[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / RDFGraph.cpp
blob4f7457d9efa6af3a140b0c6d2526f3dbafc70976
1 //===- RDFGraph.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF).
11 #include "llvm/CodeGen/RDFGraph.h"
12 #include "llvm/ADT/BitVector.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/CodeGen/MachineBasicBlock.h"
16 #include "llvm/CodeGen/MachineDominanceFrontier.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/RDFRegisters.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <cstring>
36 #include <iterator>
37 #include <set>
38 #include <utility>
39 #include <vector>
41 using namespace llvm;
42 using namespace rdf;
44 // Printing functions. Have them here first, so that the rest of the code
45 // can use them.
46 namespace llvm {
47 namespace rdf {
49 raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
50 if (!P.Mask.all())
51 OS << ':' << PrintLaneMask(P.Mask);
52 return OS;
55 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
56 auto &TRI = P.G.getTRI();
57 if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
58 OS << TRI.getName(P.Obj.Reg);
59 else
60 OS << '#' << P.Obj.Reg;
61 OS << PrintLaneMaskOpt(P.Obj.Mask);
62 return OS;
65 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
66 auto NA = P.G.addr<NodeBase*>(P.Obj);
67 uint16_t Attrs = NA.Addr->getAttrs();
68 uint16_t Kind = NodeAttrs::kind(Attrs);
69 uint16_t Flags = NodeAttrs::flags(Attrs);
70 switch (NodeAttrs::type(Attrs)) {
71 case NodeAttrs::Code:
72 switch (Kind) {
73 case NodeAttrs::Func: OS << 'f'; break;
74 case NodeAttrs::Block: OS << 'b'; break;
75 case NodeAttrs::Stmt: OS << 's'; break;
76 case NodeAttrs::Phi: OS << 'p'; break;
77 default: OS << "c?"; break;
79 break;
80 case NodeAttrs::Ref:
81 if (Flags & NodeAttrs::Undef)
82 OS << '/';
83 if (Flags & NodeAttrs::Dead)
84 OS << '\\';
85 if (Flags & NodeAttrs::Preserving)
86 OS << '+';
87 if (Flags & NodeAttrs::Clobbering)
88 OS << '~';
89 switch (Kind) {
90 case NodeAttrs::Use: OS << 'u'; break;
91 case NodeAttrs::Def: OS << 'd'; break;
92 case NodeAttrs::Block: OS << 'b'; break;
93 default: OS << "r?"; break;
95 break;
96 default:
97 OS << '?';
98 break;
100 OS << P.Obj;
101 if (Flags & NodeAttrs::Shadow)
102 OS << '"';
103 return OS;
106 static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
107 const DataFlowGraph &G) {
108 OS << Print(RA.Id, G) << '<'
109 << Print(RA.Addr->getRegRef(G), G) << '>';
110 if (RA.Addr->getFlags() & NodeAttrs::Fixed)
111 OS << '!';
114 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
115 printRefHeader(OS, P.Obj, P.G);
116 OS << '(';
117 if (NodeId N = P.Obj.Addr->getReachingDef())
118 OS << Print(N, P.G);
119 OS << ',';
120 if (NodeId N = P.Obj.Addr->getReachedDef())
121 OS << Print(N, P.G);
122 OS << ',';
123 if (NodeId N = P.Obj.Addr->getReachedUse())
124 OS << Print(N, P.G);
125 OS << "):";
126 if (NodeId N = P.Obj.Addr->getSibling())
127 OS << Print(N, P.G);
128 return OS;
131 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
132 printRefHeader(OS, P.Obj, P.G);
133 OS << '(';
134 if (NodeId N = P.Obj.Addr->getReachingDef())
135 OS << Print(N, P.G);
136 OS << "):";
137 if (NodeId N = P.Obj.Addr->getSibling())
138 OS << Print(N, P.G);
139 return OS;
142 raw_ostream &operator<< (raw_ostream &OS,
143 const Print<NodeAddr<PhiUseNode*>> &P) {
144 printRefHeader(OS, P.Obj, P.G);
145 OS << '(';
146 if (NodeId N = P.Obj.Addr->getReachingDef())
147 OS << Print(N, P.G);
148 OS << ',';
149 if (NodeId N = P.Obj.Addr->getPredecessor())
150 OS << Print(N, P.G);
151 OS << "):";
152 if (NodeId N = P.Obj.Addr->getSibling())
153 OS << Print(N, P.G);
154 return OS;
157 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
158 switch (P.Obj.Addr->getKind()) {
159 case NodeAttrs::Def:
160 OS << PrintNode<DefNode*>(P.Obj, P.G);
161 break;
162 case NodeAttrs::Use:
163 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
164 OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
165 else
166 OS << PrintNode<UseNode*>(P.Obj, P.G);
167 break;
169 return OS;
172 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
173 unsigned N = P.Obj.size();
174 for (auto I : P.Obj) {
175 OS << Print(I.Id, P.G);
176 if (--N)
177 OS << ' ';
179 return OS;
182 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
183 unsigned N = P.Obj.size();
184 for (auto I : P.Obj) {
185 OS << Print(I, P.G);
186 if (--N)
187 OS << ' ';
189 return OS;
192 namespace {
194 template <typename T>
195 struct PrintListV {
196 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
198 using Type = T;
199 const NodeList &List;
200 const DataFlowGraph &G;
203 template <typename T>
204 raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
205 unsigned N = P.List.size();
206 for (NodeAddr<T> A : P.List) {
207 OS << PrintNode<T>(A, P.G);
208 if (--N)
209 OS << ", ";
211 return OS;
214 } // end anonymous namespace
216 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
217 OS << Print(P.Obj.Id, P.G) << ": phi ["
218 << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
219 return OS;
222 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
223 const MachineInstr &MI = *P.Obj.Addr->getCode();
224 unsigned Opc = MI.getOpcode();
225 OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
226 // Print the target for calls and branches (for readability).
227 if (MI.isCall() || MI.isBranch()) {
228 MachineInstr::const_mop_iterator T =
229 llvm::find_if(MI.operands(),
230 [] (const MachineOperand &Op) -> bool {
231 return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
233 if (T != MI.operands_end()) {
234 OS << ' ';
235 if (T->isMBB())
236 OS << printMBBReference(*T->getMBB());
237 else if (T->isGlobal())
238 OS << T->getGlobal()->getName();
239 else if (T->isSymbol())
240 OS << T->getSymbolName();
243 OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
244 return OS;
247 raw_ostream &operator<< (raw_ostream &OS,
248 const Print<NodeAddr<InstrNode*>> &P) {
249 switch (P.Obj.Addr->getKind()) {
250 case NodeAttrs::Phi:
251 OS << PrintNode<PhiNode*>(P.Obj, P.G);
252 break;
253 case NodeAttrs::Stmt:
254 OS << PrintNode<StmtNode*>(P.Obj, P.G);
255 break;
256 default:
257 OS << "instr? " << Print(P.Obj.Id, P.G);
258 break;
260 return OS;
263 raw_ostream &operator<< (raw_ostream &OS,
264 const Print<NodeAddr<BlockNode*>> &P) {
265 MachineBasicBlock *BB = P.Obj.Addr->getCode();
266 unsigned NP = BB->pred_size();
267 std::vector<int> Ns;
268 auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
269 unsigned N = Ns.size();
270 for (int I : Ns) {
271 OS << "%bb." << I;
272 if (--N)
273 OS << ", ";
277 OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
278 << " --- preds(" << NP << "): ";
279 for (MachineBasicBlock *B : BB->predecessors())
280 Ns.push_back(B->getNumber());
281 PrintBBs(Ns);
283 unsigned NS = BB->succ_size();
284 OS << " succs(" << NS << "): ";
285 Ns.clear();
286 for (MachineBasicBlock *B : BB->successors())
287 Ns.push_back(B->getNumber());
288 PrintBBs(Ns);
289 OS << '\n';
291 for (auto I : P.Obj.Addr->members(P.G))
292 OS << PrintNode<InstrNode*>(I, P.G) << '\n';
293 return OS;
296 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
297 OS << "DFG dump:[\n" << Print(P.Obj.Id, P.G) << ": Function: "
298 << P.Obj.Addr->getCode()->getName() << '\n';
299 for (auto I : P.Obj.Addr->members(P.G))
300 OS << PrintNode<BlockNode*>(I, P.G) << '\n';
301 OS << "]\n";
302 return OS;
305 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
306 OS << '{';
307 for (auto I : P.Obj)
308 OS << ' ' << Print(I, P.G);
309 OS << " }";
310 return OS;
313 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
314 P.Obj.print(OS);
315 return OS;
318 raw_ostream &operator<< (raw_ostream &OS,
319 const Print<DataFlowGraph::DefStack> &P) {
320 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
321 OS << Print(I->Id, P.G)
322 << '<' << Print(I->Addr->getRegRef(P.G), P.G) << '>';
323 I.down();
324 if (I != E)
325 OS << ' ';
327 return OS;
330 } // end namespace rdf
331 } // end namespace llvm
333 // Node allocation functions.
335 // Node allocator is like a slab memory allocator: it allocates blocks of
336 // memory in sizes that are multiples of the size of a node. Each block has
337 // the same size. Nodes are allocated from the currently active block, and
338 // when it becomes full, a new one is created.
339 // There is a mapping scheme between node id and its location in a block,
340 // and within that block is described in the header file.
342 void NodeAllocator::startNewBlock() {
343 void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
344 char *P = static_cast<char*>(T);
345 Blocks.push_back(P);
346 // Check if the block index is still within the allowed range, i.e. less
347 // than 2^N, where N is the number of bits in NodeId for the block index.
348 // BitsPerIndex is the number of bits per node index.
349 assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
350 "Out of bits for block index");
351 ActiveEnd = P;
354 bool NodeAllocator::needNewBlock() {
355 if (Blocks.empty())
356 return true;
358 char *ActiveBegin = Blocks.back();
359 uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
360 return Index >= NodesPerBlock;
363 NodeAddr<NodeBase*> NodeAllocator::New() {
364 if (needNewBlock())
365 startNewBlock();
367 uint32_t ActiveB = Blocks.size()-1;
368 uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
369 NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
370 makeId(ActiveB, Index) };
371 ActiveEnd += NodeMemSize;
372 return NA;
375 NodeId NodeAllocator::id(const NodeBase *P) const {
376 uintptr_t A = reinterpret_cast<uintptr_t>(P);
377 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
378 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
379 if (A < B || A >= B + NodesPerBlock*NodeMemSize)
380 continue;
381 uint32_t Idx = (A-B)/NodeMemSize;
382 return makeId(i, Idx);
384 llvm_unreachable("Invalid node address");
387 void NodeAllocator::clear() {
388 MemPool.Reset();
389 Blocks.clear();
390 ActiveEnd = nullptr;
393 // Insert node NA after "this" in the circular chain.
394 void NodeBase::append(NodeAddr<NodeBase*> NA) {
395 NodeId Nx = Next;
396 // If NA is already "next", do nothing.
397 if (Next != NA.Id) {
398 Next = NA.Id;
399 NA.Addr->Next = Nx;
403 // Fundamental node manipulator functions.
405 // Obtain the register reference from a reference node.
406 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
407 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
408 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
409 return G.unpack(Ref.PR);
410 assert(Ref.Op != nullptr);
411 return G.makeRegRef(*Ref.Op);
414 // Set the register reference in the reference node directly (for references
415 // in phi nodes).
416 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
417 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
418 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
419 Ref.PR = G.pack(RR);
422 // Set the register reference in the reference node based on a machine
423 // operand (for references in statement nodes).
424 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
425 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
426 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
427 (void)G;
428 Ref.Op = Op;
431 // Get the owner of a given reference node.
432 NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
433 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
435 while (NA.Addr != this) {
436 if (NA.Addr->getType() == NodeAttrs::Code)
437 return NA;
438 NA = G.addr<NodeBase*>(NA.Addr->getNext());
440 llvm_unreachable("No owner in circular list");
443 // Connect the def node to the reaching def node.
444 void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
445 Ref.RD = DA.Id;
446 Ref.Sib = DA.Addr->getReachedDef();
447 DA.Addr->setReachedDef(Self);
450 // Connect the use node to the reaching def node.
451 void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
452 Ref.RD = DA.Id;
453 Ref.Sib = DA.Addr->getReachedUse();
454 DA.Addr->setReachedUse(Self);
457 // Get the first member of the code node.
458 NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
459 if (Code.FirstM == 0)
460 return NodeAddr<NodeBase*>();
461 return G.addr<NodeBase*>(Code.FirstM);
464 // Get the last member of the code node.
465 NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
466 if (Code.LastM == 0)
467 return NodeAddr<NodeBase*>();
468 return G.addr<NodeBase*>(Code.LastM);
471 // Add node NA at the end of the member list of the given code node.
472 void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
473 NodeAddr<NodeBase*> ML = getLastMember(G);
474 if (ML.Id != 0) {
475 ML.Addr->append(NA);
476 } else {
477 Code.FirstM = NA.Id;
478 NodeId Self = G.id(this);
479 NA.Addr->setNext(Self);
481 Code.LastM = NA.Id;
484 // Add node NA after member node MA in the given code node.
485 void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
486 const DataFlowGraph &G) {
487 MA.Addr->append(NA);
488 if (Code.LastM == MA.Id)
489 Code.LastM = NA.Id;
492 // Remove member node NA from the given code node.
493 void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
494 NodeAddr<NodeBase*> MA = getFirstMember(G);
495 assert(MA.Id != 0);
497 // Special handling if the member to remove is the first member.
498 if (MA.Id == NA.Id) {
499 if (Code.LastM == MA.Id) {
500 // If it is the only member, set both first and last to 0.
501 Code.FirstM = Code.LastM = 0;
502 } else {
503 // Otherwise, advance the first member.
504 Code.FirstM = MA.Addr->getNext();
506 return;
509 while (MA.Addr != this) {
510 NodeId MX = MA.Addr->getNext();
511 if (MX == NA.Id) {
512 MA.Addr->setNext(NA.Addr->getNext());
513 // If the member to remove happens to be the last one, update the
514 // LastM indicator.
515 if (Code.LastM == NA.Id)
516 Code.LastM = MA.Id;
517 return;
519 MA = G.addr<NodeBase*>(MX);
521 llvm_unreachable("No such member");
524 // Return the list of all members of the code node.
525 NodeList CodeNode::members(const DataFlowGraph &G) const {
526 static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
527 return members_if(True, G);
530 // Return the owner of the given instr node.
531 NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
532 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
534 while (NA.Addr != this) {
535 assert(NA.Addr->getType() == NodeAttrs::Code);
536 if (NA.Addr->getKind() == NodeAttrs::Block)
537 return NA;
538 NA = G.addr<NodeBase*>(NA.Addr->getNext());
540 llvm_unreachable("No owner in circular list");
543 // Add the phi node PA to the given block node.
544 void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
545 NodeAddr<NodeBase*> M = getFirstMember(G);
546 if (M.Id == 0) {
547 addMember(PA, G);
548 return;
551 assert(M.Addr->getType() == NodeAttrs::Code);
552 if (M.Addr->getKind() == NodeAttrs::Stmt) {
553 // If the first member of the block is a statement, insert the phi as
554 // the first member.
555 Code.FirstM = PA.Id;
556 PA.Addr->setNext(M.Id);
557 } else {
558 // If the first member is a phi, find the last phi, and append PA to it.
559 assert(M.Addr->getKind() == NodeAttrs::Phi);
560 NodeAddr<NodeBase*> MN = M;
561 do {
562 M = MN;
563 MN = G.addr<NodeBase*>(M.Addr->getNext());
564 assert(MN.Addr->getType() == NodeAttrs::Code);
565 } while (MN.Addr->getKind() == NodeAttrs::Phi);
567 // M is the last phi.
568 addMemberAfter(M, PA, G);
572 // Find the block node corresponding to the machine basic block BB in the
573 // given func node.
574 NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
575 const DataFlowGraph &G) const {
576 auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
577 return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
579 NodeList Ms = members_if(EqBB, G);
580 if (!Ms.empty())
581 return Ms[0];
582 return NodeAddr<BlockNode*>();
585 // Get the block node for the entry block in the given function.
586 NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
587 MachineBasicBlock *EntryB = &getCode()->front();
588 return findBlock(EntryB, G);
591 // Target operand information.
594 // For a given instruction, check if there are any bits of RR that can remain
595 // unchanged across this def.
596 bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
597 const {
598 return TII.isPredicated(In);
601 // Check if the definition of RR produces an unspecified value.
602 bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
603 const {
604 const MachineOperand &Op = In.getOperand(OpNum);
605 if (Op.isRegMask())
606 return true;
607 assert(Op.isReg());
608 if (In.isCall())
609 if (Op.isDef() && Op.isDead())
610 return true;
611 return false;
614 // Check if the given instruction specifically requires
615 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
616 const {
617 if (In.isCall() || In.isReturn() || In.isInlineAsm())
618 return true;
619 // Check for a tail call.
620 if (In.isBranch())
621 for (const MachineOperand &O : In.operands())
622 if (O.isGlobal() || O.isSymbol())
623 return true;
625 const MCInstrDesc &D = In.getDesc();
626 if (!D.getImplicitDefs() && !D.getImplicitUses())
627 return false;
628 const MachineOperand &Op = In.getOperand(OpNum);
629 // If there is a sub-register, treat the operand as non-fixed. Currently,
630 // fixed registers are those that are listed in the descriptor as implicit
631 // uses or defs, and those lists do not allow sub-registers.
632 if (Op.getSubReg() != 0)
633 return false;
634 Register Reg = Op.getReg();
635 const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
636 : D.getImplicitUses();
637 if (!ImpR)
638 return false;
639 while (*ImpR)
640 if (*ImpR++ == Reg)
641 return true;
642 return false;
646 // The data flow graph construction.
649 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
650 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
651 const MachineDominanceFrontier &mdf)
652 : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii),
653 TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI),
654 LiveIns(PRI) {
657 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
658 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
659 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
660 : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
661 LiveIns(PRI) {
664 // The implementation of the definition stack.
665 // Each register reference has its own definition stack. In particular,
666 // for a register references "Reg" and "Reg:subreg" will each have their
667 // own definition stacks.
669 // Construct a stack iterator.
670 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
671 bool Top) : DS(S) {
672 if (!Top) {
673 // Initialize to bottom.
674 Pos = 0;
675 return;
677 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
678 Pos = DS.Stack.size();
679 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
680 Pos--;
683 // Return the size of the stack, including block delimiters.
684 unsigned DataFlowGraph::DefStack::size() const {
685 unsigned S = 0;
686 for (auto I = top(), E = bottom(); I != E; I.down())
687 S++;
688 return S;
691 // Remove the top entry from the stack. Remove all intervening delimiters
692 // so that after this, the stack is either empty, or the top of the stack
693 // is a non-delimiter.
694 void DataFlowGraph::DefStack::pop() {
695 assert(!empty());
696 unsigned P = nextDown(Stack.size());
697 Stack.resize(P);
700 // Push a delimiter for block node N on the stack.
701 void DataFlowGraph::DefStack::start_block(NodeId N) {
702 assert(N != 0);
703 Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
706 // Remove all nodes from the top of the stack, until the delimited for
707 // block node N is encountered. Remove the delimiter as well. In effect,
708 // this will remove from the stack all definitions from block N.
709 void DataFlowGraph::DefStack::clear_block(NodeId N) {
710 assert(N != 0);
711 unsigned P = Stack.size();
712 while (P > 0) {
713 bool Found = isDelimiter(Stack[P-1], N);
714 P--;
715 if (Found)
716 break;
718 // This will also remove the delimiter, if found.
719 Stack.resize(P);
722 // Move the stack iterator up by one.
723 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
724 // Get the next valid position after P (skipping all delimiters).
725 // The input position P does not have to point to a non-delimiter.
726 unsigned SS = Stack.size();
727 bool IsDelim;
728 assert(P < SS);
729 do {
730 P++;
731 IsDelim = isDelimiter(Stack[P-1]);
732 } while (P < SS && IsDelim);
733 assert(!IsDelim);
734 return P;
737 // Move the stack iterator down by one.
738 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
739 // Get the preceding valid position before P (skipping all delimiters).
740 // The input position P does not have to point to a non-delimiter.
741 assert(P > 0 && P <= Stack.size());
742 bool IsDelim = isDelimiter(Stack[P-1]);
743 do {
744 if (--P == 0)
745 break;
746 IsDelim = isDelimiter(Stack[P-1]);
747 } while (P > 0 && IsDelim);
748 assert(!IsDelim);
749 return P;
752 // Register information.
754 RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
755 RegisterSet LR;
756 const Function &F = MF.getFunction();
757 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
758 : nullptr;
759 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
760 if (RegisterId R = TLI.getExceptionPointerRegister(PF))
761 LR.insert(RegisterRef(R));
762 if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
763 if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
764 LR.insert(RegisterRef(R));
766 return LR;
769 // Node management functions.
771 // Get the pointer to the node with the id N.
772 NodeBase *DataFlowGraph::ptr(NodeId N) const {
773 if (N == 0)
774 return nullptr;
775 return Memory.ptr(N);
778 // Get the id of the node at the address P.
779 NodeId DataFlowGraph::id(const NodeBase *P) const {
780 if (P == nullptr)
781 return 0;
782 return Memory.id(P);
785 // Allocate a new node and set the attributes to Attrs.
786 NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
787 NodeAddr<NodeBase*> P = Memory.New();
788 P.Addr->init();
789 P.Addr->setAttrs(Attrs);
790 return P;
793 // Make a copy of the given node B, except for the data-flow links, which
794 // are set to 0.
795 NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
796 NodeAddr<NodeBase*> NA = newNode(0);
797 memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
798 // Ref nodes need to have the data-flow links reset.
799 if (NA.Addr->getType() == NodeAttrs::Ref) {
800 NodeAddr<RefNode*> RA = NA;
801 RA.Addr->setReachingDef(0);
802 RA.Addr->setSibling(0);
803 if (NA.Addr->getKind() == NodeAttrs::Def) {
804 NodeAddr<DefNode*> DA = NA;
805 DA.Addr->setReachedDef(0);
806 DA.Addr->setReachedUse(0);
809 return NA;
812 // Allocation routines for specific node types/kinds.
814 NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
815 MachineOperand &Op, uint16_t Flags) {
816 NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
817 UA.Addr->setRegRef(&Op, *this);
818 return UA;
821 NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
822 RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
823 NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
824 assert(Flags & NodeAttrs::PhiRef);
825 PUA.Addr->setRegRef(RR, *this);
826 PUA.Addr->setPredecessor(PredB.Id);
827 return PUA;
830 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
831 MachineOperand &Op, uint16_t Flags) {
832 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
833 DA.Addr->setRegRef(&Op, *this);
834 return DA;
837 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
838 RegisterRef RR, uint16_t Flags) {
839 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
840 assert(Flags & NodeAttrs::PhiRef);
841 DA.Addr->setRegRef(RR, *this);
842 return DA;
845 NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
846 NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
847 Owner.Addr->addPhi(PA, *this);
848 return PA;
851 NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
852 MachineInstr *MI) {
853 NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
854 SA.Addr->setCode(MI);
855 Owner.Addr->addMember(SA, *this);
856 return SA;
859 NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
860 MachineBasicBlock *BB) {
861 NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
862 BA.Addr->setCode(BB);
863 Owner.Addr->addMember(BA, *this);
864 return BA;
867 NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
868 NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
869 FA.Addr->setCode(MF);
870 return FA;
873 // Build the data flow graph.
874 void DataFlowGraph::build(unsigned Options) {
875 reset();
876 Func = newFunc(&MF);
878 if (MF.empty())
879 return;
881 for (MachineBasicBlock &B : MF) {
882 NodeAddr<BlockNode*> BA = newBlock(Func, &B);
883 BlockNodes.insert(std::make_pair(&B, BA));
884 for (MachineInstr &I : B) {
885 if (I.isDebugInstr())
886 continue;
887 buildStmt(BA, I);
891 NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
892 NodeList Blocks = Func.Addr->members(*this);
894 // Collect information about block references.
895 RegisterSet AllRefs;
896 for (NodeAddr<BlockNode*> BA : Blocks)
897 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
898 for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
899 AllRefs.insert(RA.Addr->getRegRef(*this));
901 // Collect function live-ins and entry block live-ins.
902 MachineRegisterInfo &MRI = MF.getRegInfo();
903 MachineBasicBlock &EntryB = *EA.Addr->getCode();
904 assert(EntryB.pred_empty() && "Function entry block has predecessors");
905 for (std::pair<unsigned,unsigned> P : MRI.liveins())
906 LiveIns.insert(RegisterRef(P.first));
907 if (MRI.tracksLiveness()) {
908 for (auto I : EntryB.liveins())
909 LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
912 // Add function-entry phi nodes for the live-in registers.
913 //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
914 for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
915 RegisterRef RR = *I;
916 NodeAddr<PhiNode*> PA = newPhi(EA);
917 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
918 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
919 PA.Addr->addMember(DA, *this);
922 // Add phis for landing pads.
923 // Landing pads, unlike usual backs blocks, are not entered through
924 // branches in the program, or fall-throughs from other blocks. They
925 // are entered from the exception handling runtime and target's ABI
926 // may define certain registers as defined on entry to such a block.
927 RegisterSet EHRegs = getLandingPadLiveIns();
928 if (!EHRegs.empty()) {
929 for (NodeAddr<BlockNode*> BA : Blocks) {
930 const MachineBasicBlock &B = *BA.Addr->getCode();
931 if (!B.isEHPad())
932 continue;
934 // Prepare a list of NodeIds of the block's predecessors.
935 NodeList Preds;
936 for (MachineBasicBlock *PB : B.predecessors())
937 Preds.push_back(findBlock(PB));
939 // Build phi nodes for each live-in.
940 for (RegisterRef RR : EHRegs) {
941 NodeAddr<PhiNode*> PA = newPhi(BA);
942 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
943 // Add def:
944 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
945 PA.Addr->addMember(DA, *this);
946 // Add uses (no reaching defs for phi uses):
947 for (NodeAddr<BlockNode*> PBA : Preds) {
948 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
949 PA.Addr->addMember(PUA, *this);
955 // Build a map "PhiM" which will contain, for each block, the set
956 // of references that will require phi definitions in that block.
957 BlockRefsMap PhiM;
958 for (NodeAddr<BlockNode*> BA : Blocks)
959 recordDefsForDF(PhiM, BA);
960 for (NodeAddr<BlockNode*> BA : Blocks)
961 buildPhis(PhiM, AllRefs, BA);
963 // Link all the refs. This will recursively traverse the dominator tree.
964 DefStackMap DM;
965 linkBlockRefs(DM, EA);
967 // Finally, remove all unused phi nodes.
968 if (!(Options & BuildOptions::KeepDeadPhis))
969 removeUnusedPhis();
972 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
973 assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
974 Register::isPhysicalRegister(Reg));
975 assert(Reg != 0);
976 if (Sub != 0)
977 Reg = TRI.getSubReg(Reg, Sub);
978 return RegisterRef(Reg);
981 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
982 assert(Op.isReg() || Op.isRegMask());
983 if (Op.isReg())
984 return makeRegRef(Op.getReg(), Op.getSubReg());
985 return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
988 // For each stack in the map DefM, push the delimiter for block B on it.
989 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
990 // Push block delimiters.
991 for (auto &P : DefM)
992 P.second.start_block(B);
995 // Remove all definitions coming from block B from each stack in DefM.
996 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
997 // Pop all defs from this block from the definition stack. Defs that were
998 // added to the map during the traversal of instructions will not have a
999 // delimiter, but for those, the whole stack will be emptied.
1000 for (auto &P : DefM)
1001 P.second.clear_block(B);
1003 // Finally, remove empty stacks from the map.
1004 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1005 NextI = std::next(I);
1006 // This preserves the validity of iterators other than I.
1007 if (I->second.empty())
1008 DefM.erase(I);
1012 // Push all definitions from the instruction node IA to an appropriate
1013 // stack in DefM.
1014 void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1015 pushClobbers(IA, DefM);
1016 pushDefs(IA, DefM);
1019 // Push all definitions from the instruction node IA to an appropriate
1020 // stack in DefM.
1021 void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1022 NodeSet Visited;
1023 std::set<RegisterId> Defined;
1025 // The important objectives of this function are:
1026 // - to be able to handle instructions both while the graph is being
1027 // constructed, and after the graph has been constructed, and
1028 // - maintain proper ordering of definitions on the stack for each
1029 // register reference:
1030 // - if there are two or more related defs in IA (i.e. coming from
1031 // the same machine operand), then only push one def on the stack,
1032 // - if there are multiple unrelated defs of non-overlapping
1033 // subregisters of S, then the stack for S will have both (in an
1034 // unspecified order), but the order does not matter from the data-
1035 // -flow perspective.
1037 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1038 if (Visited.count(DA.Id))
1039 continue;
1040 if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1041 continue;
1043 NodeList Rel = getRelatedRefs(IA, DA);
1044 NodeAddr<DefNode*> PDA = Rel.front();
1045 RegisterRef RR = PDA.Addr->getRegRef(*this);
1047 // Push the definition on the stack for the register and all aliases.
1048 // The def stack traversal in linkNodeUp will check the exact aliasing.
1049 DefM[RR.Reg].push(DA);
1050 Defined.insert(RR.Reg);
1051 for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1052 // Check that we don't push the same def twice.
1053 assert(A != RR.Reg);
1054 if (!Defined.count(A))
1055 DefM[A].push(DA);
1057 // Mark all the related defs as visited.
1058 for (NodeAddr<NodeBase*> T : Rel)
1059 Visited.insert(T.Id);
1063 // Push all definitions from the instruction node IA to an appropriate
1064 // stack in DefM.
1065 void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1066 NodeSet Visited;
1067 #ifndef NDEBUG
1068 std::set<RegisterId> Defined;
1069 #endif
1071 // The important objectives of this function are:
1072 // - to be able to handle instructions both while the graph is being
1073 // constructed, and after the graph has been constructed, and
1074 // - maintain proper ordering of definitions on the stack for each
1075 // register reference:
1076 // - if there are two or more related defs in IA (i.e. coming from
1077 // the same machine operand), then only push one def on the stack,
1078 // - if there are multiple unrelated defs of non-overlapping
1079 // subregisters of S, then the stack for S will have both (in an
1080 // unspecified order), but the order does not matter from the data-
1081 // -flow perspective.
1083 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1084 if (Visited.count(DA.Id))
1085 continue;
1086 if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1087 continue;
1089 NodeList Rel = getRelatedRefs(IA, DA);
1090 NodeAddr<DefNode*> PDA = Rel.front();
1091 RegisterRef RR = PDA.Addr->getRegRef(*this);
1092 #ifndef NDEBUG
1093 // Assert if the register is defined in two or more unrelated defs.
1094 // This could happen if there are two or more def operands defining it.
1095 if (!Defined.insert(RR.Reg).second) {
1096 MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
1097 dbgs() << "Multiple definitions of register: "
1098 << Print(RR, *this) << " in\n " << *MI << "in "
1099 << printMBBReference(*MI->getParent()) << '\n';
1100 llvm_unreachable(nullptr);
1102 #endif
1103 // Push the definition on the stack for the register and all aliases.
1104 // The def stack traversal in linkNodeUp will check the exact aliasing.
1105 DefM[RR.Reg].push(DA);
1106 for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1107 // Check that we don't push the same def twice.
1108 assert(A != RR.Reg);
1109 DefM[A].push(DA);
1111 // Mark all the related defs as visited.
1112 for (NodeAddr<NodeBase*> T : Rel)
1113 Visited.insert(T.Id);
1117 // Return the list of all reference nodes related to RA, including RA itself.
1118 // See "getNextRelated" for the meaning of a "related reference".
1119 NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1120 NodeAddr<RefNode*> RA) const {
1121 assert(IA.Id != 0 && RA.Id != 0);
1123 NodeList Refs;
1124 NodeId Start = RA.Id;
1125 do {
1126 Refs.push_back(RA);
1127 RA = getNextRelated(IA, RA);
1128 } while (RA.Id != 0 && RA.Id != Start);
1129 return Refs;
1132 // Clear all information in the graph.
1133 void DataFlowGraph::reset() {
1134 Memory.clear();
1135 BlockNodes.clear();
1136 Func = NodeAddr<FuncNode*>();
1139 // Return the next reference node in the instruction node IA that is related
1140 // to RA. Conceptually, two reference nodes are related if they refer to the
1141 // same instance of a register access, but differ in flags or other minor
1142 // characteristics. Specific examples of related nodes are shadow reference
1143 // nodes.
1144 // Return the equivalent of nullptr if there are no more related references.
1145 NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1146 NodeAddr<RefNode*> RA) const {
1147 assert(IA.Id != 0 && RA.Id != 0);
1149 auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
1150 if (TA.Addr->getKind() != RA.Addr->getKind())
1151 return false;
1152 if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
1153 return false;
1154 return true;
1156 auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1157 return Related(TA) &&
1158 &RA.Addr->getOp() == &TA.Addr->getOp();
1160 auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1161 if (!Related(TA))
1162 return false;
1163 if (TA.Addr->getKind() != NodeAttrs::Use)
1164 return true;
1165 // For phi uses, compare predecessor blocks.
1166 const NodeAddr<const PhiUseNode*> TUA = TA;
1167 const NodeAddr<const PhiUseNode*> RUA = RA;
1168 return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1171 RegisterRef RR = RA.Addr->getRegRef(*this);
1172 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1173 return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1174 return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1177 // Find the next node related to RA in IA that satisfies condition P.
1178 // If such a node was found, return a pair where the second element is the
1179 // located node. If such a node does not exist, return a pair where the
1180 // first element is the element after which such a node should be inserted,
1181 // and the second element is a null-address.
1182 template <typename Predicate>
1183 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
1184 DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1185 Predicate P) const {
1186 assert(IA.Id != 0 && RA.Id != 0);
1188 NodeAddr<RefNode*> NA;
1189 NodeId Start = RA.Id;
1190 while (true) {
1191 NA = getNextRelated(IA, RA);
1192 if (NA.Id == 0 || NA.Id == Start)
1193 break;
1194 if (P(NA))
1195 break;
1196 RA = NA;
1199 if (NA.Id != 0 && NA.Id != Start)
1200 return std::make_pair(RA, NA);
1201 return std::make_pair(RA, NodeAddr<RefNode*>());
1204 // Get the next shadow node in IA corresponding to RA, and optionally create
1205 // such a node if it does not exist.
1206 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1207 NodeAddr<RefNode*> RA, bool Create) {
1208 assert(IA.Id != 0 && RA.Id != 0);
1210 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1211 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1212 return TA.Addr->getFlags() == Flags;
1214 auto Loc = locateNextRef(IA, RA, IsShadow);
1215 if (Loc.second.Id != 0 || !Create)
1216 return Loc.second;
1218 // Create a copy of RA and mark is as shadow.
1219 NodeAddr<RefNode*> NA = cloneNode(RA);
1220 NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1221 IA.Addr->addMemberAfter(Loc.first, NA, *this);
1222 return NA;
1225 // Get the next shadow node in IA corresponding to RA. Return null-address
1226 // if such a node does not exist.
1227 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1228 NodeAddr<RefNode*> RA) const {
1229 assert(IA.Id != 0 && RA.Id != 0);
1230 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1231 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1232 return TA.Addr->getFlags() == Flags;
1234 return locateNextRef(IA, RA, IsShadow).second;
1237 // Create a new statement node in the block node BA that corresponds to
1238 // the machine instruction MI.
1239 void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
1240 NodeAddr<StmtNode*> SA = newStmt(BA, &In);
1242 auto isCall = [] (const MachineInstr &In) -> bool {
1243 if (In.isCall())
1244 return true;
1245 // Is tail call?
1246 if (In.isBranch()) {
1247 for (const MachineOperand &Op : In.operands())
1248 if (Op.isGlobal() || Op.isSymbol())
1249 return true;
1250 // Assume indirect branches are calls. This is for the purpose of
1251 // keeping implicit operands, and so it won't hurt on intra-function
1252 // indirect branches.
1253 if (In.isIndirectBranch())
1254 return true;
1256 return false;
1259 auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1260 // This instruction defines DR. Check if there is a use operand that
1261 // would make DR live on entry to the instruction.
1262 for (const MachineOperand &Op : In.operands()) {
1263 if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
1264 continue;
1265 RegisterRef UR = makeRegRef(Op);
1266 if (PRI.alias(DR, UR))
1267 return false;
1269 return true;
1272 bool IsCall = isCall(In);
1273 unsigned NumOps = In.getNumOperands();
1275 // Avoid duplicate implicit defs. This will not detect cases of implicit
1276 // defs that define registers that overlap, but it is not clear how to
1277 // interpret that in the absence of explicit defs. Overlapping explicit
1278 // defs are likely illegal already.
1279 BitVector DoneDefs(TRI.getNumRegs());
1280 // Process explicit defs first.
1281 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1282 MachineOperand &Op = In.getOperand(OpN);
1283 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1284 continue;
1285 Register R = Op.getReg();
1286 if (!R || !Register::isPhysicalRegister(R))
1287 continue;
1288 uint16_t Flags = NodeAttrs::None;
1289 if (TOI.isPreserving(In, OpN)) {
1290 Flags |= NodeAttrs::Preserving;
1291 // If the def is preserving, check if it is also undefined.
1292 if (isDefUndef(In, makeRegRef(Op)))
1293 Flags |= NodeAttrs::Undef;
1295 if (TOI.isClobbering(In, OpN))
1296 Flags |= NodeAttrs::Clobbering;
1297 if (TOI.isFixedReg(In, OpN))
1298 Flags |= NodeAttrs::Fixed;
1299 if (IsCall && Op.isDead())
1300 Flags |= NodeAttrs::Dead;
1301 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1302 SA.Addr->addMember(DA, *this);
1303 assert(!DoneDefs.test(R));
1304 DoneDefs.set(R);
1307 // Process reg-masks (as clobbers).
1308 BitVector DoneClobbers(TRI.getNumRegs());
1309 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1310 MachineOperand &Op = In.getOperand(OpN);
1311 if (!Op.isRegMask())
1312 continue;
1313 uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
1314 NodeAttrs::Dead;
1315 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1316 SA.Addr->addMember(DA, *this);
1317 // Record all clobbered registers in DoneDefs.
1318 const uint32_t *RM = Op.getRegMask();
1319 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
1320 if (!(RM[i/32] & (1u << (i%32))))
1321 DoneClobbers.set(i);
1324 // Process implicit defs, skipping those that have already been added
1325 // as explicit.
1326 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1327 MachineOperand &Op = In.getOperand(OpN);
1328 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1329 continue;
1330 Register R = Op.getReg();
1331 if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
1332 continue;
1333 RegisterRef RR = makeRegRef(Op);
1334 uint16_t Flags = NodeAttrs::None;
1335 if (TOI.isPreserving(In, OpN)) {
1336 Flags |= NodeAttrs::Preserving;
1337 // If the def is preserving, check if it is also undefined.
1338 if (isDefUndef(In, RR))
1339 Flags |= NodeAttrs::Undef;
1341 if (TOI.isClobbering(In, OpN))
1342 Flags |= NodeAttrs::Clobbering;
1343 if (TOI.isFixedReg(In, OpN))
1344 Flags |= NodeAttrs::Fixed;
1345 if (IsCall && Op.isDead()) {
1346 if (DoneClobbers.test(R))
1347 continue;
1348 Flags |= NodeAttrs::Dead;
1350 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1351 SA.Addr->addMember(DA, *this);
1352 DoneDefs.set(R);
1355 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1356 MachineOperand &Op = In.getOperand(OpN);
1357 if (!Op.isReg() || !Op.isUse())
1358 continue;
1359 Register R = Op.getReg();
1360 if (!R || !Register::isPhysicalRegister(R))
1361 continue;
1362 uint16_t Flags = NodeAttrs::None;
1363 if (Op.isUndef())
1364 Flags |= NodeAttrs::Undef;
1365 if (TOI.isFixedReg(In, OpN))
1366 Flags |= NodeAttrs::Fixed;
1367 NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1368 SA.Addr->addMember(UA, *this);
1372 // Scan all defs in the block node BA and record in PhiM the locations of
1373 // phi nodes corresponding to these defs.
1374 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
1375 NodeAddr<BlockNode*> BA) {
1376 // Check all defs from block BA and record them in each block in BA's
1377 // iterated dominance frontier. This information will later be used to
1378 // create phi nodes.
1379 MachineBasicBlock *BB = BA.Addr->getCode();
1380 assert(BB);
1381 auto DFLoc = MDF.find(BB);
1382 if (DFLoc == MDF.end() || DFLoc->second.empty())
1383 return;
1385 // Traverse all instructions in the block and collect the set of all
1386 // defined references. For each reference there will be a phi created
1387 // in the block's iterated dominance frontier.
1388 // This is done to make sure that each defined reference gets only one
1389 // phi node, even if it is defined multiple times.
1390 RegisterSet Defs;
1391 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1392 for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
1393 Defs.insert(RA.Addr->getRegRef(*this));
1395 // Calculate the iterated dominance frontier of BB.
1396 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1397 SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1398 for (unsigned i = 0; i < IDF.size(); ++i) {
1399 auto F = MDF.find(IDF[i]);
1400 if (F != MDF.end())
1401 IDF.insert(F->second.begin(), F->second.end());
1404 // Finally, add the set of defs to each block in the iterated dominance
1405 // frontier.
1406 for (auto *DB : IDF) {
1407 NodeAddr<BlockNode*> DBA = findBlock(DB);
1408 PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1412 // Given the locations of phi nodes in the map PhiM, create the phi nodes
1413 // that are located in the block node BA.
1414 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
1415 NodeAddr<BlockNode*> BA) {
1416 // Check if this blocks has any DF defs, i.e. if there are any defs
1417 // that this block is in the iterated dominance frontier of.
1418 auto HasDF = PhiM.find(BA.Id);
1419 if (HasDF == PhiM.end() || HasDF->second.empty())
1420 return;
1422 // First, remove all R in Refs in such that there exists T in Refs
1423 // such that T covers R. In other words, only leave those refs that
1424 // are not covered by another ref (i.e. maximal with respect to covering).
1426 auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
1427 for (RegisterRef I : RRs)
1428 if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
1429 RR = I;
1430 return RR;
1433 RegisterSet MaxDF;
1434 for (RegisterRef I : HasDF->second)
1435 MaxDF.insert(MaxCoverIn(I, HasDF->second));
1437 std::vector<RegisterRef> MaxRefs;
1438 for (RegisterRef I : MaxDF)
1439 MaxRefs.push_back(MaxCoverIn(I, AllRefs));
1441 // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1442 // only has R in it, create a phi a def for R. Otherwise, create a phi,
1443 // and add a def for each S in the closure.
1445 // Sort the refs so that the phis will be created in a deterministic order.
1446 llvm::sort(MaxRefs);
1447 // Remove duplicates.
1448 auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1449 MaxRefs.erase(NewEnd, MaxRefs.end());
1451 auto Aliased = [this,&MaxRefs](RegisterRef RR,
1452 std::vector<unsigned> &Closure) -> bool {
1453 for (unsigned I : Closure)
1454 if (PRI.alias(RR, MaxRefs[I]))
1455 return true;
1456 return false;
1459 // Prepare a list of NodeIds of the block's predecessors.
1460 NodeList Preds;
1461 const MachineBasicBlock *MBB = BA.Addr->getCode();
1462 for (MachineBasicBlock *PB : MBB->predecessors())
1463 Preds.push_back(findBlock(PB));
1465 while (!MaxRefs.empty()) {
1466 // Put the first element in the closure, and then add all subsequent
1467 // elements from MaxRefs to it, if they alias at least one element
1468 // already in the closure.
1469 // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1470 std::vector<unsigned> ClosureIdx = { 0 };
1471 for (unsigned i = 1; i != MaxRefs.size(); ++i)
1472 if (Aliased(MaxRefs[i], ClosureIdx))
1473 ClosureIdx.push_back(i);
1475 // Build a phi for the closure.
1476 unsigned CS = ClosureIdx.size();
1477 NodeAddr<PhiNode*> PA = newPhi(BA);
1479 // Add defs.
1480 for (unsigned X = 0; X != CS; ++X) {
1481 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1482 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1483 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1484 PA.Addr->addMember(DA, *this);
1486 // Add phi uses.
1487 for (NodeAddr<BlockNode*> PBA : Preds) {
1488 for (unsigned X = 0; X != CS; ++X) {
1489 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1490 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1491 PA.Addr->addMember(PUA, *this);
1495 // Erase from MaxRefs all elements in the closure.
1496 auto Begin = MaxRefs.begin();
1497 for (unsigned Idx : llvm::reverse(ClosureIdx))
1498 MaxRefs.erase(Begin + Idx);
1502 // Remove any unneeded phi nodes that were created during the build process.
1503 void DataFlowGraph::removeUnusedPhis() {
1504 // This will remove unused phis, i.e. phis where each def does not reach
1505 // any uses or other defs. This will not detect or remove circular phi
1506 // chains that are otherwise dead. Unused/dead phis are created during
1507 // the build process and this function is intended to remove these cases
1508 // that are easily determinable to be unnecessary.
1510 SetVector<NodeId> PhiQ;
1511 for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1512 for (auto P : BA.Addr->members_if(IsPhi, *this))
1513 PhiQ.insert(P.Id);
1516 static auto HasUsedDef = [](NodeList &Ms) -> bool {
1517 for (NodeAddr<NodeBase*> M : Ms) {
1518 if (M.Addr->getKind() != NodeAttrs::Def)
1519 continue;
1520 NodeAddr<DefNode*> DA = M;
1521 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1522 return true;
1524 return false;
1527 // Any phi, if it is removed, may affect other phis (make them dead).
1528 // For each removed phi, collect the potentially affected phis and add
1529 // them back to the queue.
1530 while (!PhiQ.empty()) {
1531 auto PA = addr<PhiNode*>(PhiQ[0]);
1532 PhiQ.remove(PA.Id);
1533 NodeList Refs = PA.Addr->members(*this);
1534 if (HasUsedDef(Refs))
1535 continue;
1536 for (NodeAddr<RefNode*> RA : Refs) {
1537 if (NodeId RD = RA.Addr->getReachingDef()) {
1538 auto RDA = addr<DefNode*>(RD);
1539 NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1540 if (IsPhi(OA))
1541 PhiQ.insert(OA.Id);
1543 if (RA.Addr->isDef())
1544 unlinkDef(RA, true);
1545 else
1546 unlinkUse(RA, true);
1548 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1549 BA.Addr->removeMember(PA, *this);
1553 // For a given reference node TA in an instruction node IA, connect the
1554 // reaching def of TA to the appropriate def node. Create any shadow nodes
1555 // as appropriate.
1556 template <typename T>
1557 void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1558 DefStack &DS) {
1559 if (DS.empty())
1560 return;
1561 RegisterRef RR = TA.Addr->getRegRef(*this);
1562 NodeAddr<T> TAP;
1564 // References from the def stack that have been examined so far.
1565 RegisterAggr Defs(PRI);
1567 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1568 RegisterRef QR = I->Addr->getRegRef(*this);
1570 // Skip all defs that are aliased to any of the defs that we have already
1571 // seen. If this completes a cover of RR, stop the stack traversal.
1572 bool Alias = Defs.hasAliasOf(QR);
1573 bool Cover = Defs.insert(QR).hasCoverOf(RR);
1574 if (Alias) {
1575 if (Cover)
1576 break;
1577 continue;
1580 // The reaching def.
1581 NodeAddr<DefNode*> RDA = *I;
1583 // Pick the reached node.
1584 if (TAP.Id == 0) {
1585 TAP = TA;
1586 } else {
1587 // Mark the existing ref as "shadow" and create a new shadow.
1588 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1589 TAP = getNextShadow(IA, TAP, true);
1592 // Create the link.
1593 TAP.Addr->linkToDef(TAP.Id, RDA);
1595 if (Cover)
1596 break;
1600 // Create data-flow links for all reference nodes in the statement node SA.
1601 template <typename Predicate>
1602 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
1603 Predicate P) {
1604 #ifndef NDEBUG
1605 RegisterSet Defs;
1606 #endif
1608 // Link all nodes (upwards in the data-flow) with their reaching defs.
1609 for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
1610 uint16_t Kind = RA.Addr->getKind();
1611 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1612 RegisterRef RR = RA.Addr->getRegRef(*this);
1613 #ifndef NDEBUG
1614 // Do not expect multiple defs of the same reference.
1615 assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1616 Defs.insert(RR);
1617 #endif
1619 auto F = DefM.find(RR.Reg);
1620 if (F == DefM.end())
1621 continue;
1622 DefStack &DS = F->second;
1623 if (Kind == NodeAttrs::Use)
1624 linkRefUp<UseNode*>(SA, RA, DS);
1625 else if (Kind == NodeAttrs::Def)
1626 linkRefUp<DefNode*>(SA, RA, DS);
1627 else
1628 llvm_unreachable("Unexpected node in instruction");
1632 // Create data-flow links for all instructions in the block node BA. This
1633 // will include updating any phi nodes in BA.
1634 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1635 // Push block delimiters.
1636 markBlock(BA.Id, DefM);
1638 auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1639 return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1641 auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1642 return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1645 assert(BA.Addr && "block node address is needed to create a data-flow link");
1646 // For each non-phi instruction in the block, link all the defs and uses
1647 // to their reaching defs. For any member of the block (including phis),
1648 // push the defs on the corresponding stacks.
1649 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1650 // Ignore phi nodes here. They will be linked part by part from the
1651 // predecessors.
1652 if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1653 linkStmtRefs(DefM, IA, IsUse);
1654 linkStmtRefs(DefM, IA, IsClobber);
1657 // Push the definitions on the stack.
1658 pushClobbers(IA, DefM);
1660 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1661 linkStmtRefs(DefM, IA, IsNoClobber);
1663 pushDefs(IA, DefM);
1666 // Recursively process all children in the dominator tree.
1667 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1668 for (auto *I : *N) {
1669 MachineBasicBlock *SB = I->getBlock();
1670 NodeAddr<BlockNode*> SBA = findBlock(SB);
1671 linkBlockRefs(DefM, SBA);
1674 // Link the phi uses from the successor blocks.
1675 auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1676 if (NA.Addr->getKind() != NodeAttrs::Use)
1677 return false;
1678 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1679 NodeAddr<PhiUseNode*> PUA = NA;
1680 return PUA.Addr->getPredecessor() == BA.Id;
1683 RegisterSet EHLiveIns = getLandingPadLiveIns();
1684 MachineBasicBlock *MBB = BA.Addr->getCode();
1686 for (MachineBasicBlock *SB : MBB->successors()) {
1687 bool IsEHPad = SB->isEHPad();
1688 NodeAddr<BlockNode*> SBA = findBlock(SB);
1689 for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
1690 // Do not link phi uses for landing pad live-ins.
1691 if (IsEHPad) {
1692 // Find what register this phi is for.
1693 NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1694 assert(RA.Id != 0);
1695 if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
1696 continue;
1698 // Go over each phi use associated with MBB, and link it.
1699 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1700 NodeAddr<PhiUseNode*> PUA = U;
1701 RegisterRef RR = PUA.Addr->getRegRef(*this);
1702 linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
1707 // Pop all defs from this block from the definition stacks.
1708 releaseBlock(BA.Id, DefM);
1711 // Remove the use node UA from any data-flow and structural links.
1712 void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
1713 NodeId RD = UA.Addr->getReachingDef();
1714 NodeId Sib = UA.Addr->getSibling();
1716 if (RD == 0) {
1717 assert(Sib == 0);
1718 return;
1721 auto RDA = addr<DefNode*>(RD);
1722 auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1723 if (TA.Id == UA.Id) {
1724 RDA.Addr->setReachedUse(Sib);
1725 return;
1728 while (TA.Id != 0) {
1729 NodeId S = TA.Addr->getSibling();
1730 if (S == UA.Id) {
1731 TA.Addr->setSibling(UA.Addr->getSibling());
1732 return;
1734 TA = addr<UseNode*>(S);
1738 // Remove the def node DA from any data-flow and structural links.
1739 void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
1741 // RD
1742 // | reached
1743 // | def
1744 // :
1745 // .
1746 // +----+
1747 // ... -- | DA | -- ... -- 0 : sibling chain of DA
1748 // +----+
1749 // | | reached
1750 // | : def
1751 // | .
1752 // | ... : Siblings (defs)
1753 // |
1754 // : reached
1755 // . use
1756 // ... : sibling chain of reached uses
1758 NodeId RD = DA.Addr->getReachingDef();
1760 // Visit all siblings of the reached def and reset their reaching defs.
1761 // Also, defs reached by DA are now "promoted" to being reached by RD,
1762 // so all of them will need to be spliced into the sibling chain where
1763 // DA belongs.
1764 auto getAllNodes = [this] (NodeId N) -> NodeList {
1765 NodeList Res;
1766 while (N) {
1767 auto RA = addr<RefNode*>(N);
1768 // Keep the nodes in the exact sibling order.
1769 Res.push_back(RA);
1770 N = RA.Addr->getSibling();
1772 return Res;
1774 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1775 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1777 if (RD == 0) {
1778 for (NodeAddr<RefNode*> I : ReachedDefs)
1779 I.Addr->setSibling(0);
1780 for (NodeAddr<RefNode*> I : ReachedUses)
1781 I.Addr->setSibling(0);
1783 for (NodeAddr<DefNode*> I : ReachedDefs)
1784 I.Addr->setReachingDef(RD);
1785 for (NodeAddr<UseNode*> I : ReachedUses)
1786 I.Addr->setReachingDef(RD);
1788 NodeId Sib = DA.Addr->getSibling();
1789 if (RD == 0) {
1790 assert(Sib == 0);
1791 return;
1794 // Update the reaching def node and remove DA from the sibling list.
1795 auto RDA = addr<DefNode*>(RD);
1796 auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1797 if (TA.Id == DA.Id) {
1798 // If DA is the first reached def, just update the RD's reached def
1799 // to the DA's sibling.
1800 RDA.Addr->setReachedDef(Sib);
1801 } else {
1802 // Otherwise, traverse the sibling list of the reached defs and remove
1803 // DA from it.
1804 while (TA.Id != 0) {
1805 NodeId S = TA.Addr->getSibling();
1806 if (S == DA.Id) {
1807 TA.Addr->setSibling(Sib);
1808 break;
1810 TA = addr<DefNode*>(S);
1814 // Splice the DA's reached defs into the RDA's reached def chain.
1815 if (!ReachedDefs.empty()) {
1816 auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1817 Last.Addr->setSibling(RDA.Addr->getReachedDef());
1818 RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1820 // Splice the DA's reached uses into the RDA's reached use chain.
1821 if (!ReachedUses.empty()) {
1822 auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1823 Last.Addr->setSibling(RDA.Addr->getReachedUse());
1824 RDA.Addr->setReachedUse(ReachedUses.front().Id);