1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocCommon.h"
32 #include "llvm/CodeGen/RegAllocRegistry.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "regalloc"
52 STATISTIC(NumStores
, "Number of stores added");
53 STATISTIC(NumLoads
, "Number of loads added");
54 STATISTIC(NumCoalesced
, "Number of copies coalesced");
56 // FIXME: Remove this switch when all testcases are fixed!
57 static cl::opt
<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
60 static RegisterRegAlloc
61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator
);
65 class RegAllocFast
: public MachineFunctionPass
{
69 RegAllocFast(const RegClassFilterFunc F
= allocateAllRegClasses
,
70 bool ClearVirtRegs_
= true) :
71 MachineFunctionPass(ID
),
72 ShouldAllocateClass(F
),
73 StackSlotForVirtReg(-1),
74 ClearVirtRegs(ClearVirtRegs_
) {
78 MachineFrameInfo
*MFI
;
79 MachineRegisterInfo
*MRI
;
80 const TargetRegisterInfo
*TRI
;
81 const TargetInstrInfo
*TII
;
82 RegisterClassInfo RegClassInfo
;
83 const RegClassFilterFunc ShouldAllocateClass
;
85 /// Basic block currently being allocated.
86 MachineBasicBlock
*MBB
;
88 /// Maps virtual regs to the frame index where these values are spilled.
89 IndexedMap
<int, VirtReg2IndexFunctor
> StackSlotForVirtReg
;
93 /// Everything we know about a live virtual register.
95 MachineInstr
*LastUse
= nullptr; ///< Last instr to use reg.
96 Register VirtReg
; ///< Virtual register number.
97 MCPhysReg PhysReg
= 0; ///< Currently held here.
98 bool LiveOut
= false; ///< Register is possibly live out.
99 bool Reloaded
= false; ///< Register was reloaded.
100 bool Error
= false; ///< Could not allocate.
102 explicit LiveReg(Register VirtReg
) : VirtReg(VirtReg
) {}
104 unsigned getSparseSetIndex() const {
105 return Register::virtReg2Index(VirtReg
);
109 using LiveRegMap
= SparseSet
<LiveReg
>;
110 /// This map contains entries for each virtual register that is currently
111 /// available in a physical register.
112 LiveRegMap LiveVirtRegs
;
114 /// Stores assigned virtual registers present in the bundle MI.
115 DenseMap
<Register
, MCPhysReg
> BundleVirtRegsMap
;
117 DenseMap
<unsigned, SmallVector
<MachineOperand
*, 2>> LiveDbgValueMap
;
118 /// List of DBG_VALUE that we encountered without the vreg being assigned
119 /// because they were placed after the last use of the vreg.
120 DenseMap
<unsigned, SmallVector
<MachineInstr
*, 1>> DanglingDbgValues
;
122 /// Has a bit set for every virtual register for which it was determined
123 /// that it is alive across blocks.
124 BitVector MayLiveAcrossBlocks
;
126 /// State of a register unit.
128 /// A free register is not currently in use and can be allocated
129 /// immediately without checking aliases.
132 /// A pre-assigned register has been assigned before register allocation
133 /// (e.g., setting up a call parameter).
136 /// Used temporarily in reloadAtBegin() to mark register units that are
137 /// live-in to the basic block.
140 /// A register state may also be a virtual register number, indication
141 /// that the physical register is currently allocated to a virtual
142 /// register. In that case, LiveVirtRegs contains the inverse mapping.
145 /// Maps each physical register to a RegUnitState enum or virtual register.
146 std::vector
<unsigned> RegUnitStates
;
148 SmallVector
<MachineInstr
*, 32> Coalesced
;
150 using RegUnitSet
= SparseSet
<uint16_t, identity
<uint16_t>>;
151 /// Set of register units that are used in the current instruction, and so
152 /// cannot be allocated.
153 RegUnitSet UsedInInstr
;
154 RegUnitSet PhysRegUses
;
155 SmallVector
<uint16_t, 8> DefOperandIndexes
;
156 // Register masks attached to the current instruction.
157 SmallVector
<const uint32_t *> RegMasks
;
159 void setPhysRegState(MCPhysReg PhysReg
, unsigned NewState
);
160 bool isPhysRegFree(MCPhysReg PhysReg
) const;
162 /// Mark a physreg as used in this instruction.
163 void markRegUsedInInstr(MCPhysReg PhysReg
) {
164 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
)
165 UsedInInstr
.insert(*Units
);
168 // Check if physreg is clobbered by instruction's regmask(s).
169 bool isClobberedByRegMasks(MCPhysReg PhysReg
) const {
170 return llvm::any_of(RegMasks
, [PhysReg
](const uint32_t *Mask
) {
171 return MachineOperand::clobbersPhysReg(Mask
, PhysReg
);
175 /// Check if a physreg or any of its aliases are used in this instruction.
176 bool isRegUsedInInstr(MCPhysReg PhysReg
, bool LookAtPhysRegUses
) const {
177 if (LookAtPhysRegUses
&& isClobberedByRegMasks(PhysReg
))
179 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
180 if (UsedInInstr
.count(*Units
))
182 if (LookAtPhysRegUses
&& PhysRegUses
.count(*Units
))
188 /// Mark physical register as being used in a register use operand.
189 /// This is only used by the special livethrough handling code.
190 void markPhysRegUsedInInstr(MCPhysReg PhysReg
) {
191 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
)
192 PhysRegUses
.insert(*Units
);
195 /// Remove mark of physical register being used in the instruction.
196 void unmarkRegUsedInInstr(MCPhysReg PhysReg
) {
197 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
)
198 UsedInInstr
.erase(*Units
);
205 spillImpossible
= ~0u
209 StringRef
getPassName() const override
{ return "Fast Register Allocator"; }
211 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
212 AU
.setPreservesCFG();
213 MachineFunctionPass::getAnalysisUsage(AU
);
216 MachineFunctionProperties
getRequiredProperties() const override
{
217 return MachineFunctionProperties().set(
218 MachineFunctionProperties::Property::NoPHIs
);
221 MachineFunctionProperties
getSetProperties() const override
{
223 return MachineFunctionProperties().set(
224 MachineFunctionProperties::Property::NoVRegs
);
227 return MachineFunctionProperties();
230 MachineFunctionProperties
getClearedProperties() const override
{
231 return MachineFunctionProperties().set(
232 MachineFunctionProperties::Property::IsSSA
);
236 bool runOnMachineFunction(MachineFunction
&MF
) override
;
238 void allocateBasicBlock(MachineBasicBlock
&MBB
);
240 void addRegClassDefCounts(std::vector
<unsigned> &RegClassDefCounts
,
243 void allocateInstruction(MachineInstr
&MI
);
244 void handleDebugValue(MachineInstr
&MI
);
245 void handleBundle(MachineInstr
&MI
);
247 bool usePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
);
248 bool definePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
);
249 bool displacePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
);
250 void freePhysReg(MCPhysReg PhysReg
);
252 unsigned calcSpillCost(MCPhysReg PhysReg
) const;
254 LiveRegMap::iterator
findLiveVirtReg(Register VirtReg
) {
255 return LiveVirtRegs
.find(Register::virtReg2Index(VirtReg
));
258 LiveRegMap::const_iterator
findLiveVirtReg(Register VirtReg
) const {
259 return LiveVirtRegs
.find(Register::virtReg2Index(VirtReg
));
262 void assignVirtToPhysReg(MachineInstr
&MI
, LiveReg
&, MCPhysReg PhysReg
);
263 void allocVirtReg(MachineInstr
&MI
, LiveReg
&LR
, Register Hint
,
264 bool LookAtPhysRegUses
= false);
265 void allocVirtRegUndef(MachineOperand
&MO
);
266 void assignDanglingDebugValues(MachineInstr
&Def
, Register VirtReg
,
268 void defineLiveThroughVirtReg(MachineInstr
&MI
, unsigned OpNum
,
270 void defineVirtReg(MachineInstr
&MI
, unsigned OpNum
, Register VirtReg
,
271 bool LookAtPhysRegUses
= false);
272 void useVirtReg(MachineInstr
&MI
, unsigned OpNum
, Register VirtReg
);
274 MachineBasicBlock::iterator
275 getMBBBeginInsertionPoint(MachineBasicBlock
&MBB
,
276 SmallSet
<Register
, 2> &PrologLiveIns
) const;
278 void reloadAtBegin(MachineBasicBlock
&MBB
);
279 void setPhysReg(MachineInstr
&MI
, MachineOperand
&MO
, MCPhysReg PhysReg
);
281 Register
traceCopies(Register VirtReg
) const;
282 Register
traceCopyChain(Register Reg
) const;
284 bool shouldAllocateRegister(const Register Reg
) const;
285 int getStackSpaceFor(Register VirtReg
);
286 void spill(MachineBasicBlock::iterator Before
, Register VirtReg
,
287 MCPhysReg AssignedReg
, bool Kill
, bool LiveOut
);
288 void reload(MachineBasicBlock::iterator Before
, Register VirtReg
,
291 bool mayLiveOut(Register VirtReg
);
292 bool mayLiveIn(Register VirtReg
);
294 void dumpState() const;
297 } // end anonymous namespace
299 char RegAllocFast::ID
= 0;
301 INITIALIZE_PASS(RegAllocFast
, "regallocfast", "Fast Register Allocator", false,
304 bool RegAllocFast::shouldAllocateRegister(const Register Reg
) const {
305 assert(Register::isVirtualRegister(Reg
));
306 const TargetRegisterClass
&RC
= *MRI
->getRegClass(Reg
);
307 return ShouldAllocateClass(*TRI
, RC
);
310 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg
, unsigned NewState
) {
311 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
)
312 RegUnitStates
[*UI
] = NewState
;
315 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg
) const {
316 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
) {
317 if (RegUnitStates
[*UI
] != regFree
)
323 /// This allocates space for the specified virtual register to be held on the
325 int RegAllocFast::getStackSpaceFor(Register VirtReg
) {
326 // Find the location Reg would belong...
327 int SS
= StackSlotForVirtReg
[VirtReg
];
328 // Already has space allocated?
332 // Allocate a new stack object for this spill location...
333 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
334 unsigned Size
= TRI
->getSpillSize(RC
);
335 Align Alignment
= TRI
->getSpillAlign(RC
);
336 int FrameIdx
= MFI
->CreateSpillStackObject(Size
, Alignment
);
339 StackSlotForVirtReg
[VirtReg
] = FrameIdx
;
343 static bool dominates(MachineBasicBlock
&MBB
,
344 MachineBasicBlock::const_iterator A
,
345 MachineBasicBlock::const_iterator B
) {
346 auto MBBEnd
= MBB
.end();
350 MachineBasicBlock::const_iterator I
= MBB
.begin();
351 for (; &*I
!= A
&& &*I
!= B
; ++I
)
357 /// Returns false if \p VirtReg is known to not live out of the current block.
358 bool RegAllocFast::mayLiveOut(Register VirtReg
) {
359 if (MayLiveAcrossBlocks
.test(Register::virtReg2Index(VirtReg
))) {
360 // Cannot be live-out if there are no successors.
361 return !MBB
->succ_empty();
364 const MachineInstr
*SelfLoopDef
= nullptr;
366 // If this block loops back to itself, it is necessary to check whether the
367 // use comes after the def.
368 if (MBB
->isSuccessor(MBB
)) {
369 // Find the first def in the self loop MBB.
370 for (const MachineInstr
&DefInst
: MRI
->def_instructions(VirtReg
)) {
371 if (DefInst
.getParent() != MBB
) {
372 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
375 if (!SelfLoopDef
|| dominates(*MBB
, DefInst
.getIterator(), SelfLoopDef
))
376 SelfLoopDef
= &DefInst
;
380 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
385 // See if the first \p Limit uses of the register are all in the current
387 static const unsigned Limit
= 8;
389 for (const MachineInstr
&UseInst
: MRI
->use_nodbg_instructions(VirtReg
)) {
390 if (UseInst
.getParent() != MBB
|| ++C
>= Limit
) {
391 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
392 // Cannot be live-out if there are no successors.
393 return !MBB
->succ_empty();
397 // Try to handle some simple cases to avoid spilling and reloading every
398 // value inside a self looping block.
399 if (SelfLoopDef
== &UseInst
||
400 !dominates(*MBB
, SelfLoopDef
->getIterator(), UseInst
.getIterator())) {
401 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
410 /// Returns false if \p VirtReg is known to not be live into the current block.
411 bool RegAllocFast::mayLiveIn(Register VirtReg
) {
412 if (MayLiveAcrossBlocks
.test(Register::virtReg2Index(VirtReg
)))
413 return !MBB
->pred_empty();
415 // See if the first \p Limit def of the register are all in the current block.
416 static const unsigned Limit
= 8;
418 for (const MachineInstr
&DefInst
: MRI
->def_instructions(VirtReg
)) {
419 if (DefInst
.getParent() != MBB
|| ++C
>= Limit
) {
420 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
421 return !MBB
->pred_empty();
428 /// Insert spill instruction for \p AssignedReg before \p Before. Update
429 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
430 void RegAllocFast::spill(MachineBasicBlock::iterator Before
, Register VirtReg
,
431 MCPhysReg AssignedReg
, bool Kill
, bool LiveOut
) {
432 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg
, TRI
)
433 << " in " << printReg(AssignedReg
, TRI
));
434 int FI
= getStackSpaceFor(VirtReg
);
435 LLVM_DEBUG(dbgs() << " to stack slot #" << FI
<< '\n');
437 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
438 TII
->storeRegToStackSlot(*MBB
, Before
, AssignedReg
, Kill
, FI
, &RC
, TRI
);
441 MachineBasicBlock::iterator FirstTerm
= MBB
->getFirstTerminator();
443 // When we spill a virtual register, we will have spill instructions behind
444 // every definition of it, meaning we can switch all the DBG_VALUEs over
445 // to just reference the stack slot.
446 SmallVectorImpl
<MachineOperand
*> &LRIDbgOperands
= LiveDbgValueMap
[VirtReg
];
447 SmallMapVector
<MachineInstr
*, SmallVector
<const MachineOperand
*>, 2>
449 for (MachineOperand
*MO
: LRIDbgOperands
)
450 SpilledOperandsMap
[MO
->getParent()].push_back(MO
);
451 for (auto MISpilledOperands
: SpilledOperandsMap
) {
452 MachineInstr
&DBG
= *MISpilledOperands
.first
;
453 MachineInstr
*NewDV
= buildDbgValueForSpill(
454 *MBB
, Before
, *MISpilledOperands
.first
, FI
, MISpilledOperands
.second
);
455 assert(NewDV
->getParent() == MBB
&& "dangling parent pointer");
457 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV
);
460 // We need to insert a DBG_VALUE at the end of the block if the spill slot
461 // is live out, but there is another use of the value after the
462 // spill. This will allow LiveDebugValues to see the correct live out
463 // value to propagate to the successors.
464 MachineInstr
*ClonedDV
= MBB
->getParent()->CloneMachineInstr(NewDV
);
465 MBB
->insert(FirstTerm
, ClonedDV
);
466 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
469 // Rewrite unassigned dbg_values to use the stack slot.
470 // TODO We can potentially do this for list debug values as well if we know
471 // how the dbg_values are getting unassigned.
472 if (DBG
.isNonListDebugValue()) {
473 MachineOperand
&MO
= DBG
.getDebugOperand(0);
474 if (MO
.isReg() && MO
.getReg() == 0) {
475 updateDbgValueForSpill(DBG
, FI
, 0);
479 // Now this register is spilled there is should not be any DBG_VALUE
480 // pointing to this register because they are all pointing to spilled value
482 LRIDbgOperands
.clear();
485 /// Insert reload instruction for \p PhysReg before \p Before.
486 void RegAllocFast::reload(MachineBasicBlock::iterator Before
, Register VirtReg
,
488 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg
, TRI
) << " into "
489 << printReg(PhysReg
, TRI
) << '\n');
490 int FI
= getStackSpaceFor(VirtReg
);
491 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
492 TII
->loadRegFromStackSlot(*MBB
, Before
, PhysReg
, FI
, &RC
, TRI
);
496 /// Get basic block begin insertion point.
497 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
498 /// instructions marking the begin of a basic block. This means we must insert
499 /// new instructions after such labels...
500 MachineBasicBlock::iterator
501 RegAllocFast::getMBBBeginInsertionPoint(
502 MachineBasicBlock
&MBB
, SmallSet
<Register
, 2> &PrologLiveIns
) const {
503 MachineBasicBlock::iterator I
= MBB
.begin();
504 while (I
!= MBB
.end()) {
510 // Most reloads should be inserted after prolog instructions.
511 if (!TII
->isBasicBlockPrologue(*I
))
514 // However if a prolog instruction reads a register that needs to be
515 // reloaded, the reload should be inserted before the prolog.
516 for (MachineOperand
&MO
: I
->operands()) {
518 PrologLiveIns
.insert(MO
.getReg());
527 /// Reload all currently assigned virtual registers.
528 void RegAllocFast::reloadAtBegin(MachineBasicBlock
&MBB
) {
529 if (LiveVirtRegs
.empty())
532 for (MachineBasicBlock::RegisterMaskPair P
: MBB
.liveins()) {
533 MCPhysReg Reg
= P
.PhysReg
;
534 // Set state to live-in. This possibly overrides mappings to virtual
535 // registers but we don't care anymore at this point.
536 setPhysRegState(Reg
, regLiveIn
);
540 SmallSet
<Register
, 2> PrologLiveIns
;
542 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
543 // of spilling here is deterministic, if arbitrary.
544 MachineBasicBlock::iterator InsertBefore
545 = getMBBBeginInsertionPoint(MBB
, PrologLiveIns
);
546 for (const LiveReg
&LR
: LiveVirtRegs
) {
547 MCPhysReg PhysReg
= LR
.PhysReg
;
551 MCRegister FirstUnit
= *MCRegUnitIterator(PhysReg
, TRI
);
552 if (RegUnitStates
[FirstUnit
] == regLiveIn
)
555 assert((&MBB
!= &MBB
.getParent()->front() || IgnoreMissingDefs
) &&
556 "no reload in start block. Missing vreg def?");
558 if (PrologLiveIns
.count(PhysReg
)) {
559 // FIXME: Theoretically this should use an insert point skipping labels
560 // but I'm not sure how labels should interact with prolog instruction
561 // that need reloads.
562 reload(MBB
.begin(), LR
.VirtReg
, PhysReg
);
564 reload(InsertBefore
, LR
.VirtReg
, PhysReg
);
566 LiveVirtRegs
.clear();
569 /// Handle the direct use of a physical register. Check that the register is
570 /// not used by a virtreg. Kill the physreg, marking it free. This may add
571 /// implicit kills to MO->getParent() and invalidate MO.
572 bool RegAllocFast::usePhysReg(MachineInstr
&MI
, MCPhysReg Reg
) {
573 assert(Register::isPhysicalRegister(Reg
) && "expected physreg");
574 bool displacedAny
= displacePhysReg(MI
, Reg
);
575 setPhysRegState(Reg
, regPreAssigned
);
576 markRegUsedInInstr(Reg
);
580 bool RegAllocFast::definePhysReg(MachineInstr
&MI
, MCPhysReg Reg
) {
581 bool displacedAny
= displacePhysReg(MI
, Reg
);
582 setPhysRegState(Reg
, regPreAssigned
);
586 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
587 /// similar to defineVirtReg except the physreg is reserved instead of
589 bool RegAllocFast::displacePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
) {
590 bool displacedAny
= false;
592 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
) {
594 switch (unsigned VirtReg
= RegUnitStates
[Unit
]) {
596 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
597 assert(LRI
!= LiveVirtRegs
.end() && "datastructures in sync");
598 MachineBasicBlock::iterator ReloadBefore
=
599 std::next((MachineBasicBlock::iterator
)MI
.getIterator());
600 reload(ReloadBefore
, VirtReg
, LRI
->PhysReg
);
602 setPhysRegState(LRI
->PhysReg
, regFree
);
604 LRI
->Reloaded
= true;
609 RegUnitStates
[Unit
] = regFree
;
619 void RegAllocFast::freePhysReg(MCPhysReg PhysReg
) {
620 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg
, TRI
) << ':');
622 MCRegister FirstUnit
= *MCRegUnitIterator(PhysReg
, TRI
);
623 switch (unsigned VirtReg
= RegUnitStates
[FirstUnit
]) {
625 LLVM_DEBUG(dbgs() << '\n');
628 LLVM_DEBUG(dbgs() << '\n');
629 setPhysRegState(PhysReg
, regFree
);
632 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
633 assert(LRI
!= LiveVirtRegs
.end());
634 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI
->VirtReg
, TRI
) << '\n');
635 setPhysRegState(LRI
->PhysReg
, regFree
);
642 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
643 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
644 /// disabled - it can be allocated directly.
645 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
646 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg
) const {
647 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
) {
648 switch (unsigned VirtReg
= RegUnitStates
[*UI
]) {
652 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
653 << printReg(PhysReg
, TRI
) << '\n');
654 return spillImpossible
;
656 bool SureSpill
= StackSlotForVirtReg
[VirtReg
] != -1 ||
657 findLiveVirtReg(VirtReg
)->LiveOut
;
658 return SureSpill
? spillClean
: spillDirty
;
665 void RegAllocFast::assignDanglingDebugValues(MachineInstr
&Definition
,
666 Register VirtReg
, MCPhysReg Reg
) {
667 auto UDBGValIter
= DanglingDbgValues
.find(VirtReg
);
668 if (UDBGValIter
== DanglingDbgValues
.end())
671 SmallVectorImpl
<MachineInstr
*> &Dangling
= UDBGValIter
->second
;
672 for (MachineInstr
*DbgValue
: Dangling
) {
673 assert(DbgValue
->isDebugValue());
674 if (!DbgValue
->hasDebugOperandForReg(VirtReg
))
677 // Test whether the physreg survives from the definition to the DBG_VALUE.
678 MCPhysReg SetToReg
= Reg
;
680 for (MachineBasicBlock::iterator I
= std::next(Definition
.getIterator()),
681 E
= DbgValue
->getIterator(); I
!= E
; ++I
) {
682 if (I
->modifiesRegister(Reg
, TRI
) || --Limit
== 0) {
683 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
689 for (MachineOperand
&MO
: DbgValue
->getDebugOperandsForReg(VirtReg
)) {
698 /// This method updates local state so that we know that PhysReg is the
699 /// proper container for VirtReg now. The physical register must not be used
700 /// for anything else when this is called.
701 void RegAllocFast::assignVirtToPhysReg(MachineInstr
&AtMI
, LiveReg
&LR
,
703 Register VirtReg
= LR
.VirtReg
;
704 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg
, TRI
) << " to "
705 << printReg(PhysReg
, TRI
) << '\n');
706 assert(LR
.PhysReg
== 0 && "Already assigned a physreg");
707 assert(PhysReg
!= 0 && "Trying to assign no register");
708 LR
.PhysReg
= PhysReg
;
709 setPhysRegState(PhysReg
, VirtReg
);
711 assignDanglingDebugValues(AtMI
, VirtReg
, PhysReg
);
714 static bool isCoalescable(const MachineInstr
&MI
) {
715 return MI
.isFullCopy();
718 Register
RegAllocFast::traceCopyChain(Register Reg
) const {
719 static const unsigned ChainLengthLimit
= 3;
722 if (Reg
.isPhysical())
724 assert(Reg
.isVirtual());
726 MachineInstr
*VRegDef
= MRI
->getUniqueVRegDef(Reg
);
727 if (!VRegDef
|| !isCoalescable(*VRegDef
))
729 Reg
= VRegDef
->getOperand(1).getReg();
730 } while (++C
<= ChainLengthLimit
);
734 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
735 /// chain of copies to check whether we reach a physical register we can
737 Register
RegAllocFast::traceCopies(Register VirtReg
) const {
738 static const unsigned DefLimit
= 3;
740 for (const MachineInstr
&MI
: MRI
->def_instructions(VirtReg
)) {
741 if (isCoalescable(MI
)) {
742 Register Reg
= MI
.getOperand(1).getReg();
743 Reg
= traceCopyChain(Reg
);
754 /// Allocates a physical register for VirtReg.
755 void RegAllocFast::allocVirtReg(MachineInstr
&MI
, LiveReg
&LR
,
756 Register Hint0
, bool LookAtPhysRegUses
) {
757 const Register VirtReg
= LR
.VirtReg
;
758 assert(LR
.PhysReg
== 0);
760 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
761 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg
)
762 << " in class " << TRI
->getRegClassName(&RC
)
763 << " with hint " << printReg(Hint0
, TRI
) << '\n');
765 // Take hint when possible.
766 if (Hint0
.isPhysical() && MRI
->isAllocatable(Hint0
) && RC
.contains(Hint0
) &&
767 !isRegUsedInInstr(Hint0
, LookAtPhysRegUses
)) {
768 // Take hint if the register is currently free.
769 if (isPhysRegFree(Hint0
)) {
770 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0
, TRI
)
772 assignVirtToPhysReg(MI
, LR
, Hint0
);
775 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0
, TRI
)
784 Register Hint1
= traceCopies(VirtReg
);
785 if (Hint1
.isPhysical() && MRI
->isAllocatable(Hint1
) && RC
.contains(Hint1
) &&
786 !isRegUsedInInstr(Hint1
, LookAtPhysRegUses
)) {
787 // Take hint if the register is currently free.
788 if (isPhysRegFree(Hint1
)) {
789 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1
, TRI
)
791 assignVirtToPhysReg(MI
, LR
, Hint1
);
794 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1
, TRI
)
801 MCPhysReg BestReg
= 0;
802 unsigned BestCost
= spillImpossible
;
803 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
804 for (MCPhysReg PhysReg
: AllocationOrder
) {
805 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg
, TRI
) << ' ');
806 if (isRegUsedInInstr(PhysReg
, LookAtPhysRegUses
)) {
807 LLVM_DEBUG(dbgs() << "already used in instr.\n");
811 unsigned Cost
= calcSpillCost(PhysReg
);
812 LLVM_DEBUG(dbgs() << "Cost: " << Cost
<< " BestCost: " << BestCost
<< '\n');
813 // Immediate take a register with cost 0.
815 assignVirtToPhysReg(MI
, LR
, PhysReg
);
819 if (PhysReg
== Hint0
|| PhysReg
== Hint1
)
820 Cost
-= spillPrefBonus
;
822 if (Cost
< BestCost
) {
829 // Nothing we can do: Report an error and keep going with an invalid
831 if (MI
.isInlineAsm())
832 MI
.emitError("inline assembly requires more registers than available");
834 MI
.emitError("ran out of registers during register allocation");
841 displacePhysReg(MI
, BestReg
);
842 assignVirtToPhysReg(MI
, LR
, BestReg
);
845 void RegAllocFast::allocVirtRegUndef(MachineOperand
&MO
) {
846 assert(MO
.isUndef() && "expected undef use");
847 Register VirtReg
= MO
.getReg();
848 assert(Register::isVirtualRegister(VirtReg
) && "Expected virtreg");
849 if (!shouldAllocateRegister(VirtReg
))
852 LiveRegMap::const_iterator LRI
= findLiveVirtReg(VirtReg
);
854 if (LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
) {
855 PhysReg
= LRI
->PhysReg
;
857 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
858 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
859 assert(!AllocationOrder
.empty() && "Allocation order must not be empty");
860 PhysReg
= AllocationOrder
[0];
863 unsigned SubRegIdx
= MO
.getSubReg();
864 if (SubRegIdx
!= 0) {
865 PhysReg
= TRI
->getSubReg(PhysReg
, SubRegIdx
);
869 MO
.setIsRenamable(true);
872 /// Variation of defineVirtReg() with special handling for livethrough regs
873 /// (tied or earlyclobber) that may interfere with preassigned uses.
874 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr
&MI
, unsigned OpNum
,
876 if (!shouldAllocateRegister(VirtReg
))
878 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
879 if (LRI
!= LiveVirtRegs
.end()) {
880 MCPhysReg PrevReg
= LRI
->PhysReg
;
881 if (PrevReg
!= 0 && isRegUsedInInstr(PrevReg
, true)) {
882 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg
, TRI
)
883 << " (tied/earlyclobber resolution)\n");
884 freePhysReg(PrevReg
);
886 allocVirtReg(MI
, *LRI
, 0, true);
887 MachineBasicBlock::iterator InsertBefore
=
888 std::next((MachineBasicBlock::iterator
)MI
.getIterator());
889 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI
->PhysReg
, TRI
) << " to "
890 << printReg(PrevReg
, TRI
) << '\n');
891 BuildMI(*MBB
, InsertBefore
, MI
.getDebugLoc(),
892 TII
->get(TargetOpcode::COPY
), PrevReg
)
893 .addReg(LRI
->PhysReg
, llvm::RegState::Kill
);
895 MachineOperand
&MO
= MI
.getOperand(OpNum
);
896 if (MO
.getSubReg() && !MO
.isUndef()) {
900 return defineVirtReg(MI
, OpNum
, VirtReg
, true);
903 /// Allocates a register for VirtReg definition. Typically the register is
904 /// already assigned from a use of the virtreg, however we still need to
905 /// perform an allocation if:
906 /// - It is a dead definition without any uses.
907 /// - The value is live out and all uses are in different basic blocks.
908 void RegAllocFast::defineVirtReg(MachineInstr
&MI
, unsigned OpNum
,
909 Register VirtReg
, bool LookAtPhysRegUses
) {
910 assert(VirtReg
.isVirtual() && "Not a virtual register");
911 if (!shouldAllocateRegister(VirtReg
))
913 MachineOperand
&MO
= MI
.getOperand(OpNum
);
914 LiveRegMap::iterator LRI
;
916 std::tie(LRI
, New
) = LiveVirtRegs
.insert(LiveReg(VirtReg
));
919 if (mayLiveOut(VirtReg
)) {
922 // It is a dead def without the dead flag; add the flag now.
927 if (LRI
->PhysReg
== 0)
928 allocVirtReg(MI
, *LRI
, 0, LookAtPhysRegUses
);
930 assert(!isRegUsedInInstr(LRI
->PhysReg
, LookAtPhysRegUses
) &&
931 "TODO: preassign mismatch");
932 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg
, TRI
)
933 << " use existing assignment to "
934 << printReg(LRI
->PhysReg
, TRI
) << '\n');
937 MCPhysReg PhysReg
= LRI
->PhysReg
;
938 assert(PhysReg
!= 0 && "Register not assigned");
939 if (LRI
->Reloaded
|| LRI
->LiveOut
) {
940 if (!MI
.isImplicitDef()) {
941 MachineBasicBlock::iterator SpillBefore
=
942 std::next((MachineBasicBlock::iterator
)MI
.getIterator());
943 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI
->LiveOut
<< " RL: "
944 << LRI
->Reloaded
<< '\n');
945 bool Kill
= LRI
->LastUse
== nullptr;
946 spill(SpillBefore
, VirtReg
, PhysReg
, Kill
, LRI
->LiveOut
);
947 LRI
->LastUse
= nullptr;
949 LRI
->LiveOut
= false;
950 LRI
->Reloaded
= false;
952 if (MI
.getOpcode() == TargetOpcode::BUNDLE
) {
953 BundleVirtRegsMap
[VirtReg
] = PhysReg
;
955 markRegUsedInInstr(PhysReg
);
956 setPhysReg(MI
, MO
, PhysReg
);
959 /// Allocates a register for a VirtReg use.
960 void RegAllocFast::useVirtReg(MachineInstr
&MI
, unsigned OpNum
,
962 assert(VirtReg
.isVirtual() && "Not a virtual register");
963 if (!shouldAllocateRegister(VirtReg
))
965 MachineOperand
&MO
= MI
.getOperand(OpNum
);
966 LiveRegMap::iterator LRI
;
968 std::tie(LRI
, New
) = LiveVirtRegs
.insert(LiveReg(VirtReg
));
970 MachineOperand
&MO
= MI
.getOperand(OpNum
);
972 if (mayLiveOut(VirtReg
)) {
975 // It is a last (killing) use without the kill flag; add the flag now.
980 assert((!MO
.isKill() || LRI
->LastUse
== &MI
) && "Invalid kill flag");
983 // If necessary allocate a register.
984 if (LRI
->PhysReg
== 0) {
985 assert(!MO
.isTied() && "tied op should be allocated");
987 if (MI
.isCopy() && MI
.getOperand(1).getSubReg() == 0) {
988 Hint
= MI
.getOperand(0).getReg();
989 if (Hint
.isVirtual()) {
990 assert(!shouldAllocateRegister(Hint
));
993 assert(Hint
.isPhysical() &&
994 "Copy destination should already be assigned");
997 allocVirtReg(MI
, *LRI
, Hint
, false);
999 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
1000 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
1001 setPhysReg(MI
, MO
, *AllocationOrder
.begin());
1008 if (MI
.getOpcode() == TargetOpcode::BUNDLE
) {
1009 BundleVirtRegsMap
[VirtReg
] = LRI
->PhysReg
;
1011 markRegUsedInInstr(LRI
->PhysReg
);
1012 setPhysReg(MI
, MO
, LRI
->PhysReg
);
1015 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
1016 /// may invalidate any operand pointers. Return true if the operand kills its
1018 void RegAllocFast::setPhysReg(MachineInstr
&MI
, MachineOperand
&MO
,
1019 MCPhysReg PhysReg
) {
1020 if (!MO
.getSubReg()) {
1022 MO
.setIsRenamable(true);
1026 // Handle subregister index.
1027 MO
.setReg(PhysReg
? TRI
->getSubReg(PhysReg
, MO
.getSubReg()) : MCRegister());
1028 MO
.setIsRenamable(true);
1029 // Note: We leave the subreg number around a little longer in case of defs.
1030 // This is so that the register freeing logic in allocateInstruction can still
1031 // recognize this as subregister defs. The code there will clear the number.
1035 // A kill flag implies killing the full register. Add corresponding super
1038 MI
.addRegisterKilled(PhysReg
, TRI
, true);
1042 // A <def,read-undef> of a sub-register requires an implicit def of the full
1044 if (MO
.isDef() && MO
.isUndef()) {
1046 MI
.addRegisterDead(PhysReg
, TRI
, true);
1048 MI
.addRegisterDefined(PhysReg
, TRI
);
1054 void RegAllocFast::dumpState() const {
1055 for (unsigned Unit
= 1, UnitE
= TRI
->getNumRegUnits(); Unit
!= UnitE
;
1057 switch (unsigned VirtReg
= RegUnitStates
[Unit
]) {
1060 case regPreAssigned
:
1061 dbgs() << " " << printRegUnit(Unit
, TRI
) << "[P]";
1064 llvm_unreachable("Should not have regLiveIn in map");
1066 dbgs() << ' ' << printRegUnit(Unit
, TRI
) << '=' << printReg(VirtReg
);
1067 LiveRegMap::const_iterator I
= findLiveVirtReg(VirtReg
);
1068 assert(I
!= LiveVirtRegs
.end() && "have LiveVirtRegs entry");
1069 if (I
->LiveOut
|| I
->Reloaded
) {
1071 if (I
->LiveOut
) dbgs() << 'O';
1072 if (I
->Reloaded
) dbgs() << 'R';
1075 assert(TRI
->hasRegUnit(I
->PhysReg
, Unit
) && "inverse mapping present");
1081 // Check that LiveVirtRegs is the inverse.
1082 for (const LiveReg
&LR
: LiveVirtRegs
) {
1083 Register VirtReg
= LR
.VirtReg
;
1084 assert(VirtReg
.isVirtual() && "Bad map key");
1085 MCPhysReg PhysReg
= LR
.PhysReg
;
1087 assert(Register::isPhysicalRegister(PhysReg
) &&
1088 "mapped to physreg");
1089 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
) {
1090 assert(RegUnitStates
[*UI
] == VirtReg
&& "inverse map valid");
1097 /// Count number of defs consumed from each register class by \p Reg
1098 void RegAllocFast::addRegClassDefCounts(std::vector
<unsigned> &RegClassDefCounts
,
1099 Register Reg
) const {
1100 assert(RegClassDefCounts
.size() == TRI
->getNumRegClasses());
1102 if (Reg
.isVirtual()) {
1103 if (!shouldAllocateRegister(Reg
))
1105 const TargetRegisterClass
*OpRC
= MRI
->getRegClass(Reg
);
1106 for (unsigned RCIdx
= 0, RCIdxEnd
= TRI
->getNumRegClasses();
1107 RCIdx
!= RCIdxEnd
; ++RCIdx
) {
1108 const TargetRegisterClass
*IdxRC
= TRI
->getRegClass(RCIdx
);
1109 // FIXME: Consider aliasing sub/super registers.
1110 if (OpRC
->hasSubClassEq(IdxRC
))
1111 ++RegClassDefCounts
[RCIdx
];
1117 for (unsigned RCIdx
= 0, RCIdxEnd
= TRI
->getNumRegClasses();
1118 RCIdx
!= RCIdxEnd
; ++RCIdx
) {
1119 const TargetRegisterClass
*IdxRC
= TRI
->getRegClass(RCIdx
);
1120 for (MCRegAliasIterator
Alias(Reg
, TRI
, true); Alias
.isValid(); ++Alias
) {
1121 if (IdxRC
->contains(*Alias
)) {
1122 ++RegClassDefCounts
[RCIdx
];
1129 void RegAllocFast::allocateInstruction(MachineInstr
&MI
) {
1130 // The basic algorithm here is:
1131 // 1. Mark registers of def operands as free
1132 // 2. Allocate registers to use operands and place reload instructions for
1133 // registers displaced by the allocation.
1135 // However we need to handle some corner cases:
1136 // - pre-assigned defs and uses need to be handled before the other def/use
1137 // operands are processed to avoid the allocation heuristics clashing with
1138 // the pre-assignment.
1139 // - The "free def operands" step has to come last instead of first for tied
1140 // operands and early-clobbers.
1142 UsedInInstr
.clear();
1144 BundleVirtRegsMap
.clear();
1146 auto TiedOpIsUndef
= [&](const MachineOperand
&MO
, unsigned Idx
) {
1147 assert(MO
.isTied());
1148 unsigned TiedIdx
= MI
.findTiedOperandIdx(Idx
);
1149 const MachineOperand
&TiedMO
= MI
.getOperand(TiedIdx
);
1150 return TiedMO
.isUndef();
1152 // Scan for special cases; Apply pre-assigned register defs to state.
1153 bool HasPhysRegUse
= false;
1154 bool HasRegMask
= false;
1155 bool HasVRegDef
= false;
1156 bool HasDef
= false;
1157 bool HasEarlyClobber
= false;
1158 bool NeedToAssignLiveThroughs
= false;
1159 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
) {
1160 MachineOperand
&MO
= MI
.getOperand(I
);
1162 Register Reg
= MO
.getReg();
1163 if (Reg
.isVirtual()) {
1164 if (!shouldAllocateRegister(Reg
))
1169 if (MO
.isEarlyClobber()) {
1170 HasEarlyClobber
= true;
1171 NeedToAssignLiveThroughs
= true;
1173 if ((MO
.isTied() && !TiedOpIsUndef(MO
, I
)) ||
1174 (MO
.getSubReg() != 0 && !MO
.isUndef()))
1175 NeedToAssignLiveThroughs
= true;
1177 } else if (Reg
.isPhysical()) {
1178 if (!MRI
->isReserved(Reg
)) {
1181 bool displacedAny
= definePhysReg(MI
, Reg
);
1182 if (MO
.isEarlyClobber())
1183 HasEarlyClobber
= true;
1188 HasPhysRegUse
= true;
1191 } else if (MO
.isRegMask()) {
1193 RegMasks
.push_back(MO
.getRegMask());
1197 // Allocate virtreg defs.
1200 // Special handling for early clobbers, tied operands or subregister defs:
1201 // Compared to "normal" defs these:
1202 // - Must not use a register that is pre-assigned for a use operand.
1203 // - In order to solve tricky inline assembly constraints we change the
1204 // heuristic to figure out a good operand order before doing
1206 if (NeedToAssignLiveThroughs
) {
1207 DefOperandIndexes
.clear();
1208 PhysRegUses
.clear();
1210 // Track number of defs which may consume a register from the class.
1211 std::vector
<unsigned> RegClassDefCounts(TRI
->getNumRegClasses(), 0);
1212 assert(RegClassDefCounts
[0] == 0);
1214 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1215 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
< E
; ++I
) {
1216 const MachineOperand
&MO
= MI
.getOperand(I
);
1219 Register Reg
= MO
.getReg();
1220 if (MO
.readsReg()) {
1221 if (Reg
.isPhysical()) {
1222 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg
, TRI
)
1224 markPhysRegUsedInInstr(Reg
);
1229 if (Reg
.isVirtual() && shouldAllocateRegister(Reg
))
1230 DefOperandIndexes
.push_back(I
);
1232 addRegClassDefCounts(RegClassDefCounts
, Reg
);
1236 llvm::sort(DefOperandIndexes
, [&](uint16_t I0
, uint16_t I1
) {
1237 const MachineOperand
&MO0
= MI
.getOperand(I0
);
1238 const MachineOperand
&MO1
= MI
.getOperand(I1
);
1239 Register Reg0
= MO0
.getReg();
1240 Register Reg1
= MO1
.getReg();
1241 const TargetRegisterClass
&RC0
= *MRI
->getRegClass(Reg0
);
1242 const TargetRegisterClass
&RC1
= *MRI
->getRegClass(Reg1
);
1244 // Identify regclass that are easy to use up completely just in this
1246 unsigned ClassSize0
= RegClassInfo
.getOrder(&RC0
).size();
1247 unsigned ClassSize1
= RegClassInfo
.getOrder(&RC1
).size();
1249 bool SmallClass0
= ClassSize0
< RegClassDefCounts
[RC0
.getID()];
1250 bool SmallClass1
= ClassSize1
< RegClassDefCounts
[RC1
.getID()];
1251 if (SmallClass0
> SmallClass1
)
1253 if (SmallClass0
< SmallClass1
)
1256 // Allocate early clobbers and livethrough operands first.
1257 bool Livethrough0
= MO0
.isEarlyClobber() || MO0
.isTied() ||
1258 (MO0
.getSubReg() == 0 && !MO0
.isUndef());
1259 bool Livethrough1
= MO1
.isEarlyClobber() || MO1
.isTied() ||
1260 (MO1
.getSubReg() == 0 && !MO1
.isUndef());
1261 if (Livethrough0
> Livethrough1
)
1263 if (Livethrough0
< Livethrough1
)
1266 // Tie-break rule: operand index.
1270 for (uint16_t OpIdx
: DefOperandIndexes
) {
1271 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
1272 LLVM_DEBUG(dbgs() << "Allocating " << MO
<< '\n');
1273 unsigned Reg
= MO
.getReg();
1274 if (MO
.isEarlyClobber() ||
1275 (MO
.isTied() && !TiedOpIsUndef(MO
, OpIdx
)) ||
1276 (MO
.getSubReg() && !MO
.isUndef())) {
1277 defineLiveThroughVirtReg(MI
, OpIdx
, Reg
);
1279 defineVirtReg(MI
, OpIdx
, Reg
);
1283 // Assign virtual register defs.
1284 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
< E
; ++I
) {
1285 MachineOperand
&MO
= MI
.getOperand(I
);
1286 if (!MO
.isReg() || !MO
.isDef())
1288 Register Reg
= MO
.getReg();
1289 if (Reg
.isVirtual())
1290 defineVirtReg(MI
, I
, Reg
);
1295 // Free registers occupied by defs.
1296 // Iterate operands in reverse order, so we see the implicit super register
1297 // defs first (we added them earlier in case of <def,read-undef>).
1298 for (signed I
= MI
.getNumOperands() - 1; I
>= 0; --I
) {
1299 MachineOperand
&MO
= MI
.getOperand(I
);
1300 if (!MO
.isReg() || !MO
.isDef())
1303 // subreg defs don't free the full register. We left the subreg number
1304 // around as a marker in setPhysReg() to recognize this case here.
1305 if (MO
.getSubReg() != 0) {
1310 assert((!MO
.isTied() || !isClobberedByRegMasks(MO
.getReg())) &&
1311 "tied def assigned to clobbered register");
1313 // Do not free tied operands and early clobbers.
1314 if ((MO
.isTied() && !TiedOpIsUndef(MO
, I
)) || MO
.isEarlyClobber())
1316 Register Reg
= MO
.getReg();
1319 if (Reg
.isVirtual()) {
1320 assert(!shouldAllocateRegister(Reg
));
1323 assert(Reg
.isPhysical());
1324 if (MRI
->isReserved(Reg
))
1327 unmarkRegUsedInInstr(Reg
);
1331 // Displace clobbered registers.
1333 assert(!RegMasks
.empty() && "expected RegMask");
1335 for (const auto *RM
: RegMasks
)
1336 MRI
->addPhysRegsUsedFromRegMask(RM
);
1338 // Displace clobbered registers.
1339 for (const LiveReg
&LR
: LiveVirtRegs
) {
1340 MCPhysReg PhysReg
= LR
.PhysReg
;
1341 if (PhysReg
!= 0 && isClobberedByRegMasks(PhysReg
))
1342 displacePhysReg(MI
, PhysReg
);
1346 // Apply pre-assigned register uses to state.
1347 if (HasPhysRegUse
) {
1348 for (MachineOperand
&MO
: MI
.operands()) {
1349 if (!MO
.isReg() || !MO
.readsReg())
1351 Register Reg
= MO
.getReg();
1352 if (!Reg
.isPhysical())
1354 if (MRI
->isReserved(Reg
))
1356 bool displacedAny
= usePhysReg(MI
, Reg
);
1357 if (!displacedAny
&& !MRI
->isReserved(Reg
))
1362 // Allocate virtreg uses and insert reloads as necessary.
1363 bool HasUndefUse
= false;
1364 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
) {
1365 MachineOperand
&MO
= MI
.getOperand(I
);
1366 if (!MO
.isReg() || !MO
.isUse())
1368 Register Reg
= MO
.getReg();
1369 if (!Reg
.isVirtual() || !shouldAllocateRegister(Reg
))
1378 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1379 // the def block (removing the vreg uses).
1383 assert(!MO
.isInternalRead() && "Bundles not supported");
1384 assert(MO
.readsReg() && "reading use");
1385 useVirtReg(MI
, I
, Reg
);
1388 // Allocate undef operands. This is a separate step because in a situation
1389 // like ` = OP undef %X, %X` both operands need the same register assign
1390 // so we should perform the normal assignment first.
1392 for (MachineOperand
&MO
: MI
.uses()) {
1393 if (!MO
.isReg() || !MO
.isUse())
1395 Register Reg
= MO
.getReg();
1396 if (!Reg
.isVirtual() || !shouldAllocateRegister(Reg
))
1399 assert(MO
.isUndef() && "Should only have undef virtreg uses left");
1400 allocVirtRegUndef(MO
);
1404 // Free early clobbers.
1405 if (HasEarlyClobber
) {
1406 for (MachineOperand
&MO
: llvm::reverse(MI
.operands())) {
1407 if (!MO
.isReg() || !MO
.isDef() || !MO
.isEarlyClobber())
1409 // subreg defs don't free the full register. We left the subreg number
1410 // around as a marker in setPhysReg() to recognize this case here.
1411 if (MO
.getSubReg() != 0) {
1416 Register Reg
= MO
.getReg();
1419 if (Reg
.isVirtual()) {
1420 assert(!shouldAllocateRegister(Reg
));
1423 assert(Reg
.isPhysical() && "should have register assigned");
1425 // We sometimes get odd situations like:
1426 // early-clobber %x0 = INSTRUCTION %x0
1427 // which is semantically questionable as the early-clobber should
1428 // apply before the use. But in practice we consider the use to
1429 // happen before the early clobber now. Don't free the early clobber
1430 // register in this case.
1431 if (MI
.readsRegister(Reg
, TRI
))
1438 LLVM_DEBUG(dbgs() << "<< " << MI
);
1439 if (MI
.isCopy() && MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg() &&
1440 MI
.getNumOperands() == 2) {
1441 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1442 Coalesced
.push_back(&MI
);
1446 void RegAllocFast::handleDebugValue(MachineInstr
&MI
) {
1447 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1448 // mostly constants and frame indices.
1449 for (Register Reg
: MI
.getUsedDebugRegs()) {
1450 if (!Register::isVirtualRegister(Reg
))
1452 if (!shouldAllocateRegister(Reg
))
1455 // Already spilled to a stackslot?
1456 int SS
= StackSlotForVirtReg
[Reg
];
1458 // Modify DBG_VALUE now that the value is in a spill slot.
1459 updateDbgValueForSpill(MI
, SS
, Reg
);
1460 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI
);
1464 // See if this virtual register has already been allocated to a physical
1465 // register or spilled to a stack slot.
1466 LiveRegMap::iterator LRI
= findLiveVirtReg(Reg
);
1467 SmallVector
<MachineOperand
*> DbgOps
;
1468 for (MachineOperand
&Op
: MI
.getDebugOperandsForReg(Reg
))
1469 DbgOps
.push_back(&Op
);
1471 if (LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
) {
1472 // Update every use of Reg within MI.
1473 for (auto &RegMO
: DbgOps
)
1474 setPhysReg(MI
, *RegMO
, LRI
->PhysReg
);
1476 DanglingDbgValues
[Reg
].push_back(&MI
);
1479 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1480 // that future spills of Reg will have DBG_VALUEs.
1481 LiveDbgValueMap
[Reg
].append(DbgOps
.begin(), DbgOps
.end());
1485 void RegAllocFast::handleBundle(MachineInstr
&MI
) {
1486 MachineBasicBlock::instr_iterator BundledMI
= MI
.getIterator();
1488 while (BundledMI
->isBundledWithPred()) {
1489 for (MachineOperand
&MO
: BundledMI
->operands()) {
1493 Register Reg
= MO
.getReg();
1494 if (!Reg
.isVirtual() || !shouldAllocateRegister(Reg
))
1497 DenseMap
<Register
, MCPhysReg
>::iterator DI
;
1498 DI
= BundleVirtRegsMap
.find(Reg
);
1499 assert(DI
!= BundleVirtRegsMap
.end() && "Unassigned virtual register");
1501 setPhysReg(MI
, MO
, DI
->second
);
1508 void RegAllocFast::allocateBasicBlock(MachineBasicBlock
&MBB
) {
1510 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB
);
1512 RegUnitStates
.assign(TRI
->getNumRegUnits(), regFree
);
1513 assert(LiveVirtRegs
.empty() && "Mapping not cleared from last block?");
1515 for (const auto &LiveReg
: MBB
.liveouts())
1516 setPhysRegState(LiveReg
.PhysReg
, regPreAssigned
);
1520 // Traverse block in reverse order allocating instructions one by one.
1521 for (MachineInstr
&MI
: reverse(MBB
)) {
1523 dbgs() << "\n>> " << MI
<< "Regs:";
1527 // Special handling for debug values. Note that they are not allowed to
1528 // affect codegen of the other instructions in any way.
1529 if (MI
.isDebugValue()) {
1530 handleDebugValue(MI
);
1534 allocateInstruction(MI
);
1536 // Once BUNDLE header is assigned registers, same assignments need to be
1537 // done for bundled MIs.
1538 if (MI
.getOpcode() == TargetOpcode::BUNDLE
) {
1544 dbgs() << "Begin Regs:";
1548 // Spill all physical registers holding virtual registers now.
1549 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1552 // Erase all the coalesced copies. We are delaying it until now because
1553 // LiveVirtRegs might refer to the instrs.
1554 for (MachineInstr
*MI
: Coalesced
)
1556 NumCoalesced
+= Coalesced
.size();
1558 for (auto &UDBGPair
: DanglingDbgValues
) {
1559 for (MachineInstr
*DbgValue
: UDBGPair
.second
) {
1560 assert(DbgValue
->isDebugValue() && "expected DBG_VALUE");
1561 // Nothing to do if the vreg was spilled in the meantime.
1562 if (!DbgValue
->hasDebugOperandForReg(UDBGPair
.first
))
1564 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1566 DbgValue
->setDebugValueUndef();
1569 DanglingDbgValues
.clear();
1571 LLVM_DEBUG(MBB
.dump());
1574 bool RegAllocFast::runOnMachineFunction(MachineFunction
&MF
) {
1575 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1576 << "********** Function: " << MF
.getName() << '\n');
1577 MRI
= &MF
.getRegInfo();
1578 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
1579 TRI
= STI
.getRegisterInfo();
1580 TII
= STI
.getInstrInfo();
1581 MFI
= &MF
.getFrameInfo();
1582 MRI
->freezeReservedRegs(MF
);
1583 RegClassInfo
.runOnMachineFunction(MF
);
1584 unsigned NumRegUnits
= TRI
->getNumRegUnits();
1585 UsedInInstr
.clear();
1586 UsedInInstr
.setUniverse(NumRegUnits
);
1587 PhysRegUses
.clear();
1588 PhysRegUses
.setUniverse(NumRegUnits
);
1590 // initialize the virtual->physical register map to have a 'null'
1591 // mapping for all virtual registers
1592 unsigned NumVirtRegs
= MRI
->getNumVirtRegs();
1593 StackSlotForVirtReg
.resize(NumVirtRegs
);
1594 LiveVirtRegs
.setUniverse(NumVirtRegs
);
1595 MayLiveAcrossBlocks
.clear();
1596 MayLiveAcrossBlocks
.resize(NumVirtRegs
);
1598 // Loop over all of the basic blocks, eliminating virtual register references
1599 for (MachineBasicBlock
&MBB
: MF
)
1600 allocateBasicBlock(MBB
);
1602 if (ClearVirtRegs
) {
1603 // All machine operands and other references to virtual registers have been
1604 // replaced. Remove the virtual registers.
1605 MRI
->clearVirtRegs();
1608 StackSlotForVirtReg
.clear();
1609 LiveDbgValueMap
.clear();
1613 FunctionPass
*llvm::createFastRegisterAllocator() {
1614 return new RegAllocFast();
1617 FunctionPass
*llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor
,
1618 bool ClearVirtRegs
) {
1619 return new RegAllocFast(Ftor
, ClearVirtRegs
);