1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the RAGreedy function pass for register allocation in
12 //===----------------------------------------------------------------------===//
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "SpillPlacement.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/DebugInfoMetadata.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCRegisterInfo.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/BlockFrequency.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/Timer.h"
72 #include "llvm/Support/raw_ostream.h"
80 #define DEBUG_TYPE "regalloc"
82 STATISTIC(NumGlobalSplits
, "Number of split global live ranges");
83 STATISTIC(NumLocalSplits
, "Number of split local live ranges");
84 STATISTIC(NumEvicted
, "Number of interferences evicted");
86 static cl::opt
<SplitEditor::ComplementSpillMode
> SplitSpillMode(
87 "split-spill-mode", cl::Hidden
,
88 cl::desc("Spill mode for splitting live ranges"),
89 cl::values(clEnumValN(SplitEditor::SM_Partition
, "default", "Default"),
90 clEnumValN(SplitEditor::SM_Size
, "size", "Optimize for size"),
91 clEnumValN(SplitEditor::SM_Speed
, "speed", "Optimize for speed")),
92 cl::init(SplitEditor::SM_Speed
));
94 static cl::opt
<unsigned>
95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden
,
96 cl::desc("Last chance recoloring max depth"),
99 static cl::opt
<unsigned> LastChanceRecoloringMaxInterference(
100 "lcr-max-interf", cl::Hidden
,
101 cl::desc("Last chance recoloring maximum number of considered"
102 " interference at a time"),
105 static cl::opt
<bool> ExhaustiveSearch(
106 "exhaustive-register-search", cl::NotHidden
,
107 cl::desc("Exhaustive Search for registers bypassing the depth "
108 "and interference cutoffs of last chance recoloring"),
111 static cl::opt
<bool> EnableDeferredSpilling(
112 "enable-deferred-spilling", cl::Hidden
,
113 cl::desc("Instead of spilling a variable right away, defer the actual "
114 "code insertion to the end of the allocation. That way the "
115 "allocator might still find a suitable coloring for this "
116 "variable because of other evicted variables."),
119 // FIXME: Find a good default for this flag and remove the flag.
120 static cl::opt
<unsigned>
121 CSRFirstTimeCost("regalloc-csr-first-time-cost",
122 cl::desc("Cost for first time use of callee-saved register."),
123 cl::init(0), cl::Hidden
);
125 static cl::opt
<unsigned long> GrowRegionComplexityBudget(
126 "grow-region-complexity-budget",
127 cl::desc("growRegion() does not scale with the number of BB edges, so "
128 "limit its budget and bail out once we reach the limit."),
129 cl::init(10000), cl::Hidden
);
131 static cl::opt
<bool> GreedyRegClassPriorityTrumpsGlobalness(
132 "greedy-regclass-priority-trumps-globalness",
133 cl::desc("Change the greedy register allocator's live range priority "
134 "calculation to make the AllocationPriority of the register class "
135 "more important then whether the range is global"),
138 static cl::opt
<bool> GreedyReverseLocalAssignment(
139 "greedy-reverse-local-assignment",
140 cl::desc("Reverse allocation order of local live ranges, such that "
141 "shorter local live ranges will tend to be allocated first"),
144 static RegisterRegAlloc
greedyRegAlloc("greedy", "greedy register allocator",
145 createGreedyRegisterAllocator
);
147 char RAGreedy::ID
= 0;
148 char &llvm::RAGreedyID
= RAGreedy::ID
;
150 INITIALIZE_PASS_BEGIN(RAGreedy
, "greedy",
151 "Greedy Register Allocator", false, false)
152 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables
)
153 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
154 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
155 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer
)
156 INITIALIZE_PASS_DEPENDENCY(MachineScheduler
)
157 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
158 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
159 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
160 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
161 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix
)
162 INITIALIZE_PASS_DEPENDENCY(EdgeBundles
)
163 INITIALIZE_PASS_DEPENDENCY(SpillPlacement
)
164 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass
)
165 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis
)
166 INITIALIZE_PASS_END(RAGreedy
, "greedy",
167 "Greedy Register Allocator", false, false)
170 const char *const RAGreedy::StageName
[] = {
181 // Hysteresis to use when comparing floats.
182 // This helps stabilize decisions based on float comparisons.
183 const float Hysteresis
= (2007 / 2048.0f
); // 0.97998046875
185 FunctionPass
* llvm::createGreedyRegisterAllocator() {
186 return new RAGreedy();
189 FunctionPass
*llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor
) {
190 return new RAGreedy(Ftor
);
193 RAGreedy::RAGreedy(RegClassFilterFunc F
):
194 MachineFunctionPass(ID
),
198 void RAGreedy::getAnalysisUsage(AnalysisUsage
&AU
) const {
199 AU
.setPreservesCFG();
200 AU
.addRequired
<MachineBlockFrequencyInfo
>();
201 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
202 AU
.addRequired
<LiveIntervals
>();
203 AU
.addPreserved
<LiveIntervals
>();
204 AU
.addRequired
<SlotIndexes
>();
205 AU
.addPreserved
<SlotIndexes
>();
206 AU
.addRequired
<LiveDebugVariables
>();
207 AU
.addPreserved
<LiveDebugVariables
>();
208 AU
.addRequired
<LiveStacks
>();
209 AU
.addPreserved
<LiveStacks
>();
210 AU
.addRequired
<MachineDominatorTree
>();
211 AU
.addPreserved
<MachineDominatorTree
>();
212 AU
.addRequired
<MachineLoopInfo
>();
213 AU
.addPreserved
<MachineLoopInfo
>();
214 AU
.addRequired
<VirtRegMap
>();
215 AU
.addPreserved
<VirtRegMap
>();
216 AU
.addRequired
<LiveRegMatrix
>();
217 AU
.addPreserved
<LiveRegMatrix
>();
218 AU
.addRequired
<EdgeBundles
>();
219 AU
.addRequired
<SpillPlacement
>();
220 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
221 AU
.addRequired
<RegAllocEvictionAdvisorAnalysis
>();
222 MachineFunctionPass::getAnalysisUsage(AU
);
225 //===----------------------------------------------------------------------===//
226 // LiveRangeEdit delegate methods
227 //===----------------------------------------------------------------------===//
229 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg
) {
230 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
231 if (VRM
->hasPhys(VirtReg
)) {
232 Matrix
->unassign(LI
);
233 aboutToRemoveInterval(LI
);
236 // Unassigned virtreg is probably in the priority queue.
237 // RegAllocBase will erase it after dequeueing.
238 // Nonetheless, clear the live-range so that the debug
239 // dump will show the right state for that VirtReg.
244 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg
) {
245 if (!VRM
->hasPhys(VirtReg
))
248 // Register is assigned, put it back on the queue for reassignment.
249 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
250 Matrix
->unassign(LI
);
251 RegAllocBase::enqueue(&LI
);
254 void RAGreedy::LRE_DidCloneVirtReg(Register New
, Register Old
) {
255 ExtraInfo
->LRE_DidCloneVirtReg(New
, Old
);
258 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New
, Register Old
) {
259 // Cloning a register we haven't even heard about yet? Just ignore it.
260 if (!Info
.inBounds(Old
))
263 // LRE may clone a virtual register because dead code elimination causes it to
264 // be split into connected components. The new components are much smaller
265 // than the original, so they should get a new chance at being assigned.
266 // same stage as the parent.
267 Info
[Old
].Stage
= RS_Assign
;
269 Info
[New
] = Info
[Old
];
272 void RAGreedy::releaseMemory() {
273 SpillerInstance
.reset();
277 void RAGreedy::enqueueImpl(const LiveInterval
*LI
) { enqueue(Queue
, LI
); }
279 void RAGreedy::enqueue(PQueue
&CurQueue
, const LiveInterval
*LI
) {
280 // Prioritize live ranges by size, assigning larger ranges first.
281 // The queue holds (size, reg) pairs.
282 const Register Reg
= LI
->reg();
283 assert(Reg
.isVirtual() && "Can only enqueue virtual registers");
285 auto Stage
= ExtraInfo
->getOrInitStage(Reg
);
286 if (Stage
== RS_New
) {
288 ExtraInfo
->setStage(Reg
, Stage
);
291 unsigned Ret
= PriorityAdvisor
->getPriority(*LI
);
293 // The virtual register number is a tie breaker for same-sized ranges.
294 // Give lower vreg numbers higher priority to assign them first.
295 CurQueue
.push(std::make_pair(Ret
, ~Reg
));
298 unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval
&LI
) const {
299 const unsigned Size
= LI
.getSize();
300 const Register Reg
= LI
.reg();
302 LiveRangeStage Stage
= RA
.getExtraInfo().getStage(LI
);
304 if (Stage
== RS_Split
) {
305 // Unsplit ranges that couldn't be allocated immediately are deferred until
306 // everything else has been allocated.
308 } else if (Stage
== RS_Memory
) {
309 // Memory operand should be considered last.
310 // Change the priority such that Memory operand are assigned in
311 // the reverse order that they came in.
312 // TODO: Make this a member variable and probably do something about hints.
313 static unsigned MemOp
= 0;
316 // Giant live ranges fall back to the global assignment heuristic, which
317 // prevents excessive spilling in pathological cases.
318 const TargetRegisterClass
&RC
= *MRI
->getRegClass(Reg
);
319 bool ForceGlobal
= !ReverseLocalAssignment
&&
320 (Size
/ SlotIndex::InstrDist
) >
321 (2 * RegClassInfo
.getNumAllocatableRegs(&RC
));
322 unsigned GlobalBit
= 0;
324 if (Stage
== RS_Assign
&& !ForceGlobal
&& !LI
.empty() &&
325 LIS
->intervalIsInOneMBB(LI
)) {
326 // Allocate original local ranges in linear instruction order. Since they
327 // are singly defined, this produces optimal coloring in the absence of
328 // global interference and other constraints.
329 if (!ReverseLocalAssignment
)
330 Prio
= LI
.beginIndex().getInstrDistance(Indexes
->getLastIndex());
332 // Allocating bottom up may allow many short LRGs to be assigned first
333 // to one of the cheap registers. This could be much faster for very
334 // large blocks on targets with many physical registers.
335 Prio
= Indexes
->getZeroIndex().getInstrDistance(LI
.endIndex());
338 // Allocate global and split ranges in long->short order. Long ranges that
339 // don't fit should be spilled (or split) ASAP so they don't create
340 // interference. Mark a bit to prioritize global above local ranges.
344 if (RegClassPriorityTrumpsGlobalness
)
345 Prio
|= RC
.AllocationPriority
<< 25 | GlobalBit
<< 24;
347 Prio
|= GlobalBit
<< 29 | RC
.AllocationPriority
<< 24;
349 // Mark a higher bit to prioritize global and local above RS_Split.
352 // Boost ranges that have a physical register hint.
353 if (VRM
->hasKnownPreference(Reg
))
360 const LiveInterval
*RAGreedy::dequeue() { return dequeue(Queue
); }
362 const LiveInterval
*RAGreedy::dequeue(PQueue
&CurQueue
) {
363 if (CurQueue
.empty())
365 LiveInterval
*LI
= &LIS
->getInterval(~CurQueue
.top().second
);
370 //===----------------------------------------------------------------------===//
372 //===----------------------------------------------------------------------===//
374 /// tryAssign - Try to assign VirtReg to an available register.
375 MCRegister
RAGreedy::tryAssign(const LiveInterval
&VirtReg
,
376 AllocationOrder
&Order
,
377 SmallVectorImpl
<Register
> &NewVRegs
,
378 const SmallVirtRegSet
&FixedRegisters
) {
380 for (auto I
= Order
.begin(), E
= Order
.end(); I
!= E
&& !PhysReg
; ++I
) {
382 if (!Matrix
->checkInterference(VirtReg
, *I
)) {
389 if (!PhysReg
.isValid())
392 // PhysReg is available, but there may be a better choice.
394 // If we missed a simple hint, try to cheaply evict interference from the
395 // preferred register.
396 if (Register Hint
= MRI
->getSimpleHint(VirtReg
.reg()))
397 if (Order
.isHint(Hint
)) {
398 MCRegister PhysHint
= Hint
.asMCReg();
399 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint
, TRI
) << '\n');
401 if (EvictAdvisor
->canEvictHintInterference(VirtReg
, PhysHint
,
403 evictInterference(VirtReg
, PhysHint
, NewVRegs
);
406 // Record the missed hint, we may be able to recover
407 // at the end if the surrounding allocation changed.
408 SetOfBrokenHints
.insert(&VirtReg
);
411 // Try to evict interference from a cheaper alternative.
412 uint8_t Cost
= RegCosts
[PhysReg
];
414 // Most registers have 0 additional cost.
418 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << " is available at cost "
419 << (unsigned)Cost
<< '\n');
420 MCRegister CheapReg
= tryEvict(VirtReg
, Order
, NewVRegs
, Cost
, FixedRegisters
);
421 return CheapReg
? CheapReg
: PhysReg
;
424 //===----------------------------------------------------------------------===//
425 // Interference eviction
426 //===----------------------------------------------------------------------===//
428 Register
RegAllocEvictionAdvisor::canReassign(const LiveInterval
&VirtReg
,
429 Register PrevReg
) const {
431 AllocationOrder::create(VirtReg
.reg(), *VRM
, RegClassInfo
, Matrix
);
433 for (auto I
= Order
.begin(), E
= Order
.end(); I
!= E
&& !PhysReg
; ++I
) {
434 if ((*I
).id() == PrevReg
.id())
437 MCRegUnitIterator
Units(*I
, TRI
);
438 for (; Units
.isValid(); ++Units
) {
439 // Instantiate a "subquery", not to be confused with the Queries array.
440 LiveIntervalUnion::Query
subQ(VirtReg
, Matrix
->getLiveUnions()[*Units
]);
441 if (subQ
.checkInterference())
444 // If no units have interference, break out with the current PhysReg.
445 if (!Units
.isValid())
449 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg
<< " from "
450 << printReg(PrevReg
, TRI
) << " to "
451 << printReg(PhysReg
, TRI
) << '\n');
455 /// evictInterference - Evict any interferring registers that prevent VirtReg
456 /// from being assigned to Physreg. This assumes that canEvictInterference
458 void RAGreedy::evictInterference(const LiveInterval
&VirtReg
,
460 SmallVectorImpl
<Register
> &NewVRegs
) {
461 // Make sure that VirtReg has a cascade number, and assign that cascade
462 // number to every evicted register. These live ranges than then only be
463 // evicted by a newer cascade, preventing infinite loops.
464 unsigned Cascade
= ExtraInfo
->getOrAssignNewCascade(VirtReg
.reg());
466 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg
, TRI
)
467 << " interference: Cascade " << Cascade
<< '\n');
469 // Collect all interfering virtregs first.
470 SmallVector
<const LiveInterval
*, 8> Intfs
;
471 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
472 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
473 // We usually have the interfering VRegs cached so collectInterferingVRegs()
474 // should be fast, we may need to recalculate if when different physregs
475 // overlap the same register unit so we had different SubRanges queried
477 ArrayRef
<const LiveInterval
*> IVR
= Q
.interferingVRegs();
478 Intfs
.append(IVR
.begin(), IVR
.end());
481 // Evict them second. This will invalidate the queries.
482 for (const LiveInterval
*Intf
: Intfs
) {
483 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
484 if (!VRM
->hasPhys(Intf
->reg()))
487 Matrix
->unassign(*Intf
);
488 assert((ExtraInfo
->getCascade(Intf
->reg()) < Cascade
||
489 VirtReg
.isSpillable() < Intf
->isSpillable()) &&
490 "Cannot decrease cascade number, illegal eviction");
491 ExtraInfo
->setCascade(Intf
->reg(), Cascade
);
493 NewVRegs
.push_back(Intf
->reg());
497 /// Returns true if the given \p PhysReg is a callee saved register and has not
498 /// been used for allocation yet.
499 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg
) const {
500 MCRegister CSR
= RegClassInfo
.getLastCalleeSavedAlias(PhysReg
);
504 return !Matrix
->isPhysRegUsed(PhysReg
);
508 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval
&VirtReg
,
509 const AllocationOrder
&Order
,
510 unsigned CostPerUseLimit
) const {
511 unsigned OrderLimit
= Order
.getOrder().size();
513 if (CostPerUseLimit
< uint8_t(~0u)) {
514 // Check of any registers in RC are below CostPerUseLimit.
515 const TargetRegisterClass
*RC
= MRI
->getRegClass(VirtReg
.reg());
516 uint8_t MinCost
= RegClassInfo
.getMinCost(RC
);
517 if (MinCost
>= CostPerUseLimit
) {
518 LLVM_DEBUG(dbgs() << TRI
->getRegClassName(RC
) << " minimum cost = "
519 << MinCost
<< ", no cheaper registers to be found.\n");
523 // It is normal for register classes to have a long tail of registers with
524 // the same cost. We don't need to look at them if they're too expensive.
525 if (RegCosts
[Order
.getOrder().back()] >= CostPerUseLimit
) {
526 OrderLimit
= RegClassInfo
.getLastCostChange(RC
);
527 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
534 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit
,
535 MCRegister PhysReg
) const {
536 if (RegCosts
[PhysReg
] >= CostPerUseLimit
)
538 // The first use of a callee-saved register in a function has cost 1.
539 // Don't start using a CSR when the CostPerUseLimit is low.
540 if (CostPerUseLimit
== 1 && isUnusedCalleeSavedReg(PhysReg
)) {
542 dbgs() << printReg(PhysReg
, TRI
) << " would clobber CSR "
543 << printReg(RegClassInfo
.getLastCalleeSavedAlias(PhysReg
), TRI
)
550 /// tryEvict - Try to evict all interferences for a physreg.
551 /// @param VirtReg Currently unassigned virtual register.
552 /// @param Order Physregs to try.
553 /// @return Physreg to assign VirtReg, or 0.
554 MCRegister
RAGreedy::tryEvict(const LiveInterval
&VirtReg
,
555 AllocationOrder
&Order
,
556 SmallVectorImpl
<Register
> &NewVRegs
,
557 uint8_t CostPerUseLimit
,
558 const SmallVirtRegSet
&FixedRegisters
) {
559 NamedRegionTimer
T("evict", "Evict", TimerGroupName
, TimerGroupDescription
,
560 TimePassesIsEnabled
);
562 MCRegister BestPhys
= EvictAdvisor
->tryFindEvictionCandidate(
563 VirtReg
, Order
, CostPerUseLimit
, FixedRegisters
);
564 if (BestPhys
.isValid())
565 evictInterference(VirtReg
, BestPhys
, NewVRegs
);
569 //===----------------------------------------------------------------------===//
571 //===----------------------------------------------------------------------===//
573 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
574 /// interference pattern in Physreg and its aliases. Add the constraints to
575 /// SpillPlacement and return the static cost of this split in Cost, assuming
576 /// that all preferences in SplitConstraints are met.
577 /// Return false if there are no bundles with positive bias.
578 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf
,
579 BlockFrequency
&Cost
) {
580 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
582 // Reset interference dependent info.
583 SplitConstraints
.resize(UseBlocks
.size());
584 BlockFrequency StaticCost
= 0;
585 for (unsigned I
= 0; I
!= UseBlocks
.size(); ++I
) {
586 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[I
];
587 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[I
];
589 BC
.Number
= BI
.MBB
->getNumber();
590 Intf
.moveToBlock(BC
.Number
);
591 BC
.Entry
= BI
.LiveIn
? SpillPlacement::PrefReg
: SpillPlacement::DontCare
;
592 BC
.Exit
= (BI
.LiveOut
&&
593 !LIS
->getInstructionFromIndex(BI
.LastInstr
)->isImplicitDef())
594 ? SpillPlacement::PrefReg
595 : SpillPlacement::DontCare
;
596 BC
.ChangesValue
= BI
.FirstDef
.isValid();
598 if (!Intf
.hasInterference())
601 // Number of spill code instructions to insert.
604 // Interference for the live-in value.
606 if (Intf
.first() <= Indexes
->getMBBStartIdx(BC
.Number
)) {
607 BC
.Entry
= SpillPlacement::MustSpill
;
609 } else if (Intf
.first() < BI
.FirstInstr
) {
610 BC
.Entry
= SpillPlacement::PrefSpill
;
612 } else if (Intf
.first() < BI
.LastInstr
) {
616 // Abort if the spill cannot be inserted at the MBB' start
617 if (((BC
.Entry
== SpillPlacement::MustSpill
) ||
618 (BC
.Entry
== SpillPlacement::PrefSpill
)) &&
619 SlotIndex::isEarlierInstr(BI
.FirstInstr
,
620 SA
->getFirstSplitPoint(BC
.Number
)))
624 // Interference for the live-out value.
626 if (Intf
.last() >= SA
->getLastSplitPoint(BC
.Number
)) {
627 BC
.Exit
= SpillPlacement::MustSpill
;
629 } else if (Intf
.last() > BI
.LastInstr
) {
630 BC
.Exit
= SpillPlacement::PrefSpill
;
632 } else if (Intf
.last() > BI
.FirstInstr
) {
637 // Accumulate the total frequency of inserted spill code.
639 StaticCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
643 // Add constraints for use-blocks. Note that these are the only constraints
644 // that may add a positive bias, it is downhill from here.
645 SpillPlacer
->addConstraints(SplitConstraints
);
646 return SpillPlacer
->scanActiveBundles();
649 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
650 /// live-through blocks in Blocks.
651 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf
,
652 ArrayRef
<unsigned> Blocks
) {
653 const unsigned GroupSize
= 8;
654 SpillPlacement::BlockConstraint BCS
[GroupSize
];
655 unsigned TBS
[GroupSize
];
656 unsigned B
= 0, T
= 0;
658 for (unsigned Number
: Blocks
) {
659 Intf
.moveToBlock(Number
);
661 if (!Intf
.hasInterference()) {
662 assert(T
< GroupSize
&& "Array overflow");
664 if (++T
== GroupSize
) {
665 SpillPlacer
->addLinks(makeArrayRef(TBS
, T
));
671 assert(B
< GroupSize
&& "Array overflow");
672 BCS
[B
].Number
= Number
;
674 // Abort if the spill cannot be inserted at the MBB' start
675 MachineBasicBlock
*MBB
= MF
->getBlockNumbered(Number
);
676 auto FirstNonDebugInstr
= MBB
->getFirstNonDebugInstr();
677 if (FirstNonDebugInstr
!= MBB
->end() &&
678 SlotIndex::isEarlierInstr(LIS
->getInstructionIndex(*FirstNonDebugInstr
),
679 SA
->getFirstSplitPoint(Number
)))
681 // Interference for the live-in value.
682 if (Intf
.first() <= Indexes
->getMBBStartIdx(Number
))
683 BCS
[B
].Entry
= SpillPlacement::MustSpill
;
685 BCS
[B
].Entry
= SpillPlacement::PrefSpill
;
687 // Interference for the live-out value.
688 if (Intf
.last() >= SA
->getLastSplitPoint(Number
))
689 BCS
[B
].Exit
= SpillPlacement::MustSpill
;
691 BCS
[B
].Exit
= SpillPlacement::PrefSpill
;
693 if (++B
== GroupSize
) {
694 SpillPlacer
->addConstraints(makeArrayRef(BCS
, B
));
699 SpillPlacer
->addConstraints(makeArrayRef(BCS
, B
));
700 SpillPlacer
->addLinks(makeArrayRef(TBS
, T
));
704 bool RAGreedy::growRegion(GlobalSplitCandidate
&Cand
) {
705 // Keep track of through blocks that have not been added to SpillPlacer.
706 BitVector Todo
= SA
->getThroughBlocks();
707 SmallVectorImpl
<unsigned> &ActiveBlocks
= Cand
.ActiveBlocks
;
708 unsigned AddedTo
= 0;
710 unsigned Visited
= 0;
713 unsigned long Budget
= GrowRegionComplexityBudget
;
715 ArrayRef
<unsigned> NewBundles
= SpillPlacer
->getRecentPositive();
716 // Find new through blocks in the periphery of PrefRegBundles.
717 for (unsigned Bundle
: NewBundles
) {
718 // Look at all blocks connected to Bundle in the full graph.
719 ArrayRef
<unsigned> Blocks
= Bundles
->getBlocks(Bundle
);
720 // Limit compilation time by bailing out after we use all our budget.
721 if (Blocks
.size() >= Budget
)
723 Budget
-= Blocks
.size();
724 for (unsigned Block
: Blocks
) {
725 if (!Todo
.test(Block
))
728 // This is a new through block. Add it to SpillPlacer later.
729 ActiveBlocks
.push_back(Block
);
735 // Any new blocks to add?
736 if (ActiveBlocks
.size() == AddedTo
)
739 // Compute through constraints from the interference, or assume that all
740 // through blocks prefer spilling when forming compact regions.
741 auto NewBlocks
= makeArrayRef(ActiveBlocks
).slice(AddedTo
);
743 if (!addThroughConstraints(Cand
.Intf
, NewBlocks
))
746 // Provide a strong negative bias on through blocks to prevent unwanted
747 // liveness on loop backedges.
748 SpillPlacer
->addPrefSpill(NewBlocks
, /* Strong= */ true);
749 AddedTo
= ActiveBlocks
.size();
751 // Perhaps iterating can enable more bundles?
752 SpillPlacer
->iterate();
754 LLVM_DEBUG(dbgs() << ", v=" << Visited
);
758 /// calcCompactRegion - Compute the set of edge bundles that should be live
759 /// when splitting the current live range into compact regions. Compact
760 /// regions can be computed without looking at interference. They are the
761 /// regions formed by removing all the live-through blocks from the live range.
763 /// Returns false if the current live range is already compact, or if the
764 /// compact regions would form single block regions anyway.
765 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate
&Cand
) {
766 // Without any through blocks, the live range is already compact.
767 if (!SA
->getNumThroughBlocks())
770 // Compact regions don't correspond to any physreg.
771 Cand
.reset(IntfCache
, MCRegister::NoRegister
);
773 LLVM_DEBUG(dbgs() << "Compact region bundles");
775 // Use the spill placer to determine the live bundles. GrowRegion pretends
776 // that all the through blocks have interference when PhysReg is unset.
777 SpillPlacer
->prepare(Cand
.LiveBundles
);
779 // The static split cost will be zero since Cand.Intf reports no interference.
781 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
782 LLVM_DEBUG(dbgs() << ", none.\n");
786 if (!growRegion(Cand
)) {
787 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
791 SpillPlacer
->finish();
793 if (!Cand
.LiveBundles
.any()) {
794 LLVM_DEBUG(dbgs() << ", none.\n");
799 for (int I
: Cand
.LiveBundles
.set_bits())
800 dbgs() << " EB#" << I
;
806 /// calcSpillCost - Compute how expensive it would be to split the live range in
807 /// SA around all use blocks instead of forming bundle regions.
808 BlockFrequency
RAGreedy::calcSpillCost() {
809 BlockFrequency Cost
= 0;
810 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
811 for (const SplitAnalysis::BlockInfo
&BI
: UseBlocks
) {
812 unsigned Number
= BI
.MBB
->getNumber();
813 // We normally only need one spill instruction - a load or a store.
814 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
816 // Unless the value is redefined in the block.
817 if (BI
.LiveIn
&& BI
.LiveOut
&& BI
.FirstDef
)
818 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
823 /// calcGlobalSplitCost - Return the global split cost of following the split
824 /// pattern in LiveBundles. This cost should be added to the local cost of the
825 /// interference pattern in SplitConstraints.
827 BlockFrequency
RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate
&Cand
,
828 const AllocationOrder
&Order
) {
829 BlockFrequency GlobalCost
= 0;
830 const BitVector
&LiveBundles
= Cand
.LiveBundles
;
831 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
832 for (unsigned I
= 0; I
!= UseBlocks
.size(); ++I
) {
833 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[I
];
834 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[I
];
835 bool RegIn
= LiveBundles
[Bundles
->getBundle(BC
.Number
, false)];
836 bool RegOut
= LiveBundles
[Bundles
->getBundle(BC
.Number
, true)];
839 Cand
.Intf
.moveToBlock(BC
.Number
);
842 Ins
+= RegIn
!= (BC
.Entry
== SpillPlacement::PrefReg
);
844 Ins
+= RegOut
!= (BC
.Exit
== SpillPlacement::PrefReg
);
846 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
849 for (unsigned Number
: Cand
.ActiveBlocks
) {
850 bool RegIn
= LiveBundles
[Bundles
->getBundle(Number
, false)];
851 bool RegOut
= LiveBundles
[Bundles
->getBundle(Number
, true)];
852 if (!RegIn
&& !RegOut
)
854 if (RegIn
&& RegOut
) {
855 // We need double spill code if this block has interference.
856 Cand
.Intf
.moveToBlock(Number
);
857 if (Cand
.Intf
.hasInterference()) {
858 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
859 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
863 // live-in / stack-out or stack-in live-out.
864 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
869 /// splitAroundRegion - Split the current live range around the regions
870 /// determined by BundleCand and GlobalCand.
872 /// Before calling this function, GlobalCand and BundleCand must be initialized
873 /// so each bundle is assigned to a valid candidate, or NoCand for the
874 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
875 /// objects must be initialized for the current live range, and intervals
876 /// created for the used candidates.
878 /// @param LREdit The LiveRangeEdit object handling the current split.
879 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
880 /// must appear in this list.
881 void RAGreedy::splitAroundRegion(LiveRangeEdit
&LREdit
,
882 ArrayRef
<unsigned> UsedCands
) {
883 // These are the intervals created for new global ranges. We may create more
884 // intervals for local ranges.
885 const unsigned NumGlobalIntvs
= LREdit
.size();
886 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
888 assert(NumGlobalIntvs
&& "No global intervals configured");
890 // Isolate even single instructions when dealing with a proper sub-class.
891 // That guarantees register class inflation for the stack interval because it
893 Register Reg
= SA
->getParent().reg();
894 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
896 // First handle all the blocks with uses.
897 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
898 for (const SplitAnalysis::BlockInfo
&BI
: UseBlocks
) {
899 unsigned Number
= BI
.MBB
->getNumber();
900 unsigned IntvIn
= 0, IntvOut
= 0;
901 SlotIndex IntfIn
, IntfOut
;
903 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
904 if (CandIn
!= NoCand
) {
905 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
906 IntvIn
= Cand
.IntvIdx
;
907 Cand
.Intf
.moveToBlock(Number
);
908 IntfIn
= Cand
.Intf
.first();
912 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
913 if (CandOut
!= NoCand
) {
914 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
915 IntvOut
= Cand
.IntvIdx
;
916 Cand
.Intf
.moveToBlock(Number
);
917 IntfOut
= Cand
.Intf
.last();
921 // Create separate intervals for isolated blocks with multiple uses.
922 if (!IntvIn
&& !IntvOut
) {
923 LLVM_DEBUG(dbgs() << printMBBReference(*BI
.MBB
) << " isolated.\n");
924 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
925 SE
->splitSingleBlock(BI
);
929 if (IntvIn
&& IntvOut
)
930 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
932 SE
->splitRegInBlock(BI
, IntvIn
, IntfIn
);
934 SE
->splitRegOutBlock(BI
, IntvOut
, IntfOut
);
937 // Handle live-through blocks. The relevant live-through blocks are stored in
938 // the ActiveBlocks list with each candidate. We need to filter out
940 BitVector Todo
= SA
->getThroughBlocks();
941 for (unsigned UsedCand
: UsedCands
) {
942 ArrayRef
<unsigned> Blocks
= GlobalCand
[UsedCand
].ActiveBlocks
;
943 for (unsigned Number
: Blocks
) {
944 if (!Todo
.test(Number
))
948 unsigned IntvIn
= 0, IntvOut
= 0;
949 SlotIndex IntfIn
, IntfOut
;
951 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
952 if (CandIn
!= NoCand
) {
953 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
954 IntvIn
= Cand
.IntvIdx
;
955 Cand
.Intf
.moveToBlock(Number
);
956 IntfIn
= Cand
.Intf
.first();
959 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
960 if (CandOut
!= NoCand
) {
961 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
962 IntvOut
= Cand
.IntvIdx
;
963 Cand
.Intf
.moveToBlock(Number
);
964 IntfOut
= Cand
.Intf
.last();
966 if (!IntvIn
&& !IntvOut
)
968 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
974 SmallVector
<unsigned, 8> IntvMap
;
975 SE
->finish(&IntvMap
);
976 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
978 unsigned OrigBlocks
= SA
->getNumLiveBlocks();
980 // Sort out the new intervals created by splitting. We get four kinds:
981 // - Remainder intervals should not be split again.
982 // - Candidate intervals can be assigned to Cand.PhysReg.
983 // - Block-local splits are candidates for local splitting.
984 // - DCE leftovers should go back on the queue.
985 for (unsigned I
= 0, E
= LREdit
.size(); I
!= E
; ++I
) {
986 const LiveInterval
&Reg
= LIS
->getInterval(LREdit
.get(I
));
988 // Ignore old intervals from DCE.
989 if (ExtraInfo
->getOrInitStage(Reg
.reg()) != RS_New
)
992 // Remainder interval. Don't try splitting again, spill if it doesn't
994 if (IntvMap
[I
] == 0) {
995 ExtraInfo
->setStage(Reg
, RS_Spill
);
999 // Global intervals. Allow repeated splitting as long as the number of live
1000 // blocks is strictly decreasing.
1001 if (IntvMap
[I
] < NumGlobalIntvs
) {
1002 if (SA
->countLiveBlocks(&Reg
) >= OrigBlocks
) {
1003 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1004 << " blocks as original.\n");
1005 // Don't allow repeated splitting as a safe guard against looping.
1006 ExtraInfo
->setStage(Reg
, RS_Split2
);
1011 // Other intervals are treated as new. This includes local intervals created
1012 // for blocks with multiple uses, and anything created by DCE.
1016 MF
->verify(this, "After splitting live range around region");
1019 MCRegister
RAGreedy::tryRegionSplit(const LiveInterval
&VirtReg
,
1020 AllocationOrder
&Order
,
1021 SmallVectorImpl
<Register
> &NewVRegs
) {
1022 if (!TRI
->shouldRegionSplitForVirtReg(*MF
, VirtReg
))
1023 return MCRegister::NoRegister
;
1024 unsigned NumCands
= 0;
1025 BlockFrequency SpillCost
= calcSpillCost();
1026 BlockFrequency BestCost
;
1028 // Check if we can split this live range around a compact region.
1029 bool HasCompact
= calcCompactRegion(GlobalCand
.front());
1031 // Yes, keep GlobalCand[0] as the compact region candidate.
1033 BestCost
= BlockFrequency::getMaxFrequency();
1035 // No benefit from the compact region, our fallback will be per-block
1036 // splitting. Make sure we find a solution that is cheaper than spilling.
1037 BestCost
= SpillCost
;
1038 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1039 MBFI
->printBlockFreq(dbgs(), BestCost
) << '\n');
1042 unsigned BestCand
= calculateRegionSplitCost(VirtReg
, Order
, BestCost
,
1043 NumCands
, false /*IgnoreCSR*/);
1045 // No solutions found, fall back to single block splitting.
1046 if (!HasCompact
&& BestCand
== NoCand
)
1047 return MCRegister::NoRegister
;
1049 return doRegionSplit(VirtReg
, BestCand
, HasCompact
, NewVRegs
);
1052 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval
&VirtReg
,
1053 AllocationOrder
&Order
,
1054 BlockFrequency
&BestCost
,
1057 unsigned BestCand
= NoCand
;
1058 for (MCPhysReg PhysReg
: Order
) {
1060 if (IgnoreCSR
&& EvictAdvisor
->isUnusedCalleeSavedReg(PhysReg
))
1063 // Discard bad candidates before we run out of interference cache cursors.
1064 // This will only affect register classes with a lot of registers (>32).
1065 if (NumCands
== IntfCache
.getMaxCursors()) {
1066 unsigned WorstCount
= ~0u;
1068 for (unsigned CandIndex
= 0; CandIndex
!= NumCands
; ++CandIndex
) {
1069 if (CandIndex
== BestCand
|| !GlobalCand
[CandIndex
].PhysReg
)
1071 unsigned Count
= GlobalCand
[CandIndex
].LiveBundles
.count();
1072 if (Count
< WorstCount
) {
1078 GlobalCand
[Worst
] = GlobalCand
[NumCands
];
1079 if (BestCand
== NumCands
)
1083 if (GlobalCand
.size() <= NumCands
)
1084 GlobalCand
.resize(NumCands
+1);
1085 GlobalSplitCandidate
&Cand
= GlobalCand
[NumCands
];
1086 Cand
.reset(IntfCache
, PhysReg
);
1088 SpillPlacer
->prepare(Cand
.LiveBundles
);
1089 BlockFrequency Cost
;
1090 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
1091 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << "\tno positive bundles\n");
1094 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << "\tstatic = ";
1095 MBFI
->printBlockFreq(dbgs(), Cost
));
1096 if (Cost
>= BestCost
) {
1098 if (BestCand
== NoCand
)
1099 dbgs() << " worse than no bundles\n";
1101 dbgs() << " worse than "
1102 << printReg(GlobalCand
[BestCand
].PhysReg
, TRI
) << '\n';
1106 if (!growRegion(Cand
)) {
1107 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1111 SpillPlacer
->finish();
1113 // No live bundles, defer to splitSingleBlocks().
1114 if (!Cand
.LiveBundles
.any()) {
1115 LLVM_DEBUG(dbgs() << " no bundles.\n");
1119 Cost
+= calcGlobalSplitCost(Cand
, Order
);
1121 dbgs() << ", total = ";
1122 MBFI
->printBlockFreq(dbgs(), Cost
) << " with bundles";
1123 for (int I
: Cand
.LiveBundles
.set_bits())
1124 dbgs() << " EB#" << I
;
1127 if (Cost
< BestCost
) {
1128 BestCand
= NumCands
;
1137 unsigned RAGreedy::doRegionSplit(const LiveInterval
&VirtReg
, unsigned BestCand
,
1139 SmallVectorImpl
<Register
> &NewVRegs
) {
1140 SmallVector
<unsigned, 8> UsedCands
;
1141 // Prepare split editor.
1142 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1143 SE
->reset(LREdit
, SplitSpillMode
);
1145 // Assign all edge bundles to the preferred candidate, or NoCand.
1146 BundleCand
.assign(Bundles
->getNumBundles(), NoCand
);
1148 // Assign bundles for the best candidate region.
1149 if (BestCand
!= NoCand
) {
1150 GlobalSplitCandidate
&Cand
= GlobalCand
[BestCand
];
1151 if (unsigned B
= Cand
.getBundles(BundleCand
, BestCand
)) {
1152 UsedCands
.push_back(BestCand
);
1153 Cand
.IntvIdx
= SE
->openIntv();
1154 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand
.PhysReg
, TRI
) << " in "
1155 << B
<< " bundles, intv " << Cand
.IntvIdx
<< ".\n");
1160 // Assign bundles for the compact region.
1162 GlobalSplitCandidate
&Cand
= GlobalCand
.front();
1163 assert(!Cand
.PhysReg
&& "Compact region has no physreg");
1164 if (unsigned B
= Cand
.getBundles(BundleCand
, 0)) {
1165 UsedCands
.push_back(0);
1166 Cand
.IntvIdx
= SE
->openIntv();
1167 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1168 << " bundles, intv " << Cand
.IntvIdx
<< ".\n");
1173 splitAroundRegion(LREdit
, UsedCands
);
1177 //===----------------------------------------------------------------------===//
1178 // Per-Block Splitting
1179 //===----------------------------------------------------------------------===//
1181 /// tryBlockSplit - Split a global live range around every block with uses. This
1182 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1183 /// they don't allocate.
1184 unsigned RAGreedy::tryBlockSplit(const LiveInterval
&VirtReg
,
1185 AllocationOrder
&Order
,
1186 SmallVectorImpl
<Register
> &NewVRegs
) {
1187 assert(&SA
->getParent() == &VirtReg
&& "Live range wasn't analyzed");
1188 Register Reg
= VirtReg
.reg();
1189 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
1190 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1191 SE
->reset(LREdit
, SplitSpillMode
);
1192 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1193 for (const SplitAnalysis::BlockInfo
&BI
: UseBlocks
) {
1194 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
1195 SE
->splitSingleBlock(BI
);
1197 // No blocks were split.
1201 // We did split for some blocks.
1202 SmallVector
<unsigned, 8> IntvMap
;
1203 SE
->finish(&IntvMap
);
1205 // Tell LiveDebugVariables about the new ranges.
1206 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
1208 // Sort out the new intervals created by splitting. The remainder interval
1209 // goes straight to spilling, the new local ranges get to stay RS_New.
1210 for (unsigned I
= 0, E
= LREdit
.size(); I
!= E
; ++I
) {
1211 const LiveInterval
&LI
= LIS
->getInterval(LREdit
.get(I
));
1212 if (ExtraInfo
->getOrInitStage(LI
.reg()) == RS_New
&& IntvMap
[I
] == 0)
1213 ExtraInfo
->setStage(LI
, RS_Spill
);
1217 MF
->verify(this, "After splitting live range around basic blocks");
1221 //===----------------------------------------------------------------------===//
1222 // Per-Instruction Splitting
1223 //===----------------------------------------------------------------------===//
1225 /// Get the number of allocatable registers that match the constraints of \p Reg
1226 /// on \p MI and that are also in \p SuperRC.
1227 static unsigned getNumAllocatableRegsForConstraints(
1228 const MachineInstr
*MI
, Register Reg
, const TargetRegisterClass
*SuperRC
,
1229 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
,
1230 const RegisterClassInfo
&RCI
) {
1231 assert(SuperRC
&& "Invalid register class");
1233 const TargetRegisterClass
*ConstrainedRC
=
1234 MI
->getRegClassConstraintEffectForVReg(Reg
, SuperRC
, TII
, TRI
,
1235 /* ExploreBundle */ true);
1238 return RCI
.getNumAllocatableRegs(ConstrainedRC
);
1241 /// tryInstructionSplit - Split a live range around individual instructions.
1242 /// This is normally not worthwhile since the spiller is doing essentially the
1243 /// same thing. However, when the live range is in a constrained register
1244 /// class, it may help to insert copies such that parts of the live range can
1245 /// be moved to a larger register class.
1247 /// This is similar to spilling to a larger register class.
1248 unsigned RAGreedy::tryInstructionSplit(const LiveInterval
&VirtReg
,
1249 AllocationOrder
&Order
,
1250 SmallVectorImpl
<Register
> &NewVRegs
) {
1251 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg());
1252 // There is no point to this if there are no larger sub-classes.
1253 if (!RegClassInfo
.isProperSubClass(CurRC
))
1256 // Always enable split spill mode, since we're effectively spilling to a
1258 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1259 SE
->reset(LREdit
, SplitEditor::SM_Size
);
1261 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
1262 if (Uses
.size() <= 1)
1265 LLVM_DEBUG(dbgs() << "Split around " << Uses
.size()
1266 << " individual instrs.\n");
1268 const TargetRegisterClass
*SuperRC
=
1269 TRI
->getLargestLegalSuperClass(CurRC
, *MF
);
1270 unsigned SuperRCNumAllocatableRegs
=
1271 RegClassInfo
.getNumAllocatableRegs(SuperRC
);
1272 // Split around every non-copy instruction if this split will relax
1273 // the constraints on the virtual register.
1274 // Otherwise, splitting just inserts uncoalescable copies that do not help
1276 for (const SlotIndex Use
: Uses
) {
1277 if (const MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Use
))
1278 if (MI
->isFullCopy() ||
1279 SuperRCNumAllocatableRegs
==
1280 getNumAllocatableRegsForConstraints(MI
, VirtReg
.reg(), SuperRC
,
1281 TII
, TRI
, RegClassInfo
)) {
1282 LLVM_DEBUG(dbgs() << " skip:\t" << Use
<< '\t' << *MI
);
1286 SlotIndex SegStart
= SE
->enterIntvBefore(Use
);
1287 SlotIndex SegStop
= SE
->leaveIntvAfter(Use
);
1288 SE
->useIntv(SegStart
, SegStop
);
1291 if (LREdit
.empty()) {
1292 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1296 SmallVector
<unsigned, 8> IntvMap
;
1297 SE
->finish(&IntvMap
);
1298 DebugVars
->splitRegister(VirtReg
.reg(), LREdit
.regs(), *LIS
);
1299 // Assign all new registers to RS_Spill. This was the last chance.
1300 ExtraInfo
->setStage(LREdit
.begin(), LREdit
.end(), RS_Spill
);
1304 //===----------------------------------------------------------------------===//
1306 //===----------------------------------------------------------------------===//
1308 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1309 /// in order to use PhysReg between two entries in SA->UseSlots.
1311 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1313 void RAGreedy::calcGapWeights(MCRegister PhysReg
,
1314 SmallVectorImpl
<float> &GapWeight
) {
1315 assert(SA
->getUseBlocks().size() == 1 && "Not a local interval");
1316 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
1317 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
1318 const unsigned NumGaps
= Uses
.size()-1;
1320 // Start and end points for the interference check.
1321 SlotIndex StartIdx
=
1322 BI
.LiveIn
? BI
.FirstInstr
.getBaseIndex() : BI
.FirstInstr
;
1324 BI
.LiveOut
? BI
.LastInstr
.getBoundaryIndex() : BI
.LastInstr
;
1326 GapWeight
.assign(NumGaps
, 0.0f
);
1328 // Add interference from each overlapping register.
1329 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
1330 if (!Matrix
->query(const_cast<LiveInterval
&>(SA
->getParent()), *Units
)
1331 .checkInterference())
1334 // We know that VirtReg is a continuous interval from FirstInstr to
1335 // LastInstr, so we don't need InterferenceQuery.
1337 // Interference that overlaps an instruction is counted in both gaps
1338 // surrounding the instruction. The exception is interference before
1339 // StartIdx and after StopIdx.
1341 LiveIntervalUnion::SegmentIter IntI
=
1342 Matrix
->getLiveUnions()[*Units
] .find(StartIdx
);
1343 for (unsigned Gap
= 0; IntI
.valid() && IntI
.start() < StopIdx
; ++IntI
) {
1344 // Skip the gaps before IntI.
1345 while (Uses
[Gap
+1].getBoundaryIndex() < IntI
.start())
1346 if (++Gap
== NumGaps
)
1351 // Update the gaps covered by IntI.
1352 const float weight
= IntI
.value()->weight();
1353 for (; Gap
!= NumGaps
; ++Gap
) {
1354 GapWeight
[Gap
] = std::max(GapWeight
[Gap
], weight
);
1355 if (Uses
[Gap
+1].getBaseIndex() >= IntI
.stop())
1363 // Add fixed interference.
1364 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
1365 const LiveRange
&LR
= LIS
->getRegUnit(*Units
);
1366 LiveRange::const_iterator I
= LR
.find(StartIdx
);
1367 LiveRange::const_iterator E
= LR
.end();
1369 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1370 for (unsigned Gap
= 0; I
!= E
&& I
->start
< StopIdx
; ++I
) {
1371 while (Uses
[Gap
+1].getBoundaryIndex() < I
->start
)
1372 if (++Gap
== NumGaps
)
1377 for (; Gap
!= NumGaps
; ++Gap
) {
1378 GapWeight
[Gap
] = huge_valf
;
1379 if (Uses
[Gap
+1].getBaseIndex() >= I
->end
)
1388 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1391 unsigned RAGreedy::tryLocalSplit(const LiveInterval
&VirtReg
,
1392 AllocationOrder
&Order
,
1393 SmallVectorImpl
<Register
> &NewVRegs
) {
1394 // TODO: the function currently only handles a single UseBlock; it should be
1395 // possible to generalize.
1396 if (SA
->getUseBlocks().size() != 1)
1399 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
1401 // Note that it is possible to have an interval that is live-in or live-out
1402 // while only covering a single block - A phi-def can use undef values from
1403 // predecessors, and the block could be a single-block loop.
1404 // We don't bother doing anything clever about such a case, we simply assume
1405 // that the interval is continuous from FirstInstr to LastInstr. We should
1406 // make sure that we don't do anything illegal to such an interval, though.
1408 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
1409 if (Uses
.size() <= 2)
1411 const unsigned NumGaps
= Uses
.size()-1;
1414 dbgs() << "tryLocalSplit: ";
1415 for (const auto &Use
: Uses
)
1416 dbgs() << ' ' << Use
;
1420 // If VirtReg is live across any register mask operands, compute a list of
1421 // gaps with register masks.
1422 SmallVector
<unsigned, 8> RegMaskGaps
;
1423 if (Matrix
->checkRegMaskInterference(VirtReg
)) {
1424 // Get regmask slots for the whole block.
1425 ArrayRef
<SlotIndex
> RMS
= LIS
->getRegMaskSlotsInBlock(BI
.MBB
->getNumber());
1426 LLVM_DEBUG(dbgs() << RMS
.size() << " regmasks in block:");
1427 // Constrain to VirtReg's live range.
1429 llvm::lower_bound(RMS
, Uses
.front().getRegSlot()) - RMS
.begin();
1430 unsigned RE
= RMS
.size();
1431 for (unsigned I
= 0; I
!= NumGaps
&& RI
!= RE
; ++I
) {
1432 // Look for Uses[I] <= RMS <= Uses[I + 1].
1433 assert(!SlotIndex::isEarlierInstr(RMS
[RI
], Uses
[I
]));
1434 if (SlotIndex::isEarlierInstr(Uses
[I
+ 1], RMS
[RI
]))
1436 // Skip a regmask on the same instruction as the last use. It doesn't
1437 // overlap the live range.
1438 if (SlotIndex::isSameInstr(Uses
[I
+ 1], RMS
[RI
]) && I
+ 1 == NumGaps
)
1440 LLVM_DEBUG(dbgs() << ' ' << RMS
[RI
] << ':' << Uses
[I
] << '-'
1442 RegMaskGaps
.push_back(I
);
1443 // Advance ri to the next gap. A regmask on one of the uses counts in
1445 while (RI
!= RE
&& SlotIndex::isEarlierInstr(RMS
[RI
], Uses
[I
+ 1]))
1448 LLVM_DEBUG(dbgs() << '\n');
1451 // Since we allow local split results to be split again, there is a risk of
1452 // creating infinite loops. It is tempting to require that the new live
1453 // ranges have less instructions than the original. That would guarantee
1454 // convergence, but it is too strict. A live range with 3 instructions can be
1455 // split 2+3 (including the COPY), and we want to allow that.
1457 // Instead we use these rules:
1459 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1460 // noop split, of course).
1461 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1462 // the new ranges must have fewer instructions than before the split.
1463 // 3. New ranges with the same number of instructions are marked RS_Split2,
1464 // smaller ranges are marked RS_New.
1466 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1467 // excessive splitting and infinite loops.
1469 bool ProgressRequired
= ExtraInfo
->getStage(VirtReg
) >= RS_Split2
;
1471 // Best split candidate.
1472 unsigned BestBefore
= NumGaps
;
1473 unsigned BestAfter
= 0;
1476 const float blockFreq
=
1477 SpillPlacer
->getBlockFrequency(BI
.MBB
->getNumber()).getFrequency() *
1478 (1.0f
/ MBFI
->getEntryFreq());
1479 SmallVector
<float, 8> GapWeight
;
1481 for (MCPhysReg PhysReg
: Order
) {
1483 // Keep track of the largest spill weight that would need to be evicted in
1484 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1485 calcGapWeights(PhysReg
, GapWeight
);
1487 // Remove any gaps with regmask clobbers.
1488 if (Matrix
->checkRegMaskInterference(VirtReg
, PhysReg
))
1489 for (unsigned I
= 0, E
= RegMaskGaps
.size(); I
!= E
; ++I
)
1490 GapWeight
[RegMaskGaps
[I
]] = huge_valf
;
1492 // Try to find the best sequence of gaps to close.
1493 // The new spill weight must be larger than any gap interference.
1495 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1496 unsigned SplitBefore
= 0, SplitAfter
= 1;
1498 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1499 // It is the spill weight that needs to be evicted.
1500 float MaxGap
= GapWeight
[0];
1503 // Live before/after split?
1504 const bool LiveBefore
= SplitBefore
!= 0 || BI
.LiveIn
;
1505 const bool LiveAfter
= SplitAfter
!= NumGaps
|| BI
.LiveOut
;
1507 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << ' ' << Uses
[SplitBefore
]
1508 << '-' << Uses
[SplitAfter
] << " I=" << MaxGap
);
1510 // Stop before the interval gets so big we wouldn't be making progress.
1511 if (!LiveBefore
&& !LiveAfter
) {
1512 LLVM_DEBUG(dbgs() << " all\n");
1515 // Should the interval be extended or shrunk?
1518 // How many gaps would the new range have?
1519 unsigned NewGaps
= LiveBefore
+ SplitAfter
- SplitBefore
+ LiveAfter
;
1521 // Legally, without causing looping?
1522 bool Legal
= !ProgressRequired
|| NewGaps
< NumGaps
;
1524 if (Legal
&& MaxGap
< huge_valf
) {
1525 // Estimate the new spill weight. Each instruction reads or writes the
1526 // register. Conservatively assume there are no read-modify-write
1529 // Try to guess the size of the new interval.
1530 const float EstWeight
= normalizeSpillWeight(
1531 blockFreq
* (NewGaps
+ 1),
1532 Uses
[SplitBefore
].distance(Uses
[SplitAfter
]) +
1533 (LiveBefore
+ LiveAfter
) * SlotIndex::InstrDist
,
1535 // Would this split be possible to allocate?
1536 // Never allocate all gaps, we wouldn't be making progress.
1537 LLVM_DEBUG(dbgs() << " w=" << EstWeight
);
1538 if (EstWeight
* Hysteresis
>= MaxGap
) {
1540 float Diff
= EstWeight
- MaxGap
;
1541 if (Diff
> BestDiff
) {
1542 LLVM_DEBUG(dbgs() << " (best)");
1543 BestDiff
= Hysteresis
* Diff
;
1544 BestBefore
= SplitBefore
;
1545 BestAfter
= SplitAfter
;
1552 if (++SplitBefore
< SplitAfter
) {
1553 LLVM_DEBUG(dbgs() << " shrink\n");
1554 // Recompute the max when necessary.
1555 if (GapWeight
[SplitBefore
- 1] >= MaxGap
) {
1556 MaxGap
= GapWeight
[SplitBefore
];
1557 for (unsigned I
= SplitBefore
+ 1; I
!= SplitAfter
; ++I
)
1558 MaxGap
= std::max(MaxGap
, GapWeight
[I
]);
1565 // Try to extend the interval.
1566 if (SplitAfter
>= NumGaps
) {
1567 LLVM_DEBUG(dbgs() << " end\n");
1571 LLVM_DEBUG(dbgs() << " extend\n");
1572 MaxGap
= std::max(MaxGap
, GapWeight
[SplitAfter
++]);
1576 // Didn't find any candidates?
1577 if (BestBefore
== NumGaps
)
1580 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses
[BestBefore
] << '-'
1581 << Uses
[BestAfter
] << ", " << BestDiff
<< ", "
1582 << (BestAfter
- BestBefore
+ 1) << " instrs\n");
1584 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
1588 SlotIndex SegStart
= SE
->enterIntvBefore(Uses
[BestBefore
]);
1589 SlotIndex SegStop
= SE
->leaveIntvAfter(Uses
[BestAfter
]);
1590 SE
->useIntv(SegStart
, SegStop
);
1591 SmallVector
<unsigned, 8> IntvMap
;
1592 SE
->finish(&IntvMap
);
1593 DebugVars
->splitRegister(VirtReg
.reg(), LREdit
.regs(), *LIS
);
1594 // If the new range has the same number of instructions as before, mark it as
1595 // RS_Split2 so the next split will be forced to make progress. Otherwise,
1596 // leave the new intervals as RS_New so they can compete.
1597 bool LiveBefore
= BestBefore
!= 0 || BI
.LiveIn
;
1598 bool LiveAfter
= BestAfter
!= NumGaps
|| BI
.LiveOut
;
1599 unsigned NewGaps
= LiveBefore
+ BestAfter
- BestBefore
+ LiveAfter
;
1600 if (NewGaps
>= NumGaps
) {
1601 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1602 assert(!ProgressRequired
&& "Didn't make progress when it was required.");
1603 for (unsigned I
= 0, E
= IntvMap
.size(); I
!= E
; ++I
)
1604 if (IntvMap
[I
] == 1) {
1605 ExtraInfo
->setStage(LIS
->getInterval(LREdit
.get(I
)), RS_Split2
);
1606 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit
.get(I
)));
1608 LLVM_DEBUG(dbgs() << '\n');
1615 //===----------------------------------------------------------------------===//
1616 // Live Range Splitting
1617 //===----------------------------------------------------------------------===//
1619 /// trySplit - Try to split VirtReg or one of its interferences, making it
1621 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1622 unsigned RAGreedy::trySplit(const LiveInterval
&VirtReg
, AllocationOrder
&Order
,
1623 SmallVectorImpl
<Register
> &NewVRegs
,
1624 const SmallVirtRegSet
&FixedRegisters
) {
1625 // Ranges must be Split2 or less.
1626 if (ExtraInfo
->getStage(VirtReg
) >= RS_Spill
)
1629 // Local intervals are handled separately.
1630 if (LIS
->intervalIsInOneMBB(VirtReg
)) {
1631 NamedRegionTimer
T("local_split", "Local Splitting", TimerGroupName
,
1632 TimerGroupDescription
, TimePassesIsEnabled
);
1633 SA
->analyze(&VirtReg
);
1634 Register PhysReg
= tryLocalSplit(VirtReg
, Order
, NewVRegs
);
1635 if (PhysReg
|| !NewVRegs
.empty())
1637 return tryInstructionSplit(VirtReg
, Order
, NewVRegs
);
1640 NamedRegionTimer
T("global_split", "Global Splitting", TimerGroupName
,
1641 TimerGroupDescription
, TimePassesIsEnabled
);
1643 SA
->analyze(&VirtReg
);
1645 // First try to split around a region spanning multiple blocks. RS_Split2
1646 // ranges already made dubious progress with region splitting, so they go
1647 // straight to single block splitting.
1648 if (ExtraInfo
->getStage(VirtReg
) < RS_Split2
) {
1649 MCRegister PhysReg
= tryRegionSplit(VirtReg
, Order
, NewVRegs
);
1650 if (PhysReg
|| !NewVRegs
.empty())
1654 // Then isolate blocks.
1655 return tryBlockSplit(VirtReg
, Order
, NewVRegs
);
1658 //===----------------------------------------------------------------------===//
1659 // Last Chance Recoloring
1660 //===----------------------------------------------------------------------===//
1662 /// Return true if \p reg has any tied def operand.
1663 static bool hasTiedDef(MachineRegisterInfo
*MRI
, unsigned reg
) {
1664 for (const MachineOperand
&MO
: MRI
->def_operands(reg
))
1671 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1672 /// same, as \p PhysReg.
1673 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo
&TRI
,
1674 const VirtRegMap
&VRM
,
1676 const LiveInterval
&Intf
) {
1677 MCRegister AssignedReg
= VRM
.getPhys(Intf
.reg());
1678 if (PhysReg
== AssignedReg
)
1680 return TRI
.regsOverlap(PhysReg
, AssignedReg
);
1683 /// mayRecolorAllInterferences - Check if the virtual registers that
1684 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1685 /// recolored to free \p PhysReg.
1686 /// When true is returned, \p RecoloringCandidates has been augmented with all
1687 /// the live intervals that need to be recolored in order to free \p PhysReg
1689 /// \p FixedRegisters contains all the virtual registers that cannot be
1691 bool RAGreedy::mayRecolorAllInterferences(
1692 MCRegister PhysReg
, const LiveInterval
&VirtReg
,
1693 SmallLISet
&RecoloringCandidates
, const SmallVirtRegSet
&FixedRegisters
) {
1694 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg());
1696 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
1697 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
1698 // If there is LastChanceRecoloringMaxInterference or more interferences,
1699 // chances are one would not be recolorable.
1700 if (Q
.interferingVRegs(LastChanceRecoloringMaxInterference
).size() >=
1701 LastChanceRecoloringMaxInterference
&&
1702 !ExhaustiveSearch
) {
1703 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1704 CutOffInfo
|= CO_Interf
;
1707 for (const LiveInterval
*Intf
: reverse(Q
.interferingVRegs())) {
1708 // If Intf is done and sits on the same register class as VirtReg, it
1709 // would not be recolorable as it is in the same state as
1710 // VirtReg. However there are at least two exceptions.
1712 // If VirtReg has tied defs and Intf doesn't, then
1713 // there is still a point in examining if it can be recolorable.
1715 // Additionally, if the register class has overlapping tuple members, it
1716 // may still be recolorable using a different tuple. This is more likely
1717 // if the existing assignment aliases with the candidate.
1719 if (((ExtraInfo
->getStage(*Intf
) == RS_Done
&&
1720 MRI
->getRegClass(Intf
->reg()) == CurRC
&&
1721 !assignedRegPartiallyOverlaps(*TRI
, *VRM
, PhysReg
, *Intf
)) &&
1722 !(hasTiedDef(MRI
, VirtReg
.reg()) &&
1723 !hasTiedDef(MRI
, Intf
->reg()))) ||
1724 FixedRegisters
.count(Intf
->reg())) {
1726 dbgs() << "Early abort: the interference is not recolorable.\n");
1729 RecoloringCandidates
.insert(Intf
);
1735 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1736 /// its interferences.
1737 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1738 /// virtual register that was using it. The recoloring process may recursively
1739 /// use the last chance recoloring. Therefore, when a virtual register has been
1740 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1741 /// be last-chance-recolored again during this recoloring "session".
1744 /// vA can use {R1, R2 }
1745 /// vB can use { R2, R3}
1746 /// vC can use {R1 }
1747 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1748 /// instance) and they all interfere.
1750 /// vA is assigned R1
1751 /// vB is assigned R2
1752 /// vC tries to evict vA but vA is already done.
1753 /// Regular register allocation fails.
1755 /// Last chance recoloring kicks in:
1756 /// vC does as if vA was evicted => vC uses R1.
1757 /// vC is marked as fixed.
1758 /// vA needs to find a color.
1759 /// None are available.
1760 /// vA cannot evict vC: vC is a fixed virtual register now.
1761 /// vA does as if vB was evicted => vA uses R2.
1762 /// vB needs to find a color.
1763 /// R3 is available.
1764 /// Recoloring => vC = R1, vA = R2, vB = R3
1766 /// \p Order defines the preferred allocation order for \p VirtReg.
1767 /// \p NewRegs will contain any new virtual register that have been created
1768 /// (split, spill) during the process and that must be assigned.
1769 /// \p FixedRegisters contains all the virtual registers that cannot be
1772 /// \p RecolorStack tracks the original assignments of successfully recolored
1775 /// \p Depth gives the current depth of the last chance recoloring.
1776 /// \return a physical register that can be used for VirtReg or ~0u if none
1778 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval
&VirtReg
,
1779 AllocationOrder
&Order
,
1780 SmallVectorImpl
<Register
> &NewVRegs
,
1781 SmallVirtRegSet
&FixedRegisters
,
1782 RecoloringStack
&RecolorStack
,
1784 if (!TRI
->shouldUseLastChanceRecoloringForVirtReg(*MF
, VirtReg
))
1787 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg
<< '\n');
1789 const ssize_t EntryStackSize
= RecolorStack
.size();
1791 // Ranges must be Done.
1792 assert((ExtraInfo
->getStage(VirtReg
) >= RS_Done
|| !VirtReg
.isSpillable()) &&
1793 "Last chance recoloring should really be last chance");
1794 // Set the max depth to LastChanceRecoloringMaxDepth.
1795 // We may want to reconsider that if we end up with a too large search space
1796 // for target with hundreds of registers.
1797 // Indeed, in that case we may want to cut the search space earlier.
1798 if (Depth
>= LastChanceRecoloringMaxDepth
&& !ExhaustiveSearch
) {
1799 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1800 CutOffInfo
|= CO_Depth
;
1804 // Set of Live intervals that will need to be recolored.
1805 SmallLISet RecoloringCandidates
;
1807 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1808 // this recoloring "session".
1809 assert(!FixedRegisters
.count(VirtReg
.reg()));
1810 FixedRegisters
.insert(VirtReg
.reg());
1811 SmallVector
<Register
, 4> CurrentNewVRegs
;
1813 for (MCRegister PhysReg
: Order
) {
1814 assert(PhysReg
.isValid());
1815 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg
<< " to "
1816 << printReg(PhysReg
, TRI
) << '\n');
1817 RecoloringCandidates
.clear();
1818 CurrentNewVRegs
.clear();
1820 // It is only possible to recolor virtual register interference.
1821 if (Matrix
->checkInterference(VirtReg
, PhysReg
) >
1822 LiveRegMatrix::IK_VirtReg
) {
1824 dbgs() << "Some interferences are not with virtual registers.\n");
1829 // Early give up on this PhysReg if it is obvious we cannot recolor all
1830 // the interferences.
1831 if (!mayRecolorAllInterferences(PhysReg
, VirtReg
, RecoloringCandidates
,
1833 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
1837 // RecoloringCandidates contains all the virtual registers that interfere
1838 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
1839 // recoloring and perform the actual recoloring.
1840 PQueue RecoloringQueue
;
1841 for (const LiveInterval
*RC
: RecoloringCandidates
) {
1842 Register ItVirtReg
= RC
->reg();
1843 enqueue(RecoloringQueue
, RC
);
1844 assert(VRM
->hasPhys(ItVirtReg
) &&
1845 "Interferences are supposed to be with allocated variables");
1847 // Record the current allocation.
1848 RecolorStack
.push_back(std::make_pair(RC
, VRM
->getPhys(ItVirtReg
)));
1850 // unset the related struct.
1851 Matrix
->unassign(*RC
);
1854 // Do as if VirtReg was assigned to PhysReg so that the underlying
1855 // recoloring has the right information about the interferes and
1856 // available colors.
1857 Matrix
->assign(VirtReg
, PhysReg
);
1859 // Save the current recoloring state.
1860 // If we cannot recolor all the interferences, we will have to start again
1861 // at this point for the next physical register.
1862 SmallVirtRegSet
SaveFixedRegisters(FixedRegisters
);
1863 if (tryRecoloringCandidates(RecoloringQueue
, CurrentNewVRegs
,
1864 FixedRegisters
, RecolorStack
, Depth
)) {
1865 // Push the queued vregs into the main queue.
1866 for (Register NewVReg
: CurrentNewVRegs
)
1867 NewVRegs
.push_back(NewVReg
);
1868 // Do not mess up with the global assignment process.
1869 // I.e., VirtReg must be unassigned.
1870 Matrix
->unassign(VirtReg
);
1874 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg
<< " to "
1875 << printReg(PhysReg
, TRI
) << '\n');
1877 // The recoloring attempt failed, undo the changes.
1878 FixedRegisters
= SaveFixedRegisters
;
1879 Matrix
->unassign(VirtReg
);
1881 // For a newly created vreg which is also in RecoloringCandidates,
1882 // don't add it to NewVRegs because its physical register will be restored
1883 // below. Other vregs in CurrentNewVRegs are created by calling
1884 // selectOrSplit and should be added into NewVRegs.
1885 for (Register
&R
: CurrentNewVRegs
) {
1886 if (RecoloringCandidates
.count(&LIS
->getInterval(R
)))
1888 NewVRegs
.push_back(R
);
1891 // Roll back our unsuccessful recoloring. Also roll back any successful
1892 // recolorings in any recursive recoloring attempts, since it's possible
1893 // they would have introduced conflicts with assignments we will be
1894 // restoring further up the stack. Perform all unassignments prior to
1895 // reassigning, since sub-recolorings may have conflicted with the registers
1896 // we are going to restore to their original assignments.
1897 for (ssize_t I
= RecolorStack
.size() - 1; I
>= EntryStackSize
; --I
) {
1898 const LiveInterval
*LI
;
1900 std::tie(LI
, PhysReg
) = RecolorStack
[I
];
1902 if (VRM
->hasPhys(LI
->reg()))
1903 Matrix
->unassign(*LI
);
1906 for (size_t I
= EntryStackSize
; I
!= RecolorStack
.size(); ++I
) {
1907 const LiveInterval
*LI
;
1909 std::tie(LI
, PhysReg
) = RecolorStack
[I
];
1910 if (!LI
->empty() && !MRI
->reg_nodbg_empty(LI
->reg()))
1911 Matrix
->assign(*LI
, PhysReg
);
1914 // Pop the stack of recoloring attempts.
1915 RecolorStack
.resize(EntryStackSize
);
1918 // Last chance recoloring did not worked either, give up.
1922 /// tryRecoloringCandidates - Try to assign a new color to every register
1923 /// in \RecoloringQueue.
1924 /// \p NewRegs will contain any new virtual register created during the
1925 /// recoloring process.
1926 /// \p FixedRegisters[in/out] contains all the registers that have been
1928 /// \return true if all virtual registers in RecoloringQueue were successfully
1929 /// recolored, false otherwise.
1930 bool RAGreedy::tryRecoloringCandidates(PQueue
&RecoloringQueue
,
1931 SmallVectorImpl
<Register
> &NewVRegs
,
1932 SmallVirtRegSet
&FixedRegisters
,
1933 RecoloringStack
&RecolorStack
,
1935 while (!RecoloringQueue
.empty()) {
1936 const LiveInterval
*LI
= dequeue(RecoloringQueue
);
1937 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI
<< '\n');
1938 MCRegister PhysReg
= selectOrSplitImpl(*LI
, NewVRegs
, FixedRegisters
,
1939 RecolorStack
, Depth
+ 1);
1940 // When splitting happens, the live-range may actually be empty.
1941 // In that case, this is okay to continue the recoloring even
1942 // if we did not find an alternative color for it. Indeed,
1943 // there will not be anything to color for LI in the end.
1944 if (PhysReg
== ~0u || (!PhysReg
&& !LI
->empty()))
1948 assert(LI
->empty() && "Only empty live-range do not require a register");
1949 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
1950 << " succeeded. Empty LI.\n");
1953 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
1954 << " succeeded with: " << printReg(PhysReg
, TRI
) << '\n');
1956 Matrix
->assign(*LI
, PhysReg
);
1957 FixedRegisters
.insert(LI
->reg());
1962 //===----------------------------------------------------------------------===//
1964 //===----------------------------------------------------------------------===//
1966 MCRegister
RAGreedy::selectOrSplit(const LiveInterval
&VirtReg
,
1967 SmallVectorImpl
<Register
> &NewVRegs
) {
1968 CutOffInfo
= CO_None
;
1969 LLVMContext
&Ctx
= MF
->getFunction().getContext();
1970 SmallVirtRegSet FixedRegisters
;
1971 RecoloringStack RecolorStack
;
1973 selectOrSplitImpl(VirtReg
, NewVRegs
, FixedRegisters
, RecolorStack
);
1974 if (Reg
== ~0U && (CutOffInfo
!= CO_None
)) {
1975 uint8_t CutOffEncountered
= CutOffInfo
& (CO_Depth
| CO_Interf
);
1976 if (CutOffEncountered
== CO_Depth
)
1977 Ctx
.emitError("register allocation failed: maximum depth for recoloring "
1978 "reached. Use -fexhaustive-register-search to skip "
1980 else if (CutOffEncountered
== CO_Interf
)
1981 Ctx
.emitError("register allocation failed: maximum interference for "
1982 "recoloring reached. Use -fexhaustive-register-search "
1984 else if (CutOffEncountered
== (CO_Depth
| CO_Interf
))
1985 Ctx
.emitError("register allocation failed: maximum interference and "
1986 "depth for recoloring reached. Use "
1987 "-fexhaustive-register-search to skip cutoffs");
1992 /// Using a CSR for the first time has a cost because it causes push|pop
1993 /// to be added to prologue|epilogue. Splitting a cold section of the live
1994 /// range can have lower cost than using the CSR for the first time;
1995 /// Spilling a live range in the cold path can have lower cost than using
1996 /// the CSR for the first time. Returns the physical register if we decide
1997 /// to use the CSR; otherwise return 0.
1998 MCRegister
RAGreedy::tryAssignCSRFirstTime(
1999 const LiveInterval
&VirtReg
, AllocationOrder
&Order
, MCRegister PhysReg
,
2000 uint8_t &CostPerUseLimit
, SmallVectorImpl
<Register
> &NewVRegs
) {
2001 if (ExtraInfo
->getStage(VirtReg
) == RS_Spill
&& VirtReg
.isSpillable()) {
2002 // We choose spill over using the CSR for the first time if the spill cost
2003 // is lower than CSRCost.
2004 SA
->analyze(&VirtReg
);
2005 if (calcSpillCost() >= CSRCost
)
2008 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2009 // we will not use a callee-saved register in tryEvict.
2010 CostPerUseLimit
= 1;
2013 if (ExtraInfo
->getStage(VirtReg
) < RS_Split
) {
2014 // We choose pre-splitting over using the CSR for the first time if
2015 // the cost of splitting is lower than CSRCost.
2016 SA
->analyze(&VirtReg
);
2017 unsigned NumCands
= 0;
2018 BlockFrequency BestCost
= CSRCost
; // Don't modify CSRCost.
2019 unsigned BestCand
= calculateRegionSplitCost(VirtReg
, Order
, BestCost
,
2020 NumCands
, true /*IgnoreCSR*/);
2021 if (BestCand
== NoCand
)
2022 // Use the CSR if we can't find a region split below CSRCost.
2025 // Perform the actual pre-splitting.
2026 doRegionSplit(VirtReg
, BestCand
, false/*HasCompact*/, NewVRegs
);
2032 void RAGreedy::aboutToRemoveInterval(const LiveInterval
&LI
) {
2033 // Do not keep invalid information around.
2034 SetOfBrokenHints
.remove(&LI
);
2037 void RAGreedy::initializeCSRCost() {
2038 // We use the larger one out of the command-line option and the value report
2040 CSRCost
= BlockFrequency(
2041 std::max((unsigned)CSRFirstTimeCost
, TRI
->getCSRFirstUseCost()));
2042 if (!CSRCost
.getFrequency())
2045 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2046 uint64_t ActualEntry
= MBFI
->getEntryFreq();
2051 uint64_t FixedEntry
= 1 << 14;
2052 if (ActualEntry
< FixedEntry
)
2053 CSRCost
*= BranchProbability(ActualEntry
, FixedEntry
);
2054 else if (ActualEntry
<= UINT32_MAX
)
2055 // Invert the fraction and divide.
2056 CSRCost
/= BranchProbability(FixedEntry
, ActualEntry
);
2058 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2059 CSRCost
= CSRCost
.getFrequency() * (ActualEntry
/ FixedEntry
);
2062 /// Collect the hint info for \p Reg.
2063 /// The results are stored into \p Out.
2064 /// \p Out is not cleared before being populated.
2065 void RAGreedy::collectHintInfo(Register Reg
, HintsInfo
&Out
) {
2066 for (const MachineInstr
&Instr
: MRI
->reg_nodbg_instructions(Reg
)) {
2067 if (!Instr
.isFullCopy())
2069 // Look for the other end of the copy.
2070 Register OtherReg
= Instr
.getOperand(0).getReg();
2071 if (OtherReg
== Reg
) {
2072 OtherReg
= Instr
.getOperand(1).getReg();
2073 if (OtherReg
== Reg
)
2076 // Get the current assignment.
2077 MCRegister OtherPhysReg
=
2078 OtherReg
.isPhysical() ? OtherReg
.asMCReg() : VRM
->getPhys(OtherReg
);
2079 // Push the collected information.
2080 Out
.push_back(HintInfo(MBFI
->getBlockFreq(Instr
.getParent()), OtherReg
,
2085 /// Using the given \p List, compute the cost of the broken hints if
2086 /// \p PhysReg was used.
2087 /// \return The cost of \p List for \p PhysReg.
2088 BlockFrequency
RAGreedy::getBrokenHintFreq(const HintsInfo
&List
,
2089 MCRegister PhysReg
) {
2090 BlockFrequency Cost
= 0;
2091 for (const HintInfo
&Info
: List
) {
2092 if (Info
.PhysReg
!= PhysReg
)
2098 /// Using the register assigned to \p VirtReg, try to recolor
2099 /// all the live ranges that are copy-related with \p VirtReg.
2100 /// The recoloring is then propagated to all the live-ranges that have
2101 /// been recolored and so on, until no more copies can be coalesced or
2102 /// it is not profitable.
2103 /// For a given live range, profitability is determined by the sum of the
2104 /// frequencies of the non-identity copies it would introduce with the old
2105 /// and new register.
2106 void RAGreedy::tryHintRecoloring(const LiveInterval
&VirtReg
) {
2107 // We have a broken hint, check if it is possible to fix it by
2108 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2109 // some register and PhysReg may be available for the other live-ranges.
2110 SmallSet
<Register
, 4> Visited
;
2111 SmallVector
<unsigned, 2> RecoloringCandidates
;
2113 Register Reg
= VirtReg
.reg();
2114 MCRegister PhysReg
= VRM
->getPhys(Reg
);
2115 // Start the recoloring algorithm from the input live-interval, then
2116 // it will propagate to the ones that are copy-related with it.
2117 Visited
.insert(Reg
);
2118 RecoloringCandidates
.push_back(Reg
);
2120 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg
, TRI
)
2121 << '(' << printReg(PhysReg
, TRI
) << ")\n");
2124 Reg
= RecoloringCandidates
.pop_back_val();
2126 // We cannot recolor physical register.
2127 if (Register::isPhysicalRegister(Reg
))
2130 // This may be a skipped class
2131 if (!VRM
->hasPhys(Reg
)) {
2132 assert(!ShouldAllocateClass(*TRI
, *MRI
->getRegClass(Reg
)) &&
2133 "We have an unallocated variable which should have been handled");
2137 // Get the live interval mapped with this virtual register to be able
2138 // to check for the interference with the new color.
2139 LiveInterval
&LI
= LIS
->getInterval(Reg
);
2140 MCRegister CurrPhys
= VRM
->getPhys(Reg
);
2141 // Check that the new color matches the register class constraints and
2142 // that it is free for this live range.
2143 if (CurrPhys
!= PhysReg
&& (!MRI
->getRegClass(Reg
)->contains(PhysReg
) ||
2144 Matrix
->checkInterference(LI
, PhysReg
)))
2147 LLVM_DEBUG(dbgs() << printReg(Reg
, TRI
) << '(' << printReg(CurrPhys
, TRI
)
2148 << ") is recolorable.\n");
2150 // Gather the hint info.
2152 collectHintInfo(Reg
, Info
);
2153 // Check if recoloring the live-range will increase the cost of the
2154 // non-identity copies.
2155 if (CurrPhys
!= PhysReg
) {
2156 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2157 BlockFrequency OldCopiesCost
= getBrokenHintFreq(Info
, CurrPhys
);
2158 BlockFrequency NewCopiesCost
= getBrokenHintFreq(Info
, PhysReg
);
2159 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost
.getFrequency()
2160 << "\nNew Cost: " << NewCopiesCost
.getFrequency()
2162 if (OldCopiesCost
< NewCopiesCost
) {
2163 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2166 // At this point, the cost is either cheaper or equal. If it is
2167 // equal, we consider this is profitable because it may expose
2168 // more recoloring opportunities.
2169 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2170 // Recolor the live-range.
2171 Matrix
->unassign(LI
);
2172 Matrix
->assign(LI
, PhysReg
);
2174 // Push all copy-related live-ranges to keep reconciling the broken
2176 for (const HintInfo
&HI
: Info
) {
2177 if (Visited
.insert(HI
.Reg
).second
)
2178 RecoloringCandidates
.push_back(HI
.Reg
);
2180 } while (!RecoloringCandidates
.empty());
2183 /// Try to recolor broken hints.
2184 /// Broken hints may be repaired by recoloring when an evicted variable
2185 /// freed up a register for a larger live-range.
2186 /// Consider the following example:
2194 /// Let us assume b gets split:
2204 /// Because of how the allocation work, b, c, and d may be assigned different
2205 /// colors. Now, if a gets evicted later:
2215 /// e = ld SpillSlot
2217 /// This is likely that we can assign the same register for b, c, and d,
2218 /// getting rid of 2 copies.
2219 void RAGreedy::tryHintsRecoloring() {
2220 for (const LiveInterval
*LI
: SetOfBrokenHints
) {
2221 assert(Register::isVirtualRegister(LI
->reg()) &&
2222 "Recoloring is possible only for virtual registers");
2223 // Some dead defs may be around (e.g., because of debug uses).
2225 if (!VRM
->hasPhys(LI
->reg()))
2227 tryHintRecoloring(*LI
);
2231 MCRegister
RAGreedy::selectOrSplitImpl(const LiveInterval
&VirtReg
,
2232 SmallVectorImpl
<Register
> &NewVRegs
,
2233 SmallVirtRegSet
&FixedRegisters
,
2234 RecoloringStack
&RecolorStack
,
2236 uint8_t CostPerUseLimit
= uint8_t(~0u);
2237 // First try assigning a free register.
2239 AllocationOrder::create(VirtReg
.reg(), *VRM
, RegClassInfo
, Matrix
);
2240 if (MCRegister PhysReg
=
2241 tryAssign(VirtReg
, Order
, NewVRegs
, FixedRegisters
)) {
2242 // When NewVRegs is not empty, we may have made decisions such as evicting
2243 // a virtual register, go with the earlier decisions and use the physical
2245 if (CSRCost
.getFrequency() &&
2246 EvictAdvisor
->isUnusedCalleeSavedReg(PhysReg
) && NewVRegs
.empty()) {
2247 MCRegister CSRReg
= tryAssignCSRFirstTime(VirtReg
, Order
, PhysReg
,
2248 CostPerUseLimit
, NewVRegs
);
2249 if (CSRReg
|| !NewVRegs
.empty())
2250 // Return now if we decide to use a CSR or create new vregs due to
2257 LiveRangeStage Stage
= ExtraInfo
->getStage(VirtReg
);
2258 LLVM_DEBUG(dbgs() << StageName
[Stage
] << " Cascade "
2259 << ExtraInfo
->getCascade(VirtReg
.reg()) << '\n');
2261 // Try to evict a less worthy live range, but only for ranges from the primary
2262 // queue. The RS_Split ranges already failed to do this, and they should not
2263 // get a second chance until they have been split.
2264 if (Stage
!= RS_Split
)
2265 if (Register PhysReg
=
2266 tryEvict(VirtReg
, Order
, NewVRegs
, CostPerUseLimit
,
2268 Register Hint
= MRI
->getSimpleHint(VirtReg
.reg());
2269 // If VirtReg has a hint and that hint is broken record this
2270 // virtual register as a recoloring candidate for broken hint.
2271 // Indeed, since we evicted a variable in its neighborhood it is
2272 // likely we can at least partially recolor some of the
2273 // copy-related live-ranges.
2274 if (Hint
&& Hint
!= PhysReg
)
2275 SetOfBrokenHints
.insert(&VirtReg
);
2279 assert((NewVRegs
.empty() || Depth
) && "Cannot append to existing NewVRegs");
2281 // The first time we see a live range, don't try to split or spill.
2282 // Wait until the second time, when all smaller ranges have been allocated.
2283 // This gives a better picture of the interference to split around.
2284 if (Stage
< RS_Split
) {
2285 ExtraInfo
->setStage(VirtReg
, RS_Split
);
2286 LLVM_DEBUG(dbgs() << "wait for second round\n");
2287 NewVRegs
.push_back(VirtReg
.reg());
2291 if (Stage
< RS_Spill
) {
2292 // Try splitting VirtReg or interferences.
2293 unsigned NewVRegSizeBefore
= NewVRegs
.size();
2294 Register PhysReg
= trySplit(VirtReg
, Order
, NewVRegs
, FixedRegisters
);
2295 if (PhysReg
|| (NewVRegs
.size() - NewVRegSizeBefore
))
2299 // If we couldn't allocate a register from spilling, there is probably some
2300 // invalid inline assembly. The base class will report it.
2301 if (Stage
>= RS_Done
|| !VirtReg
.isSpillable()) {
2302 return tryLastChanceRecoloring(VirtReg
, Order
, NewVRegs
, FixedRegisters
,
2303 RecolorStack
, Depth
);
2306 // Finally spill VirtReg itself.
2307 if ((EnableDeferredSpilling
||
2308 TRI
->shouldUseDeferredSpillingForVirtReg(*MF
, VirtReg
)) &&
2309 ExtraInfo
->getStage(VirtReg
) < RS_Memory
) {
2310 // TODO: This is experimental and in particular, we do not model
2311 // the live range splitting done by spilling correctly.
2312 // We would need a deep integration with the spiller to do the
2313 // right thing here. Anyway, that is still good for early testing.
2314 ExtraInfo
->setStage(VirtReg
, RS_Memory
);
2315 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2316 NewVRegs
.push_back(VirtReg
.reg());
2318 NamedRegionTimer
T("spill", "Spiller", TimerGroupName
,
2319 TimerGroupDescription
, TimePassesIsEnabled
);
2320 LiveRangeEdit
LRE(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2321 spiller().spill(LRE
);
2322 ExtraInfo
->setStage(NewVRegs
.begin(), NewVRegs
.end(), RS_Done
);
2324 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2325 // the new regs are kept in LDV (still mapping to the old register), until
2326 // we rewrite spilled locations in LDV at a later stage.
2327 DebugVars
->splitRegister(VirtReg
.reg(), LRE
.regs(), *LIS
);
2330 MF
->verify(this, "After spilling");
2333 // The live virtual register requesting allocation was spilled, so tell
2334 // the caller not to allocate anything during this round.
2338 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed
&R
) {
2339 using namespace ore
;
2341 R
<< NV("NumSpills", Spills
) << " spills ";
2342 R
<< NV("TotalSpillsCost", SpillsCost
) << " total spills cost ";
2345 R
<< NV("NumFoldedSpills", FoldedSpills
) << " folded spills ";
2346 R
<< NV("TotalFoldedSpillsCost", FoldedSpillsCost
)
2347 << " total folded spills cost ";
2350 R
<< NV("NumReloads", Reloads
) << " reloads ";
2351 R
<< NV("TotalReloadsCost", ReloadsCost
) << " total reloads cost ";
2353 if (FoldedReloads
) {
2354 R
<< NV("NumFoldedReloads", FoldedReloads
) << " folded reloads ";
2355 R
<< NV("TotalFoldedReloadsCost", FoldedReloadsCost
)
2356 << " total folded reloads cost ";
2358 if (ZeroCostFoldedReloads
)
2359 R
<< NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads
)
2360 << " zero cost folded reloads ";
2362 R
<< NV("NumVRCopies", Copies
) << " virtual registers copies ";
2363 R
<< NV("TotalCopiesCost", CopiesCost
) << " total copies cost ";
2367 RAGreedy::RAGreedyStats
RAGreedy::computeStats(MachineBasicBlock
&MBB
) {
2368 RAGreedyStats Stats
;
2369 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
2372 auto isSpillSlotAccess
= [&MFI
](const MachineMemOperand
*A
) {
2373 return MFI
.isSpillSlotObjectIndex(cast
<FixedStackPseudoSourceValue
>(
2374 A
->getPseudoValue())->getFrameIndex());
2376 auto isPatchpointInstr
= [](const MachineInstr
&MI
) {
2377 return MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
2378 MI
.getOpcode() == TargetOpcode::STACKMAP
||
2379 MI
.getOpcode() == TargetOpcode::STATEPOINT
;
2381 for (MachineInstr
&MI
: MBB
) {
2383 const MachineOperand
&Dest
= MI
.getOperand(0);
2384 const MachineOperand
&Src
= MI
.getOperand(1);
2385 Register SrcReg
= Src
.getReg();
2386 Register DestReg
= Dest
.getReg();
2387 // Only count `COPY`s with a virtual register as source or destination.
2388 if (SrcReg
.isVirtual() || DestReg
.isVirtual()) {
2389 if (SrcReg
.isVirtual()) {
2390 SrcReg
= VRM
->getPhys(SrcReg
);
2391 if (Src
.getSubReg())
2392 SrcReg
= TRI
->getSubReg(SrcReg
, Src
.getSubReg());
2394 if (DestReg
.isVirtual()) {
2395 DestReg
= VRM
->getPhys(DestReg
);
2396 if (Dest
.getSubReg())
2397 DestReg
= TRI
->getSubReg(DestReg
, Dest
.getSubReg());
2399 if (SrcReg
!= DestReg
)
2405 SmallVector
<const MachineMemOperand
*, 2> Accesses
;
2406 if (TII
->isLoadFromStackSlot(MI
, FI
) && MFI
.isSpillSlotObjectIndex(FI
)) {
2410 if (TII
->isStoreToStackSlot(MI
, FI
) && MFI
.isSpillSlotObjectIndex(FI
)) {
2414 if (TII
->hasLoadFromStackSlot(MI
, Accesses
) &&
2415 llvm::any_of(Accesses
, isSpillSlotAccess
)) {
2416 if (!isPatchpointInstr(MI
)) {
2417 Stats
.FoldedReloads
+= Accesses
.size();
2420 // For statepoint there may be folded and zero cost folded stack reloads.
2421 std::pair
<unsigned, unsigned> NonZeroCostRange
=
2422 TII
->getPatchpointUnfoldableRange(MI
);
2423 SmallSet
<unsigned, 16> FoldedReloads
;
2424 SmallSet
<unsigned, 16> ZeroCostFoldedReloads
;
2425 for (unsigned Idx
= 0, E
= MI
.getNumOperands(); Idx
< E
; ++Idx
) {
2426 MachineOperand
&MO
= MI
.getOperand(Idx
);
2427 if (!MO
.isFI() || !MFI
.isSpillSlotObjectIndex(MO
.getIndex()))
2429 if (Idx
>= NonZeroCostRange
.first
&& Idx
< NonZeroCostRange
.second
)
2430 FoldedReloads
.insert(MO
.getIndex());
2432 ZeroCostFoldedReloads
.insert(MO
.getIndex());
2434 // If stack slot is used in folded reload it is not zero cost then.
2435 for (unsigned Slot
: FoldedReloads
)
2436 ZeroCostFoldedReloads
.erase(Slot
);
2437 Stats
.FoldedReloads
+= FoldedReloads
.size();
2438 Stats
.ZeroCostFoldedReloads
+= ZeroCostFoldedReloads
.size();
2442 if (TII
->hasStoreToStackSlot(MI
, Accesses
) &&
2443 llvm::any_of(Accesses
, isSpillSlotAccess
)) {
2444 Stats
.FoldedSpills
+= Accesses
.size();
2447 // Set cost of collected statistic by multiplication to relative frequency of
2448 // this basic block.
2449 float RelFreq
= MBFI
->getBlockFreqRelativeToEntryBlock(&MBB
);
2450 Stats
.ReloadsCost
= RelFreq
* Stats
.Reloads
;
2451 Stats
.FoldedReloadsCost
= RelFreq
* Stats
.FoldedReloads
;
2452 Stats
.SpillsCost
= RelFreq
* Stats
.Spills
;
2453 Stats
.FoldedSpillsCost
= RelFreq
* Stats
.FoldedSpills
;
2454 Stats
.CopiesCost
= RelFreq
* Stats
.Copies
;
2458 RAGreedy::RAGreedyStats
RAGreedy::reportStats(MachineLoop
*L
) {
2459 RAGreedyStats Stats
;
2461 // Sum up the spill and reloads in subloops.
2462 for (MachineLoop
*SubLoop
: *L
)
2463 Stats
.add(reportStats(SubLoop
));
2465 for (MachineBasicBlock
*MBB
: L
->getBlocks())
2466 // Handle blocks that were not included in subloops.
2467 if (Loops
->getLoopFor(MBB
) == L
)
2468 Stats
.add(computeStats(*MBB
));
2470 if (!Stats
.isEmpty()) {
2471 using namespace ore
;
2474 MachineOptimizationRemarkMissed
R(DEBUG_TYPE
, "LoopSpillReloadCopies",
2475 L
->getStartLoc(), L
->getHeader());
2477 R
<< "generated in loop";
2484 void RAGreedy::reportStats() {
2485 if (!ORE
->allowExtraAnalysis(DEBUG_TYPE
))
2487 RAGreedyStats Stats
;
2488 for (MachineLoop
*L
: *Loops
)
2489 Stats
.add(reportStats(L
));
2490 // Process non-loop blocks.
2491 for (MachineBasicBlock
&MBB
: *MF
)
2492 if (!Loops
->getLoopFor(&MBB
))
2493 Stats
.add(computeStats(MBB
));
2494 if (!Stats
.isEmpty()) {
2495 using namespace ore
;
2499 if (auto *SP
= MF
->getFunction().getSubprogram())
2500 Loc
= DILocation::get(SP
->getContext(), SP
->getLine(), 1, SP
);
2501 MachineOptimizationRemarkMissed
R(DEBUG_TYPE
, "SpillReloadCopies", Loc
,
2504 R
<< "generated in function";
2510 bool RAGreedy::hasVirtRegAlloc() {
2511 for (unsigned I
= 0, E
= MRI
->getNumVirtRegs(); I
!= E
; ++I
) {
2512 Register Reg
= Register::index2VirtReg(I
);
2513 if (MRI
->reg_nodbg_empty(Reg
))
2515 const TargetRegisterClass
*RC
= MRI
->getRegClass(Reg
);
2518 if (ShouldAllocateClass(*TRI
, *RC
))
2525 bool RAGreedy::runOnMachineFunction(MachineFunction
&mf
) {
2526 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2527 << "********** Function: " << mf
.getName() << '\n');
2530 TII
= MF
->getSubtarget().getInstrInfo();
2533 MF
->verify(this, "Before greedy register allocator");
2535 RegAllocBase::init(getAnalysis
<VirtRegMap
>(),
2536 getAnalysis
<LiveIntervals
>(),
2537 getAnalysis
<LiveRegMatrix
>());
2539 // Early return if there is no virtual register to be allocated to a
2540 // physical register.
2541 if (!hasVirtRegAlloc())
2544 Indexes
= &getAnalysis
<SlotIndexes
>();
2545 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
2546 DomTree
= &getAnalysis
<MachineDominatorTree
>();
2547 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
2548 Loops
= &getAnalysis
<MachineLoopInfo
>();
2549 Bundles
= &getAnalysis
<EdgeBundles
>();
2550 SpillPlacer
= &getAnalysis
<SpillPlacement
>();
2551 DebugVars
= &getAnalysis
<LiveDebugVariables
>();
2553 initializeCSRCost();
2555 RegCosts
= TRI
->getRegisterCosts(*MF
);
2556 RegClassPriorityTrumpsGlobalness
=
2557 GreedyRegClassPriorityTrumpsGlobalness
.getNumOccurrences()
2558 ? GreedyRegClassPriorityTrumpsGlobalness
2559 : TRI
->regClassPriorityTrumpsGlobalness(*MF
);
2561 ReverseLocalAssignment
= GreedyReverseLocalAssignment
.getNumOccurrences()
2562 ? GreedyReverseLocalAssignment
2563 : TRI
->reverseLocalAssignment();
2565 ExtraInfo
.emplace();
2567 getAnalysis
<RegAllocEvictionAdvisorAnalysis
>().getAdvisor(*MF
, *this);
2568 PriorityAdvisor
= std::make_unique
<DefaultPriorityAdvisor
>(*MF
, *this);
2570 VRAI
= std::make_unique
<VirtRegAuxInfo
>(*MF
, *LIS
, *VRM
, *Loops
, *MBFI
);
2571 SpillerInstance
.reset(createInlineSpiller(*this, *MF
, *VRM
, *VRAI
));
2573 VRAI
->calculateSpillWeightsAndHints();
2575 LLVM_DEBUG(LIS
->dump());
2577 SA
.reset(new SplitAnalysis(*VRM
, *LIS
, *Loops
));
2578 SE
.reset(new SplitEditor(*SA
, *LIS
, *VRM
, *DomTree
, *MBFI
, *VRAI
));
2580 IntfCache
.init(MF
, Matrix
->getLiveUnions(), Indexes
, LIS
, TRI
);
2581 GlobalCand
.resize(32); // This will grow as needed.
2582 SetOfBrokenHints
.clear();
2585 tryHintsRecoloring();
2588 MF
->verify(this, "Before post optimization");