[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / RDFLiveness.cpp
blob692d70c3fd805a1d21e169cf6bc21a09f6c06689
1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Computation of the liveness information from the data-flow graph.
11 // The main functionality of this code is to compute block live-in
12 // information. With the live-in information in place, the placement
13 // of kill flags can also be recalculated.
15 // The block live-in calculation is based on the ideas from the following
16 // publication:
18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20 // ACM Transactions on Architecture and Code Optimization, Association for
21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22 // and Embedded Architectures and Compilers", 8 (4),
23 // <10.1145/2086696.2086706>. <hal-00647369>
25 #include "llvm/CodeGen/RDFLiveness.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineDominanceFrontier.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/RDFGraph.h"
37 #include "llvm/CodeGen/RDFRegisters.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <map>
49 #include <unordered_map>
50 #include <utility>
51 #include <vector>
53 using namespace llvm;
54 using namespace rdf;
56 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
57 cl::Hidden, cl::desc("Maximum recursion level"));
59 namespace llvm {
60 namespace rdf {
62 raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
63 OS << '{';
64 for (const auto &I : P.Obj) {
65 OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
66 for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
67 OS << Print(J->first, P.G) << PrintLaneMaskOpt(J->second);
68 if (++J != E)
69 OS << ',';
71 OS << '}';
73 OS << " }";
74 return OS;
77 } // end namespace rdf
78 } // end namespace llvm
80 // The order in the returned sequence is the order of reaching defs in the
81 // upward traversal: the first def is the closest to the given reference RefA,
82 // the next one is further up, and so on.
83 // The list ends at a reaching phi def, or when the reference from RefA is
84 // covered by the defs in the list (see FullChain).
85 // This function provides two modes of operation:
86 // (1) Returning the sequence of reaching defs for a particular reference
87 // node. This sequence will terminate at the first phi node [1].
88 // (2) Returning a partial sequence of reaching defs, where the final goal
89 // is to traverse past phi nodes to the actual defs arising from the code
90 // itself.
91 // In mode (2), the register reference for which the search was started
92 // may be different from the reference node RefA, for which this call was
93 // made, hence the argument RefRR, which holds the original register.
94 // Also, some definitions may have already been encountered in a previous
95 // call that will influence register covering. The register references
96 // already defined are passed in through DefRRs.
97 // In mode (1), the "continuation" considerations do not apply, and the
98 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
100 // [1] It is possible for multiple phi nodes to be included in the returned
101 // sequence:
102 // SubA = phi ...
103 // SubB = phi ...
104 // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
105 // However, these phi nodes are independent from one another in terms of
106 // the data-flow.
108 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
109 NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
110 const RegisterAggr &DefRRs) {
111 NodeList RDefs; // Return value.
112 SetVector<NodeId> DefQ;
113 DenseMap<MachineInstr*, uint32_t> OrdMap;
115 // Dead defs will be treated as if they were live, since they are actually
116 // on the data-flow path. They cannot be ignored because even though they
117 // do not generate meaningful values, they still modify registers.
119 // If the reference is undefined, there is nothing to do.
120 if (RefA.Addr->getFlags() & NodeAttrs::Undef)
121 return RDefs;
123 // The initial queue should not have reaching defs for shadows. The
124 // whole point of a shadow is that it will have a reaching def that
125 // is not aliased to the reaching defs of the related shadows.
126 NodeId Start = RefA.Id;
127 auto SNA = DFG.addr<RefNode*>(Start);
128 if (NodeId RD = SNA.Addr->getReachingDef())
129 DefQ.insert(RD);
130 if (TopShadows) {
131 for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
132 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
133 DefQ.insert(RD);
136 // Collect all the reaching defs, going up until a phi node is encountered,
137 // or there are no more reaching defs. From this set, the actual set of
138 // reaching defs will be selected.
139 // The traversal upwards must go on until a covering def is encountered.
140 // It is possible that a collection of non-covering (individually) defs
141 // will be sufficient, but keep going until a covering one is found.
142 for (unsigned i = 0; i < DefQ.size(); ++i) {
143 auto TA = DFG.addr<DefNode*>(DefQ[i]);
144 if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
145 continue;
146 // Stop at the covering/overwriting def of the initial register reference.
147 RegisterRef RR = TA.Addr->getRegRef(DFG);
148 if (!DFG.IsPreservingDef(TA))
149 if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
150 continue;
151 // Get the next level of reaching defs. This will include multiple
152 // reaching defs for shadows.
153 for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
154 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
155 DefQ.insert(RD);
156 // Don't visit sibling defs. They share the same reaching def (which
157 // will be visited anyway), but they define something not aliased to
158 // this ref.
161 // Return the MachineBasicBlock containing a given instruction.
162 auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
163 if (IA.Addr->getKind() == NodeAttrs::Stmt)
164 return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
165 assert(IA.Addr->getKind() == NodeAttrs::Phi);
166 NodeAddr<PhiNode*> PA = IA;
167 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
168 return BA.Addr->getCode();
171 SmallSet<NodeId,32> Defs;
173 // Remove all non-phi defs that are not aliased to RefRR, and separate
174 // the the remaining defs into buckets for containing blocks.
175 std::map<NodeId, NodeAddr<InstrNode*>> Owners;
176 std::map<MachineBasicBlock*, SmallVector<NodeId,32>> Blocks;
177 for (NodeId N : DefQ) {
178 auto TA = DFG.addr<DefNode*>(N);
179 bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
180 if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
181 continue;
182 Defs.insert(TA.Id);
183 NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
184 Owners[TA.Id] = IA;
185 Blocks[Block(IA)].push_back(IA.Id);
188 auto Precedes = [this,&OrdMap] (NodeId A, NodeId B) {
189 if (A == B)
190 return false;
191 NodeAddr<InstrNode*> OA = DFG.addr<InstrNode*>(A);
192 NodeAddr<InstrNode*> OB = DFG.addr<InstrNode*>(B);
193 bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
194 bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
195 if (StmtA && StmtB) {
196 const MachineInstr *InA = NodeAddr<StmtNode*>(OA).Addr->getCode();
197 const MachineInstr *InB = NodeAddr<StmtNode*>(OB).Addr->getCode();
198 assert(InA->getParent() == InB->getParent());
199 auto FA = OrdMap.find(InA);
200 if (FA != OrdMap.end())
201 return FA->second < OrdMap.find(InB)->second;
202 const MachineBasicBlock *BB = InA->getParent();
203 for (auto It = BB->begin(), E = BB->end(); It != E; ++It) {
204 if (It == InA->getIterator())
205 return true;
206 if (It == InB->getIterator())
207 return false;
209 llvm_unreachable("InA and InB should be in the same block");
211 // One of them is a phi node.
212 if (!StmtA && !StmtB) {
213 // Both are phis, which are unordered. Break the tie by id numbers.
214 return A < B;
216 // Only one of them is a phi. Phis always precede statements.
217 return !StmtA;
220 auto GetOrder = [&OrdMap] (MachineBasicBlock &B) {
221 uint32_t Pos = 0;
222 for (MachineInstr &In : B)
223 OrdMap.insert({&In, ++Pos});
226 // For each block, sort the nodes in it.
227 std::vector<MachineBasicBlock*> TmpBB;
228 for (auto &Bucket : Blocks) {
229 TmpBB.push_back(Bucket.first);
230 if (Bucket.second.size() > 2)
231 GetOrder(*Bucket.first);
232 llvm::sort(Bucket.second, Precedes);
235 // Sort the blocks with respect to dominance.
236 llvm::sort(TmpBB,
237 [this](auto A, auto B) { return MDT.properlyDominates(A, B); });
239 std::vector<NodeId> TmpInst;
240 for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) {
241 auto &Bucket = Blocks[MBB];
242 TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend());
245 // The vector is a list of instructions, so that defs coming from
246 // the same instruction don't need to be artificially ordered.
247 // Then, when computing the initial segment, and iterating over an
248 // instruction, pick the defs that contribute to the covering (i.e. is
249 // not covered by previously added defs). Check the defs individually,
250 // i.e. first check each def if is covered or not (without adding them
251 // to the tracking set), and then add all the selected ones.
253 // The reason for this is this example:
254 // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
255 // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
256 // covered if we added A first, and A would be covered
257 // if we added B first.
258 // In this example we want both A and B, because we don't want to give
259 // either one priority over the other, since they belong to the same
260 // statement.
262 RegisterAggr RRs(DefRRs);
264 auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
265 return TA.Addr->getKind() == NodeAttrs::Def &&
266 Defs.count(TA.Id);
269 for (NodeId T : TmpInst) {
270 if (!FullChain && RRs.hasCoverOf(RefRR))
271 break;
272 auto TA = DFG.addr<InstrNode*>(T);
273 bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
274 NodeList Ds;
275 for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
276 RegisterRef QR = DA.Addr->getRegRef(DFG);
277 // Add phi defs even if they are covered by subsequent defs. This is
278 // for cases where the reached use is not covered by any of the defs
279 // encountered so far: the phi def is needed to expose the liveness
280 // of that use to the entry of the block.
281 // Example:
282 // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
283 // d2<R3>(d1,,u3), ...
284 // ..., u3<D1>(d2) This use needs to be live on entry.
285 if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
286 Ds.push_back(DA);
288 llvm::append_range(RDefs, Ds);
289 for (NodeAddr<DefNode*> DA : Ds) {
290 // When collecting a full chain of definitions, do not consider phi
291 // defs to actually define a register.
292 uint16_t Flags = DA.Addr->getFlags();
293 if (!FullChain || !(Flags & NodeAttrs::PhiRef))
294 if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
295 RRs.insert(DA.Addr->getRegRef(DFG));
299 auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
300 return DA.Addr->getFlags() & NodeAttrs::Dead;
302 llvm::erase_if(RDefs, DeadP);
304 return RDefs;
307 std::pair<NodeSet,bool>
308 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
309 NodeSet &Visited, const NodeSet &Defs) {
310 return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
313 std::pair<NodeSet,bool>
314 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
315 NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
316 if (Nest > MaxNest)
317 return { NodeSet(), false };
318 // Collect all defined registers. Do not consider phis to be defining
319 // anything, only collect "real" definitions.
320 RegisterAggr DefRRs(PRI);
321 for (NodeId D : Defs) {
322 const auto DA = DFG.addr<const DefNode*>(D);
323 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
324 DefRRs.insert(DA.Addr->getRegRef(DFG));
327 NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
328 if (RDs.empty())
329 return { Defs, true };
331 // Make a copy of the preexisting definitions and add the newly found ones.
332 NodeSet TmpDefs = Defs;
333 for (NodeAddr<NodeBase*> R : RDs)
334 TmpDefs.insert(R.Id);
336 NodeSet Result = Defs;
338 for (NodeAddr<DefNode*> DA : RDs) {
339 Result.insert(DA.Id);
340 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
341 continue;
342 NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
343 if (!Visited.insert(PA.Id).second)
344 continue;
345 // Go over all phi uses and get the reaching defs for each use.
346 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
347 const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
348 Nest+1, MaxNest);
349 if (!T.second)
350 return { T.first, false };
351 Result.insert(T.first.begin(), T.first.end());
355 return { Result, true };
358 /// Find the nearest ref node aliased to RefRR, going upwards in the data
359 /// flow, starting from the instruction immediately preceding Inst.
360 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
361 NodeAddr<InstrNode*> IA) {
362 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
363 NodeList Ins = BA.Addr->members(DFG);
364 NodeId FindId = IA.Id;
365 auto E = Ins.rend();
366 auto B = std::find_if(Ins.rbegin(), E,
367 [FindId] (const NodeAddr<InstrNode*> T) {
368 return T.Id == FindId;
370 // Do not scan IA (which is what B would point to).
371 if (B != E)
372 ++B;
374 do {
375 // Process the range of instructions from B to E.
376 for (NodeAddr<InstrNode*> I : make_range(B, E)) {
377 NodeList Refs = I.Addr->members(DFG);
378 NodeAddr<RefNode*> Clob, Use;
379 // Scan all the refs in I aliased to RefRR, and return the one that
380 // is the closest to the output of I, i.e. def > clobber > use.
381 for (NodeAddr<RefNode*> R : Refs) {
382 if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
383 continue;
384 if (DFG.IsDef(R)) {
385 // If it's a non-clobbering def, just return it.
386 if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
387 return R;
388 Clob = R;
389 } else {
390 Use = R;
393 if (Clob.Id != 0)
394 return Clob;
395 if (Use.Id != 0)
396 return Use;
399 // Go up to the immediate dominator, if any.
400 MachineBasicBlock *BB = BA.Addr->getCode();
401 BA = NodeAddr<BlockNode*>();
402 if (MachineDomTreeNode *N = MDT.getNode(BB)) {
403 if ((N = N->getIDom()))
404 BA = DFG.findBlock(N->getBlock());
406 if (!BA.Id)
407 break;
409 Ins = BA.Addr->members(DFG);
410 B = Ins.rbegin();
411 E = Ins.rend();
412 } while (true);
414 return NodeAddr<RefNode*>();
417 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
418 NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
419 NodeSet Uses;
421 // If the original register is already covered by all the intervening
422 // defs, no more uses can be reached.
423 if (DefRRs.hasCoverOf(RefRR))
424 return Uses;
426 // Add all directly reached uses.
427 // If the def is dead, it does not provide a value for any use.
428 bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
429 NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
430 while (U != 0) {
431 auto UA = DFG.addr<UseNode*>(U);
432 if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
433 RegisterRef UR = UA.Addr->getRegRef(DFG);
434 if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
435 Uses.insert(U);
437 U = UA.Addr->getSibling();
440 // Traverse all reached defs. This time dead defs cannot be ignored.
441 for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
442 auto DA = DFG.addr<DefNode*>(D);
443 NextD = DA.Addr->getSibling();
444 RegisterRef DR = DA.Addr->getRegRef(DFG);
445 // If this def is already covered, it cannot reach anything new.
446 // Similarly, skip it if it is not aliased to the interesting register.
447 if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
448 continue;
449 NodeSet T;
450 if (DFG.IsPreservingDef(DA)) {
451 // If it is a preserving def, do not update the set of intervening defs.
452 T = getAllReachedUses(RefRR, DA, DefRRs);
453 } else {
454 RegisterAggr NewDefRRs = DefRRs;
455 NewDefRRs.insert(DR);
456 T = getAllReachedUses(RefRR, DA, NewDefRRs);
458 Uses.insert(T.begin(), T.end());
460 return Uses;
463 void Liveness::computePhiInfo() {
464 RealUseMap.clear();
466 NodeList Phis;
467 NodeAddr<FuncNode*> FA = DFG.getFunc();
468 NodeList Blocks = FA.Addr->members(DFG);
469 for (NodeAddr<BlockNode*> BA : Blocks) {
470 auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
471 llvm::append_range(Phis, Ps);
474 // phi use -> (map: reaching phi -> set of registers defined in between)
475 std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
476 std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
477 std::unordered_map<NodeId,RegisterAggr> PhiDRs; // Phi -> registers defined by it.
479 // Go over all phis.
480 for (NodeAddr<PhiNode*> PhiA : Phis) {
481 // Go over all defs and collect the reached uses that are non-phi uses
482 // (i.e. the "real uses").
483 RefMap &RealUses = RealUseMap[PhiA.Id];
484 NodeList PhiRefs = PhiA.Addr->members(DFG);
486 // Have a work queue of defs whose reached uses need to be found.
487 // For each def, add to the queue all reached (non-phi) defs.
488 SetVector<NodeId> DefQ;
489 NodeSet PhiDefs;
490 RegisterAggr DRs(PRI);
491 for (NodeAddr<RefNode*> R : PhiRefs) {
492 if (!DFG.IsRef<NodeAttrs::Def>(R))
493 continue;
494 DRs.insert(R.Addr->getRegRef(DFG));
495 DefQ.insert(R.Id);
496 PhiDefs.insert(R.Id);
498 PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
500 // Collect the super-set of all possible reached uses. This set will
501 // contain all uses reached from this phi, either directly from the
502 // phi defs, or (recursively) via non-phi defs reached by the phi defs.
503 // This set of uses will later be trimmed to only contain these uses that
504 // are actually reached by the phi defs.
505 for (unsigned i = 0; i < DefQ.size(); ++i) {
506 NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
507 // Visit all reached uses. Phi defs should not really have the "dead"
508 // flag set, but check it anyway for consistency.
509 bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
510 NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
511 while (UN != 0) {
512 NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
513 uint16_t F = A.Addr->getFlags();
514 if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
515 RegisterRef R = A.Addr->getRegRef(DFG);
516 RealUses[R.Reg].insert({A.Id,R.Mask});
518 UN = A.Addr->getSibling();
520 // Visit all reached defs, and add them to the queue. These defs may
521 // override some of the uses collected here, but that will be handled
522 // later.
523 NodeId DN = DA.Addr->getReachedDef();
524 while (DN != 0) {
525 NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
526 for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
527 uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
528 // Must traverse the reached-def chain. Consider:
529 // def(D0) -> def(R0) -> def(R0) -> use(D0)
530 // The reachable use of D0 passes through a def of R0.
531 if (!(Flags & NodeAttrs::PhiRef))
532 DefQ.insert(T.Id);
534 DN = A.Addr->getSibling();
537 // Filter out these uses that appear to be reachable, but really
538 // are not. For example:
540 // R1:0 = d1
541 // = R1:0 u2 Reached by d1.
542 // R0 = d3
543 // = R1:0 u4 Still reached by d1: indirectly through
544 // the def d3.
545 // R1 = d5
546 // = R1:0 u6 Not reached by d1 (covered collectively
547 // by d3 and d5), but following reached
548 // defs and uses from d1 will lead here.
549 for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
550 // For each reached register UI->first, there is a set UI->second, of
551 // uses of it. For each such use, check if it is reached by this phi,
552 // i.e. check if the set of its reaching uses intersects the set of
553 // this phi's defs.
554 NodeRefSet Uses = UI->second;
555 UI->second.clear();
556 for (std::pair<NodeId,LaneBitmask> I : Uses) {
557 auto UA = DFG.addr<UseNode*>(I.first);
558 // Undef flag is checked above.
559 assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
560 RegisterRef R(UI->first, I.second);
561 // Calculate the exposed part of the reached use.
562 RegisterAggr Covered(PRI);
563 for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
564 if (PhiDefs.count(DA.Id))
565 break;
566 Covered.insert(DA.Addr->getRegRef(DFG));
568 if (RegisterRef RC = Covered.clearIn(R)) {
569 // We are updating the map for register UI->first, so we need
570 // to map RC to be expressed in terms of that register.
571 RegisterRef S = PRI.mapTo(RC, UI->first);
572 UI->second.insert({I.first, S.Mask});
575 UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
578 // If this phi reaches some "real" uses, add it to the queue for upward
579 // propagation.
580 if (!RealUses.empty())
581 PhiUQ.push_back(PhiA.Id);
583 // Go over all phi uses and check if the reaching def is another phi.
584 // Collect the phis that are among the reaching defs of these uses.
585 // While traversing the list of reaching defs for each phi use, accumulate
586 // the set of registers defined between this phi (PhiA) and the owner phi
587 // of the reaching def.
588 NodeSet SeenUses;
590 for (auto I : PhiRefs) {
591 if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
592 continue;
593 NodeAddr<PhiUseNode*> PUA = I;
594 if (PUA.Addr->getReachingDef() == 0)
595 continue;
597 RegisterRef UR = PUA.Addr->getRegRef(DFG);
598 NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
599 RegisterAggr DefRRs(PRI);
601 for (NodeAddr<DefNode*> D : Ds) {
602 if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
603 NodeId RP = D.Addr->getOwner(DFG).Id;
604 std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
605 auto F = M.find(RP);
606 if (F == M.end())
607 M.insert(std::make_pair(RP, DefRRs));
608 else
609 F->second.insert(DefRRs);
611 DefRRs.insert(D.Addr->getRegRef(DFG));
614 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
615 SeenUses.insert(T.Id);
619 if (Trace) {
620 dbgs() << "Phi-up-to-phi map with intervening defs:\n";
621 for (auto I : PhiUp) {
622 dbgs() << "phi " << Print(I.first, DFG) << " -> {";
623 for (auto R : I.second)
624 dbgs() << ' ' << Print(R.first, DFG) << Print(R.second, DFG);
625 dbgs() << " }\n";
629 // Propagate the reached registers up in the phi chain.
631 // The following type of situation needs careful handling:
633 // phi d1<R1:0> (1)
634 // |
635 // ... d2<R1>
636 // |
637 // phi u3<R1:0> (2)
638 // |
639 // ... u4<R1>
641 // The phi node (2) defines a register pair R1:0, and reaches a "real"
642 // use u4 of just R1. The same phi node is also known to reach (upwards)
643 // the phi node (1). However, the use u4 is not reached by phi (1),
644 // because of the intervening definition d2 of R1. The data flow between
645 // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
647 // When propagating uses up the phi chains, get the all reaching defs
648 // for a given phi use, and traverse the list until the propagated ref
649 // is covered, or until reaching the final phi. Only assume that the
650 // reference reaches the phi in the latter case.
652 // The operation "clearIn" can be expensive. For a given set of intervening
653 // defs, cache the result of subtracting these defs from a given register
654 // ref.
655 using SubMap = std::unordered_map<RegisterRef, RegisterRef>;
656 std::unordered_map<RegisterAggr, SubMap> Subs;
657 auto ClearIn = [] (RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) {
658 if (Mid.empty())
659 return RR;
660 auto F = SM.find(RR);
661 if (F != SM.end())
662 return F->second;
663 RegisterRef S = Mid.clearIn(RR);
664 SM.insert({RR, S});
665 return S;
668 // Go over all phis.
669 for (unsigned i = 0; i < PhiUQ.size(); ++i) {
670 auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
671 NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
672 RefMap &RUM = RealUseMap[PA.Id];
674 for (NodeAddr<UseNode*> UA : PUs) {
675 std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
676 RegisterRef UR = UA.Addr->getRegRef(DFG);
677 for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
678 bool Changed = false;
679 const RegisterAggr &MidDefs = P.second;
680 // Collect the set PropUp of uses that are reached by the current
681 // phi PA, and are not covered by any intervening def between the
682 // currently visited use UA and the upward phi P.
684 if (MidDefs.hasCoverOf(UR))
685 continue;
686 SubMap &SM = Subs[MidDefs];
688 // General algorithm:
689 // for each (R,U) : U is use node of R, U is reached by PA
690 // if MidDefs does not cover (R,U)
691 // then add (R-MidDefs,U) to RealUseMap[P]
693 for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
694 RegisterRef R(T.first);
695 // The current phi (PA) could be a phi for a regmask. It could
696 // reach a whole variety of uses that are not related to the
697 // specific upward phi (P.first).
698 const RegisterAggr &DRs = PhiDRs.at(P.first);
699 if (!DRs.hasAliasOf(R))
700 continue;
701 R = PRI.mapTo(DRs.intersectWith(R), T.first);
702 for (std::pair<NodeId,LaneBitmask> V : T.second) {
703 LaneBitmask M = R.Mask & V.second;
704 if (M.none())
705 continue;
706 if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) {
707 NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
708 Changed |= RS.insert({V.first,SS.Mask}).second;
713 if (Changed)
714 PhiUQ.push_back(P.first);
719 if (Trace) {
720 dbgs() << "Real use map:\n";
721 for (auto I : RealUseMap) {
722 dbgs() << "phi " << Print(I.first, DFG);
723 NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
724 NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
725 if (!Ds.empty()) {
726 RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
727 dbgs() << '<' << Print(RR, DFG) << '>';
728 } else {
729 dbgs() << "<noreg>";
731 dbgs() << " -> " << Print(I.second, DFG) << '\n';
736 void Liveness::computeLiveIns() {
737 // Populate the node-to-block map. This speeds up the calculations
738 // significantly.
739 NBMap.clear();
740 for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
741 MachineBasicBlock *BB = BA.Addr->getCode();
742 for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
743 for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
744 NBMap.insert(std::make_pair(RA.Id, BB));
745 NBMap.insert(std::make_pair(IA.Id, BB));
749 MachineFunction &MF = DFG.getMF();
751 // Compute IDF first, then the inverse.
752 decltype(IIDF) IDF;
753 for (MachineBasicBlock &B : MF) {
754 auto F1 = MDF.find(&B);
755 if (F1 == MDF.end())
756 continue;
757 SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
758 for (unsigned i = 0; i < IDFB.size(); ++i) {
759 auto F2 = MDF.find(IDFB[i]);
760 if (F2 != MDF.end())
761 IDFB.insert(F2->second.begin(), F2->second.end());
763 // Add B to the IDF(B). This will put B in the IIDF(B).
764 IDFB.insert(&B);
765 IDF[&B].insert(IDFB.begin(), IDFB.end());
768 for (auto I : IDF)
769 for (auto *S : I.second)
770 IIDF[S].insert(I.first);
772 computePhiInfo();
774 NodeAddr<FuncNode*> FA = DFG.getFunc();
775 NodeList Blocks = FA.Addr->members(DFG);
777 // Build the phi live-on-entry map.
778 for (NodeAddr<BlockNode*> BA : Blocks) {
779 MachineBasicBlock *MB = BA.Addr->getCode();
780 RefMap &LON = PhiLON[MB];
781 for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
782 for (const RefMap::value_type &S : RealUseMap[P.Id])
783 LON[S.first].insert(S.second.begin(), S.second.end());
786 if (Trace) {
787 dbgs() << "Phi live-on-entry map:\n";
788 for (auto &I : PhiLON)
789 dbgs() << "block #" << I.first->getNumber() << " -> "
790 << Print(I.second, DFG) << '\n';
793 // Build the phi live-on-exit map. Each phi node has some set of reached
794 // "real" uses. Propagate this set backwards into the block predecessors
795 // through the reaching defs of the corresponding phi uses.
796 for (NodeAddr<BlockNode*> BA : Blocks) {
797 NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
798 for (NodeAddr<PhiNode*> PA : Phis) {
799 RefMap &RUs = RealUseMap[PA.Id];
800 if (RUs.empty())
801 continue;
803 NodeSet SeenUses;
804 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
805 if (!SeenUses.insert(U.Id).second)
806 continue;
807 NodeAddr<PhiUseNode*> PUA = U;
808 if (PUA.Addr->getReachingDef() == 0)
809 continue;
811 // Each phi has some set (possibly empty) of reached "real" uses,
812 // that is, uses that are part of the compiled program. Such a use
813 // may be located in some farther block, but following a chain of
814 // reaching defs will eventually lead to this phi.
815 // Any chain of reaching defs may fork at a phi node, but there
816 // will be a path upwards that will lead to this phi. Now, this
817 // chain will need to fork at this phi, since some of the reached
818 // uses may have definitions joining in from multiple predecessors.
819 // For each reached "real" use, identify the set of reaching defs
820 // coming from each predecessor P, and add them to PhiLOX[P].
822 auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
823 RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
825 for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
826 // We need to visit each individual use.
827 for (std::pair<NodeId,LaneBitmask> P : RS.second) {
828 // Create a register ref corresponding to the use, and find
829 // all reaching defs starting from the phi use, and treating
830 // all related shadows as a single use cluster.
831 RegisterRef S(RS.first, P.second);
832 NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
833 for (NodeAddr<DefNode*> D : Ds) {
834 // Calculate the mask corresponding to the visited def.
835 RegisterAggr TA(PRI);
836 TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
837 LaneBitmask TM = TA.makeRegRef().Mask;
838 LOX[S.Reg].insert({D.Id, TM});
843 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
844 SeenUses.insert(T.Id);
845 } // for U : phi uses
846 } // for P : Phis
847 } // for B : Blocks
849 if (Trace) {
850 dbgs() << "Phi live-on-exit map:\n";
851 for (auto &I : PhiLOX)
852 dbgs() << "block #" << I.first->getNumber() << " -> "
853 << Print(I.second, DFG) << '\n';
856 RefMap LiveIn;
857 traverse(&MF.front(), LiveIn);
859 // Add function live-ins to the live-in set of the function entry block.
860 LiveMap[&MF.front()].insert(DFG.getLiveIns());
862 if (Trace) {
863 // Dump the liveness map
864 for (MachineBasicBlock &B : MF) {
865 std::vector<RegisterRef> LV;
866 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
867 LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask));
868 llvm::sort(LV);
869 dbgs() << printMBBReference(B) << "\t rec = {";
870 for (auto I : LV)
871 dbgs() << ' ' << Print(I, DFG);
872 dbgs() << " }\n";
873 //dbgs() << "\tcomp = " << Print(LiveMap[&B], DFG) << '\n';
875 LV.clear();
876 const RegisterAggr &LG = LiveMap[&B];
877 for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
878 LV.push_back(*I);
879 llvm::sort(LV);
880 dbgs() << "\tcomp = {";
881 for (auto I : LV)
882 dbgs() << ' ' << Print(I, DFG);
883 dbgs() << " }\n";
889 void Liveness::resetLiveIns() {
890 for (auto &B : DFG.getMF()) {
891 // Remove all live-ins.
892 std::vector<unsigned> T;
893 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
894 T.push_back(LI.PhysReg);
895 for (auto I : T)
896 B.removeLiveIn(I);
897 // Add the newly computed live-ins.
898 const RegisterAggr &LiveIns = LiveMap[&B];
899 for (const RegisterRef R : make_range(LiveIns.rr_begin(), LiveIns.rr_end()))
900 B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
904 void Liveness::resetKills() {
905 for (auto &B : DFG.getMF())
906 resetKills(&B);
909 void Liveness::resetKills(MachineBasicBlock *B) {
910 auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
911 for (auto I : B->liveins()) {
912 MCSubRegIndexIterator S(I.PhysReg, &TRI);
913 if (!S.isValid()) {
914 LV.set(I.PhysReg);
915 continue;
917 do {
918 LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
919 if ((M & I.LaneMask).any())
920 LV.set(S.getSubReg());
921 ++S;
922 } while (S.isValid());
926 BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
927 CopyLiveIns(B, LiveIn);
928 for (auto *SI : B->successors())
929 CopyLiveIns(SI, Live);
931 for (MachineInstr &MI : llvm::reverse(*B)) {
932 if (MI.isDebugInstr())
933 continue;
935 MI.clearKillInfo();
936 for (auto &Op : MI.operands()) {
937 // An implicit def of a super-register may not necessarily start a
938 // live range of it, since an implicit use could be used to keep parts
939 // of it live. Instead of analyzing the implicit operands, ignore
940 // implicit defs.
941 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
942 continue;
943 Register R = Op.getReg();
944 if (!Register::isPhysicalRegister(R))
945 continue;
946 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
947 Live.reset(*SR);
949 for (auto &Op : MI.operands()) {
950 if (!Op.isReg() || !Op.isUse() || Op.isUndef())
951 continue;
952 Register R = Op.getReg();
953 if (!Register::isPhysicalRegister(R))
954 continue;
955 bool IsLive = false;
956 for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
957 if (!Live[*AR])
958 continue;
959 IsLive = true;
960 break;
962 if (!IsLive)
963 Op.setIsKill(true);
964 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
965 Live.set(*SR);
970 // Helper function to obtain the basic block containing the reaching def
971 // of the given use.
972 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
973 auto F = NBMap.find(RN);
974 if (F != NBMap.end())
975 return F->second;
976 llvm_unreachable("Node id not in map");
979 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
980 // The LiveIn map, for each (physical) register, contains the set of live
981 // reaching defs of that register that are live on entry to the associated
982 // block.
984 // The summary of the traversal algorithm:
986 // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
987 // and (U \in IDF(B) or B dom U).
989 // for (C : children) {
990 // LU = {}
991 // traverse(C, LU)
992 // LiveUses += LU
993 // }
995 // LiveUses -= Defs(B);
996 // LiveUses += UpwardExposedUses(B);
997 // for (C : IIDF[B])
998 // for (U : LiveUses)
999 // if (Rdef(U) dom C)
1000 // C.addLiveIn(U)
1003 // Go up the dominator tree (depth-first).
1004 MachineDomTreeNode *N = MDT.getNode(B);
1005 for (auto *I : *N) {
1006 RefMap L;
1007 MachineBasicBlock *SB = I->getBlock();
1008 traverse(SB, L);
1010 for (auto S : L)
1011 LiveIn[S.first].insert(S.second.begin(), S.second.end());
1014 if (Trace) {
1015 dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
1016 << " after recursion into: {";
1017 for (auto *I : *N)
1018 dbgs() << ' ' << I->getBlock()->getNumber();
1019 dbgs() << " }\n";
1020 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1021 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n';
1024 // Add reaching defs of phi uses that are live on exit from this block.
1025 RefMap &PUs = PhiLOX[B];
1026 for (auto &S : PUs)
1027 LiveIn[S.first].insert(S.second.begin(), S.second.end());
1029 if (Trace) {
1030 dbgs() << "after LOX\n";
1031 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1032 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n';
1035 // The LiveIn map at this point has all defs that are live-on-exit from B,
1036 // as if they were live-on-entry to B. First, we need to filter out all
1037 // defs that are present in this block. Then we will add reaching defs of
1038 // all upward-exposed uses.
1040 // To filter out the defs, first make a copy of LiveIn, and then re-populate
1041 // LiveIn with the defs that should remain.
1042 RefMap LiveInCopy = LiveIn;
1043 LiveIn.clear();
1045 for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
1046 RegisterRef LRef(LE.first);
1047 NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
1048 const NodeRefSet &OldDefs = LE.second;
1049 for (NodeRef OR : OldDefs) {
1050 // R is a def node that was live-on-exit
1051 auto DA = DFG.addr<DefNode*>(OR.first);
1052 NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1053 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1054 if (B != BA.Addr->getCode()) {
1055 // Defs from a different block need to be preserved. Defs from this
1056 // block will need to be processed further, except for phi defs, the
1057 // liveness of which is handled through the PhiLON/PhiLOX maps.
1058 NewDefs.insert(OR);
1059 continue;
1062 // Defs from this block need to stop the liveness from being
1063 // propagated upwards. This only applies to non-preserving defs,
1064 // and to the parts of the register actually covered by those defs.
1065 // (Note that phi defs should always be preserving.)
1066 RegisterAggr RRs(PRI);
1067 LRef.Mask = OR.second;
1069 if (!DFG.IsPreservingDef(DA)) {
1070 assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1071 // DA is a non-phi def that is live-on-exit from this block, and
1072 // that is also located in this block. LRef is a register ref
1073 // whose use this def reaches. If DA covers LRef, then no part
1074 // of LRef is exposed upwards.A
1075 if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1076 continue;
1079 // DA itself was not sufficient to cover LRef. In general, it is
1080 // the last in a chain of aliased defs before the exit from this block.
1081 // There could be other defs in this block that are a part of that
1082 // chain. Check that now: accumulate the registers from these defs,
1083 // and if they all together cover LRef, it is not live-on-entry.
1084 for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1085 // DefNode -> InstrNode -> BlockNode.
1086 NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1087 NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1088 // Reaching defs are ordered in the upward direction.
1089 if (BTA.Addr->getCode() != B) {
1090 // We have reached past the beginning of B, and the accumulated
1091 // registers are not covering LRef. The first def from the
1092 // upward chain will be live.
1093 // Subtract all accumulated defs (RRs) from LRef.
1094 RegisterRef T = RRs.clearIn(LRef);
1095 assert(T);
1096 NewDefs.insert({TA.Id,T.Mask});
1097 break;
1100 // TA is in B. Only add this def to the accumulated cover if it is
1101 // not preserving.
1102 if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1103 RRs.insert(TA.Addr->getRegRef(DFG));
1104 // If this is enough to cover LRef, then stop.
1105 if (RRs.hasCoverOf(LRef))
1106 break;
1111 emptify(LiveIn);
1113 if (Trace) {
1114 dbgs() << "after defs in block\n";
1115 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1116 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n';
1119 // Scan the block for upward-exposed uses and add them to the tracking set.
1120 for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1121 NodeAddr<InstrNode*> IA = I;
1122 if (IA.Addr->getKind() != NodeAttrs::Stmt)
1123 continue;
1124 for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1125 if (UA.Addr->getFlags() & NodeAttrs::Undef)
1126 continue;
1127 RegisterRef RR = UA.Addr->getRegRef(DFG);
1128 for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1129 if (getBlockWithRef(D.Id) != B)
1130 LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1134 if (Trace) {
1135 dbgs() << "after uses in block\n";
1136 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1137 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n';
1140 // Phi uses should not be propagated up the dominator tree, since they
1141 // are not dominated by their corresponding reaching defs.
1142 RegisterAggr &Local = LiveMap[B];
1143 RefMap &LON = PhiLON[B];
1144 for (auto &R : LON) {
1145 LaneBitmask M;
1146 for (auto P : R.second)
1147 M |= P.second;
1148 Local.insert(RegisterRef(R.first,M));
1151 if (Trace) {
1152 dbgs() << "after phi uses in block\n";
1153 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1154 dbgs() << " Local: " << Print(Local, DFG) << '\n';
1157 for (auto *C : IIDF[B]) {
1158 RegisterAggr &LiveC = LiveMap[C];
1159 for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
1160 for (auto R : S.second)
1161 if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1162 LiveC.insert(RegisterRef(S.first, R.second));
1166 void Liveness::emptify(RefMap &M) {
1167 for (auto I = M.begin(), E = M.end(); I != E; )
1168 I = I->second.empty() ? M.erase(I) : std::next(I);