[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / ScheduleDAGInstrs.cpp
blob4fc9399c2b9e9044139b77960691aaed062083b6
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 #include "llvm/ADT/IntEqClasses.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/SparseSet.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBundle.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/PseudoSourceValue.h"
33 #include "llvm/CodeGen/RegisterPressure.h"
34 #include "llvm/CodeGen/ScheduleDAG.h"
35 #include "llvm/CodeGen/ScheduleDFS.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/Format.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <iterator>
56 #include <string>
57 #include <utility>
58 #include <vector>
60 using namespace llvm;
62 #define DEBUG_TYPE "machine-scheduler"
64 static cl::opt<bool>
65 EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
66 cl::desc("Enable use of AA during MI DAG construction"));
68 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
69 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
71 // Note: the two options below might be used in tuning compile time vs
72 // output quality. Setting HugeRegion so large that it will never be
73 // reached means best-effort, but may be slow.
75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
76 // together hold this many SUs, a reduction of maps will be done.
77 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
78 cl::init(1000), cl::desc("The limit to use while constructing the DAG "
79 "prior to scheduling, at which point a trade-off "
80 "is made to avoid excessive compile time."));
82 static cl::opt<unsigned> ReductionSize(
83 "dag-maps-reduction-size", cl::Hidden,
84 cl::desc("A huge scheduling region will have maps reduced by this many "
85 "nodes at a time. Defaults to HugeRegion / 2."));
87 static unsigned getReductionSize() {
88 // Always reduce a huge region with half of the elements, except
89 // when user sets this number explicitly.
90 if (ReductionSize.getNumOccurrences() == 0)
91 return HugeRegion / 2;
92 return ReductionSize;
95 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
96 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
97 dbgs() << "{ ";
98 for (const SUnit *su : L) {
99 dbgs() << "SU(" << su->NodeNum << ")";
100 if (su != L.back())
101 dbgs() << ", ";
103 dbgs() << "}\n";
104 #endif
107 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
108 const MachineLoopInfo *mli,
109 bool RemoveKillFlags)
110 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
111 RemoveKillFlags(RemoveKillFlags),
112 UnknownValue(UndefValue::get(
113 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
114 DbgValues.clear();
116 const TargetSubtargetInfo &ST = mf.getSubtarget();
117 SchedModel.init(&ST);
120 /// If this machine instr has memory reference information and it can be
121 /// tracked to a normal reference to a known object, return the Value
122 /// for that object. This function returns false the memory location is
123 /// unknown or may alias anything.
124 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
125 const MachineFrameInfo &MFI,
126 UnderlyingObjectsVector &Objects,
127 const DataLayout &DL) {
128 auto allMMOsOkay = [&]() {
129 for (const MachineMemOperand *MMO : MI->memoperands()) {
130 // TODO: Figure out whether isAtomic is really necessary (see D57601).
131 if (MMO->isVolatile() || MMO->isAtomic())
132 return false;
134 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
135 // Function that contain tail calls don't have unique PseudoSourceValue
136 // objects. Two PseudoSourceValues might refer to the same or
137 // overlapping locations. The client code calling this function assumes
138 // this is not the case. So return a conservative answer of no known
139 // object.
140 if (MFI.hasTailCall())
141 return false;
143 // For now, ignore PseudoSourceValues which may alias LLVM IR values
144 // because the code that uses this function has no way to cope with
145 // such aliases.
146 if (PSV->isAliased(&MFI))
147 return false;
149 bool MayAlias = PSV->mayAlias(&MFI);
150 Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
151 } else if (const Value *V = MMO->getValue()) {
152 SmallVector<Value *, 4> Objs;
153 if (!getUnderlyingObjectsForCodeGen(V, Objs))
154 return false;
156 for (Value *V : Objs) {
157 assert(isIdentifiedObject(V));
158 Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
160 } else
161 return false;
163 return true;
166 if (!allMMOsOkay()) {
167 Objects.clear();
168 return false;
171 return true;
174 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
175 BB = bb;
178 void ScheduleDAGInstrs::finishBlock() {
179 // Subclasses should no longer refer to the old block.
180 BB = nullptr;
183 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
184 MachineBasicBlock::iterator begin,
185 MachineBasicBlock::iterator end,
186 unsigned regioninstrs) {
187 assert(bb == BB && "startBlock should set BB");
188 RegionBegin = begin;
189 RegionEnd = end;
190 NumRegionInstrs = regioninstrs;
193 void ScheduleDAGInstrs::exitRegion() {
194 // Nothing to do.
197 void ScheduleDAGInstrs::addSchedBarrierDeps() {
198 MachineInstr *ExitMI =
199 RegionEnd != BB->end()
200 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin)
201 : nullptr;
202 ExitSU.setInstr(ExitMI);
203 // Add dependencies on the defs and uses of the instruction.
204 if (ExitMI) {
205 for (const MachineOperand &MO : ExitMI->operands()) {
206 if (!MO.isReg() || MO.isDef()) continue;
207 Register Reg = MO.getReg();
208 if (Register::isPhysicalRegister(Reg)) {
209 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
210 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
211 addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
215 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
216 // For others, e.g. fallthrough, conditional branch, assume the exit
217 // uses all the registers that are livein to the successor blocks.
218 for (const MachineBasicBlock *Succ : BB->successors()) {
219 for (const auto &LI : Succ->liveins()) {
220 if (!Uses.contains(LI.PhysReg))
221 Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
227 /// MO is an operand of SU's instruction that defines a physical register. Adds
228 /// data dependencies from SU to any uses of the physical register.
229 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
230 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
231 assert(MO.isDef() && "expect physreg def");
233 // Ask the target if address-backscheduling is desirable, and if so how much.
234 const TargetSubtargetInfo &ST = MF.getSubtarget();
236 // Only use any non-zero latency for real defs/uses, in contrast to
237 // "fake" operands added by regalloc.
238 const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
239 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
240 !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
241 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
242 Alias.isValid(); ++Alias) {
243 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
244 SUnit *UseSU = I->SU;
245 if (UseSU == SU)
246 continue;
248 // Adjust the dependence latency using operand def/use information,
249 // then allow the target to perform its own adjustments.
250 int UseOp = I->OpIdx;
251 MachineInstr *RegUse = nullptr;
252 SDep Dep;
253 if (UseOp < 0)
254 Dep = SDep(SU, SDep::Artificial);
255 else {
256 // Set the hasPhysRegDefs only for physreg defs that have a use within
257 // the scheduling region.
258 SU->hasPhysRegDefs = true;
259 Dep = SDep(SU, SDep::Data, *Alias);
260 RegUse = UseSU->getInstr();
262 const MCInstrDesc *UseMIDesc =
263 (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
264 bool ImplicitPseudoUse =
265 (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
266 !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
267 if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
268 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
269 RegUse, UseOp));
270 } else {
271 Dep.setLatency(0);
273 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
274 UseSU->addPred(Dep);
279 /// Adds register dependencies (data, anti, and output) from this SUnit
280 /// to following instructions in the same scheduling region that depend the
281 /// physical register referenced at OperIdx.
282 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
283 MachineInstr *MI = SU->getInstr();
284 MachineOperand &MO = MI->getOperand(OperIdx);
285 Register Reg = MO.getReg();
286 // We do not need to track any dependencies for constant registers.
287 if (MRI.isConstantPhysReg(Reg))
288 return;
290 const TargetSubtargetInfo &ST = MF.getSubtarget();
292 // Optionally add output and anti dependencies. For anti
293 // dependencies we use a latency of 0 because for a multi-issue
294 // target we want to allow the defining instruction to issue
295 // in the same cycle as the using instruction.
296 // TODO: Using a latency of 1 here for output dependencies assumes
297 // there's no cost for reusing registers.
298 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
299 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
300 if (!Defs.contains(*Alias))
301 continue;
302 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
303 SUnit *DefSU = I->SU;
304 if (DefSU == &ExitSU)
305 continue;
306 if (DefSU != SU &&
307 (Kind != SDep::Output || !MO.isDead() ||
308 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
309 SDep Dep(SU, Kind, /*Reg=*/*Alias);
310 if (Kind != SDep::Anti)
311 Dep.setLatency(
312 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
313 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep);
314 DefSU->addPred(Dep);
319 if (!MO.isDef()) {
320 SU->hasPhysRegUses = true;
321 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
322 // retrieve the existing SUnits list for this register's uses.
323 // Push this SUnit on the use list.
324 Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
325 if (RemoveKillFlags)
326 MO.setIsKill(false);
327 } else {
328 addPhysRegDataDeps(SU, OperIdx);
330 // Clear previous uses and defs of this register and its subergisters.
331 for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
332 if (Uses.contains(*SubReg))
333 Uses.eraseAll(*SubReg);
334 if (!MO.isDead())
335 Defs.eraseAll(*SubReg);
337 if (MO.isDead() && SU->isCall) {
338 // Calls will not be reordered because of chain dependencies (see
339 // below). Since call operands are dead, calls may continue to be added
340 // to the DefList making dependence checking quadratic in the size of
341 // the block. Instead, we leave only one call at the back of the
342 // DefList.
343 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
344 Reg2SUnitsMap::iterator B = P.first;
345 Reg2SUnitsMap::iterator I = P.second;
346 for (bool isBegin = I == B; !isBegin; /* empty */) {
347 isBegin = (--I) == B;
348 if (!I->SU->isCall)
349 break;
350 I = Defs.erase(I);
354 // Defs are pushed in the order they are visited and never reordered.
355 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
359 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
361 Register Reg = MO.getReg();
362 // No point in tracking lanemasks if we don't have interesting subregisters.
363 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
364 if (!RC.HasDisjunctSubRegs)
365 return LaneBitmask::getAll();
367 unsigned SubReg = MO.getSubReg();
368 if (SubReg == 0)
369 return RC.getLaneMask();
370 return TRI->getSubRegIndexLaneMask(SubReg);
373 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
374 auto RegUse = CurrentVRegUses.find(MO.getReg());
375 if (RegUse == CurrentVRegUses.end())
376 return true;
377 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
380 /// Adds register output and data dependencies from this SUnit to instructions
381 /// that occur later in the same scheduling region if they read from or write to
382 /// the virtual register defined at OperIdx.
384 /// TODO: Hoist loop induction variable increments. This has to be
385 /// reevaluated. Generally, IV scheduling should be done before coalescing.
386 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
387 MachineInstr *MI = SU->getInstr();
388 MachineOperand &MO = MI->getOperand(OperIdx);
389 Register Reg = MO.getReg();
391 LaneBitmask DefLaneMask;
392 LaneBitmask KillLaneMask;
393 if (TrackLaneMasks) {
394 bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
395 DefLaneMask = getLaneMaskForMO(MO);
396 // If we have a <read-undef> flag, none of the lane values comes from an
397 // earlier instruction.
398 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
400 if (MO.getSubReg() != 0 && MO.isUndef()) {
401 // There may be other subregister defs on the same instruction of the same
402 // register in later operands. The lanes of other defs will now be live
403 // after this instruction, so these should not be treated as killed by the
404 // instruction even though they appear to be killed in this one operand.
405 for (const MachineOperand &OtherMO :
406 llvm::drop_begin(MI->operands(), OperIdx + 1))
407 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
408 KillLaneMask &= ~getLaneMaskForMO(OtherMO);
411 // Clear undef flag, we'll re-add it later once we know which subregister
412 // Def is first.
413 MO.setIsUndef(false);
414 } else {
415 DefLaneMask = LaneBitmask::getAll();
416 KillLaneMask = LaneBitmask::getAll();
419 if (MO.isDead()) {
420 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
421 } else {
422 // Add data dependence to all uses we found so far.
423 const TargetSubtargetInfo &ST = MF.getSubtarget();
424 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
425 E = CurrentVRegUses.end(); I != E; /*empty*/) {
426 LaneBitmask LaneMask = I->LaneMask;
427 // Ignore uses of other lanes.
428 if ((LaneMask & KillLaneMask).none()) {
429 ++I;
430 continue;
433 if ((LaneMask & DefLaneMask).any()) {
434 SUnit *UseSU = I->SU;
435 MachineInstr *Use = UseSU->getInstr();
436 SDep Dep(SU, SDep::Data, Reg);
437 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
438 I->OperandIndex));
439 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep);
440 UseSU->addPred(Dep);
443 LaneMask &= ~KillLaneMask;
444 // If we found a Def for all lanes of this use, remove it from the list.
445 if (LaneMask.any()) {
446 I->LaneMask = LaneMask;
447 ++I;
448 } else
449 I = CurrentVRegUses.erase(I);
453 // Shortcut: Singly defined vregs do not have output/anti dependencies.
454 if (MRI.hasOneDef(Reg))
455 return;
457 // Add output dependence to the next nearest defs of this vreg.
459 // Unless this definition is dead, the output dependence should be
460 // transitively redundant with antidependencies from this definition's
461 // uses. We're conservative for now until we have a way to guarantee the uses
462 // are not eliminated sometime during scheduling. The output dependence edge
463 // is also useful if output latency exceeds def-use latency.
464 LaneBitmask LaneMask = DefLaneMask;
465 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
466 CurrentVRegDefs.end())) {
467 // Ignore defs for other lanes.
468 if ((V2SU.LaneMask & LaneMask).none())
469 continue;
470 // Add an output dependence.
471 SUnit *DefSU = V2SU.SU;
472 // Ignore additional defs of the same lanes in one instruction. This can
473 // happen because lanemasks are shared for targets with too many
474 // subregisters. We also use some representration tricks/hacks where we
475 // add super-register defs/uses, to imply that although we only access parts
476 // of the reg we care about the full one.
477 if (DefSU == SU)
478 continue;
479 SDep Dep(SU, SDep::Output, Reg);
480 Dep.setLatency(
481 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
482 DefSU->addPred(Dep);
484 // Update current definition. This can get tricky if the def was about a
485 // bigger lanemask before. We then have to shrink it and create a new
486 // VReg2SUnit for the non-overlapping part.
487 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
488 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
489 V2SU.SU = SU;
490 V2SU.LaneMask = OverlapMask;
491 if (NonOverlapMask.any())
492 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
494 // If there was no CurrentVRegDefs entry for some lanes yet, create one.
495 if (LaneMask.any())
496 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
499 /// Adds a register data dependency if the instruction that defines the
500 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
501 /// antidependency from this SUnit to instructions that occur later in the same
502 /// scheduling region if they write the virtual register.
504 /// TODO: Handle ExitSU "uses" properly.
505 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
506 const MachineInstr *MI = SU->getInstr();
507 assert(!MI->isDebugOrPseudoInstr());
509 const MachineOperand &MO = MI->getOperand(OperIdx);
510 Register Reg = MO.getReg();
512 // Remember the use. Data dependencies will be added when we find the def.
513 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
514 : LaneBitmask::getAll();
515 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
517 // Add antidependences to the following defs of the vreg.
518 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
519 CurrentVRegDefs.end())) {
520 // Ignore defs for unrelated lanes.
521 LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
522 if ((PrevDefLaneMask & LaneMask).none())
523 continue;
524 if (V2SU.SU == SU)
525 continue;
527 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
531 /// Returns true if MI is an instruction we are unable to reason about
532 /// (like a call or something with unmodeled side effects).
533 static inline bool isGlobalMemoryObject(MachineInstr *MI) {
534 return MI->isCall() || MI->hasUnmodeledSideEffects() ||
535 (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad());
538 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
539 unsigned Latency) {
540 if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
541 SDep Dep(SUa, SDep::MayAliasMem);
542 Dep.setLatency(Latency);
543 SUb->addPred(Dep);
547 /// Creates an SUnit for each real instruction, numbered in top-down
548 /// topological order. The instruction order A < B, implies that no edge exists
549 /// from B to A.
551 /// Map each real instruction to its SUnit.
553 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
554 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
555 /// instead of pointers.
557 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
558 /// the original instruction list.
559 void ScheduleDAGInstrs::initSUnits() {
560 // We'll be allocating one SUnit for each real instruction in the region,
561 // which is contained within a basic block.
562 SUnits.reserve(NumRegionInstrs);
564 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
565 if (MI.isDebugOrPseudoInstr())
566 continue;
568 SUnit *SU = newSUnit(&MI);
569 MISUnitMap[&MI] = SU;
571 SU->isCall = MI.isCall();
572 SU->isCommutable = MI.isCommutable();
574 // Assign the Latency field of SU using target-provided information.
575 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
577 // If this SUnit uses a reserved or unbuffered resource, mark it as such.
579 // Reserved resources block an instruction from issuing and stall the
580 // entire pipeline. These are identified by BufferSize=0.
582 // Unbuffered resources prevent execution of subsequent instructions that
583 // require the same resources. This is used for in-order execution pipelines
584 // within an out-of-order core. These are identified by BufferSize=1.
585 if (SchedModel.hasInstrSchedModel()) {
586 const MCSchedClassDesc *SC = getSchedClass(SU);
587 for (const MCWriteProcResEntry &PRE :
588 make_range(SchedModel.getWriteProcResBegin(SC),
589 SchedModel.getWriteProcResEnd(SC))) {
590 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
591 case 0:
592 SU->hasReservedResource = true;
593 break;
594 case 1:
595 SU->isUnbuffered = true;
596 break;
597 default:
598 break;
605 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
606 /// Current total number of SUs in map.
607 unsigned NumNodes = 0;
609 /// 1 for loads, 0 for stores. (see comment in SUList)
610 unsigned TrueMemOrderLatency;
612 public:
613 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
615 /// To keep NumNodes up to date, insert() is used instead of
616 /// this operator w/ push_back().
617 ValueType &operator[](const SUList &Key) {
618 llvm_unreachable("Don't use. Use insert() instead."); };
620 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
621 /// reduce().
622 void inline insert(SUnit *SU, ValueType V) {
623 MapVector::operator[](V).push_back(SU);
624 NumNodes++;
627 /// Clears the list of SUs mapped to V.
628 void inline clearList(ValueType V) {
629 iterator Itr = find(V);
630 if (Itr != end()) {
631 assert(NumNodes >= Itr->second.size());
632 NumNodes -= Itr->second.size();
634 Itr->second.clear();
638 /// Clears map from all contents.
639 void clear() {
640 MapVector<ValueType, SUList>::clear();
641 NumNodes = 0;
644 unsigned inline size() const { return NumNodes; }
646 /// Counts the number of SUs in this map after a reduction.
647 void reComputeSize() {
648 NumNodes = 0;
649 for (auto &I : *this)
650 NumNodes += I.second.size();
653 unsigned inline getTrueMemOrderLatency() const {
654 return TrueMemOrderLatency;
657 void dump();
660 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
661 Value2SUsMap &Val2SUsMap) {
662 for (auto &I : Val2SUsMap)
663 addChainDependencies(SU, I.second,
664 Val2SUsMap.getTrueMemOrderLatency());
667 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
668 Value2SUsMap &Val2SUsMap,
669 ValueType V) {
670 Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
671 if (Itr != Val2SUsMap.end())
672 addChainDependencies(SU, Itr->second,
673 Val2SUsMap.getTrueMemOrderLatency());
676 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
677 assert(BarrierChain != nullptr);
679 for (auto &I : map) {
680 SUList &sus = I.second;
681 for (auto *SU : sus)
682 SU->addPredBarrier(BarrierChain);
684 map.clear();
687 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
688 assert(BarrierChain != nullptr);
690 // Go through all lists of SUs.
691 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
692 Value2SUsMap::iterator CurrItr = I++;
693 SUList &sus = CurrItr->second;
694 SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
695 for (; SUItr != SUEE; ++SUItr) {
696 // Stop on BarrierChain or any instruction above it.
697 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
698 break;
700 (*SUItr)->addPredBarrier(BarrierChain);
703 // Remove also the BarrierChain from list if present.
704 if (SUItr != SUEE && *SUItr == BarrierChain)
705 SUItr++;
707 // Remove all SUs that are now successors of BarrierChain.
708 if (SUItr != sus.begin())
709 sus.erase(sus.begin(), SUItr);
712 // Remove all entries with empty su lists.
713 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
714 return (mapEntry.second.empty()); });
716 // Recompute the size of the map (NumNodes).
717 map.reComputeSize();
720 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
721 RegPressureTracker *RPTracker,
722 PressureDiffs *PDiffs,
723 LiveIntervals *LIS,
724 bool TrackLaneMasks) {
725 const TargetSubtargetInfo &ST = MF.getSubtarget();
726 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
727 : ST.useAA();
728 AAForDep = UseAA ? AA : nullptr;
730 BarrierChain = nullptr;
732 this->TrackLaneMasks = TrackLaneMasks;
733 MISUnitMap.clear();
734 ScheduleDAG::clearDAG();
736 // Create an SUnit for each real instruction.
737 initSUnits();
739 if (PDiffs)
740 PDiffs->init(SUnits.size());
742 // We build scheduling units by walking a block's instruction list
743 // from bottom to top.
745 // Each MIs' memory operand(s) is analyzed to a list of underlying
746 // objects. The SU is then inserted in the SUList(s) mapped from the
747 // Value(s). Each Value thus gets mapped to lists of SUs depending
748 // on it, stores and loads kept separately. Two SUs are trivially
749 // non-aliasing if they both depend on only identified Values and do
750 // not share any common Value.
751 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
753 // Certain memory accesses are known to not alias any SU in Stores
754 // or Loads, and have therefore their own 'NonAlias'
755 // domain. E.g. spill / reload instructions never alias LLVM I/R
756 // Values. It would be nice to assume that this type of memory
757 // accesses always have a proper memory operand modelling, and are
758 // therefore never unanalyzable, but this is conservatively not
759 // done.
760 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
762 // Track all instructions that may raise floating-point exceptions.
763 // These do not depend on one other (or normal loads or stores), but
764 // must not be rescheduled across global barriers. Note that we don't
765 // really need a "map" here since we don't track those MIs by value;
766 // using the same Value2SUsMap data type here is simply a matter of
767 // convenience.
768 Value2SUsMap FPExceptions;
770 // Remove any stale debug info; sometimes BuildSchedGraph is called again
771 // without emitting the info from the previous call.
772 DbgValues.clear();
773 FirstDbgValue = nullptr;
775 assert(Defs.empty() && Uses.empty() &&
776 "Only BuildGraph should update Defs/Uses");
777 Defs.setUniverse(TRI->getNumRegs());
778 Uses.setUniverse(TRI->getNumRegs());
780 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
781 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
782 unsigned NumVirtRegs = MRI.getNumVirtRegs();
783 CurrentVRegDefs.setUniverse(NumVirtRegs);
784 CurrentVRegUses.setUniverse(NumVirtRegs);
786 // Model data dependencies between instructions being scheduled and the
787 // ExitSU.
788 addSchedBarrierDeps();
790 // Walk the list of instructions, from bottom moving up.
791 MachineInstr *DbgMI = nullptr;
792 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
793 MII != MIE; --MII) {
794 MachineInstr &MI = *std::prev(MII);
795 if (DbgMI) {
796 DbgValues.push_back(std::make_pair(DbgMI, &MI));
797 DbgMI = nullptr;
800 if (MI.isDebugValue() || MI.isDebugPHI()) {
801 DbgMI = &MI;
802 continue;
805 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe())
806 continue;
808 SUnit *SU = MISUnitMap[&MI];
809 assert(SU && "No SUnit mapped to this MI");
811 if (RPTracker) {
812 RegisterOperands RegOpers;
813 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
814 if (TrackLaneMasks) {
815 SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
816 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
818 if (PDiffs != nullptr)
819 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
821 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
822 RPTracker->recedeSkipDebugValues();
823 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
824 RPTracker->recede(RegOpers);
827 assert(
828 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
829 "Cannot schedule terminators or labels!");
831 // Add register-based dependencies (data, anti, and output).
832 // For some instructions (calls, returns, inline-asm, etc.) there can
833 // be explicit uses and implicit defs, in which case the use will appear
834 // on the operand list before the def. Do two passes over the operand
835 // list to make sure that defs are processed before any uses.
836 bool HasVRegDef = false;
837 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
838 const MachineOperand &MO = MI.getOperand(j);
839 if (!MO.isReg() || !MO.isDef())
840 continue;
841 Register Reg = MO.getReg();
842 if (Register::isPhysicalRegister(Reg)) {
843 addPhysRegDeps(SU, j);
844 } else if (Register::isVirtualRegister(Reg)) {
845 HasVRegDef = true;
846 addVRegDefDeps(SU, j);
849 // Now process all uses.
850 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
851 const MachineOperand &MO = MI.getOperand(j);
852 // Only look at use operands.
853 // We do not need to check for MO.readsReg() here because subsequent
854 // subregister defs will get output dependence edges and need no
855 // additional use dependencies.
856 if (!MO.isReg() || !MO.isUse())
857 continue;
858 Register Reg = MO.getReg();
859 if (Register::isPhysicalRegister(Reg)) {
860 addPhysRegDeps(SU, j);
861 } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
862 addVRegUseDeps(SU, j);
866 // If we haven't seen any uses in this scheduling region, create a
867 // dependence edge to ExitSU to model the live-out latency. This is required
868 // for vreg defs with no in-region use, and prefetches with no vreg def.
870 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
871 // check currently relies on being called before adding chain deps.
872 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
873 SDep Dep(SU, SDep::Artificial);
874 Dep.setLatency(SU->Latency - 1);
875 ExitSU.addPred(Dep);
878 // Add memory dependencies (Note: isStoreToStackSlot and
879 // isLoadFromStackSLot are not usable after stack slots are lowered to
880 // actual addresses).
882 // This is a barrier event that acts as a pivotal node in the DAG.
883 if (isGlobalMemoryObject(&MI)) {
885 // Become the barrier chain.
886 if (BarrierChain)
887 BarrierChain->addPredBarrier(SU);
888 BarrierChain = SU;
890 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
891 << BarrierChain->NodeNum << ").\n";);
893 // Add dependencies against everything below it and clear maps.
894 addBarrierChain(Stores);
895 addBarrierChain(Loads);
896 addBarrierChain(NonAliasStores);
897 addBarrierChain(NonAliasLoads);
898 addBarrierChain(FPExceptions);
900 continue;
903 // Instructions that may raise FP exceptions may not be moved
904 // across any global barriers.
905 if (MI.mayRaiseFPException()) {
906 if (BarrierChain)
907 BarrierChain->addPredBarrier(SU);
909 FPExceptions.insert(SU, UnknownValue);
911 if (FPExceptions.size() >= HugeRegion) {
912 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
913 Value2SUsMap empty;
914 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
918 // If it's not a store or a variant load, we're done.
919 if (!MI.mayStore() &&
920 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad()))
921 continue;
923 // Always add dependecy edge to BarrierChain if present.
924 if (BarrierChain)
925 BarrierChain->addPredBarrier(SU);
927 // Find the underlying objects for MI. The Objs vector is either
928 // empty, or filled with the Values of memory locations which this
929 // SU depends on.
930 UnderlyingObjectsVector Objs;
931 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
932 MF.getDataLayout());
934 if (MI.mayStore()) {
935 if (!ObjsFound) {
936 // An unknown store depends on all stores and loads.
937 addChainDependencies(SU, Stores);
938 addChainDependencies(SU, NonAliasStores);
939 addChainDependencies(SU, Loads);
940 addChainDependencies(SU, NonAliasLoads);
942 // Map this store to 'UnknownValue'.
943 Stores.insert(SU, UnknownValue);
944 } else {
945 // Add precise dependencies against all previously seen memory
946 // accesses mapped to the same Value(s).
947 for (const UnderlyingObject &UnderlObj : Objs) {
948 ValueType V = UnderlObj.getValue();
949 bool ThisMayAlias = UnderlObj.mayAlias();
951 // Add dependencies to previous stores and loads mapped to V.
952 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
953 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
955 // Update the store map after all chains have been added to avoid adding
956 // self-loop edge if multiple underlying objects are present.
957 for (const UnderlyingObject &UnderlObj : Objs) {
958 ValueType V = UnderlObj.getValue();
959 bool ThisMayAlias = UnderlObj.mayAlias();
961 // Map this store to V.
962 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
964 // The store may have dependencies to unanalyzable loads and
965 // stores.
966 addChainDependencies(SU, Loads, UnknownValue);
967 addChainDependencies(SU, Stores, UnknownValue);
969 } else { // SU is a load.
970 if (!ObjsFound) {
971 // An unknown load depends on all stores.
972 addChainDependencies(SU, Stores);
973 addChainDependencies(SU, NonAliasStores);
975 Loads.insert(SU, UnknownValue);
976 } else {
977 for (const UnderlyingObject &UnderlObj : Objs) {
978 ValueType V = UnderlObj.getValue();
979 bool ThisMayAlias = UnderlObj.mayAlias();
981 // Add precise dependencies against all previously seen stores
982 // mapping to the same Value(s).
983 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
985 // Map this load to V.
986 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
988 // The load may have dependencies to unanalyzable stores.
989 addChainDependencies(SU, Stores, UnknownValue);
993 // Reduce maps if they grow huge.
994 if (Stores.size() + Loads.size() >= HugeRegion) {
995 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
996 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
998 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
999 LLVM_DEBUG(
1000 dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1001 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1005 if (DbgMI)
1006 FirstDbgValue = DbgMI;
1008 Defs.clear();
1009 Uses.clear();
1010 CurrentVRegDefs.clear();
1011 CurrentVRegUses.clear();
1013 Topo.MarkDirty();
1016 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1017 PSV->printCustom(OS);
1018 return OS;
1021 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1022 for (auto &Itr : *this) {
1023 if (Itr.first.is<const Value*>()) {
1024 const Value *V = Itr.first.get<const Value*>();
1025 if (isa<UndefValue>(V))
1026 dbgs() << "Unknown";
1027 else
1028 V->printAsOperand(dbgs());
1030 else if (Itr.first.is<const PseudoSourceValue*>())
1031 dbgs() << Itr.first.get<const PseudoSourceValue*>();
1032 else
1033 llvm_unreachable("Unknown Value type.");
1035 dbgs() << " : ";
1036 dumpSUList(Itr.second);
1040 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1041 Value2SUsMap &loads, unsigned N) {
1042 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1043 dbgs() << "Loading SUnits:\n"; loads.dump());
1045 // Insert all SU's NodeNums into a vector and sort it.
1046 std::vector<unsigned> NodeNums;
1047 NodeNums.reserve(stores.size() + loads.size());
1048 for (auto &I : stores)
1049 for (auto *SU : I.second)
1050 NodeNums.push_back(SU->NodeNum);
1051 for (auto &I : loads)
1052 for (auto *SU : I.second)
1053 NodeNums.push_back(SU->NodeNum);
1054 llvm::sort(NodeNums);
1056 // The N last elements in NodeNums will be removed, and the SU with
1057 // the lowest NodeNum of them will become the new BarrierChain to
1058 // let the not yet seen SUs have a dependency to the removed SUs.
1059 assert(N <= NodeNums.size());
1060 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1061 if (BarrierChain) {
1062 // The aliasing and non-aliasing maps reduce independently of each
1063 // other, but share a common BarrierChain. Check if the
1064 // newBarrierChain is above the former one. If it is not, it may
1065 // introduce a loop to use newBarrierChain, so keep the old one.
1066 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1067 BarrierChain->addPredBarrier(newBarrierChain);
1068 BarrierChain = newBarrierChain;
1069 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1070 << BarrierChain->NodeNum << ").\n";);
1072 else
1073 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1074 << BarrierChain->NodeNum << ").\n";);
1076 else
1077 BarrierChain = newBarrierChain;
1079 insertBarrierChain(stores);
1080 insertBarrierChain(loads);
1082 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1083 dbgs() << "Loading SUnits:\n"; loads.dump());
1086 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1087 MachineInstr &MI, bool addToLiveRegs) {
1088 for (MachineOperand &MO : MI.operands()) {
1089 if (!MO.isReg() || !MO.readsReg())
1090 continue;
1091 Register Reg = MO.getReg();
1092 if (!Reg)
1093 continue;
1095 // Things that are available after the instruction are killed by it.
1096 bool IsKill = LiveRegs.available(MRI, Reg);
1097 MO.setIsKill(IsKill);
1098 if (addToLiveRegs)
1099 LiveRegs.addReg(Reg);
1103 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1104 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1106 LiveRegs.init(*TRI);
1107 LiveRegs.addLiveOuts(MBB);
1109 // Examine block from end to start...
1110 for (MachineInstr &MI : llvm::reverse(MBB)) {
1111 if (MI.isDebugOrPseudoInstr())
1112 continue;
1114 // Update liveness. Registers that are defed but not used in this
1115 // instruction are now dead. Mark register and all subregs as they
1116 // are completely defined.
1117 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1118 const MachineOperand &MO = *O;
1119 if (MO.isReg()) {
1120 if (!MO.isDef())
1121 continue;
1122 Register Reg = MO.getReg();
1123 if (!Reg)
1124 continue;
1125 LiveRegs.removeReg(Reg);
1126 } else if (MO.isRegMask()) {
1127 LiveRegs.removeRegsInMask(MO);
1131 // If there is a bundle header fix it up first.
1132 if (!MI.isBundled()) {
1133 toggleKills(MRI, LiveRegs, MI, true);
1134 } else {
1135 MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1136 if (MI.isBundle())
1137 toggleKills(MRI, LiveRegs, MI, false);
1139 // Some targets make the (questionable) assumtion that the instructions
1140 // inside the bundle are ordered and consequently only the last use of
1141 // a register inside the bundle can kill it.
1142 MachineBasicBlock::instr_iterator I = std::next(Bundle);
1143 while (I->isBundledWithSucc())
1144 ++I;
1145 do {
1146 if (!I->isDebugOrPseudoInstr())
1147 toggleKills(MRI, LiveRegs, *I, true);
1148 --I;
1149 } while (I != Bundle);
1154 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1155 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1156 dumpNodeName(SU);
1157 dbgs() << ": ";
1158 SU.getInstr()->dump();
1159 #endif
1162 void ScheduleDAGInstrs::dump() const {
1163 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1164 if (EntrySU.getInstr() != nullptr)
1165 dumpNodeAll(EntrySU);
1166 for (const SUnit &SU : SUnits)
1167 dumpNodeAll(SU);
1168 if (ExitSU.getInstr() != nullptr)
1169 dumpNodeAll(ExitSU);
1170 #endif
1173 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1174 std::string s;
1175 raw_string_ostream oss(s);
1176 if (SU == &EntrySU)
1177 oss << "<entry>";
1178 else if (SU == &ExitSU)
1179 oss << "<exit>";
1180 else
1181 SU->getInstr()->print(oss, /*IsStandalone=*/true);
1182 return oss.str();
1185 /// Return the basic block label. It is not necessarilly unique because a block
1186 /// contains multiple scheduling regions. But it is fine for visualization.
1187 std::string ScheduleDAGInstrs::getDAGName() const {
1188 return "dag." + BB->getFullName();
1191 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1192 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1195 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1196 if (SuccSU != &ExitSU) {
1197 // Do not use WillCreateCycle, it assumes SD scheduling.
1198 // If Pred is reachable from Succ, then the edge creates a cycle.
1199 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1200 return false;
1201 Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1203 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1204 // Return true regardless of whether a new edge needed to be inserted.
1205 return true;
1208 //===----------------------------------------------------------------------===//
1209 // SchedDFSResult Implementation
1210 //===----------------------------------------------------------------------===//
1212 namespace llvm {
1214 /// Internal state used to compute SchedDFSResult.
1215 class SchedDFSImpl {
1216 SchedDFSResult &R;
1218 /// Join DAG nodes into equivalence classes by their subtree.
1219 IntEqClasses SubtreeClasses;
1220 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1221 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1223 struct RootData {
1224 unsigned NodeID;
1225 unsigned ParentNodeID; ///< Parent node (member of the parent subtree).
1226 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1227 /// children.
1229 RootData(unsigned id): NodeID(id),
1230 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1232 unsigned getSparseSetIndex() const { return NodeID; }
1235 SparseSet<RootData> RootSet;
1237 public:
1238 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1239 RootSet.setUniverse(R.DFSNodeData.size());
1242 /// Returns true if this node been visited by the DFS traversal.
1244 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1245 /// ID. Later, SubtreeID is updated but remains valid.
1246 bool isVisited(const SUnit *SU) const {
1247 return R.DFSNodeData[SU->NodeNum].SubtreeID
1248 != SchedDFSResult::InvalidSubtreeID;
1251 /// Initializes this node's instruction count. We don't need to flag the node
1252 /// visited until visitPostorder because the DAG cannot have cycles.
1253 void visitPreorder(const SUnit *SU) {
1254 R.DFSNodeData[SU->NodeNum].InstrCount =
1255 SU->getInstr()->isTransient() ? 0 : 1;
1258 /// Called once for each node after all predecessors are visited. Revisit this
1259 /// node's predecessors and potentially join them now that we know the ILP of
1260 /// the other predecessors.
1261 void visitPostorderNode(const SUnit *SU) {
1262 // Mark this node as the root of a subtree. It may be joined with its
1263 // successors later.
1264 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1265 RootData RData(SU->NodeNum);
1266 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1268 // If any predecessors are still in their own subtree, they either cannot be
1269 // joined or are large enough to remain separate. If this parent node's
1270 // total instruction count is not greater than a child subtree by at least
1271 // the subtree limit, then try to join it now since splitting subtrees is
1272 // only useful if multiple high-pressure paths are possible.
1273 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1274 for (const SDep &PredDep : SU->Preds) {
1275 if (PredDep.getKind() != SDep::Data)
1276 continue;
1277 unsigned PredNum = PredDep.getSUnit()->NodeNum;
1278 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1279 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1281 // Either link or merge the TreeData entry from the child to the parent.
1282 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1283 // If the predecessor's parent is invalid, this is a tree edge and the
1284 // current node is the parent.
1285 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1286 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1288 else if (RootSet.count(PredNum)) {
1289 // The predecessor is not a root, but is still in the root set. This
1290 // must be the new parent that it was just joined to. Note that
1291 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1292 // set to the original parent.
1293 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1294 RootSet.erase(PredNum);
1297 RootSet[SU->NodeNum] = RData;
1300 /// Called once for each tree edge after calling visitPostOrderNode on
1301 /// the predecessor. Increment the parent node's instruction count and
1302 /// preemptively join this subtree to its parent's if it is small enough.
1303 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1304 R.DFSNodeData[Succ->NodeNum].InstrCount
1305 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1306 joinPredSubtree(PredDep, Succ);
1309 /// Adds a connection for cross edges.
1310 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1311 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1314 /// Sets each node's subtree ID to the representative ID and record
1315 /// connections between trees.
1316 void finalize() {
1317 SubtreeClasses.compress();
1318 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1319 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1320 && "number of roots should match trees");
1321 for (const RootData &Root : RootSet) {
1322 unsigned TreeID = SubtreeClasses[Root.NodeID];
1323 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1324 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1325 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1326 // Note that SubInstrCount may be greater than InstrCount if we joined
1327 // subtrees across a cross edge. InstrCount will be attributed to the
1328 // original parent, while SubInstrCount will be attributed to the joined
1329 // parent.
1331 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1332 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1333 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1334 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1335 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1336 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1337 << R.DFSNodeData[Idx].SubtreeID << '\n');
1339 for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
1340 unsigned PredTree = SubtreeClasses[P.first->NodeNum];
1341 unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
1342 if (PredTree == SuccTree)
1343 continue;
1344 unsigned Depth = P.first->getDepth();
1345 addConnection(PredTree, SuccTree, Depth);
1346 addConnection(SuccTree, PredTree, Depth);
1350 protected:
1351 /// Joins the predecessor subtree with the successor that is its DFS parent.
1352 /// Applies some heuristics before joining.
1353 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1354 bool CheckLimit = true) {
1355 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1357 // Check if the predecessor is already joined.
1358 const SUnit *PredSU = PredDep.getSUnit();
1359 unsigned PredNum = PredSU->NodeNum;
1360 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1361 return false;
1363 // Four is the magic number of successors before a node is considered a
1364 // pinch point.
1365 unsigned NumDataSucs = 0;
1366 for (const SDep &SuccDep : PredSU->Succs) {
1367 if (SuccDep.getKind() == SDep::Data) {
1368 if (++NumDataSucs >= 4)
1369 return false;
1372 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1373 return false;
1374 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1375 SubtreeClasses.join(Succ->NodeNum, PredNum);
1376 return true;
1379 /// Called by finalize() to record a connection between trees.
1380 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1381 if (!Depth)
1382 return;
1384 do {
1385 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1386 R.SubtreeConnections[FromTree];
1387 for (SchedDFSResult::Connection &C : Connections) {
1388 if (C.TreeID == ToTree) {
1389 C.Level = std::max(C.Level, Depth);
1390 return;
1393 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1394 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1395 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1399 } // end namespace llvm
1401 namespace {
1403 /// Manage the stack used by a reverse depth-first search over the DAG.
1404 class SchedDAGReverseDFS {
1405 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1407 public:
1408 bool isComplete() const { return DFSStack.empty(); }
1410 void follow(const SUnit *SU) {
1411 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1413 void advance() { ++DFSStack.back().second; }
1415 const SDep *backtrack() {
1416 DFSStack.pop_back();
1417 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1420 const SUnit *getCurr() const { return DFSStack.back().first; }
1422 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1424 SUnit::const_pred_iterator getPredEnd() const {
1425 return getCurr()->Preds.end();
1429 } // end anonymous namespace
1431 static bool hasDataSucc(const SUnit *SU) {
1432 for (const SDep &SuccDep : SU->Succs) {
1433 if (SuccDep.getKind() == SDep::Data &&
1434 !SuccDep.getSUnit()->isBoundaryNode())
1435 return true;
1437 return false;
1440 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1441 /// search from this root.
1442 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1443 if (!IsBottomUp)
1444 llvm_unreachable("Top-down ILP metric is unimplemented");
1446 SchedDFSImpl Impl(*this);
1447 for (const SUnit &SU : SUnits) {
1448 if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1449 continue;
1451 SchedDAGReverseDFS DFS;
1452 Impl.visitPreorder(&SU);
1453 DFS.follow(&SU);
1454 while (true) {
1455 // Traverse the leftmost path as far as possible.
1456 while (DFS.getPred() != DFS.getPredEnd()) {
1457 const SDep &PredDep = *DFS.getPred();
1458 DFS.advance();
1459 // Ignore non-data edges.
1460 if (PredDep.getKind() != SDep::Data
1461 || PredDep.getSUnit()->isBoundaryNode()) {
1462 continue;
1464 // An already visited edge is a cross edge, assuming an acyclic DAG.
1465 if (Impl.isVisited(PredDep.getSUnit())) {
1466 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1467 continue;
1469 Impl.visitPreorder(PredDep.getSUnit());
1470 DFS.follow(PredDep.getSUnit());
1472 // Visit the top of the stack in postorder and backtrack.
1473 const SUnit *Child = DFS.getCurr();
1474 const SDep *PredDep = DFS.backtrack();
1475 Impl.visitPostorderNode(Child);
1476 if (PredDep)
1477 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1478 if (DFS.isComplete())
1479 break;
1482 Impl.finalize();
1485 /// The root of the given SubtreeID was just scheduled. For all subtrees
1486 /// connected to this tree, record the depth of the connection so that the
1487 /// nearest connected subtrees can be prioritized.
1488 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1489 for (const Connection &C : SubtreeConnections[SubtreeID]) {
1490 SubtreeConnectLevels[C.TreeID] =
1491 std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1492 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @"
1493 << SubtreeConnectLevels[C.TreeID] << '\n');
1497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1498 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1499 OS << InstrCount << " / " << Length << " = ";
1500 if (!Length)
1501 OS << "BADILP";
1502 else
1503 OS << format("%g", ((double)InstrCount / Length));
1506 LLVM_DUMP_METHOD void ILPValue::dump() const {
1507 dbgs() << *this << '\n';
1510 namespace llvm {
1512 LLVM_DUMP_METHOD
1513 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1514 Val.print(OS);
1515 return OS;
1518 } // end namespace llvm
1520 #endif