1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 #include "llvm/ADT/IntEqClasses.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/SparseSet.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBundle.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/PseudoSourceValue.h"
33 #include "llvm/CodeGen/RegisterPressure.h"
34 #include "llvm/CodeGen/ScheduleDAG.h"
35 #include "llvm/CodeGen/ScheduleDFS.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/raw_ostream.h"
62 #define DEBUG_TYPE "machine-scheduler"
65 EnableAASchedMI("enable-aa-sched-mi", cl::Hidden
,
66 cl::desc("Enable use of AA during MI DAG construction"));
68 static cl::opt
<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden
,
69 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
71 // Note: the two options below might be used in tuning compile time vs
72 // output quality. Setting HugeRegion so large that it will never be
73 // reached means best-effort, but may be slow.
75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
76 // together hold this many SUs, a reduction of maps will be done.
77 static cl::opt
<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden
,
78 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
79 "prior to scheduling, at which point a trade-off "
80 "is made to avoid excessive compile time."));
82 static cl::opt
<unsigned> ReductionSize(
83 "dag-maps-reduction-size", cl::Hidden
,
84 cl::desc("A huge scheduling region will have maps reduced by this many "
85 "nodes at a time. Defaults to HugeRegion / 2."));
87 static unsigned getReductionSize() {
88 // Always reduce a huge region with half of the elements, except
89 // when user sets this number explicitly.
90 if (ReductionSize
.getNumOccurrences() == 0)
91 return HugeRegion
/ 2;
95 static void dumpSUList(ScheduleDAGInstrs::SUList
&L
) {
96 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
98 for (const SUnit
*su
: L
) {
99 dbgs() << "SU(" << su
->NodeNum
<< ")";
107 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction
&mf
,
108 const MachineLoopInfo
*mli
,
109 bool RemoveKillFlags
)
110 : ScheduleDAG(mf
), MLI(mli
), MFI(mf
.getFrameInfo()),
111 RemoveKillFlags(RemoveKillFlags
),
112 UnknownValue(UndefValue::get(
113 Type::getVoidTy(mf
.getFunction().getContext()))), Topo(SUnits
, &ExitSU
) {
116 const TargetSubtargetInfo
&ST
= mf
.getSubtarget();
117 SchedModel
.init(&ST
);
120 /// If this machine instr has memory reference information and it can be
121 /// tracked to a normal reference to a known object, return the Value
122 /// for that object. This function returns false the memory location is
123 /// unknown or may alias anything.
124 static bool getUnderlyingObjectsForInstr(const MachineInstr
*MI
,
125 const MachineFrameInfo
&MFI
,
126 UnderlyingObjectsVector
&Objects
,
127 const DataLayout
&DL
) {
128 auto allMMOsOkay
= [&]() {
129 for (const MachineMemOperand
*MMO
: MI
->memoperands()) {
130 // TODO: Figure out whether isAtomic is really necessary (see D57601).
131 if (MMO
->isVolatile() || MMO
->isAtomic())
134 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue()) {
135 // Function that contain tail calls don't have unique PseudoSourceValue
136 // objects. Two PseudoSourceValues might refer to the same or
137 // overlapping locations. The client code calling this function assumes
138 // this is not the case. So return a conservative answer of no known
140 if (MFI
.hasTailCall())
143 // For now, ignore PseudoSourceValues which may alias LLVM IR values
144 // because the code that uses this function has no way to cope with
146 if (PSV
->isAliased(&MFI
))
149 bool MayAlias
= PSV
->mayAlias(&MFI
);
150 Objects
.push_back(UnderlyingObjectsVector::value_type(PSV
, MayAlias
));
151 } else if (const Value
*V
= MMO
->getValue()) {
152 SmallVector
<Value
*, 4> Objs
;
153 if (!getUnderlyingObjectsForCodeGen(V
, Objs
))
156 for (Value
*V
: Objs
) {
157 assert(isIdentifiedObject(V
));
158 Objects
.push_back(UnderlyingObjectsVector::value_type(V
, true));
166 if (!allMMOsOkay()) {
174 void ScheduleDAGInstrs::startBlock(MachineBasicBlock
*bb
) {
178 void ScheduleDAGInstrs::finishBlock() {
179 // Subclasses should no longer refer to the old block.
183 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock
*bb
,
184 MachineBasicBlock::iterator begin
,
185 MachineBasicBlock::iterator end
,
186 unsigned regioninstrs
) {
187 assert(bb
== BB
&& "startBlock should set BB");
190 NumRegionInstrs
= regioninstrs
;
193 void ScheduleDAGInstrs::exitRegion() {
197 void ScheduleDAGInstrs::addSchedBarrierDeps() {
198 MachineInstr
*ExitMI
=
199 RegionEnd
!= BB
->end()
200 ? &*skipDebugInstructionsBackward(RegionEnd
, RegionBegin
)
202 ExitSU
.setInstr(ExitMI
);
203 // Add dependencies on the defs and uses of the instruction.
205 for (const MachineOperand
&MO
: ExitMI
->operands()) {
206 if (!MO
.isReg() || MO
.isDef()) continue;
207 Register Reg
= MO
.getReg();
208 if (Register::isPhysicalRegister(Reg
)) {
209 Uses
.insert(PhysRegSUOper(&ExitSU
, -1, Reg
));
210 } else if (Register::isVirtualRegister(Reg
) && MO
.readsReg()) {
211 addVRegUseDeps(&ExitSU
, ExitMI
->getOperandNo(&MO
));
215 if (!ExitMI
|| (!ExitMI
->isCall() && !ExitMI
->isBarrier())) {
216 // For others, e.g. fallthrough, conditional branch, assume the exit
217 // uses all the registers that are livein to the successor blocks.
218 for (const MachineBasicBlock
*Succ
: BB
->successors()) {
219 for (const auto &LI
: Succ
->liveins()) {
220 if (!Uses
.contains(LI
.PhysReg
))
221 Uses
.insert(PhysRegSUOper(&ExitSU
, -1, LI
.PhysReg
));
227 /// MO is an operand of SU's instruction that defines a physical register. Adds
228 /// data dependencies from SU to any uses of the physical register.
229 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit
*SU
, unsigned OperIdx
) {
230 const MachineOperand
&MO
= SU
->getInstr()->getOperand(OperIdx
);
231 assert(MO
.isDef() && "expect physreg def");
233 // Ask the target if address-backscheduling is desirable, and if so how much.
234 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
236 // Only use any non-zero latency for real defs/uses, in contrast to
237 // "fake" operands added by regalloc.
238 const MCInstrDesc
*DefMIDesc
= &SU
->getInstr()->getDesc();
239 bool ImplicitPseudoDef
= (OperIdx
>= DefMIDesc
->getNumOperands() &&
240 !DefMIDesc
->hasImplicitDefOfPhysReg(MO
.getReg()));
241 for (MCRegAliasIterator
Alias(MO
.getReg(), TRI
, true);
242 Alias
.isValid(); ++Alias
) {
243 for (Reg2SUnitsMap::iterator I
= Uses
.find(*Alias
); I
!= Uses
.end(); ++I
) {
244 SUnit
*UseSU
= I
->SU
;
248 // Adjust the dependence latency using operand def/use information,
249 // then allow the target to perform its own adjustments.
250 int UseOp
= I
->OpIdx
;
251 MachineInstr
*RegUse
= nullptr;
254 Dep
= SDep(SU
, SDep::Artificial
);
256 // Set the hasPhysRegDefs only for physreg defs that have a use within
257 // the scheduling region.
258 SU
->hasPhysRegDefs
= true;
259 Dep
= SDep(SU
, SDep::Data
, *Alias
);
260 RegUse
= UseSU
->getInstr();
262 const MCInstrDesc
*UseMIDesc
=
263 (RegUse
? &UseSU
->getInstr()->getDesc() : nullptr);
264 bool ImplicitPseudoUse
=
265 (UseMIDesc
&& UseOp
>= ((int)UseMIDesc
->getNumOperands()) &&
266 !UseMIDesc
->hasImplicitUseOfPhysReg(*Alias
));
267 if (!ImplicitPseudoDef
&& !ImplicitPseudoUse
) {
268 Dep
.setLatency(SchedModel
.computeOperandLatency(SU
->getInstr(), OperIdx
,
273 ST
.adjustSchedDependency(SU
, OperIdx
, UseSU
, UseOp
, Dep
);
279 /// Adds register dependencies (data, anti, and output) from this SUnit
280 /// to following instructions in the same scheduling region that depend the
281 /// physical register referenced at OperIdx.
282 void ScheduleDAGInstrs::addPhysRegDeps(SUnit
*SU
, unsigned OperIdx
) {
283 MachineInstr
*MI
= SU
->getInstr();
284 MachineOperand
&MO
= MI
->getOperand(OperIdx
);
285 Register Reg
= MO
.getReg();
286 // We do not need to track any dependencies for constant registers.
287 if (MRI
.isConstantPhysReg(Reg
))
290 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
292 // Optionally add output and anti dependencies. For anti
293 // dependencies we use a latency of 0 because for a multi-issue
294 // target we want to allow the defining instruction to issue
295 // in the same cycle as the using instruction.
296 // TODO: Using a latency of 1 here for output dependencies assumes
297 // there's no cost for reusing registers.
298 SDep::Kind Kind
= MO
.isUse() ? SDep::Anti
: SDep::Output
;
299 for (MCRegAliasIterator
Alias(Reg
, TRI
, true); Alias
.isValid(); ++Alias
) {
300 if (!Defs
.contains(*Alias
))
302 for (Reg2SUnitsMap::iterator I
= Defs
.find(*Alias
); I
!= Defs
.end(); ++I
) {
303 SUnit
*DefSU
= I
->SU
;
304 if (DefSU
== &ExitSU
)
307 (Kind
!= SDep::Output
|| !MO
.isDead() ||
308 !DefSU
->getInstr()->registerDefIsDead(*Alias
))) {
309 SDep
Dep(SU
, Kind
, /*Reg=*/*Alias
);
310 if (Kind
!= SDep::Anti
)
312 SchedModel
.computeOutputLatency(MI
, OperIdx
, DefSU
->getInstr()));
313 ST
.adjustSchedDependency(SU
, OperIdx
, DefSU
, I
->OpIdx
, Dep
);
320 SU
->hasPhysRegUses
= true;
321 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
322 // retrieve the existing SUnits list for this register's uses.
323 // Push this SUnit on the use list.
324 Uses
.insert(PhysRegSUOper(SU
, OperIdx
, Reg
));
328 addPhysRegDataDeps(SU
, OperIdx
);
330 // Clear previous uses and defs of this register and its subergisters.
331 for (MCSubRegIterator
SubReg(Reg
, TRI
, true); SubReg
.isValid(); ++SubReg
) {
332 if (Uses
.contains(*SubReg
))
333 Uses
.eraseAll(*SubReg
);
335 Defs
.eraseAll(*SubReg
);
337 if (MO
.isDead() && SU
->isCall
) {
338 // Calls will not be reordered because of chain dependencies (see
339 // below). Since call operands are dead, calls may continue to be added
340 // to the DefList making dependence checking quadratic in the size of
341 // the block. Instead, we leave only one call at the back of the
343 Reg2SUnitsMap::RangePair P
= Defs
.equal_range(Reg
);
344 Reg2SUnitsMap::iterator B
= P
.first
;
345 Reg2SUnitsMap::iterator I
= P
.second
;
346 for (bool isBegin
= I
== B
; !isBegin
; /* empty */) {
347 isBegin
= (--I
) == B
;
354 // Defs are pushed in the order they are visited and never reordered.
355 Defs
.insert(PhysRegSUOper(SU
, OperIdx
, Reg
));
359 LaneBitmask
ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand
&MO
) const
361 Register Reg
= MO
.getReg();
362 // No point in tracking lanemasks if we don't have interesting subregisters.
363 const TargetRegisterClass
&RC
= *MRI
.getRegClass(Reg
);
364 if (!RC
.HasDisjunctSubRegs
)
365 return LaneBitmask::getAll();
367 unsigned SubReg
= MO
.getSubReg();
369 return RC
.getLaneMask();
370 return TRI
->getSubRegIndexLaneMask(SubReg
);
373 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand
&MO
) {
374 auto RegUse
= CurrentVRegUses
.find(MO
.getReg());
375 if (RegUse
== CurrentVRegUses
.end())
377 return (RegUse
->LaneMask
& getLaneMaskForMO(MO
)).none();
380 /// Adds register output and data dependencies from this SUnit to instructions
381 /// that occur later in the same scheduling region if they read from or write to
382 /// the virtual register defined at OperIdx.
384 /// TODO: Hoist loop induction variable increments. This has to be
385 /// reevaluated. Generally, IV scheduling should be done before coalescing.
386 void ScheduleDAGInstrs::addVRegDefDeps(SUnit
*SU
, unsigned OperIdx
) {
387 MachineInstr
*MI
= SU
->getInstr();
388 MachineOperand
&MO
= MI
->getOperand(OperIdx
);
389 Register Reg
= MO
.getReg();
391 LaneBitmask DefLaneMask
;
392 LaneBitmask KillLaneMask
;
393 if (TrackLaneMasks
) {
394 bool IsKill
= MO
.getSubReg() == 0 || MO
.isUndef();
395 DefLaneMask
= getLaneMaskForMO(MO
);
396 // If we have a <read-undef> flag, none of the lane values comes from an
397 // earlier instruction.
398 KillLaneMask
= IsKill
? LaneBitmask::getAll() : DefLaneMask
;
400 if (MO
.getSubReg() != 0 && MO
.isUndef()) {
401 // There may be other subregister defs on the same instruction of the same
402 // register in later operands. The lanes of other defs will now be live
403 // after this instruction, so these should not be treated as killed by the
404 // instruction even though they appear to be killed in this one operand.
405 for (const MachineOperand
&OtherMO
:
406 llvm::drop_begin(MI
->operands(), OperIdx
+ 1))
407 if (OtherMO
.isReg() && OtherMO
.isDef() && OtherMO
.getReg() == Reg
)
408 KillLaneMask
&= ~getLaneMaskForMO(OtherMO
);
411 // Clear undef flag, we'll re-add it later once we know which subregister
413 MO
.setIsUndef(false);
415 DefLaneMask
= LaneBitmask::getAll();
416 KillLaneMask
= LaneBitmask::getAll();
420 assert(deadDefHasNoUse(MO
) && "Dead defs should have no uses");
422 // Add data dependence to all uses we found so far.
423 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
424 for (VReg2SUnitOperIdxMultiMap::iterator I
= CurrentVRegUses
.find(Reg
),
425 E
= CurrentVRegUses
.end(); I
!= E
; /*empty*/) {
426 LaneBitmask LaneMask
= I
->LaneMask
;
427 // Ignore uses of other lanes.
428 if ((LaneMask
& KillLaneMask
).none()) {
433 if ((LaneMask
& DefLaneMask
).any()) {
434 SUnit
*UseSU
= I
->SU
;
435 MachineInstr
*Use
= UseSU
->getInstr();
436 SDep
Dep(SU
, SDep::Data
, Reg
);
437 Dep
.setLatency(SchedModel
.computeOperandLatency(MI
, OperIdx
, Use
,
439 ST
.adjustSchedDependency(SU
, OperIdx
, UseSU
, I
->OperandIndex
, Dep
);
443 LaneMask
&= ~KillLaneMask
;
444 // If we found a Def for all lanes of this use, remove it from the list.
445 if (LaneMask
.any()) {
446 I
->LaneMask
= LaneMask
;
449 I
= CurrentVRegUses
.erase(I
);
453 // Shortcut: Singly defined vregs do not have output/anti dependencies.
454 if (MRI
.hasOneDef(Reg
))
457 // Add output dependence to the next nearest defs of this vreg.
459 // Unless this definition is dead, the output dependence should be
460 // transitively redundant with antidependencies from this definition's
461 // uses. We're conservative for now until we have a way to guarantee the uses
462 // are not eliminated sometime during scheduling. The output dependence edge
463 // is also useful if output latency exceeds def-use latency.
464 LaneBitmask LaneMask
= DefLaneMask
;
465 for (VReg2SUnit
&V2SU
: make_range(CurrentVRegDefs
.find(Reg
),
466 CurrentVRegDefs
.end())) {
467 // Ignore defs for other lanes.
468 if ((V2SU
.LaneMask
& LaneMask
).none())
470 // Add an output dependence.
471 SUnit
*DefSU
= V2SU
.SU
;
472 // Ignore additional defs of the same lanes in one instruction. This can
473 // happen because lanemasks are shared for targets with too many
474 // subregisters. We also use some representration tricks/hacks where we
475 // add super-register defs/uses, to imply that although we only access parts
476 // of the reg we care about the full one.
479 SDep
Dep(SU
, SDep::Output
, Reg
);
481 SchedModel
.computeOutputLatency(MI
, OperIdx
, DefSU
->getInstr()));
484 // Update current definition. This can get tricky if the def was about a
485 // bigger lanemask before. We then have to shrink it and create a new
486 // VReg2SUnit for the non-overlapping part.
487 LaneBitmask OverlapMask
= V2SU
.LaneMask
& LaneMask
;
488 LaneBitmask NonOverlapMask
= V2SU
.LaneMask
& ~LaneMask
;
490 V2SU
.LaneMask
= OverlapMask
;
491 if (NonOverlapMask
.any())
492 CurrentVRegDefs
.insert(VReg2SUnit(Reg
, NonOverlapMask
, DefSU
));
494 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
496 CurrentVRegDefs
.insert(VReg2SUnit(Reg
, LaneMask
, SU
));
499 /// Adds a register data dependency if the instruction that defines the
500 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
501 /// antidependency from this SUnit to instructions that occur later in the same
502 /// scheduling region if they write the virtual register.
504 /// TODO: Handle ExitSU "uses" properly.
505 void ScheduleDAGInstrs::addVRegUseDeps(SUnit
*SU
, unsigned OperIdx
) {
506 const MachineInstr
*MI
= SU
->getInstr();
507 assert(!MI
->isDebugOrPseudoInstr());
509 const MachineOperand
&MO
= MI
->getOperand(OperIdx
);
510 Register Reg
= MO
.getReg();
512 // Remember the use. Data dependencies will be added when we find the def.
513 LaneBitmask LaneMask
= TrackLaneMasks
? getLaneMaskForMO(MO
)
514 : LaneBitmask::getAll();
515 CurrentVRegUses
.insert(VReg2SUnitOperIdx(Reg
, LaneMask
, OperIdx
, SU
));
517 // Add antidependences to the following defs of the vreg.
518 for (VReg2SUnit
&V2SU
: make_range(CurrentVRegDefs
.find(Reg
),
519 CurrentVRegDefs
.end())) {
520 // Ignore defs for unrelated lanes.
521 LaneBitmask PrevDefLaneMask
= V2SU
.LaneMask
;
522 if ((PrevDefLaneMask
& LaneMask
).none())
527 V2SU
.SU
->addPred(SDep(SU
, SDep::Anti
, Reg
));
531 /// Returns true if MI is an instruction we are unable to reason about
532 /// (like a call or something with unmodeled side effects).
533 static inline bool isGlobalMemoryObject(MachineInstr
*MI
) {
534 return MI
->isCall() || MI
->hasUnmodeledSideEffects() ||
535 (MI
->hasOrderedMemoryRef() && !MI
->isDereferenceableInvariantLoad());
538 void ScheduleDAGInstrs::addChainDependency (SUnit
*SUa
, SUnit
*SUb
,
540 if (SUa
->getInstr()->mayAlias(AAForDep
, *SUb
->getInstr(), UseTBAA
)) {
541 SDep
Dep(SUa
, SDep::MayAliasMem
);
542 Dep
.setLatency(Latency
);
547 /// Creates an SUnit for each real instruction, numbered in top-down
548 /// topological order. The instruction order A < B, implies that no edge exists
551 /// Map each real instruction to its SUnit.
553 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
554 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
555 /// instead of pointers.
557 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
558 /// the original instruction list.
559 void ScheduleDAGInstrs::initSUnits() {
560 // We'll be allocating one SUnit for each real instruction in the region,
561 // which is contained within a basic block.
562 SUnits
.reserve(NumRegionInstrs
);
564 for (MachineInstr
&MI
: make_range(RegionBegin
, RegionEnd
)) {
565 if (MI
.isDebugOrPseudoInstr())
568 SUnit
*SU
= newSUnit(&MI
);
569 MISUnitMap
[&MI
] = SU
;
571 SU
->isCall
= MI
.isCall();
572 SU
->isCommutable
= MI
.isCommutable();
574 // Assign the Latency field of SU using target-provided information.
575 SU
->Latency
= SchedModel
.computeInstrLatency(SU
->getInstr());
577 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
579 // Reserved resources block an instruction from issuing and stall the
580 // entire pipeline. These are identified by BufferSize=0.
582 // Unbuffered resources prevent execution of subsequent instructions that
583 // require the same resources. This is used for in-order execution pipelines
584 // within an out-of-order core. These are identified by BufferSize=1.
585 if (SchedModel
.hasInstrSchedModel()) {
586 const MCSchedClassDesc
*SC
= getSchedClass(SU
);
587 for (const MCWriteProcResEntry
&PRE
:
588 make_range(SchedModel
.getWriteProcResBegin(SC
),
589 SchedModel
.getWriteProcResEnd(SC
))) {
590 switch (SchedModel
.getProcResource(PRE
.ProcResourceIdx
)->BufferSize
) {
592 SU
->hasReservedResource
= true;
595 SU
->isUnbuffered
= true;
605 class ScheduleDAGInstrs::Value2SUsMap
: public MapVector
<ValueType
, SUList
> {
606 /// Current total number of SUs in map.
607 unsigned NumNodes
= 0;
609 /// 1 for loads, 0 for stores. (see comment in SUList)
610 unsigned TrueMemOrderLatency
;
613 Value2SUsMap(unsigned lat
= 0) : TrueMemOrderLatency(lat
) {}
615 /// To keep NumNodes up to date, insert() is used instead of
616 /// this operator w/ push_back().
617 ValueType
&operator[](const SUList
&Key
) {
618 llvm_unreachable("Don't use. Use insert() instead."); };
620 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
622 void inline insert(SUnit
*SU
, ValueType V
) {
623 MapVector::operator[](V
).push_back(SU
);
627 /// Clears the list of SUs mapped to V.
628 void inline clearList(ValueType V
) {
629 iterator Itr
= find(V
);
631 assert(NumNodes
>= Itr
->second
.size());
632 NumNodes
-= Itr
->second
.size();
638 /// Clears map from all contents.
640 MapVector
<ValueType
, SUList
>::clear();
644 unsigned inline size() const { return NumNodes
; }
646 /// Counts the number of SUs in this map after a reduction.
647 void reComputeSize() {
649 for (auto &I
: *this)
650 NumNodes
+= I
.second
.size();
653 unsigned inline getTrueMemOrderLatency() const {
654 return TrueMemOrderLatency
;
660 void ScheduleDAGInstrs::addChainDependencies(SUnit
*SU
,
661 Value2SUsMap
&Val2SUsMap
) {
662 for (auto &I
: Val2SUsMap
)
663 addChainDependencies(SU
, I
.second
,
664 Val2SUsMap
.getTrueMemOrderLatency());
667 void ScheduleDAGInstrs::addChainDependencies(SUnit
*SU
,
668 Value2SUsMap
&Val2SUsMap
,
670 Value2SUsMap::iterator Itr
= Val2SUsMap
.find(V
);
671 if (Itr
!= Val2SUsMap
.end())
672 addChainDependencies(SU
, Itr
->second
,
673 Val2SUsMap
.getTrueMemOrderLatency());
676 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap
&map
) {
677 assert(BarrierChain
!= nullptr);
679 for (auto &I
: map
) {
680 SUList
&sus
= I
.second
;
682 SU
->addPredBarrier(BarrierChain
);
687 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap
&map
) {
688 assert(BarrierChain
!= nullptr);
690 // Go through all lists of SUs.
691 for (Value2SUsMap::iterator I
= map
.begin(), EE
= map
.end(); I
!= EE
;) {
692 Value2SUsMap::iterator CurrItr
= I
++;
693 SUList
&sus
= CurrItr
->second
;
694 SUList::iterator SUItr
= sus
.begin(), SUEE
= sus
.end();
695 for (; SUItr
!= SUEE
; ++SUItr
) {
696 // Stop on BarrierChain or any instruction above it.
697 if ((*SUItr
)->NodeNum
<= BarrierChain
->NodeNum
)
700 (*SUItr
)->addPredBarrier(BarrierChain
);
703 // Remove also the BarrierChain from list if present.
704 if (SUItr
!= SUEE
&& *SUItr
== BarrierChain
)
707 // Remove all SUs that are now successors of BarrierChain.
708 if (SUItr
!= sus
.begin())
709 sus
.erase(sus
.begin(), SUItr
);
712 // Remove all entries with empty su lists.
713 map
.remove_if([&](std::pair
<ValueType
, SUList
> &mapEntry
) {
714 return (mapEntry
.second
.empty()); });
716 // Recompute the size of the map (NumNodes).
720 void ScheduleDAGInstrs::buildSchedGraph(AAResults
*AA
,
721 RegPressureTracker
*RPTracker
,
722 PressureDiffs
*PDiffs
,
724 bool TrackLaneMasks
) {
725 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
726 bool UseAA
= EnableAASchedMI
.getNumOccurrences() > 0 ? EnableAASchedMI
728 AAForDep
= UseAA
? AA
: nullptr;
730 BarrierChain
= nullptr;
732 this->TrackLaneMasks
= TrackLaneMasks
;
734 ScheduleDAG::clearDAG();
736 // Create an SUnit for each real instruction.
740 PDiffs
->init(SUnits
.size());
742 // We build scheduling units by walking a block's instruction list
743 // from bottom to top.
745 // Each MIs' memory operand(s) is analyzed to a list of underlying
746 // objects. The SU is then inserted in the SUList(s) mapped from the
747 // Value(s). Each Value thus gets mapped to lists of SUs depending
748 // on it, stores and loads kept separately. Two SUs are trivially
749 // non-aliasing if they both depend on only identified Values and do
750 // not share any common Value.
751 Value2SUsMap Stores
, Loads(1 /*TrueMemOrderLatency*/);
753 // Certain memory accesses are known to not alias any SU in Stores
754 // or Loads, and have therefore their own 'NonAlias'
755 // domain. E.g. spill / reload instructions never alias LLVM I/R
756 // Values. It would be nice to assume that this type of memory
757 // accesses always have a proper memory operand modelling, and are
758 // therefore never unanalyzable, but this is conservatively not
760 Value2SUsMap NonAliasStores
, NonAliasLoads(1 /*TrueMemOrderLatency*/);
762 // Track all instructions that may raise floating-point exceptions.
763 // These do not depend on one other (or normal loads or stores), but
764 // must not be rescheduled across global barriers. Note that we don't
765 // really need a "map" here since we don't track those MIs by value;
766 // using the same Value2SUsMap data type here is simply a matter of
768 Value2SUsMap FPExceptions
;
770 // Remove any stale debug info; sometimes BuildSchedGraph is called again
771 // without emitting the info from the previous call.
773 FirstDbgValue
= nullptr;
775 assert(Defs
.empty() && Uses
.empty() &&
776 "Only BuildGraph should update Defs/Uses");
777 Defs
.setUniverse(TRI
->getNumRegs());
778 Uses
.setUniverse(TRI
->getNumRegs());
780 assert(CurrentVRegDefs
.empty() && "nobody else should use CurrentVRegDefs");
781 assert(CurrentVRegUses
.empty() && "nobody else should use CurrentVRegUses");
782 unsigned NumVirtRegs
= MRI
.getNumVirtRegs();
783 CurrentVRegDefs
.setUniverse(NumVirtRegs
);
784 CurrentVRegUses
.setUniverse(NumVirtRegs
);
786 // Model data dependencies between instructions being scheduled and the
788 addSchedBarrierDeps();
790 // Walk the list of instructions, from bottom moving up.
791 MachineInstr
*DbgMI
= nullptr;
792 for (MachineBasicBlock::iterator MII
= RegionEnd
, MIE
= RegionBegin
;
794 MachineInstr
&MI
= *std::prev(MII
);
796 DbgValues
.push_back(std::make_pair(DbgMI
, &MI
));
800 if (MI
.isDebugValue() || MI
.isDebugPHI()) {
805 if (MI
.isDebugLabel() || MI
.isDebugRef() || MI
.isPseudoProbe())
808 SUnit
*SU
= MISUnitMap
[&MI
];
809 assert(SU
&& "No SUnit mapped to this MI");
812 RegisterOperands RegOpers
;
813 RegOpers
.collect(MI
, *TRI
, MRI
, TrackLaneMasks
, false);
814 if (TrackLaneMasks
) {
815 SlotIndex SlotIdx
= LIS
->getInstructionIndex(MI
);
816 RegOpers
.adjustLaneLiveness(*LIS
, MRI
, SlotIdx
);
818 if (PDiffs
!= nullptr)
819 PDiffs
->addInstruction(SU
->NodeNum
, RegOpers
, MRI
);
821 if (RPTracker
->getPos() == RegionEnd
|| &*RPTracker
->getPos() != &MI
)
822 RPTracker
->recedeSkipDebugValues();
823 assert(&*RPTracker
->getPos() == &MI
&& "RPTracker in sync");
824 RPTracker
->recede(RegOpers
);
828 (CanHandleTerminators
|| (!MI
.isTerminator() && !MI
.isPosition())) &&
829 "Cannot schedule terminators or labels!");
831 // Add register-based dependencies (data, anti, and output).
832 // For some instructions (calls, returns, inline-asm, etc.) there can
833 // be explicit uses and implicit defs, in which case the use will appear
834 // on the operand list before the def. Do two passes over the operand
835 // list to make sure that defs are processed before any uses.
836 bool HasVRegDef
= false;
837 for (unsigned j
= 0, n
= MI
.getNumOperands(); j
!= n
; ++j
) {
838 const MachineOperand
&MO
= MI
.getOperand(j
);
839 if (!MO
.isReg() || !MO
.isDef())
841 Register Reg
= MO
.getReg();
842 if (Register::isPhysicalRegister(Reg
)) {
843 addPhysRegDeps(SU
, j
);
844 } else if (Register::isVirtualRegister(Reg
)) {
846 addVRegDefDeps(SU
, j
);
849 // Now process all uses.
850 for (unsigned j
= 0, n
= MI
.getNumOperands(); j
!= n
; ++j
) {
851 const MachineOperand
&MO
= MI
.getOperand(j
);
852 // Only look at use operands.
853 // We do not need to check for MO.readsReg() here because subsequent
854 // subregister defs will get output dependence edges and need no
855 // additional use dependencies.
856 if (!MO
.isReg() || !MO
.isUse())
858 Register Reg
= MO
.getReg();
859 if (Register::isPhysicalRegister(Reg
)) {
860 addPhysRegDeps(SU
, j
);
861 } else if (Register::isVirtualRegister(Reg
) && MO
.readsReg()) {
862 addVRegUseDeps(SU
, j
);
866 // If we haven't seen any uses in this scheduling region, create a
867 // dependence edge to ExitSU to model the live-out latency. This is required
868 // for vreg defs with no in-region use, and prefetches with no vreg def.
870 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
871 // check currently relies on being called before adding chain deps.
872 if (SU
->NumSuccs
== 0 && SU
->Latency
> 1 && (HasVRegDef
|| MI
.mayLoad())) {
873 SDep
Dep(SU
, SDep::Artificial
);
874 Dep
.setLatency(SU
->Latency
- 1);
878 // Add memory dependencies (Note: isStoreToStackSlot and
879 // isLoadFromStackSLot are not usable after stack slots are lowered to
880 // actual addresses).
882 // This is a barrier event that acts as a pivotal node in the DAG.
883 if (isGlobalMemoryObject(&MI
)) {
885 // Become the barrier chain.
887 BarrierChain
->addPredBarrier(SU
);
890 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
891 << BarrierChain
->NodeNum
<< ").\n";);
893 // Add dependencies against everything below it and clear maps.
894 addBarrierChain(Stores
);
895 addBarrierChain(Loads
);
896 addBarrierChain(NonAliasStores
);
897 addBarrierChain(NonAliasLoads
);
898 addBarrierChain(FPExceptions
);
903 // Instructions that may raise FP exceptions may not be moved
904 // across any global barriers.
905 if (MI
.mayRaiseFPException()) {
907 BarrierChain
->addPredBarrier(SU
);
909 FPExceptions
.insert(SU
, UnknownValue
);
911 if (FPExceptions
.size() >= HugeRegion
) {
912 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
914 reduceHugeMemNodeMaps(FPExceptions
, empty
, getReductionSize());
918 // If it's not a store or a variant load, we're done.
919 if (!MI
.mayStore() &&
920 !(MI
.mayLoad() && !MI
.isDereferenceableInvariantLoad()))
923 // Always add dependecy edge to BarrierChain if present.
925 BarrierChain
->addPredBarrier(SU
);
927 // Find the underlying objects for MI. The Objs vector is either
928 // empty, or filled with the Values of memory locations which this
930 UnderlyingObjectsVector Objs
;
931 bool ObjsFound
= getUnderlyingObjectsForInstr(&MI
, MFI
, Objs
,
936 // An unknown store depends on all stores and loads.
937 addChainDependencies(SU
, Stores
);
938 addChainDependencies(SU
, NonAliasStores
);
939 addChainDependencies(SU
, Loads
);
940 addChainDependencies(SU
, NonAliasLoads
);
942 // Map this store to 'UnknownValue'.
943 Stores
.insert(SU
, UnknownValue
);
945 // Add precise dependencies against all previously seen memory
946 // accesses mapped to the same Value(s).
947 for (const UnderlyingObject
&UnderlObj
: Objs
) {
948 ValueType V
= UnderlObj
.getValue();
949 bool ThisMayAlias
= UnderlObj
.mayAlias();
951 // Add dependencies to previous stores and loads mapped to V.
952 addChainDependencies(SU
, (ThisMayAlias
? Stores
: NonAliasStores
), V
);
953 addChainDependencies(SU
, (ThisMayAlias
? Loads
: NonAliasLoads
), V
);
955 // Update the store map after all chains have been added to avoid adding
956 // self-loop edge if multiple underlying objects are present.
957 for (const UnderlyingObject
&UnderlObj
: Objs
) {
958 ValueType V
= UnderlObj
.getValue();
959 bool ThisMayAlias
= UnderlObj
.mayAlias();
961 // Map this store to V.
962 (ThisMayAlias
? Stores
: NonAliasStores
).insert(SU
, V
);
964 // The store may have dependencies to unanalyzable loads and
966 addChainDependencies(SU
, Loads
, UnknownValue
);
967 addChainDependencies(SU
, Stores
, UnknownValue
);
969 } else { // SU is a load.
971 // An unknown load depends on all stores.
972 addChainDependencies(SU
, Stores
);
973 addChainDependencies(SU
, NonAliasStores
);
975 Loads
.insert(SU
, UnknownValue
);
977 for (const UnderlyingObject
&UnderlObj
: Objs
) {
978 ValueType V
= UnderlObj
.getValue();
979 bool ThisMayAlias
= UnderlObj
.mayAlias();
981 // Add precise dependencies against all previously seen stores
982 // mapping to the same Value(s).
983 addChainDependencies(SU
, (ThisMayAlias
? Stores
: NonAliasStores
), V
);
985 // Map this load to V.
986 (ThisMayAlias
? Loads
: NonAliasLoads
).insert(SU
, V
);
988 // The load may have dependencies to unanalyzable stores.
989 addChainDependencies(SU
, Stores
, UnknownValue
);
993 // Reduce maps if they grow huge.
994 if (Stores
.size() + Loads
.size() >= HugeRegion
) {
995 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
996 reduceHugeMemNodeMaps(Stores
, Loads
, getReductionSize());
998 if (NonAliasStores
.size() + NonAliasLoads
.size() >= HugeRegion
) {
1000 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1001 reduceHugeMemNodeMaps(NonAliasStores
, NonAliasLoads
, getReductionSize());
1006 FirstDbgValue
= DbgMI
;
1010 CurrentVRegDefs
.clear();
1011 CurrentVRegUses
.clear();
1016 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const PseudoSourceValue
* PSV
) {
1017 PSV
->printCustom(OS
);
1021 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1022 for (auto &Itr
: *this) {
1023 if (Itr
.first
.is
<const Value
*>()) {
1024 const Value
*V
= Itr
.first
.get
<const Value
*>();
1025 if (isa
<UndefValue
>(V
))
1026 dbgs() << "Unknown";
1028 V
->printAsOperand(dbgs());
1030 else if (Itr
.first
.is
<const PseudoSourceValue
*>())
1031 dbgs() << Itr
.first
.get
<const PseudoSourceValue
*>();
1033 llvm_unreachable("Unknown Value type.");
1036 dumpSUList(Itr
.second
);
1040 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap
&stores
,
1041 Value2SUsMap
&loads
, unsigned N
) {
1042 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores
.dump();
1043 dbgs() << "Loading SUnits:\n"; loads
.dump());
1045 // Insert all SU's NodeNums into a vector and sort it.
1046 std::vector
<unsigned> NodeNums
;
1047 NodeNums
.reserve(stores
.size() + loads
.size());
1048 for (auto &I
: stores
)
1049 for (auto *SU
: I
.second
)
1050 NodeNums
.push_back(SU
->NodeNum
);
1051 for (auto &I
: loads
)
1052 for (auto *SU
: I
.second
)
1053 NodeNums
.push_back(SU
->NodeNum
);
1054 llvm::sort(NodeNums
);
1056 // The N last elements in NodeNums will be removed, and the SU with
1057 // the lowest NodeNum of them will become the new BarrierChain to
1058 // let the not yet seen SUs have a dependency to the removed SUs.
1059 assert(N
<= NodeNums
.size());
1060 SUnit
*newBarrierChain
= &SUnits
[*(NodeNums
.end() - N
)];
1062 // The aliasing and non-aliasing maps reduce independently of each
1063 // other, but share a common BarrierChain. Check if the
1064 // newBarrierChain is above the former one. If it is not, it may
1065 // introduce a loop to use newBarrierChain, so keep the old one.
1066 if (newBarrierChain
->NodeNum
< BarrierChain
->NodeNum
) {
1067 BarrierChain
->addPredBarrier(newBarrierChain
);
1068 BarrierChain
= newBarrierChain
;
1069 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1070 << BarrierChain
->NodeNum
<< ").\n";);
1073 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1074 << BarrierChain
->NodeNum
<< ").\n";);
1077 BarrierChain
= newBarrierChain
;
1079 insertBarrierChain(stores
);
1080 insertBarrierChain(loads
);
1082 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores
.dump();
1083 dbgs() << "Loading SUnits:\n"; loads
.dump());
1086 static void toggleKills(const MachineRegisterInfo
&MRI
, LivePhysRegs
&LiveRegs
,
1087 MachineInstr
&MI
, bool addToLiveRegs
) {
1088 for (MachineOperand
&MO
: MI
.operands()) {
1089 if (!MO
.isReg() || !MO
.readsReg())
1091 Register Reg
= MO
.getReg();
1095 // Things that are available after the instruction are killed by it.
1096 bool IsKill
= LiveRegs
.available(MRI
, Reg
);
1097 MO
.setIsKill(IsKill
);
1099 LiveRegs
.addReg(Reg
);
1103 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock
&MBB
) {
1104 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB
) << '\n');
1106 LiveRegs
.init(*TRI
);
1107 LiveRegs
.addLiveOuts(MBB
);
1109 // Examine block from end to start...
1110 for (MachineInstr
&MI
: llvm::reverse(MBB
)) {
1111 if (MI
.isDebugOrPseudoInstr())
1114 // Update liveness. Registers that are defed but not used in this
1115 // instruction are now dead. Mark register and all subregs as they
1116 // are completely defined.
1117 for (ConstMIBundleOperands
O(MI
); O
.isValid(); ++O
) {
1118 const MachineOperand
&MO
= *O
;
1122 Register Reg
= MO
.getReg();
1125 LiveRegs
.removeReg(Reg
);
1126 } else if (MO
.isRegMask()) {
1127 LiveRegs
.removeRegsInMask(MO
);
1131 // If there is a bundle header fix it up first.
1132 if (!MI
.isBundled()) {
1133 toggleKills(MRI
, LiveRegs
, MI
, true);
1135 MachineBasicBlock::instr_iterator Bundle
= MI
.getIterator();
1137 toggleKills(MRI
, LiveRegs
, MI
, false);
1139 // Some targets make the (questionable) assumtion that the instructions
1140 // inside the bundle are ordered and consequently only the last use of
1141 // a register inside the bundle can kill it.
1142 MachineBasicBlock::instr_iterator I
= std::next(Bundle
);
1143 while (I
->isBundledWithSucc())
1146 if (!I
->isDebugOrPseudoInstr())
1147 toggleKills(MRI
, LiveRegs
, *I
, true);
1149 } while (I
!= Bundle
);
1154 void ScheduleDAGInstrs::dumpNode(const SUnit
&SU
) const {
1155 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1158 SU
.getInstr()->dump();
1162 void ScheduleDAGInstrs::dump() const {
1163 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1164 if (EntrySU
.getInstr() != nullptr)
1165 dumpNodeAll(EntrySU
);
1166 for (const SUnit
&SU
: SUnits
)
1168 if (ExitSU
.getInstr() != nullptr)
1169 dumpNodeAll(ExitSU
);
1173 std::string
ScheduleDAGInstrs::getGraphNodeLabel(const SUnit
*SU
) const {
1175 raw_string_ostream
oss(s
);
1178 else if (SU
== &ExitSU
)
1181 SU
->getInstr()->print(oss
, /*IsStandalone=*/true);
1185 /// Return the basic block label. It is not necessarilly unique because a block
1186 /// contains multiple scheduling regions. But it is fine for visualization.
1187 std::string
ScheduleDAGInstrs::getDAGName() const {
1188 return "dag." + BB
->getFullName();
1191 bool ScheduleDAGInstrs::canAddEdge(SUnit
*SuccSU
, SUnit
*PredSU
) {
1192 return SuccSU
== &ExitSU
|| !Topo
.IsReachable(PredSU
, SuccSU
);
1195 bool ScheduleDAGInstrs::addEdge(SUnit
*SuccSU
, const SDep
&PredDep
) {
1196 if (SuccSU
!= &ExitSU
) {
1197 // Do not use WillCreateCycle, it assumes SD scheduling.
1198 // If Pred is reachable from Succ, then the edge creates a cycle.
1199 if (Topo
.IsReachable(PredDep
.getSUnit(), SuccSU
))
1201 Topo
.AddPredQueued(SuccSU
, PredDep
.getSUnit());
1203 SuccSU
->addPred(PredDep
, /*Required=*/!PredDep
.isArtificial());
1204 // Return true regardless of whether a new edge needed to be inserted.
1208 //===----------------------------------------------------------------------===//
1209 // SchedDFSResult Implementation
1210 //===----------------------------------------------------------------------===//
1214 /// Internal state used to compute SchedDFSResult.
1215 class SchedDFSImpl
{
1218 /// Join DAG nodes into equivalence classes by their subtree.
1219 IntEqClasses SubtreeClasses
;
1220 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1221 std::vector
<std::pair
<const SUnit
*, const SUnit
*>> ConnectionPairs
;
1225 unsigned ParentNodeID
; ///< Parent node (member of the parent subtree).
1226 unsigned SubInstrCount
= 0; ///< Instr count in this tree only, not
1229 RootData(unsigned id
): NodeID(id
),
1230 ParentNodeID(SchedDFSResult::InvalidSubtreeID
) {}
1232 unsigned getSparseSetIndex() const { return NodeID
; }
1235 SparseSet
<RootData
> RootSet
;
1238 SchedDFSImpl(SchedDFSResult
&r
): R(r
), SubtreeClasses(R
.DFSNodeData
.size()) {
1239 RootSet
.setUniverse(R
.DFSNodeData
.size());
1242 /// Returns true if this node been visited by the DFS traversal.
1244 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1245 /// ID. Later, SubtreeID is updated but remains valid.
1246 bool isVisited(const SUnit
*SU
) const {
1247 return R
.DFSNodeData
[SU
->NodeNum
].SubtreeID
1248 != SchedDFSResult::InvalidSubtreeID
;
1251 /// Initializes this node's instruction count. We don't need to flag the node
1252 /// visited until visitPostorder because the DAG cannot have cycles.
1253 void visitPreorder(const SUnit
*SU
) {
1254 R
.DFSNodeData
[SU
->NodeNum
].InstrCount
=
1255 SU
->getInstr()->isTransient() ? 0 : 1;
1258 /// Called once for each node after all predecessors are visited. Revisit this
1259 /// node's predecessors and potentially join them now that we know the ILP of
1260 /// the other predecessors.
1261 void visitPostorderNode(const SUnit
*SU
) {
1262 // Mark this node as the root of a subtree. It may be joined with its
1263 // successors later.
1264 R
.DFSNodeData
[SU
->NodeNum
].SubtreeID
= SU
->NodeNum
;
1265 RootData
RData(SU
->NodeNum
);
1266 RData
.SubInstrCount
= SU
->getInstr()->isTransient() ? 0 : 1;
1268 // If any predecessors are still in their own subtree, they either cannot be
1269 // joined or are large enough to remain separate. If this parent node's
1270 // total instruction count is not greater than a child subtree by at least
1271 // the subtree limit, then try to join it now since splitting subtrees is
1272 // only useful if multiple high-pressure paths are possible.
1273 unsigned InstrCount
= R
.DFSNodeData
[SU
->NodeNum
].InstrCount
;
1274 for (const SDep
&PredDep
: SU
->Preds
) {
1275 if (PredDep
.getKind() != SDep::Data
)
1277 unsigned PredNum
= PredDep
.getSUnit()->NodeNum
;
1278 if ((InstrCount
- R
.DFSNodeData
[PredNum
].InstrCount
) < R
.SubtreeLimit
)
1279 joinPredSubtree(PredDep
, SU
, /*CheckLimit=*/false);
1281 // Either link or merge the TreeData entry from the child to the parent.
1282 if (R
.DFSNodeData
[PredNum
].SubtreeID
== PredNum
) {
1283 // If the predecessor's parent is invalid, this is a tree edge and the
1284 // current node is the parent.
1285 if (RootSet
[PredNum
].ParentNodeID
== SchedDFSResult::InvalidSubtreeID
)
1286 RootSet
[PredNum
].ParentNodeID
= SU
->NodeNum
;
1288 else if (RootSet
.count(PredNum
)) {
1289 // The predecessor is not a root, but is still in the root set. This
1290 // must be the new parent that it was just joined to. Note that
1291 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1292 // set to the original parent.
1293 RData
.SubInstrCount
+= RootSet
[PredNum
].SubInstrCount
;
1294 RootSet
.erase(PredNum
);
1297 RootSet
[SU
->NodeNum
] = RData
;
1300 /// Called once for each tree edge after calling visitPostOrderNode on
1301 /// the predecessor. Increment the parent node's instruction count and
1302 /// preemptively join this subtree to its parent's if it is small enough.
1303 void visitPostorderEdge(const SDep
&PredDep
, const SUnit
*Succ
) {
1304 R
.DFSNodeData
[Succ
->NodeNum
].InstrCount
1305 += R
.DFSNodeData
[PredDep
.getSUnit()->NodeNum
].InstrCount
;
1306 joinPredSubtree(PredDep
, Succ
);
1309 /// Adds a connection for cross edges.
1310 void visitCrossEdge(const SDep
&PredDep
, const SUnit
*Succ
) {
1311 ConnectionPairs
.push_back(std::make_pair(PredDep
.getSUnit(), Succ
));
1314 /// Sets each node's subtree ID to the representative ID and record
1315 /// connections between trees.
1317 SubtreeClasses
.compress();
1318 R
.DFSTreeData
.resize(SubtreeClasses
.getNumClasses());
1319 assert(SubtreeClasses
.getNumClasses() == RootSet
.size()
1320 && "number of roots should match trees");
1321 for (const RootData
&Root
: RootSet
) {
1322 unsigned TreeID
= SubtreeClasses
[Root
.NodeID
];
1323 if (Root
.ParentNodeID
!= SchedDFSResult::InvalidSubtreeID
)
1324 R
.DFSTreeData
[TreeID
].ParentTreeID
= SubtreeClasses
[Root
.ParentNodeID
];
1325 R
.DFSTreeData
[TreeID
].SubInstrCount
= Root
.SubInstrCount
;
1326 // Note that SubInstrCount may be greater than InstrCount if we joined
1327 // subtrees across a cross edge. InstrCount will be attributed to the
1328 // original parent, while SubInstrCount will be attributed to the joined
1331 R
.SubtreeConnections
.resize(SubtreeClasses
.getNumClasses());
1332 R
.SubtreeConnectLevels
.resize(SubtreeClasses
.getNumClasses());
1333 LLVM_DEBUG(dbgs() << R
.getNumSubtrees() << " subtrees:\n");
1334 for (unsigned Idx
= 0, End
= R
.DFSNodeData
.size(); Idx
!= End
; ++Idx
) {
1335 R
.DFSNodeData
[Idx
].SubtreeID
= SubtreeClasses
[Idx
];
1336 LLVM_DEBUG(dbgs() << " SU(" << Idx
<< ") in tree "
1337 << R
.DFSNodeData
[Idx
].SubtreeID
<< '\n');
1339 for (const std::pair
<const SUnit
*, const SUnit
*> &P
: ConnectionPairs
) {
1340 unsigned PredTree
= SubtreeClasses
[P
.first
->NodeNum
];
1341 unsigned SuccTree
= SubtreeClasses
[P
.second
->NodeNum
];
1342 if (PredTree
== SuccTree
)
1344 unsigned Depth
= P
.first
->getDepth();
1345 addConnection(PredTree
, SuccTree
, Depth
);
1346 addConnection(SuccTree
, PredTree
, Depth
);
1351 /// Joins the predecessor subtree with the successor that is its DFS parent.
1352 /// Applies some heuristics before joining.
1353 bool joinPredSubtree(const SDep
&PredDep
, const SUnit
*Succ
,
1354 bool CheckLimit
= true) {
1355 assert(PredDep
.getKind() == SDep::Data
&& "Subtrees are for data edges");
1357 // Check if the predecessor is already joined.
1358 const SUnit
*PredSU
= PredDep
.getSUnit();
1359 unsigned PredNum
= PredSU
->NodeNum
;
1360 if (R
.DFSNodeData
[PredNum
].SubtreeID
!= PredNum
)
1363 // Four is the magic number of successors before a node is considered a
1365 unsigned NumDataSucs
= 0;
1366 for (const SDep
&SuccDep
: PredSU
->Succs
) {
1367 if (SuccDep
.getKind() == SDep::Data
) {
1368 if (++NumDataSucs
>= 4)
1372 if (CheckLimit
&& R
.DFSNodeData
[PredNum
].InstrCount
> R
.SubtreeLimit
)
1374 R
.DFSNodeData
[PredNum
].SubtreeID
= Succ
->NodeNum
;
1375 SubtreeClasses
.join(Succ
->NodeNum
, PredNum
);
1379 /// Called by finalize() to record a connection between trees.
1380 void addConnection(unsigned FromTree
, unsigned ToTree
, unsigned Depth
) {
1385 SmallVectorImpl
<SchedDFSResult::Connection
> &Connections
=
1386 R
.SubtreeConnections
[FromTree
];
1387 for (SchedDFSResult::Connection
&C
: Connections
) {
1388 if (C
.TreeID
== ToTree
) {
1389 C
.Level
= std::max(C
.Level
, Depth
);
1393 Connections
.push_back(SchedDFSResult::Connection(ToTree
, Depth
));
1394 FromTree
= R
.DFSTreeData
[FromTree
].ParentTreeID
;
1395 } while (FromTree
!= SchedDFSResult::InvalidSubtreeID
);
1399 } // end namespace llvm
1403 /// Manage the stack used by a reverse depth-first search over the DAG.
1404 class SchedDAGReverseDFS
{
1405 std::vector
<std::pair
<const SUnit
*, SUnit::const_pred_iterator
>> DFSStack
;
1408 bool isComplete() const { return DFSStack
.empty(); }
1410 void follow(const SUnit
*SU
) {
1411 DFSStack
.push_back(std::make_pair(SU
, SU
->Preds
.begin()));
1413 void advance() { ++DFSStack
.back().second
; }
1415 const SDep
*backtrack() {
1416 DFSStack
.pop_back();
1417 return DFSStack
.empty() ? nullptr : std::prev(DFSStack
.back().second
);
1420 const SUnit
*getCurr() const { return DFSStack
.back().first
; }
1422 SUnit::const_pred_iterator
getPred() const { return DFSStack
.back().second
; }
1424 SUnit::const_pred_iterator
getPredEnd() const {
1425 return getCurr()->Preds
.end();
1429 } // end anonymous namespace
1431 static bool hasDataSucc(const SUnit
*SU
) {
1432 for (const SDep
&SuccDep
: SU
->Succs
) {
1433 if (SuccDep
.getKind() == SDep::Data
&&
1434 !SuccDep
.getSUnit()->isBoundaryNode())
1440 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1441 /// search from this root.
1442 void SchedDFSResult::compute(ArrayRef
<SUnit
> SUnits
) {
1444 llvm_unreachable("Top-down ILP metric is unimplemented");
1446 SchedDFSImpl
Impl(*this);
1447 for (const SUnit
&SU
: SUnits
) {
1448 if (Impl
.isVisited(&SU
) || hasDataSucc(&SU
))
1451 SchedDAGReverseDFS DFS
;
1452 Impl
.visitPreorder(&SU
);
1455 // Traverse the leftmost path as far as possible.
1456 while (DFS
.getPred() != DFS
.getPredEnd()) {
1457 const SDep
&PredDep
= *DFS
.getPred();
1459 // Ignore non-data edges.
1460 if (PredDep
.getKind() != SDep::Data
1461 || PredDep
.getSUnit()->isBoundaryNode()) {
1464 // An already visited edge is a cross edge, assuming an acyclic DAG.
1465 if (Impl
.isVisited(PredDep
.getSUnit())) {
1466 Impl
.visitCrossEdge(PredDep
, DFS
.getCurr());
1469 Impl
.visitPreorder(PredDep
.getSUnit());
1470 DFS
.follow(PredDep
.getSUnit());
1472 // Visit the top of the stack in postorder and backtrack.
1473 const SUnit
*Child
= DFS
.getCurr();
1474 const SDep
*PredDep
= DFS
.backtrack();
1475 Impl
.visitPostorderNode(Child
);
1477 Impl
.visitPostorderEdge(*PredDep
, DFS
.getCurr());
1478 if (DFS
.isComplete())
1485 /// The root of the given SubtreeID was just scheduled. For all subtrees
1486 /// connected to this tree, record the depth of the connection so that the
1487 /// nearest connected subtrees can be prioritized.
1488 void SchedDFSResult::scheduleTree(unsigned SubtreeID
) {
1489 for (const Connection
&C
: SubtreeConnections
[SubtreeID
]) {
1490 SubtreeConnectLevels
[C
.TreeID
] =
1491 std::max(SubtreeConnectLevels
[C
.TreeID
], C
.Level
);
1492 LLVM_DEBUG(dbgs() << " Tree: " << C
.TreeID
<< " @"
1493 << SubtreeConnectLevels
[C
.TreeID
] << '\n');
1497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1498 LLVM_DUMP_METHOD
void ILPValue::print(raw_ostream
&OS
) const {
1499 OS
<< InstrCount
<< " / " << Length
<< " = ";
1503 OS
<< format("%g", ((double)InstrCount
/ Length
));
1506 LLVM_DUMP_METHOD
void ILPValue::dump() const {
1507 dbgs() << *this << '\n';
1513 raw_ostream
&operator<<(raw_ostream
&OS
, const ILPValue
&Val
) {
1518 } // end namespace llvm