CopyMIs
.insert(std::make_pair(SrcPair
, &MI
)).second
) {
1425 // First copy of this reg seen.
1429 MachineInstr
*PrevCopy
= CopyMIs
.find(SrcPair
)->second
;
1431 assert(SrcSubReg
== PrevCopy
->getOperand(1).getSubReg() &&
1432 "Unexpected mismatching subreg!");
1434 Register PrevDstReg
= PrevCopy
->getOperand(0).getReg();
1436 // Only replace if the copy register class is the same.
1438 // TODO: If we have multiple copies to different register classes, we may want
1439 // to track multiple copies of the same source register.
1440 if (MRI
->getRegClass(DstReg
) != MRI
->getRegClass(PrevDstReg
))
1443 MRI
->replaceRegWith(DstReg
, PrevDstReg
);
1445 // Lifetime of the previous copy has been extended.
1446 MRI
->clearKillFlags(PrevDstReg
);
1450 bool PeepholeOptimizer::isNAPhysCopy(Register Reg
) {
1451 return Reg
.isPhysical() && !MRI
->isAllocatable(Reg
);
1454 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1455 MachineInstr
&MI
, DenseMap
<Register
, MachineInstr
*> &NAPhysToVirtMIs
) {
1456 assert(MI
.isCopy() && "expected a COPY machine instruction");
1458 if (DisableNAPhysCopyOpt
)
1461 Register DstReg
= MI
.getOperand(0).getReg();
1462 Register SrcReg
= MI
.getOperand(1).getReg();
1463 if (isNAPhysCopy(SrcReg
) && Register::isVirtualRegister(DstReg
)) {
1464 // %vreg = COPY $physreg
1465 // Avoid using a datastructure which can track multiple live non-allocatable
1466 // phys->virt copies since LLVM doesn't seem to do this.
1467 NAPhysToVirtMIs
.insert({SrcReg
, &MI
});
1471 if (!(SrcReg
.isVirtual() && isNAPhysCopy(DstReg
)))
1474 // $physreg = COPY %vreg
1475 auto PrevCopy
= NAPhysToVirtMIs
.find(DstReg
);
1476 if (PrevCopy
== NAPhysToVirtMIs
.end()) {
1477 // We can't remove the copy: there was an intervening clobber of the
1478 // non-allocatable physical register after the copy to virtual.
1479 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1484 Register PrevDstReg
= PrevCopy
->second
->getOperand(0).getReg();
1485 if (PrevDstReg
== SrcReg
) {
1486 // Remove the virt->phys copy: we saw the virtual register definition, and
1487 // the non-allocatable physical register's state hasn't changed since then.
1488 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI
);
1493 // Potential missed optimization opportunity: we saw a different virtual
1494 // register get a copy of the non-allocatable physical register, and we only
1495 // track one such copy. Avoid getting confused by this new non-allocatable
1496 // physical register definition, and remove it from the tracked copies.
1497 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI
);
1498 NAPhysToVirtMIs
.erase(PrevCopy
);
1502 /// \bried Returns true if \p MO is a virtual register operand.
1503 static bool isVirtualRegisterOperand(MachineOperand
&MO
) {
1504 return MO
.isReg() && MO
.getReg().isVirtual();
1507 bool PeepholeOptimizer::findTargetRecurrence(
1508 Register Reg
, const SmallSet
<Register
, 2> &TargetRegs
,
1509 RecurrenceCycle
&RC
) {
1510 // Recurrence found if Reg is in TargetRegs.
1511 if (TargetRegs
.count(Reg
))
1514 // TODO: Curerntly, we only allow the last instruction of the recurrence
1515 // cycle (the instruction that feeds the PHI instruction) to have more than
1516 // one uses to guarantee that commuting operands does not tie registers
1517 // with overlapping live range. Once we have actual live range info of
1518 // each register, this constraint can be relaxed.
1519 if (!MRI
->hasOneNonDBGUse(Reg
))
1522 // Give up if the reccurrence chain length is longer than the limit.
1523 if (RC
.size() >= MaxRecurrenceChain
)
1526 MachineInstr
&MI
= *(MRI
->use_instr_nodbg_begin(Reg
));
1527 unsigned Idx
= MI
.findRegisterUseOperandIdx(Reg
);
1529 // Only interested in recurrences whose instructions have only one def, which
1530 // is a virtual register.
1531 if (MI
.getDesc().getNumDefs() != 1)
1534 MachineOperand
&DefOp
= MI
.getOperand(0);
1535 if (!isVirtualRegisterOperand(DefOp
))
1538 // Check if def operand of MI is tied to any use operand. We are only
1539 // interested in the case that all the instructions in the recurrence chain
1540 // have there def operand tied with one of the use operand.
1541 unsigned TiedUseIdx
;
1542 if (!MI
.isRegTiedToUseOperand(0, &TiedUseIdx
))
1545 if (Idx
== TiedUseIdx
) {
1546 RC
.push_back(RecurrenceInstr(&MI
));
1547 return findTargetRecurrence(DefOp
.getReg(), TargetRegs
, RC
);
1549 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1550 unsigned CommIdx
= TargetInstrInfo::CommuteAnyOperandIndex
;
1551 if (TII
->findCommutedOpIndices(MI
, Idx
, CommIdx
) && CommIdx
== TiedUseIdx
) {
1552 RC
.push_back(RecurrenceInstr(&MI
, Idx
, CommIdx
));
1553 return findTargetRecurrence(DefOp
.getReg(), TargetRegs
, RC
);
1560 /// Phi instructions will eventually be lowered to copy instructions.
1561 /// If phi is in a loop header, a recurrence may formulated around the source
1562 /// and destination of the phi. For such case commuting operands of the
1563 /// instructions in the recurrence may enable coalescing of the copy instruction
1564 /// generated from the phi. For example, if there is a recurrence of
1567 /// %1 = phi(%0, %100)
1569 /// %0<def, tied1> = ADD %2<def, tied0>, %1
1571 /// , the fact that %0 and %2 are in the same tied operands set makes
1572 /// the coalescing of copy instruction generated from the phi in
1573 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1574 /// %2 have overlapping live range. This introduces additional move
1575 /// instruction to the final assembly. However, if we commute %2 and
1576 /// %1 of ADD instruction, the redundant move instruction can be
1578 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr
&PHI
) {
1579 SmallSet
<Register
, 2> TargetRegs
;
1580 for (unsigned Idx
= 1; Idx
< PHI
.getNumOperands(); Idx
+= 2) {
1581 MachineOperand
&MO
= PHI
.getOperand(Idx
);
1582 assert(isVirtualRegisterOperand(MO
) && "Invalid PHI instruction");
1583 TargetRegs
.insert(MO
.getReg());
1586 bool Changed
= false;
1588 if (findTargetRecurrence(PHI
.getOperand(0).getReg(), TargetRegs
, RC
)) {
1589 // Commutes operands of instructions in RC if necessary so that the copy to
1590 // be generated from PHI can be coalesced.
1591 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI
);
1592 for (auto &RI
: RC
) {
1593 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI
.getMI()));
1594 auto CP
= RI
.getCommutePair();
1597 TII
->commuteInstruction(*(RI
.getMI()), false, (*CP
).first
,
1599 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI
.getMI()));
1607 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction
&MF
) {
1608 if (skipFunction(MF
.getFunction()))
1611 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1612 LLVM_DEBUG(dbgs() << "********** Function: " << MF
.getName() << '\n');
1614 if (DisablePeephole
)
1617 TII
= MF
.getSubtarget().getInstrInfo();
1618 TRI
= MF
.getSubtarget().getRegisterInfo();
1619 MRI
= &MF
.getRegInfo();
1620 DT
= Aggressive
? &getAnalysis
<MachineDominatorTree
>() : nullptr;
1621 MLI
= &getAnalysis
<MachineLoopInfo
>();
1623 bool Changed
= false;
1625 for (MachineBasicBlock
&MBB
: MF
) {
1626 bool SeenMoveImm
= false;
1628 // During this forward scan, at some point it needs to answer the question
1629 // "given a pointer to an MI in the current BB, is it located before or
1630 // after the current instruction".
1631 // To perform this, the following set keeps track of the MIs already seen
1632 // during the scan, if a MI is not in the set, it is assumed to be located
1633 // after. Newly created MIs have to be inserted in the set as well.
1634 SmallPtrSet
<MachineInstr
*, 16> LocalMIs
;
1635 SmallSet
<Register
, 4> ImmDefRegs
;
1636 DenseMap
<Register
, MachineInstr
*> ImmDefMIs
;
1637 SmallSet
<Register
, 16> FoldAsLoadDefCandidates
;
1639 // Track when a non-allocatable physical register is copied to a virtual
1640 // register so that useless moves can be removed.
1642 // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1643 // without any intervening re-definition of $physreg.
1644 DenseMap
<Register
, MachineInstr
*> NAPhysToVirtMIs
;
1646 // Set of copies to virtual registers keyed by source register. Never
1647 // holds any physreg which requires def tracking.
1648 DenseMap
<RegSubRegPair
, MachineInstr
*> CopySrcMIs
;
1650 bool IsLoopHeader
= MLI
->isLoopHeader(&MBB
);
1652 for (MachineBasicBlock::iterator MII
= MBB
.begin(), MIE
= MBB
.end();
1654 MachineInstr
*MI
= &*MII
;
1655 // We may be erasing MI below, increment MII now.
1657 LocalMIs
.insert(MI
);
1659 // Skip debug instructions. They should not affect this peephole
1661 if (MI
->isDebugInstr())
1664 if (MI
->isPosition())
1667 if (IsLoopHeader
&& MI
->isPHI()) {
1668 if (optimizeRecurrence(*MI
)) {
1674 if (!MI
->isCopy()) {
1675 for (const MachineOperand
&MO
: MI
->operands()) {
1676 // Visit all operands: definitions can be implicit or explicit.
1678 Register Reg
= MO
.getReg();
1679 if (MO
.isDef() && isNAPhysCopy(Reg
)) {
1680 const auto &Def
= NAPhysToVirtMIs
.find(Reg
);
1681 if (Def
!= NAPhysToVirtMIs
.end()) {
1682 // A new definition of the non-allocatable physical register
1683 // invalidates previous copies.
1685 << "NAPhysCopy: invalidating because of " << *MI
);
1686 NAPhysToVirtMIs
.erase(Def
);
1689 } else if (MO
.isRegMask()) {
1690 const uint32_t *RegMask
= MO
.getRegMask();
1691 for (auto &RegMI
: NAPhysToVirtMIs
) {
1692 Register Def
= RegMI
.first
;
1693 if (MachineOperand::clobbersPhysReg(RegMask
, Def
)) {
1695 << "NAPhysCopy: invalidating because of " << *MI
);
1696 NAPhysToVirtMIs
.erase(Def
);
1703 if (MI
->isImplicitDef() || MI
->isKill())
1706 if (MI
->isInlineAsm() || MI
->hasUnmodeledSideEffects()) {
1707 // Blow away all non-allocatable physical registers knowledge since we
1708 // don't know what's correct anymore.
1710 // FIXME: handle explicit asm clobbers.
1711 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1713 NAPhysToVirtMIs
.clear();
1716 if ((isUncoalescableCopy(*MI
) &&
1717 optimizeUncoalescableCopy(*MI
, LocalMIs
)) ||
1718 (MI
->isCompare() && optimizeCmpInstr(*MI
)) ||
1719 (MI
->isSelect() && optimizeSelect(*MI
, LocalMIs
))) {
1726 if (MI
->isConditionalBranch() && optimizeCondBranch(*MI
)) {
1731 if (isCoalescableCopy(*MI
) && optimizeCoalescableCopy(*MI
)) {
1732 // MI is just rewritten.
1737 if (MI
->isCopy() && (foldRedundantCopy(*MI
, CopySrcMIs
) ||
1738 foldRedundantNAPhysCopy(*MI
, NAPhysToVirtMIs
))) {
1740 LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI
<< "\n");
1741 MI
->eraseFromParent();
1746 if (isMoveImmediate(*MI
, ImmDefRegs
, ImmDefMIs
)) {
1749 Changed
|= optimizeExtInstr(*MI
, MBB
, LocalMIs
);
1750 // optimizeExtInstr might have created new instructions after MI
1751 // and before the already incremented MII. Adjust MII so that the
1752 // next iteration sees the new instructions.
1756 Changed
|= foldImmediate(*MI
, ImmDefRegs
, ImmDefMIs
);
1759 // Check whether MI is a load candidate for folding into a later
1760 // instruction. If MI is not a candidate, check whether we can fold an
1761 // earlier load into MI.
1762 if (!isLoadFoldable(*MI
, FoldAsLoadDefCandidates
) &&
1763 !FoldAsLoadDefCandidates
.empty()) {
1765 // We visit each operand even after successfully folding a previous
1766 // one. This allows us to fold multiple loads into a single
1767 // instruction. We do assume that optimizeLoadInstr doesn't insert
1768 // foldable uses earlier in the argument list. Since we don't restart
1769 // iteration, we'd miss such cases.
1770 const MCInstrDesc
&MIDesc
= MI
->getDesc();
1771 for (unsigned i
= MIDesc
.getNumDefs(); i
!= MI
->getNumOperands();
1773 const MachineOperand
&MOp
= MI
->getOperand(i
);
1776 Register FoldAsLoadDefReg
= MOp
.getReg();
1777 if (FoldAsLoadDefCandidates
.count(FoldAsLoadDefReg
)) {
1778 // We need to fold load after optimizeCmpInstr, since
1779 // optimizeCmpInstr can enable folding by converting SUB to CMP.
1780 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1781 // we need it for markUsesInDebugValueAsUndef().
1782 Register FoldedReg
= FoldAsLoadDefReg
;
1783 MachineInstr
*DefMI
= nullptr;
1784 if (MachineInstr
*FoldMI
=
1785 TII
->optimizeLoadInstr(*MI
, MRI
, FoldAsLoadDefReg
, DefMI
)) {
1786 // Update LocalMIs since we replaced MI with FoldMI and deleted
1788 LLVM_DEBUG(dbgs() << "Replacing: " << *MI
);
1789 LLVM_DEBUG(dbgs() << " With: " << *FoldMI
);
1791 LocalMIs
.erase(DefMI
);
1792 LocalMIs
.insert(FoldMI
);
1793 // Update the call site info.
1794 if (MI
->shouldUpdateCallSiteInfo())
1795 MI
->getMF()->moveCallSiteInfo(MI
, FoldMI
);
1796 MI
->eraseFromParent();
1797 DefMI
->eraseFromParent();
1798 MRI
->markUsesInDebugValueAsUndef(FoldedReg
);
1799 FoldAsLoadDefCandidates
.erase(FoldedReg
);
1802 // MI is replaced with FoldMI so we can continue trying to fold
1810 // If we run into an instruction we can't fold across, discard
1811 // the load candidates. Note: We might be able to fold *into* this
1812 // instruction, so this needs to be after the folding logic.
1813 if (MI
->isLoadFoldBarrier()) {
1814 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI
);
1815 FoldAsLoadDefCandidates
.clear();
1823 ValueTrackerResult
ValueTracker::getNextSourceFromCopy() {
1824 assert(Def
->isCopy() && "Invalid definition");
1825 // Copy instruction are supposed to be: Def = Src.
1826 // If someone breaks this assumption, bad things will happen everywhere.
1827 // There may be implicit uses preventing the copy to be moved across
1828 // some target specific register definitions
1829 assert(Def
->getNumOperands() - Def
->getNumImplicitOperands() == 2 &&
1830 "Invalid number of operands");
1831 assert(!Def
->hasImplicitDef() && "Only implicit uses are allowed");
1833 if (Def
->getOperand(DefIdx
).getSubReg() != DefSubReg
)
1834 // If we look for a different subreg, it means we want a subreg of src.
1835 // Bails as we do not support composing subregs yet.
1836 return ValueTrackerResult();
1837 // Otherwise, we want the whole source.
1838 const MachineOperand
&Src
= Def
->getOperand(1);
1840 return ValueTrackerResult();
1841 return ValueTrackerResult(Src
.getReg(), Src
.getSubReg());
1844 ValueTrackerResult
ValueTracker::getNextSourceFromBitcast() {
1845 assert(Def
->isBitcast() && "Invalid definition");
1847 // Bail if there are effects that a plain copy will not expose.
1848 if (Def
->mayRaiseFPException() || Def
->hasUnmodeledSideEffects())
1849 return ValueTrackerResult();
1851 // Bitcasts with more than one def are not supported.
1852 if (Def
->getDesc().getNumDefs() != 1)
1853 return ValueTrackerResult();
1854 const MachineOperand DefOp
= Def
->getOperand(DefIdx
);
1855 if (DefOp
.getSubReg() != DefSubReg
)
1856 // If we look for a different subreg, it means we want a subreg of the src.
1857 // Bails as we do not support composing subregs yet.
1858 return ValueTrackerResult();
1860 unsigned SrcIdx
= Def
->getNumOperands();
1861 for (unsigned OpIdx
= DefIdx
+ 1, EndOpIdx
= SrcIdx
; OpIdx
!= EndOpIdx
;
1863 const MachineOperand
&MO
= Def
->getOperand(OpIdx
);
1864 if (!MO
.isReg() || !MO
.getReg())
1866 // Ignore dead implicit defs.
1867 if (MO
.isImplicit() && MO
.isDead())
1869 assert(!MO
.isDef() && "We should have skipped all the definitions by now");
1870 if (SrcIdx
!= EndOpIdx
)
1871 // Multiple sources?
1872 return ValueTrackerResult();
1876 // In some rare case, Def has no input, SrcIdx is out of bound,
1877 // getOperand(SrcIdx) will fail below.
1878 if (SrcIdx
>= Def
->getNumOperands())
1879 return ValueTrackerResult();
1881 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1882 // will break the assumed guarantees for the upper bits.
1883 for (const MachineInstr
&UseMI
: MRI
.use_nodbg_instructions(DefOp
.getReg())) {
1884 if (UseMI
.isSubregToReg())
1885 return ValueTrackerResult();
1888 const MachineOperand
&Src
= Def
->getOperand(SrcIdx
);
1890 return ValueTrackerResult();
1891 return ValueTrackerResult(Src
.getReg(), Src
.getSubReg());
1894 ValueTrackerResult
ValueTracker::getNextSourceFromRegSequence() {
1895 assert((Def
->isRegSequence() || Def
->isRegSequenceLike()) &&
1896 "Invalid definition");
1898 if (Def
->getOperand(DefIdx
).getSubReg())
1899 // If we are composing subregs, bail out.
1900 // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1901 // This should almost never happen as the SSA property is tracked at
1902 // the register level (as opposed to the subreg level).
1906 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1907 // Def. Thus, it must not be generated.
1908 // However, some code could theoretically generates a single
1909 // Def.sub0 (i.e, not defining the other subregs) and we would
1911 // If we can ascertain (or force) that this never happens, we could
1912 // turn that into an assertion.
1913 return ValueTrackerResult();
1916 // We could handle the REG_SEQUENCE here, but we do not want to
1917 // duplicate the code from the generic TII.
1918 return ValueTrackerResult();
1920 SmallVector
<RegSubRegPairAndIdx
, 8> RegSeqInputRegs
;
1921 if (!TII
->getRegSequenceInputs(*Def
, DefIdx
, RegSeqInputRegs
))
1922 return ValueTrackerResult();
1924 // We are looking at:
1925 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1926 // Check if one of the operand defines the subreg we are interested in.
1927 for (const RegSubRegPairAndIdx
&RegSeqInput
: RegSeqInputRegs
) {
1928 if (RegSeqInput
.SubIdx
== DefSubReg
)
1929 return ValueTrackerResult(RegSeqInput
.Reg
, RegSeqInput
.SubReg
);
1932 // If the subreg we are tracking is super-defined by another subreg,
1933 // we could follow this value. However, this would require to compose
1934 // the subreg and we do not do that for now.
1935 return ValueTrackerResult();
1938 ValueTrackerResult
ValueTracker::getNextSourceFromInsertSubreg() {
1939 assert((Def
->isInsertSubreg() || Def
->isInsertSubregLike()) &&
1940 "Invalid definition");
1942 if (Def
->getOperand(DefIdx
).getSubReg())
1943 // If we are composing subreg, bail out.
1944 // Same remark as getNextSourceFromRegSequence.
1945 // I.e., this may be turned into an assert.
1946 return ValueTrackerResult();
1949 // We could handle the REG_SEQUENCE here, but we do not want to
1950 // duplicate the code from the generic TII.
1951 return ValueTrackerResult();
1953 RegSubRegPair BaseReg
;
1954 RegSubRegPairAndIdx InsertedReg
;
1955 if (!TII
->getInsertSubregInputs(*Def
, DefIdx
, BaseReg
, InsertedReg
))
1956 return ValueTrackerResult();
1958 // We are looking at:
1959 // Def = INSERT_SUBREG v0, v1, sub1
1960 // There are two cases:
1961 // 1. DefSubReg == sub1, get v1.
1962 // 2. DefSubReg != sub1, the value may be available through v0.
1964 // #1 Check if the inserted register matches the required sub index.
1965 if (InsertedReg
.SubIdx
== DefSubReg
) {
1966 return ValueTrackerResult(InsertedReg
.Reg
, InsertedReg
.SubReg
);
1968 // #2 Otherwise, if the sub register we are looking for is not partial
1969 // defined by the inserted element, we can look through the main
1971 const MachineOperand
&MODef
= Def
->getOperand(DefIdx
);
1972 // If the result register (Def) and the base register (v0) do not
1973 // have the same register class or if we have to compose
1974 // subregisters, bail out.
1975 if (MRI
.getRegClass(MODef
.getReg()) != MRI
.getRegClass(BaseReg
.Reg
) ||
1977 return ValueTrackerResult();
1979 // Get the TRI and check if the inserted sub-register overlaps with the
1980 // sub-register we are tracking.
1981 const TargetRegisterInfo
*TRI
= MRI
.getTargetRegisterInfo();
1983 !(TRI
->getSubRegIndexLaneMask(DefSubReg
) &
1984 TRI
->getSubRegIndexLaneMask(InsertedReg
.SubIdx
)).none())
1985 return ValueTrackerResult();
1986 // At this point, the value is available in v0 via the same subreg
1988 return ValueTrackerResult(BaseReg
.Reg
, DefSubReg
);
1991 ValueTrackerResult
ValueTracker::getNextSourceFromExtractSubreg() {
1992 assert((Def
->isExtractSubreg() ||
1993 Def
->isExtractSubregLike()) && "Invalid definition");
1994 // We are looking at:
1995 // Def = EXTRACT_SUBREG v0, sub0
1997 // Bail if we have to compose sub registers.
1998 // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
2000 return ValueTrackerResult();
2003 // We could handle the EXTRACT_SUBREG here, but we do not want to
2004 // duplicate the code from the generic TII.
2005 return ValueTrackerResult();
2007 RegSubRegPairAndIdx ExtractSubregInputReg
;
2008 if (!TII
->getExtractSubregInputs(*Def
, DefIdx
, ExtractSubregInputReg
))
2009 return ValueTrackerResult();
2011 // Bail if we have to compose sub registers.
2012 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2013 if (ExtractSubregInputReg
.SubReg
)
2014 return ValueTrackerResult();
2015 // Otherwise, the value is available in the v0.sub0.
2016 return ValueTrackerResult(ExtractSubregInputReg
.Reg
,
2017 ExtractSubregInputReg
.SubIdx
);
2020 ValueTrackerResult
ValueTracker::getNextSourceFromSubregToReg() {
2021 assert(Def
->isSubregToReg() && "Invalid definition");
2022 // We are looking at:
2023 // Def = SUBREG_TO_REG Imm, v0, sub0
2025 // Bail if we have to compose sub registers.
2026 // If DefSubReg != sub0, we would have to check that all the bits
2027 // we track are included in sub0 and if yes, we would have to
2028 // determine the right subreg in v0.
2029 if (DefSubReg
!= Def
->getOperand(3).getImm())
2030 return ValueTrackerResult();
2031 // Bail if we have to compose sub registers.
2032 // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2033 if (Def
->getOperand(2).getSubReg())
2034 return ValueTrackerResult();
2036 return ValueTrackerResult(Def
->getOperand(2).getReg(),
2037 Def
->getOperand(3).getImm());
2040 /// Explore each PHI incoming operand and return its sources.
2041 ValueTrackerResult
ValueTracker::getNextSourceFromPHI() {
2042 assert(Def
->isPHI() && "Invalid definition");
2043 ValueTrackerResult Res
;
2045 // If we look for a different subreg, bail as we do not support composing
2047 if (Def
->getOperand(0).getSubReg() != DefSubReg
)
2048 return ValueTrackerResult();
2050 // Return all register sources for PHI instructions.
2051 for (unsigned i
= 1, e
= Def
->getNumOperands(); i
< e
; i
+= 2) {
2052 const MachineOperand
&MO
= Def
->getOperand(i
);
2053 assert(MO
.isReg() && "Invalid PHI instruction");
2054 // We have no code to deal with undef operands. They shouldn't happen in
2055 // normal programs anyway.
2057 return ValueTrackerResult();
2058 Res
.addSource(MO
.getReg(), MO
.getSubReg());
2064 ValueTrackerResult
ValueTracker::getNextSourceImpl() {
2065 assert(Def
&& "This method needs a valid definition");
2067 assert(((Def
->getOperand(DefIdx
).isDef() &&
2068 (DefIdx
< Def
->getDesc().getNumDefs() ||
2069 Def
->getDesc().isVariadic())) ||
2070 Def
->getOperand(DefIdx
).isImplicit()) &&
2073 return getNextSourceFromCopy();
2074 if (Def
->isBitcast())
2075 return getNextSourceFromBitcast();
2076 // All the remaining cases involve "complex" instructions.
2077 // Bail if we did not ask for the advanced tracking.
2078 if (DisableAdvCopyOpt
)
2079 return ValueTrackerResult();
2080 if (Def
->isRegSequence() || Def
->isRegSequenceLike())
2081 return getNextSourceFromRegSequence();
2082 if (Def
->isInsertSubreg() || Def
->isInsertSubregLike())
2083 return getNextSourceFromInsertSubreg();
2084 if (Def
->isExtractSubreg() || Def
->isExtractSubregLike())
2085 return getNextSourceFromExtractSubreg();
2086 if (Def
->isSubregToReg())
2087 return getNextSourceFromSubregToReg();
2089 return getNextSourceFromPHI();
2090 return ValueTrackerResult();
2093 ValueTrackerResult
ValueTracker::getNextSource() {
2094 // If we reach a point where we cannot move up in the use-def chain,
2095 // there is nothing we can get.
2097 return ValueTrackerResult();
2099 ValueTrackerResult Res
= getNextSourceImpl();
2100 if (Res
.isValid()) {
2101 // Update definition, definition index, and subregister for the
2102 // next call of getNextSource.
2103 // Update the current register.
2104 bool OneRegSrc
= Res
.getNumSources() == 1;
2106 Reg
= Res
.getSrcReg(0);
2107 // Update the result before moving up in the use-def chain
2108 // with the instruction containing the last found sources.
2111 // If we can still move up in the use-def chain, move to the next
2113 if (!Register::isPhysicalRegister(Reg
) && OneRegSrc
) {
2114 MachineRegisterInfo::def_iterator DI
= MRI
.def_begin(Reg
);
2115 if (DI
!= MRI
.def_end()) {
2116 Def
= DI
->getParent();
2117 DefIdx
= DI
.getOperandNo();
2118 DefSubReg
= Res
.getSrcSubReg(0);
2125 // If we end up here, this means we will not be able to find another source
2126 // for the next iteration. Make sure any new call to getNextSource bails out
2127 // early by cutting the use-def chain.