[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / RegAllocFast.cpp
blob1f9f8056fdaefd027a3a379cb74d99b135674baf
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocCommon.h"
32 #include "llvm/CodeGen/RegAllocRegistry.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <tuple>
46 #include <vector>
48 using namespace llvm;
50 #define DEBUG_TYPE "regalloc"
52 STATISTIC(NumStores, "Number of stores added");
53 STATISTIC(NumLoads , "Number of loads added");
54 STATISTIC(NumCoalesced, "Number of copies coalesced");
56 // FIXME: Remove this switch when all testcases are fixed!
57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
58 cl::Hidden);
60 static RegisterRegAlloc
61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
63 namespace {
65 class RegAllocFast : public MachineFunctionPass {
66 public:
67 static char ID;
69 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
70 bool ClearVirtRegs_ = true) :
71 MachineFunctionPass(ID),
72 ShouldAllocateClass(F),
73 StackSlotForVirtReg(-1),
74 ClearVirtRegs(ClearVirtRegs_) {
77 private:
78 MachineFrameInfo *MFI;
79 MachineRegisterInfo *MRI;
80 const TargetRegisterInfo *TRI;
81 const TargetInstrInfo *TII;
82 RegisterClassInfo RegClassInfo;
83 const RegClassFilterFunc ShouldAllocateClass;
85 /// Basic block currently being allocated.
86 MachineBasicBlock *MBB;
88 /// Maps virtual regs to the frame index where these values are spilled.
89 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
91 bool ClearVirtRegs;
93 /// Everything we know about a live virtual register.
94 struct LiveReg {
95 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
96 Register VirtReg; ///< Virtual register number.
97 MCPhysReg PhysReg = 0; ///< Currently held here.
98 bool LiveOut = false; ///< Register is possibly live out.
99 bool Reloaded = false; ///< Register was reloaded.
100 bool Error = false; ///< Could not allocate.
102 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
104 unsigned getSparseSetIndex() const {
105 return Register::virtReg2Index(VirtReg);
109 using LiveRegMap = SparseSet<LiveReg>;
110 /// This map contains entries for each virtual register that is currently
111 /// available in a physical register.
112 LiveRegMap LiveVirtRegs;
114 /// Stores assigned virtual registers present in the bundle MI.
115 DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
117 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
118 /// List of DBG_VALUE that we encountered without the vreg being assigned
119 /// because they were placed after the last use of the vreg.
120 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
122 /// Has a bit set for every virtual register for which it was determined
123 /// that it is alive across blocks.
124 BitVector MayLiveAcrossBlocks;
126 /// State of a register unit.
127 enum RegUnitState {
128 /// A free register is not currently in use and can be allocated
129 /// immediately without checking aliases.
130 regFree,
132 /// A pre-assigned register has been assigned before register allocation
133 /// (e.g., setting up a call parameter).
134 regPreAssigned,
136 /// Used temporarily in reloadAtBegin() to mark register units that are
137 /// live-in to the basic block.
138 regLiveIn,
140 /// A register state may also be a virtual register number, indication
141 /// that the physical register is currently allocated to a virtual
142 /// register. In that case, LiveVirtRegs contains the inverse mapping.
145 /// Maps each physical register to a RegUnitState enum or virtual register.
146 std::vector<unsigned> RegUnitStates;
148 SmallVector<MachineInstr *, 32> Coalesced;
150 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
151 /// Set of register units that are used in the current instruction, and so
152 /// cannot be allocated.
153 RegUnitSet UsedInInstr;
154 RegUnitSet PhysRegUses;
155 SmallVector<uint16_t, 8> DefOperandIndexes;
156 // Register masks attached to the current instruction.
157 SmallVector<const uint32_t *> RegMasks;
159 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
160 bool isPhysRegFree(MCPhysReg PhysReg) const;
162 /// Mark a physreg as used in this instruction.
163 void markRegUsedInInstr(MCPhysReg PhysReg) {
164 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
165 UsedInInstr.insert(*Units);
168 // Check if physreg is clobbered by instruction's regmask(s).
169 bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
170 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
171 return MachineOperand::clobbersPhysReg(Mask, PhysReg);
175 /// Check if a physreg or any of its aliases are used in this instruction.
176 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
177 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
178 return true;
179 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
180 if (UsedInInstr.count(*Units))
181 return true;
182 if (LookAtPhysRegUses && PhysRegUses.count(*Units))
183 return true;
185 return false;
188 /// Mark physical register as being used in a register use operand.
189 /// This is only used by the special livethrough handling code.
190 void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
192 PhysRegUses.insert(*Units);
195 /// Remove mark of physical register being used in the instruction.
196 void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
197 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
198 UsedInInstr.erase(*Units);
201 enum : unsigned {
202 spillClean = 50,
203 spillDirty = 100,
204 spillPrefBonus = 20,
205 spillImpossible = ~0u
208 public:
209 StringRef getPassName() const override { return "Fast Register Allocator"; }
211 void getAnalysisUsage(AnalysisUsage &AU) const override {
212 AU.setPreservesCFG();
213 MachineFunctionPass::getAnalysisUsage(AU);
216 MachineFunctionProperties getRequiredProperties() const override {
217 return MachineFunctionProperties().set(
218 MachineFunctionProperties::Property::NoPHIs);
221 MachineFunctionProperties getSetProperties() const override {
222 if (ClearVirtRegs) {
223 return MachineFunctionProperties().set(
224 MachineFunctionProperties::Property::NoVRegs);
227 return MachineFunctionProperties();
230 MachineFunctionProperties getClearedProperties() const override {
231 return MachineFunctionProperties().set(
232 MachineFunctionProperties::Property::IsSSA);
235 private:
236 bool runOnMachineFunction(MachineFunction &MF) override;
238 void allocateBasicBlock(MachineBasicBlock &MBB);
240 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
241 Register Reg) const;
243 void allocateInstruction(MachineInstr &MI);
244 void handleDebugValue(MachineInstr &MI);
245 void handleBundle(MachineInstr &MI);
247 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
248 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
249 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
250 void freePhysReg(MCPhysReg PhysReg);
252 unsigned calcSpillCost(MCPhysReg PhysReg) const;
254 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
255 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
258 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
259 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
262 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
263 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
264 bool LookAtPhysRegUses = false);
265 void allocVirtRegUndef(MachineOperand &MO);
266 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
267 MCPhysReg Reg);
268 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
269 Register VirtReg);
270 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
271 bool LookAtPhysRegUses = false);
272 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
274 MachineBasicBlock::iterator
275 getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
276 SmallSet<Register, 2> &PrologLiveIns) const;
278 void reloadAtBegin(MachineBasicBlock &MBB);
279 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
281 Register traceCopies(Register VirtReg) const;
282 Register traceCopyChain(Register Reg) const;
284 bool shouldAllocateRegister(const Register Reg) const;
285 int getStackSpaceFor(Register VirtReg);
286 void spill(MachineBasicBlock::iterator Before, Register VirtReg,
287 MCPhysReg AssignedReg, bool Kill, bool LiveOut);
288 void reload(MachineBasicBlock::iterator Before, Register VirtReg,
289 MCPhysReg PhysReg);
291 bool mayLiveOut(Register VirtReg);
292 bool mayLiveIn(Register VirtReg);
294 void dumpState() const;
297 } // end anonymous namespace
299 char RegAllocFast::ID = 0;
301 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
302 false)
304 bool RegAllocFast::shouldAllocateRegister(const Register Reg) const {
305 assert(Register::isVirtualRegister(Reg));
306 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
307 return ShouldAllocateClass(*TRI, RC);
310 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
311 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI)
312 RegUnitStates[*UI] = NewState;
315 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
316 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
317 if (RegUnitStates[*UI] != regFree)
318 return false;
320 return true;
323 /// This allocates space for the specified virtual register to be held on the
324 /// stack.
325 int RegAllocFast::getStackSpaceFor(Register VirtReg) {
326 // Find the location Reg would belong...
327 int SS = StackSlotForVirtReg[VirtReg];
328 // Already has space allocated?
329 if (SS != -1)
330 return SS;
332 // Allocate a new stack object for this spill location...
333 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
334 unsigned Size = TRI->getSpillSize(RC);
335 Align Alignment = TRI->getSpillAlign(RC);
336 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
338 // Assign the slot.
339 StackSlotForVirtReg[VirtReg] = FrameIdx;
340 return FrameIdx;
343 static bool dominates(MachineBasicBlock &MBB,
344 MachineBasicBlock::const_iterator A,
345 MachineBasicBlock::const_iterator B) {
346 auto MBBEnd = MBB.end();
347 if (B == MBBEnd)
348 return true;
350 MachineBasicBlock::const_iterator I = MBB.begin();
351 for (; &*I != A && &*I != B; ++I)
354 return &*I == A;
357 /// Returns false if \p VirtReg is known to not live out of the current block.
358 bool RegAllocFast::mayLiveOut(Register VirtReg) {
359 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
360 // Cannot be live-out if there are no successors.
361 return !MBB->succ_empty();
364 const MachineInstr *SelfLoopDef = nullptr;
366 // If this block loops back to itself, it is necessary to check whether the
367 // use comes after the def.
368 if (MBB->isSuccessor(MBB)) {
369 // Find the first def in the self loop MBB.
370 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
371 if (DefInst.getParent() != MBB) {
372 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
373 return true;
374 } else {
375 if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef))
376 SelfLoopDef = &DefInst;
379 if (!SelfLoopDef) {
380 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
381 return true;
385 // See if the first \p Limit uses of the register are all in the current
386 // block.
387 static const unsigned Limit = 8;
388 unsigned C = 0;
389 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
390 if (UseInst.getParent() != MBB || ++C >= Limit) {
391 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
392 // Cannot be live-out if there are no successors.
393 return !MBB->succ_empty();
396 if (SelfLoopDef) {
397 // Try to handle some simple cases to avoid spilling and reloading every
398 // value inside a self looping block.
399 if (SelfLoopDef == &UseInst ||
400 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
401 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
402 return true;
407 return false;
410 /// Returns false if \p VirtReg is known to not be live into the current block.
411 bool RegAllocFast::mayLiveIn(Register VirtReg) {
412 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
413 return !MBB->pred_empty();
415 // See if the first \p Limit def of the register are all in the current block.
416 static const unsigned Limit = 8;
417 unsigned C = 0;
418 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
419 if (DefInst.getParent() != MBB || ++C >= Limit) {
420 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
421 return !MBB->pred_empty();
425 return false;
428 /// Insert spill instruction for \p AssignedReg before \p Before. Update
429 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
430 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
431 MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
432 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
433 << " in " << printReg(AssignedReg, TRI));
434 int FI = getStackSpaceFor(VirtReg);
435 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
437 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
438 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
439 ++NumStores;
441 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
443 // When we spill a virtual register, we will have spill instructions behind
444 // every definition of it, meaning we can switch all the DBG_VALUEs over
445 // to just reference the stack slot.
446 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
447 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
448 SpilledOperandsMap;
449 for (MachineOperand *MO : LRIDbgOperands)
450 SpilledOperandsMap[MO->getParent()].push_back(MO);
451 for (auto MISpilledOperands : SpilledOperandsMap) {
452 MachineInstr &DBG = *MISpilledOperands.first;
453 MachineInstr *NewDV = buildDbgValueForSpill(
454 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
455 assert(NewDV->getParent() == MBB && "dangling parent pointer");
456 (void)NewDV;
457 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
459 if (LiveOut) {
460 // We need to insert a DBG_VALUE at the end of the block if the spill slot
461 // is live out, but there is another use of the value after the
462 // spill. This will allow LiveDebugValues to see the correct live out
463 // value to propagate to the successors.
464 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
465 MBB->insert(FirstTerm, ClonedDV);
466 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
469 // Rewrite unassigned dbg_values to use the stack slot.
470 // TODO We can potentially do this for list debug values as well if we know
471 // how the dbg_values are getting unassigned.
472 if (DBG.isNonListDebugValue()) {
473 MachineOperand &MO = DBG.getDebugOperand(0);
474 if (MO.isReg() && MO.getReg() == 0) {
475 updateDbgValueForSpill(DBG, FI, 0);
479 // Now this register is spilled there is should not be any DBG_VALUE
480 // pointing to this register because they are all pointing to spilled value
481 // now.
482 LRIDbgOperands.clear();
485 /// Insert reload instruction for \p PhysReg before \p Before.
486 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
487 MCPhysReg PhysReg) {
488 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
489 << printReg(PhysReg, TRI) << '\n');
490 int FI = getStackSpaceFor(VirtReg);
491 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
492 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
493 ++NumLoads;
496 /// Get basic block begin insertion point.
497 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
498 /// instructions marking the begin of a basic block. This means we must insert
499 /// new instructions after such labels...
500 MachineBasicBlock::iterator
501 RegAllocFast::getMBBBeginInsertionPoint(
502 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
503 MachineBasicBlock::iterator I = MBB.begin();
504 while (I != MBB.end()) {
505 if (I->isLabel()) {
506 ++I;
507 continue;
510 // Most reloads should be inserted after prolog instructions.
511 if (!TII->isBasicBlockPrologue(*I))
512 break;
514 // However if a prolog instruction reads a register that needs to be
515 // reloaded, the reload should be inserted before the prolog.
516 for (MachineOperand &MO : I->operands()) {
517 if (MO.isReg())
518 PrologLiveIns.insert(MO.getReg());
521 ++I;
524 return I;
527 /// Reload all currently assigned virtual registers.
528 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
529 if (LiveVirtRegs.empty())
530 return;
532 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
533 MCPhysReg Reg = P.PhysReg;
534 // Set state to live-in. This possibly overrides mappings to virtual
535 // registers but we don't care anymore at this point.
536 setPhysRegState(Reg, regLiveIn);
540 SmallSet<Register, 2> PrologLiveIns;
542 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
543 // of spilling here is deterministic, if arbitrary.
544 MachineBasicBlock::iterator InsertBefore
545 = getMBBBeginInsertionPoint(MBB, PrologLiveIns);
546 for (const LiveReg &LR : LiveVirtRegs) {
547 MCPhysReg PhysReg = LR.PhysReg;
548 if (PhysReg == 0)
549 continue;
551 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
552 if (RegUnitStates[FirstUnit] == regLiveIn)
553 continue;
555 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
556 "no reload in start block. Missing vreg def?");
558 if (PrologLiveIns.count(PhysReg)) {
559 // FIXME: Theoretically this should use an insert point skipping labels
560 // but I'm not sure how labels should interact with prolog instruction
561 // that need reloads.
562 reload(MBB.begin(), LR.VirtReg, PhysReg);
563 } else
564 reload(InsertBefore, LR.VirtReg, PhysReg);
566 LiveVirtRegs.clear();
569 /// Handle the direct use of a physical register. Check that the register is
570 /// not used by a virtreg. Kill the physreg, marking it free. This may add
571 /// implicit kills to MO->getParent() and invalidate MO.
572 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
573 assert(Register::isPhysicalRegister(Reg) && "expected physreg");
574 bool displacedAny = displacePhysReg(MI, Reg);
575 setPhysRegState(Reg, regPreAssigned);
576 markRegUsedInInstr(Reg);
577 return displacedAny;
580 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
581 bool displacedAny = displacePhysReg(MI, Reg);
582 setPhysRegState(Reg, regPreAssigned);
583 return displacedAny;
586 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
587 /// similar to defineVirtReg except the physreg is reserved instead of
588 /// allocated.
589 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
590 bool displacedAny = false;
592 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
593 unsigned Unit = *UI;
594 switch (unsigned VirtReg = RegUnitStates[Unit]) {
595 default: {
596 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
597 assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
598 MachineBasicBlock::iterator ReloadBefore =
599 std::next((MachineBasicBlock::iterator)MI.getIterator());
600 reload(ReloadBefore, VirtReg, LRI->PhysReg);
602 setPhysRegState(LRI->PhysReg, regFree);
603 LRI->PhysReg = 0;
604 LRI->Reloaded = true;
605 displacedAny = true;
606 break;
608 case regPreAssigned:
609 RegUnitStates[Unit] = regFree;
610 displacedAny = true;
611 break;
612 case regFree:
613 break;
616 return displacedAny;
619 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
620 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
622 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
623 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
624 case regFree:
625 LLVM_DEBUG(dbgs() << '\n');
626 return;
627 case regPreAssigned:
628 LLVM_DEBUG(dbgs() << '\n');
629 setPhysRegState(PhysReg, regFree);
630 return;
631 default: {
632 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
633 assert(LRI != LiveVirtRegs.end());
634 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
635 setPhysRegState(LRI->PhysReg, regFree);
636 LRI->PhysReg = 0;
638 return;
642 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
643 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
644 /// disabled - it can be allocated directly.
645 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
646 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
647 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
648 switch (unsigned VirtReg = RegUnitStates[*UI]) {
649 case regFree:
650 break;
651 case regPreAssigned:
652 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
653 << printReg(PhysReg, TRI) << '\n');
654 return spillImpossible;
655 default: {
656 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
657 findLiveVirtReg(VirtReg)->LiveOut;
658 return SureSpill ? spillClean : spillDirty;
662 return 0;
665 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
666 Register VirtReg, MCPhysReg Reg) {
667 auto UDBGValIter = DanglingDbgValues.find(VirtReg);
668 if (UDBGValIter == DanglingDbgValues.end())
669 return;
671 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
672 for (MachineInstr *DbgValue : Dangling) {
673 assert(DbgValue->isDebugValue());
674 if (!DbgValue->hasDebugOperandForReg(VirtReg))
675 continue;
677 // Test whether the physreg survives from the definition to the DBG_VALUE.
678 MCPhysReg SetToReg = Reg;
679 unsigned Limit = 20;
680 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
681 E = DbgValue->getIterator(); I != E; ++I) {
682 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
683 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
684 << '\n');
685 SetToReg = 0;
686 break;
689 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
690 MO.setReg(SetToReg);
691 if (SetToReg != 0)
692 MO.setIsRenamable();
695 Dangling.clear();
698 /// This method updates local state so that we know that PhysReg is the
699 /// proper container for VirtReg now. The physical register must not be used
700 /// for anything else when this is called.
701 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
702 MCPhysReg PhysReg) {
703 Register VirtReg = LR.VirtReg;
704 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
705 << printReg(PhysReg, TRI) << '\n');
706 assert(LR.PhysReg == 0 && "Already assigned a physreg");
707 assert(PhysReg != 0 && "Trying to assign no register");
708 LR.PhysReg = PhysReg;
709 setPhysRegState(PhysReg, VirtReg);
711 assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
714 static bool isCoalescable(const MachineInstr &MI) {
715 return MI.isFullCopy();
718 Register RegAllocFast::traceCopyChain(Register Reg) const {
719 static const unsigned ChainLengthLimit = 3;
720 unsigned C = 0;
721 do {
722 if (Reg.isPhysical())
723 return Reg;
724 assert(Reg.isVirtual());
726 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
727 if (!VRegDef || !isCoalescable(*VRegDef))
728 return 0;
729 Reg = VRegDef->getOperand(1).getReg();
730 } while (++C <= ChainLengthLimit);
731 return 0;
734 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
735 /// chain of copies to check whether we reach a physical register we can
736 /// coalesce with.
737 Register RegAllocFast::traceCopies(Register VirtReg) const {
738 static const unsigned DefLimit = 3;
739 unsigned C = 0;
740 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
741 if (isCoalescable(MI)) {
742 Register Reg = MI.getOperand(1).getReg();
743 Reg = traceCopyChain(Reg);
744 if (Reg.isValid())
745 return Reg;
748 if (++C >= DefLimit)
749 break;
751 return Register();
754 /// Allocates a physical register for VirtReg.
755 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
756 Register Hint0, bool LookAtPhysRegUses) {
757 const Register VirtReg = LR.VirtReg;
758 assert(LR.PhysReg == 0);
760 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
761 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
762 << " in class " << TRI->getRegClassName(&RC)
763 << " with hint " << printReg(Hint0, TRI) << '\n');
765 // Take hint when possible.
766 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
767 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
768 // Take hint if the register is currently free.
769 if (isPhysRegFree(Hint0)) {
770 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
771 << '\n');
772 assignVirtToPhysReg(MI, LR, Hint0);
773 return;
774 } else {
775 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
776 << " occupied\n");
778 } else {
779 Hint0 = Register();
783 // Try other hint.
784 Register Hint1 = traceCopies(VirtReg);
785 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
786 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
787 // Take hint if the register is currently free.
788 if (isPhysRegFree(Hint1)) {
789 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
790 << '\n');
791 assignVirtToPhysReg(MI, LR, Hint1);
792 return;
793 } else {
794 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
795 << " occupied\n");
797 } else {
798 Hint1 = Register();
801 MCPhysReg BestReg = 0;
802 unsigned BestCost = spillImpossible;
803 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
804 for (MCPhysReg PhysReg : AllocationOrder) {
805 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
806 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
807 LLVM_DEBUG(dbgs() << "already used in instr.\n");
808 continue;
811 unsigned Cost = calcSpillCost(PhysReg);
812 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
813 // Immediate take a register with cost 0.
814 if (Cost == 0) {
815 assignVirtToPhysReg(MI, LR, PhysReg);
816 return;
819 if (PhysReg == Hint0 || PhysReg == Hint1)
820 Cost -= spillPrefBonus;
822 if (Cost < BestCost) {
823 BestReg = PhysReg;
824 BestCost = Cost;
828 if (!BestReg) {
829 // Nothing we can do: Report an error and keep going with an invalid
830 // allocation.
831 if (MI.isInlineAsm())
832 MI.emitError("inline assembly requires more registers than available");
833 else
834 MI.emitError("ran out of registers during register allocation");
836 LR.Error = true;
837 LR.PhysReg = 0;
838 return;
841 displacePhysReg(MI, BestReg);
842 assignVirtToPhysReg(MI, LR, BestReg);
845 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
846 assert(MO.isUndef() && "expected undef use");
847 Register VirtReg = MO.getReg();
848 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
849 if (!shouldAllocateRegister(VirtReg))
850 return;
852 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
853 MCPhysReg PhysReg;
854 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
855 PhysReg = LRI->PhysReg;
856 } else {
857 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
858 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
859 assert(!AllocationOrder.empty() && "Allocation order must not be empty");
860 PhysReg = AllocationOrder[0];
863 unsigned SubRegIdx = MO.getSubReg();
864 if (SubRegIdx != 0) {
865 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
866 MO.setSubReg(0);
868 MO.setReg(PhysReg);
869 MO.setIsRenamable(true);
872 /// Variation of defineVirtReg() with special handling for livethrough regs
873 /// (tied or earlyclobber) that may interfere with preassigned uses.
874 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
875 Register VirtReg) {
876 if (!shouldAllocateRegister(VirtReg))
877 return;
878 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
879 if (LRI != LiveVirtRegs.end()) {
880 MCPhysReg PrevReg = LRI->PhysReg;
881 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
882 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
883 << " (tied/earlyclobber resolution)\n");
884 freePhysReg(PrevReg);
885 LRI->PhysReg = 0;
886 allocVirtReg(MI, *LRI, 0, true);
887 MachineBasicBlock::iterator InsertBefore =
888 std::next((MachineBasicBlock::iterator)MI.getIterator());
889 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
890 << printReg(PrevReg, TRI) << '\n');
891 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
892 TII->get(TargetOpcode::COPY), PrevReg)
893 .addReg(LRI->PhysReg, llvm::RegState::Kill);
895 MachineOperand &MO = MI.getOperand(OpNum);
896 if (MO.getSubReg() && !MO.isUndef()) {
897 LRI->LastUse = &MI;
900 return defineVirtReg(MI, OpNum, VirtReg, true);
903 /// Allocates a register for VirtReg definition. Typically the register is
904 /// already assigned from a use of the virtreg, however we still need to
905 /// perform an allocation if:
906 /// - It is a dead definition without any uses.
907 /// - The value is live out and all uses are in different basic blocks.
908 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
909 Register VirtReg, bool LookAtPhysRegUses) {
910 assert(VirtReg.isVirtual() && "Not a virtual register");
911 if (!shouldAllocateRegister(VirtReg))
912 return;
913 MachineOperand &MO = MI.getOperand(OpNum);
914 LiveRegMap::iterator LRI;
915 bool New;
916 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
917 if (New) {
918 if (!MO.isDead()) {
919 if (mayLiveOut(VirtReg)) {
920 LRI->LiveOut = true;
921 } else {
922 // It is a dead def without the dead flag; add the flag now.
923 MO.setIsDead(true);
927 if (LRI->PhysReg == 0)
928 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
929 else {
930 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
931 "TODO: preassign mismatch");
932 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
933 << " use existing assignment to "
934 << printReg(LRI->PhysReg, TRI) << '\n');
937 MCPhysReg PhysReg = LRI->PhysReg;
938 assert(PhysReg != 0 && "Register not assigned");
939 if (LRI->Reloaded || LRI->LiveOut) {
940 if (!MI.isImplicitDef()) {
941 MachineBasicBlock::iterator SpillBefore =
942 std::next((MachineBasicBlock::iterator)MI.getIterator());
943 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
944 << LRI->Reloaded << '\n');
945 bool Kill = LRI->LastUse == nullptr;
946 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
947 LRI->LastUse = nullptr;
949 LRI->LiveOut = false;
950 LRI->Reloaded = false;
952 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
953 BundleVirtRegsMap[VirtReg] = PhysReg;
955 markRegUsedInInstr(PhysReg);
956 setPhysReg(MI, MO, PhysReg);
959 /// Allocates a register for a VirtReg use.
960 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
961 Register VirtReg) {
962 assert(VirtReg.isVirtual() && "Not a virtual register");
963 if (!shouldAllocateRegister(VirtReg))
964 return;
965 MachineOperand &MO = MI.getOperand(OpNum);
966 LiveRegMap::iterator LRI;
967 bool New;
968 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
969 if (New) {
970 MachineOperand &MO = MI.getOperand(OpNum);
971 if (!MO.isKill()) {
972 if (mayLiveOut(VirtReg)) {
973 LRI->LiveOut = true;
974 } else {
975 // It is a last (killing) use without the kill flag; add the flag now.
976 MO.setIsKill(true);
979 } else {
980 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
983 // If necessary allocate a register.
984 if (LRI->PhysReg == 0) {
985 assert(!MO.isTied() && "tied op should be allocated");
986 Register Hint;
987 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
988 Hint = MI.getOperand(0).getReg();
989 if (Hint.isVirtual()) {
990 assert(!shouldAllocateRegister(Hint));
991 Hint = Register();
992 } else {
993 assert(Hint.isPhysical() &&
994 "Copy destination should already be assigned");
997 allocVirtReg(MI, *LRI, Hint, false);
998 if (LRI->Error) {
999 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1000 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
1001 setPhysReg(MI, MO, *AllocationOrder.begin());
1002 return;
1006 LRI->LastUse = &MI;
1008 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1009 BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
1011 markRegUsedInInstr(LRI->PhysReg);
1012 setPhysReg(MI, MO, LRI->PhysReg);
1015 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
1016 /// may invalidate any operand pointers. Return true if the operand kills its
1017 /// register.
1018 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
1019 MCPhysReg PhysReg) {
1020 if (!MO.getSubReg()) {
1021 MO.setReg(PhysReg);
1022 MO.setIsRenamable(true);
1023 return;
1026 // Handle subregister index.
1027 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
1028 MO.setIsRenamable(true);
1029 // Note: We leave the subreg number around a little longer in case of defs.
1030 // This is so that the register freeing logic in allocateInstruction can still
1031 // recognize this as subregister defs. The code there will clear the number.
1032 if (!MO.isDef())
1033 MO.setSubReg(0);
1035 // A kill flag implies killing the full register. Add corresponding super
1036 // register kill.
1037 if (MO.isKill()) {
1038 MI.addRegisterKilled(PhysReg, TRI, true);
1039 return;
1042 // A <def,read-undef> of a sub-register requires an implicit def of the full
1043 // register.
1044 if (MO.isDef() && MO.isUndef()) {
1045 if (MO.isDead())
1046 MI.addRegisterDead(PhysReg, TRI, true);
1047 else
1048 MI.addRegisterDefined(PhysReg, TRI);
1052 #ifndef NDEBUG
1054 void RegAllocFast::dumpState() const {
1055 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
1056 ++Unit) {
1057 switch (unsigned VirtReg = RegUnitStates[Unit]) {
1058 case regFree:
1059 break;
1060 case regPreAssigned:
1061 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1062 break;
1063 case regLiveIn:
1064 llvm_unreachable("Should not have regLiveIn in map");
1065 default: {
1066 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
1067 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1068 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1069 if (I->LiveOut || I->Reloaded) {
1070 dbgs() << '[';
1071 if (I->LiveOut) dbgs() << 'O';
1072 if (I->Reloaded) dbgs() << 'R';
1073 dbgs() << ']';
1075 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1076 break;
1080 dbgs() << '\n';
1081 // Check that LiveVirtRegs is the inverse.
1082 for (const LiveReg &LR : LiveVirtRegs) {
1083 Register VirtReg = LR.VirtReg;
1084 assert(VirtReg.isVirtual() && "Bad map key");
1085 MCPhysReg PhysReg = LR.PhysReg;
1086 if (PhysReg != 0) {
1087 assert(Register::isPhysicalRegister(PhysReg) &&
1088 "mapped to physreg");
1089 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
1090 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid");
1095 #endif
1097 /// Count number of defs consumed from each register class by \p Reg
1098 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
1099 Register Reg) const {
1100 assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1102 if (Reg.isVirtual()) {
1103 if (!shouldAllocateRegister(Reg))
1104 return;
1105 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1106 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1107 RCIdx != RCIdxEnd; ++RCIdx) {
1108 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1109 // FIXME: Consider aliasing sub/super registers.
1110 if (OpRC->hasSubClassEq(IdxRC))
1111 ++RegClassDefCounts[RCIdx];
1114 return;
1117 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1118 RCIdx != RCIdxEnd; ++RCIdx) {
1119 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1120 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1121 if (IdxRC->contains(*Alias)) {
1122 ++RegClassDefCounts[RCIdx];
1123 break;
1129 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1130 // The basic algorithm here is:
1131 // 1. Mark registers of def operands as free
1132 // 2. Allocate registers to use operands and place reload instructions for
1133 // registers displaced by the allocation.
1135 // However we need to handle some corner cases:
1136 // - pre-assigned defs and uses need to be handled before the other def/use
1137 // operands are processed to avoid the allocation heuristics clashing with
1138 // the pre-assignment.
1139 // - The "free def operands" step has to come last instead of first for tied
1140 // operands and early-clobbers.
1142 UsedInInstr.clear();
1143 RegMasks.clear();
1144 BundleVirtRegsMap.clear();
1146 auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) {
1147 assert(MO.isTied());
1148 unsigned TiedIdx = MI.findTiedOperandIdx(Idx);
1149 const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
1150 return TiedMO.isUndef();
1152 // Scan for special cases; Apply pre-assigned register defs to state.
1153 bool HasPhysRegUse = false;
1154 bool HasRegMask = false;
1155 bool HasVRegDef = false;
1156 bool HasDef = false;
1157 bool HasEarlyClobber = false;
1158 bool NeedToAssignLiveThroughs = false;
1159 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1160 MachineOperand &MO = MI.getOperand(I);
1161 if (MO.isReg()) {
1162 Register Reg = MO.getReg();
1163 if (Reg.isVirtual()) {
1164 if (!shouldAllocateRegister(Reg))
1165 continue;
1166 if (MO.isDef()) {
1167 HasDef = true;
1168 HasVRegDef = true;
1169 if (MO.isEarlyClobber()) {
1170 HasEarlyClobber = true;
1171 NeedToAssignLiveThroughs = true;
1173 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) ||
1174 (MO.getSubReg() != 0 && !MO.isUndef()))
1175 NeedToAssignLiveThroughs = true;
1177 } else if (Reg.isPhysical()) {
1178 if (!MRI->isReserved(Reg)) {
1179 if (MO.isDef()) {
1180 HasDef = true;
1181 bool displacedAny = definePhysReg(MI, Reg);
1182 if (MO.isEarlyClobber())
1183 HasEarlyClobber = true;
1184 if (!displacedAny)
1185 MO.setIsDead(true);
1187 if (MO.readsReg())
1188 HasPhysRegUse = true;
1191 } else if (MO.isRegMask()) {
1192 HasRegMask = true;
1193 RegMasks.push_back(MO.getRegMask());
1197 // Allocate virtreg defs.
1198 if (HasDef) {
1199 if (HasVRegDef) {
1200 // Special handling for early clobbers, tied operands or subregister defs:
1201 // Compared to "normal" defs these:
1202 // - Must not use a register that is pre-assigned for a use operand.
1203 // - In order to solve tricky inline assembly constraints we change the
1204 // heuristic to figure out a good operand order before doing
1205 // assignments.
1206 if (NeedToAssignLiveThroughs) {
1207 DefOperandIndexes.clear();
1208 PhysRegUses.clear();
1210 // Track number of defs which may consume a register from the class.
1211 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1212 assert(RegClassDefCounts[0] == 0);
1214 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1215 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1216 const MachineOperand &MO = MI.getOperand(I);
1217 if (!MO.isReg())
1218 continue;
1219 Register Reg = MO.getReg();
1220 if (MO.readsReg()) {
1221 if (Reg.isPhysical()) {
1222 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI)
1223 << '\n');
1224 markPhysRegUsedInInstr(Reg);
1228 if (MO.isDef()) {
1229 if (Reg.isVirtual() && shouldAllocateRegister(Reg))
1230 DefOperandIndexes.push_back(I);
1232 addRegClassDefCounts(RegClassDefCounts, Reg);
1236 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
1237 const MachineOperand &MO0 = MI.getOperand(I0);
1238 const MachineOperand &MO1 = MI.getOperand(I1);
1239 Register Reg0 = MO0.getReg();
1240 Register Reg1 = MO1.getReg();
1241 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
1242 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
1244 // Identify regclass that are easy to use up completely just in this
1245 // instruction.
1246 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
1247 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
1249 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1250 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1251 if (SmallClass0 > SmallClass1)
1252 return true;
1253 if (SmallClass0 < SmallClass1)
1254 return false;
1256 // Allocate early clobbers and livethrough operands first.
1257 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1258 (MO0.getSubReg() == 0 && !MO0.isUndef());
1259 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1260 (MO1.getSubReg() == 0 && !MO1.isUndef());
1261 if (Livethrough0 > Livethrough1)
1262 return true;
1263 if (Livethrough0 < Livethrough1)
1264 return false;
1266 // Tie-break rule: operand index.
1267 return I0 < I1;
1270 for (uint16_t OpIdx : DefOperandIndexes) {
1271 MachineOperand &MO = MI.getOperand(OpIdx);
1272 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1273 unsigned Reg = MO.getReg();
1274 if (MO.isEarlyClobber() ||
1275 (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) ||
1276 (MO.getSubReg() && !MO.isUndef())) {
1277 defineLiveThroughVirtReg(MI, OpIdx, Reg);
1278 } else {
1279 defineVirtReg(MI, OpIdx, Reg);
1282 } else {
1283 // Assign virtual register defs.
1284 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1285 MachineOperand &MO = MI.getOperand(I);
1286 if (!MO.isReg() || !MO.isDef())
1287 continue;
1288 Register Reg = MO.getReg();
1289 if (Reg.isVirtual())
1290 defineVirtReg(MI, I, Reg);
1295 // Free registers occupied by defs.
1296 // Iterate operands in reverse order, so we see the implicit super register
1297 // defs first (we added them earlier in case of <def,read-undef>).
1298 for (signed I = MI.getNumOperands() - 1; I >= 0; --I) {
1299 MachineOperand &MO = MI.getOperand(I);
1300 if (!MO.isReg() || !MO.isDef())
1301 continue;
1303 // subreg defs don't free the full register. We left the subreg number
1304 // around as a marker in setPhysReg() to recognize this case here.
1305 if (MO.getSubReg() != 0) {
1306 MO.setSubReg(0);
1307 continue;
1310 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
1311 "tied def assigned to clobbered register");
1313 // Do not free tied operands and early clobbers.
1314 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber())
1315 continue;
1316 Register Reg = MO.getReg();
1317 if (!Reg)
1318 continue;
1319 if (Reg.isVirtual()) {
1320 assert(!shouldAllocateRegister(Reg));
1321 continue;
1323 assert(Reg.isPhysical());
1324 if (MRI->isReserved(Reg))
1325 continue;
1326 freePhysReg(Reg);
1327 unmarkRegUsedInInstr(Reg);
1331 // Displace clobbered registers.
1332 if (HasRegMask) {
1333 assert(!RegMasks.empty() && "expected RegMask");
1334 // MRI bookkeeping.
1335 for (const auto *RM : RegMasks)
1336 MRI->addPhysRegsUsedFromRegMask(RM);
1338 // Displace clobbered registers.
1339 for (const LiveReg &LR : LiveVirtRegs) {
1340 MCPhysReg PhysReg = LR.PhysReg;
1341 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
1342 displacePhysReg(MI, PhysReg);
1346 // Apply pre-assigned register uses to state.
1347 if (HasPhysRegUse) {
1348 for (MachineOperand &MO : MI.operands()) {
1349 if (!MO.isReg() || !MO.readsReg())
1350 continue;
1351 Register Reg = MO.getReg();
1352 if (!Reg.isPhysical())
1353 continue;
1354 if (MRI->isReserved(Reg))
1355 continue;
1356 bool displacedAny = usePhysReg(MI, Reg);
1357 if (!displacedAny && !MRI->isReserved(Reg))
1358 MO.setIsKill(true);
1362 // Allocate virtreg uses and insert reloads as necessary.
1363 bool HasUndefUse = false;
1364 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1365 MachineOperand &MO = MI.getOperand(I);
1366 if (!MO.isReg() || !MO.isUse())
1367 continue;
1368 Register Reg = MO.getReg();
1369 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1370 continue;
1372 if (MO.isUndef()) {
1373 HasUndefUse = true;
1374 continue;
1378 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1379 // the def block (removing the vreg uses).
1380 mayLiveIn(Reg);
1383 assert(!MO.isInternalRead() && "Bundles not supported");
1384 assert(MO.readsReg() && "reading use");
1385 useVirtReg(MI, I, Reg);
1388 // Allocate undef operands. This is a separate step because in a situation
1389 // like ` = OP undef %X, %X` both operands need the same register assign
1390 // so we should perform the normal assignment first.
1391 if (HasUndefUse) {
1392 for (MachineOperand &MO : MI.uses()) {
1393 if (!MO.isReg() || !MO.isUse())
1394 continue;
1395 Register Reg = MO.getReg();
1396 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1397 continue;
1399 assert(MO.isUndef() && "Should only have undef virtreg uses left");
1400 allocVirtRegUndef(MO);
1404 // Free early clobbers.
1405 if (HasEarlyClobber) {
1406 for (MachineOperand &MO : llvm::reverse(MI.operands())) {
1407 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber())
1408 continue;
1409 // subreg defs don't free the full register. We left the subreg number
1410 // around as a marker in setPhysReg() to recognize this case here.
1411 if (MO.getSubReg() != 0) {
1412 MO.setSubReg(0);
1413 continue;
1416 Register Reg = MO.getReg();
1417 if (!Reg)
1418 continue;
1419 if (Reg.isVirtual()) {
1420 assert(!shouldAllocateRegister(Reg));
1421 continue;
1423 assert(Reg.isPhysical() && "should have register assigned");
1425 // We sometimes get odd situations like:
1426 // early-clobber %x0 = INSTRUCTION %x0
1427 // which is semantically questionable as the early-clobber should
1428 // apply before the use. But in practice we consider the use to
1429 // happen before the early clobber now. Don't free the early clobber
1430 // register in this case.
1431 if (MI.readsRegister(Reg, TRI))
1432 continue;
1434 freePhysReg(Reg);
1438 LLVM_DEBUG(dbgs() << "<< " << MI);
1439 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
1440 MI.getNumOperands() == 2) {
1441 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1442 Coalesced.push_back(&MI);
1446 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1447 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1448 // mostly constants and frame indices.
1449 for (Register Reg : MI.getUsedDebugRegs()) {
1450 if (!Register::isVirtualRegister(Reg))
1451 continue;
1452 if (!shouldAllocateRegister(Reg))
1453 continue;
1455 // Already spilled to a stackslot?
1456 int SS = StackSlotForVirtReg[Reg];
1457 if (SS != -1) {
1458 // Modify DBG_VALUE now that the value is in a spill slot.
1459 updateDbgValueForSpill(MI, SS, Reg);
1460 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1461 continue;
1464 // See if this virtual register has already been allocated to a physical
1465 // register or spilled to a stack slot.
1466 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1467 SmallVector<MachineOperand *> DbgOps;
1468 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
1469 DbgOps.push_back(&Op);
1471 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1472 // Update every use of Reg within MI.
1473 for (auto &RegMO : DbgOps)
1474 setPhysReg(MI, *RegMO, LRI->PhysReg);
1475 } else {
1476 DanglingDbgValues[Reg].push_back(&MI);
1479 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1480 // that future spills of Reg will have DBG_VALUEs.
1481 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
1485 void RegAllocFast::handleBundle(MachineInstr &MI) {
1486 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1487 ++BundledMI;
1488 while (BundledMI->isBundledWithPred()) {
1489 for (MachineOperand &MO : BundledMI->operands()) {
1490 if (!MO.isReg())
1491 continue;
1493 Register Reg = MO.getReg();
1494 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1495 continue;
1497 DenseMap<Register, MCPhysReg>::iterator DI;
1498 DI = BundleVirtRegsMap.find(Reg);
1499 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1501 setPhysReg(MI, MO, DI->second);
1504 ++BundledMI;
1508 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1509 this->MBB = &MBB;
1510 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1512 RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
1513 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1515 for (const auto &LiveReg : MBB.liveouts())
1516 setPhysRegState(LiveReg.PhysReg, regPreAssigned);
1518 Coalesced.clear();
1520 // Traverse block in reverse order allocating instructions one by one.
1521 for (MachineInstr &MI : reverse(MBB)) {
1522 LLVM_DEBUG(
1523 dbgs() << "\n>> " << MI << "Regs:";
1524 dumpState()
1527 // Special handling for debug values. Note that they are not allowed to
1528 // affect codegen of the other instructions in any way.
1529 if (MI.isDebugValue()) {
1530 handleDebugValue(MI);
1531 continue;
1534 allocateInstruction(MI);
1536 // Once BUNDLE header is assigned registers, same assignments need to be
1537 // done for bundled MIs.
1538 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1539 handleBundle(MI);
1543 LLVM_DEBUG(
1544 dbgs() << "Begin Regs:";
1545 dumpState()
1548 // Spill all physical registers holding virtual registers now.
1549 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1550 reloadAtBegin(MBB);
1552 // Erase all the coalesced copies. We are delaying it until now because
1553 // LiveVirtRegs might refer to the instrs.
1554 for (MachineInstr *MI : Coalesced)
1555 MBB.erase(MI);
1556 NumCoalesced += Coalesced.size();
1558 for (auto &UDBGPair : DanglingDbgValues) {
1559 for (MachineInstr *DbgValue : UDBGPair.second) {
1560 assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1561 // Nothing to do if the vreg was spilled in the meantime.
1562 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
1563 continue;
1564 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1565 << '\n');
1566 DbgValue->setDebugValueUndef();
1569 DanglingDbgValues.clear();
1571 LLVM_DEBUG(MBB.dump());
1574 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1575 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1576 << "********** Function: " << MF.getName() << '\n');
1577 MRI = &MF.getRegInfo();
1578 const TargetSubtargetInfo &STI = MF.getSubtarget();
1579 TRI = STI.getRegisterInfo();
1580 TII = STI.getInstrInfo();
1581 MFI = &MF.getFrameInfo();
1582 MRI->freezeReservedRegs(MF);
1583 RegClassInfo.runOnMachineFunction(MF);
1584 unsigned NumRegUnits = TRI->getNumRegUnits();
1585 UsedInInstr.clear();
1586 UsedInInstr.setUniverse(NumRegUnits);
1587 PhysRegUses.clear();
1588 PhysRegUses.setUniverse(NumRegUnits);
1590 // initialize the virtual->physical register map to have a 'null'
1591 // mapping for all virtual registers
1592 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1593 StackSlotForVirtReg.resize(NumVirtRegs);
1594 LiveVirtRegs.setUniverse(NumVirtRegs);
1595 MayLiveAcrossBlocks.clear();
1596 MayLiveAcrossBlocks.resize(NumVirtRegs);
1598 // Loop over all of the basic blocks, eliminating virtual register references
1599 for (MachineBasicBlock &MBB : MF)
1600 allocateBasicBlock(MBB);
1602 if (ClearVirtRegs) {
1603 // All machine operands and other references to virtual registers have been
1604 // replaced. Remove the virtual registers.
1605 MRI->clearVirtRegs();
1608 StackSlotForVirtReg.clear();
1609 LiveDbgValueMap.clear();
1610 return true;
1613 FunctionPass *llvm::createFastRegisterAllocator() {
1614 return new RegAllocFast();
1617 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor,
1618 bool ClearVirtRegs) {
1619 return new RegAllocFast(Ftor, ClearVirtRegs);