1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
47 #define DEBUG_TYPE "regalloc"
49 STATISTIC(NumFinished
, "Number of splits finished");
50 STATISTIC(NumSimple
, "Number of splits that were simple");
51 STATISTIC(NumCopies
, "Number of copies inserted for splitting");
52 STATISTIC(NumRemats
, "Number of rematerialized defs for splitting");
54 //===----------------------------------------------------------------------===//
55 // Last Insert Point Analysis
56 //===----------------------------------------------------------------------===//
58 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals
&lis
,
60 : LIS(lis
), LastInsertPoint(BBNum
) {}
63 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval
&CurLI
,
64 const MachineBasicBlock
&MBB
) {
65 unsigned Num
= MBB
.getNumber();
66 std::pair
<SlotIndex
, SlotIndex
> &LIP
= LastInsertPoint
[Num
];
67 SlotIndex MBBEnd
= LIS
.getMBBEndIdx(&MBB
);
69 SmallVector
<const MachineBasicBlock
*, 1> ExceptionalSuccessors
;
70 bool EHPadSuccessor
= false;
71 for (const MachineBasicBlock
*SMBB
: MBB
.successors()) {
72 if (SMBB
->isEHPad()) {
73 ExceptionalSuccessors
.push_back(SMBB
);
74 EHPadSuccessor
= true;
75 } else if (SMBB
->isInlineAsmBrIndirectTarget())
76 ExceptionalSuccessors
.push_back(SMBB
);
79 // Compute insert points on the first call. The pair is independent of the
80 // current live interval.
81 if (!LIP
.first
.isValid()) {
82 MachineBasicBlock::const_iterator FirstTerm
= MBB
.getFirstTerminator();
83 if (FirstTerm
== MBB
.end())
86 LIP
.first
= LIS
.getInstructionIndex(*FirstTerm
);
88 // If there is a landing pad or inlineasm_br successor, also find the
89 // instruction. If there is no such instruction, we don't need to do
90 // anything special. We assume there cannot be multiple instructions that
91 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
92 // assume that if there are any, they will be after any other call
93 // instructions in the block.
94 if (ExceptionalSuccessors
.empty())
96 for (const MachineInstr
&MI
: llvm::reverse(MBB
)) {
97 if ((EHPadSuccessor
&& MI
.isCall()) ||
98 MI
.getOpcode() == TargetOpcode::INLINEASM_BR
) {
99 LIP
.second
= LIS
.getInstructionIndex(MI
);
105 // If CurLI is live into a landing pad successor, move the last insert point
106 // back to the call that may throw.
110 if (none_of(ExceptionalSuccessors
, [&](const MachineBasicBlock
*EHPad
) {
111 return LIS
.isLiveInToMBB(CurLI
, EHPad
);
115 // Find the value leaving MBB.
116 const VNInfo
*VNI
= CurLI
.getVNInfoBefore(MBBEnd
);
120 // The def of statepoint instruction is a gc relocation and it should be alive
121 // in landing pad. So we cannot split interval after statepoint instruction.
122 if (SlotIndex::isSameInstr(VNI
->def
, LIP
.second
))
123 if (auto *I
= LIS
.getInstructionFromIndex(LIP
.second
))
124 if (I
->getOpcode() == TargetOpcode::STATEPOINT
)
127 // If the value leaving MBB was defined after the call in MBB, it can't
128 // really be live-in to the landing pad. This can happen if the landing pad
129 // has a PHI, and this register is undef on the exceptional edge.
130 // <rdar://problem/10664933>
131 if (!SlotIndex::isEarlierInstr(VNI
->def
, LIP
.second
) && VNI
->def
< MBBEnd
)
134 // Value is properly live-in to the landing pad.
135 // Only allow inserts before the call.
139 MachineBasicBlock::iterator
140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval
&CurLI
,
141 MachineBasicBlock
&MBB
) {
142 SlotIndex LIP
= getLastInsertPoint(CurLI
, MBB
);
143 if (LIP
== LIS
.getMBBEndIdx(&MBB
))
145 return LIS
.getInstructionFromIndex(LIP
);
148 //===----------------------------------------------------------------------===//
150 //===----------------------------------------------------------------------===//
152 SplitAnalysis::SplitAnalysis(const VirtRegMap
&vrm
, const LiveIntervals
&lis
,
153 const MachineLoopInfo
&mli
)
154 : MF(vrm
.getMachineFunction()), VRM(vrm
), LIS(lis
), Loops(mli
),
155 TII(*MF
.getSubtarget().getInstrInfo()), IPA(lis
, MF
.getNumBlockIDs()) {}
157 void SplitAnalysis::clear() {
160 ThroughBlocks
.clear();
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
165 void SplitAnalysis::analyzeUses() {
166 assert(UseSlots
.empty() && "Call clear first");
168 // First get all the defs from the interval values. This provides the correct
169 // slots for early clobbers.
170 for (const VNInfo
*VNI
: CurLI
->valnos
)
171 if (!VNI
->isPHIDef() && !VNI
->isUnused())
172 UseSlots
.push_back(VNI
->def
);
174 // Get use slots form the use-def chain.
175 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
176 for (MachineOperand
&MO
: MRI
.use_nodbg_operands(CurLI
->reg()))
178 UseSlots
.push_back(LIS
.getInstructionIndex(*MO
.getParent()).getRegSlot());
180 array_pod_sort(UseSlots
.begin(), UseSlots
.end());
182 // Remove duplicates, keeping the smaller slot for each instruction.
183 // That is what we want for early clobbers.
184 UseSlots
.erase(std::unique(UseSlots
.begin(), UseSlots
.end(),
185 SlotIndex::isSameInstr
),
188 // Compute per-live block info.
191 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots
.size() << " instrs in "
192 << UseBlocks
.size() << " blocks, through "
193 << NumThroughBlocks
<< " blocks.\n");
196 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
197 /// where CurLI is live.
198 void SplitAnalysis::calcLiveBlockInfo() {
199 ThroughBlocks
.resize(MF
.getNumBlockIDs());
200 NumThroughBlocks
= NumGapBlocks
= 0;
204 LiveInterval::const_iterator LVI
= CurLI
->begin();
205 LiveInterval::const_iterator LVE
= CurLI
->end();
207 SmallVectorImpl
<SlotIndex
>::const_iterator UseI
, UseE
;
208 UseI
= UseSlots
.begin();
209 UseE
= UseSlots
.end();
211 // Loop over basic blocks where CurLI is live.
212 MachineFunction::iterator MFI
=
213 LIS
.getMBBFromIndex(LVI
->start
)->getIterator();
217 SlotIndex Start
, Stop
;
218 std::tie(Start
, Stop
) = LIS
.getSlotIndexes()->getMBBRange(BI
.MBB
);
220 // If the block contains no uses, the range must be live through. At one
221 // point, RegisterCoalescer could create dangling ranges that ended
223 if (UseI
== UseE
|| *UseI
>= Stop
) {
225 ThroughBlocks
.set(BI
.MBB
->getNumber());
226 // The range shouldn't end mid-block if there are no uses. This shouldn't
228 assert(LVI
->end
>= Stop
&& "range ends mid block with no uses");
230 // This block has uses. Find the first and last uses in the block.
231 BI
.FirstInstr
= *UseI
;
232 assert(BI
.FirstInstr
>= Start
);
234 while (UseI
!= UseE
&& *UseI
< Stop
);
235 BI
.LastInstr
= UseI
[-1];
236 assert(BI
.LastInstr
< Stop
);
238 // LVI is the first live segment overlapping MBB.
239 BI
.LiveIn
= LVI
->start
<= Start
;
241 // When not live in, the first use should be a def.
243 assert(LVI
->start
== LVI
->valno
->def
&& "Dangling Segment start");
244 assert(LVI
->start
== BI
.FirstInstr
&& "First instr should be a def");
245 BI
.FirstDef
= BI
.FirstInstr
;
248 // Look for gaps in the live range.
250 while (LVI
->end
< Stop
) {
251 SlotIndex LastStop
= LVI
->end
;
252 if (++LVI
== LVE
|| LVI
->start
>= Stop
) {
254 BI
.LastInstr
= LastStop
;
258 if (LastStop
< LVI
->start
) {
259 // There is a gap in the live range. Create duplicate entries for the
260 // live-in snippet and the live-out snippet.
263 // Push the Live-in part.
265 UseBlocks
.push_back(BI
);
266 UseBlocks
.back().LastInstr
= LastStop
;
268 // Set up BI for the live-out part.
271 BI
.FirstInstr
= BI
.FirstDef
= LVI
->start
;
274 // A Segment that starts in the middle of the block must be a def.
275 assert(LVI
->start
== LVI
->valno
->def
&& "Dangling Segment start");
277 BI
.FirstDef
= LVI
->start
;
280 UseBlocks
.push_back(BI
);
282 // LVI is now at LVE or LVI->end >= Stop.
287 // Live segment ends exactly at Stop. Move to the next segment.
288 if (LVI
->end
== Stop
&& ++LVI
== LVE
)
291 // Pick the next basic block.
292 if (LVI
->start
< Stop
)
295 MFI
= LIS
.getMBBFromIndex(LVI
->start
)->getIterator();
298 assert(getNumLiveBlocks() == countLiveBlocks(CurLI
) && "Bad block count");
301 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval
*cli
) const {
304 LiveInterval
*li
= const_cast<LiveInterval
*>(cli
);
305 LiveInterval::iterator LVI
= li
->begin();
306 LiveInterval::iterator LVE
= li
->end();
309 // Loop over basic blocks where li is live.
310 MachineFunction::const_iterator MFI
=
311 LIS
.getMBBFromIndex(LVI
->start
)->getIterator();
312 SlotIndex Stop
= LIS
.getMBBEndIdx(&*MFI
);
315 LVI
= li
->advanceTo(LVI
, Stop
);
320 Stop
= LIS
.getMBBEndIdx(&*MFI
);
321 } while (Stop
<= LVI
->start
);
325 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx
) const {
326 unsigned OrigReg
= VRM
.getOriginal(CurLI
->reg());
327 const LiveInterval
&Orig
= LIS
.getInterval(OrigReg
);
328 assert(!Orig
.empty() && "Splitting empty interval?");
329 LiveInterval::const_iterator I
= Orig
.find(Idx
);
331 // Range containing Idx should begin at Idx.
332 if (I
!= Orig
.end() && I
->start
<= Idx
)
333 return I
->start
== Idx
;
335 // Range does not contain Idx, previous must end at Idx.
336 return I
!= Orig
.begin() && (--I
)->end
== Idx
;
339 void SplitAnalysis::analyze(const LiveInterval
*li
) {
345 //===----------------------------------------------------------------------===//
347 //===----------------------------------------------------------------------===//
349 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
350 SplitEditor::SplitEditor(SplitAnalysis
&SA
, LiveIntervals
&LIS
, VirtRegMap
&VRM
,
351 MachineDominatorTree
&MDT
,
352 MachineBlockFrequencyInfo
&MBFI
, VirtRegAuxInfo
&VRAI
)
353 : SA(SA
), LIS(LIS
), VRM(VRM
), MRI(VRM
.getMachineFunction().getRegInfo()),
354 MDT(MDT
), TII(*VRM
.getMachineFunction().getSubtarget().getInstrInfo()),
355 TRI(*VRM
.getMachineFunction().getSubtarget().getRegisterInfo()),
356 MBFI(MBFI
), VRAI(VRAI
), RegAssign(Allocator
) {}
358 void SplitEditor::reset(LiveRangeEdit
&LRE
, ComplementSpillMode SM
) {
365 // Reset the LiveIntervalCalc instances needed for this spill mode.
366 LICalc
[0].reset(&VRM
.getMachineFunction(), LIS
.getSlotIndexes(), &MDT
,
367 &LIS
.getVNInfoAllocator());
369 LICalc
[1].reset(&VRM
.getMachineFunction(), LIS
.getSlotIndexes(), &MDT
,
370 &LIS
.getVNInfoAllocator());
372 Edit
->anyRematerializable();
375 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
376 LLVM_DUMP_METHOD
void SplitEditor::dump() const {
377 if (RegAssign
.empty()) {
378 dbgs() << " empty\n";
382 for (RegAssignMap::const_iterator I
= RegAssign
.begin(); I
.valid(); ++I
)
383 dbgs() << " [" << I
.start() << ';' << I
.stop() << "):" << I
.value();
388 /// Find a subrange corresponding to the exact lane mask @p LM in the live
389 /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
390 /// This function is used to find corresponding subranges between the
391 /// original interval and the new intervals.
392 template <typename T
> auto &getSubrangeImpl(LaneBitmask LM
, T
&LI
) {
393 for (auto &S
: LI
.subranges())
394 if (S
.LaneMask
== LM
)
396 llvm_unreachable("SubRange for this mask not found");
399 LiveInterval::SubRange
&getSubRangeForMaskExact(LaneBitmask LM
,
401 return getSubrangeImpl(LM
, LI
);
404 const LiveInterval::SubRange
&getSubRangeForMaskExact(LaneBitmask LM
,
405 const LiveInterval
&LI
) {
406 return getSubrangeImpl(LM
, LI
);
409 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
410 /// in the live interval @p LI. The interval @p LI is assumed to contain such
411 /// a subrange. This function is used to find corresponding subranges between
412 /// the original interval and the new intervals.
413 const LiveInterval::SubRange
&getSubRangeForMask(LaneBitmask LM
,
414 const LiveInterval
&LI
) {
415 for (const LiveInterval::SubRange
&S
: LI
.subranges())
416 if ((S
.LaneMask
& LM
) == LM
)
418 llvm_unreachable("SubRange for this mask not found");
421 void SplitEditor::addDeadDef(LiveInterval
&LI
, VNInfo
*VNI
, bool Original
) {
422 if (!LI
.hasSubRanges()) {
423 LI
.createDeadDef(VNI
);
427 SlotIndex Def
= VNI
->def
;
429 // If we are transferring a def from the original interval, make sure
430 // to only update the subranges for which the original subranges had
431 // a def at this location.
432 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
433 auto &PS
= getSubRangeForMask(S
.LaneMask
, Edit
->getParent());
434 VNInfo
*PV
= PS
.getVNInfoAt(Def
);
435 if (PV
!= nullptr && PV
->def
== Def
)
436 S
.createDeadDef(Def
, LIS
.getVNInfoAllocator());
439 // This is a new def: either from rematerialization, or from an inserted
440 // copy. Since rematerialization can regenerate a definition of a sub-
441 // register, we need to check which subranges need to be updated.
442 const MachineInstr
*DefMI
= LIS
.getInstructionFromIndex(Def
);
443 assert(DefMI
!= nullptr);
445 for (const MachineOperand
&DefOp
: DefMI
->defs()) {
446 Register R
= DefOp
.getReg();
449 if (unsigned SR
= DefOp
.getSubReg())
450 LM
|= TRI
.getSubRegIndexLaneMask(SR
);
452 LM
= MRI
.getMaxLaneMaskForVReg(R
);
456 for (LiveInterval::SubRange
&S
: LI
.subranges())
457 if ((S
.LaneMask
& LM
).any())
458 S
.createDeadDef(Def
, LIS
.getVNInfoAllocator());
462 VNInfo
*SplitEditor::defValue(unsigned RegIdx
,
463 const VNInfo
*ParentVNI
,
466 assert(ParentVNI
&& "Mapping NULL value");
467 assert(Idx
.isValid() && "Invalid SlotIndex");
468 assert(Edit
->getParent().getVNInfoAt(Idx
) == ParentVNI
&& "Bad Parent VNI");
469 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(RegIdx
));
471 // Create a new value.
472 VNInfo
*VNI
= LI
->getNextValue(Idx
, LIS
.getVNInfoAllocator());
474 bool Force
= LI
->hasSubRanges();
475 ValueForcePair
FP(Force
? nullptr : VNI
, Force
);
476 // Use insert for lookup, so we can add missing values with a second lookup.
477 std::pair
<ValueMap::iterator
, bool> InsP
=
478 Values
.insert(std::make_pair(std::make_pair(RegIdx
, ParentVNI
->id
), FP
));
480 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
481 // forced. Keep it as a simple def without any liveness.
482 if (!Force
&& InsP
.second
)
485 // If the previous value was a simple mapping, add liveness for it now.
486 if (VNInfo
*OldVNI
= InsP
.first
->second
.getPointer()) {
487 addDeadDef(*LI
, OldVNI
, Original
);
489 // No longer a simple mapping. Switch to a complex mapping. If the
490 // interval has subranges, make it a forced mapping.
491 InsP
.first
->second
= ValueForcePair(nullptr, Force
);
494 // This is a complex mapping, add liveness for VNI
495 addDeadDef(*LI
, VNI
, Original
);
499 void SplitEditor::forceRecompute(unsigned RegIdx
, const VNInfo
&ParentVNI
) {
500 ValueForcePair
&VFP
= Values
[std::make_pair(RegIdx
, ParentVNI
.id
)];
501 VNInfo
*VNI
= VFP
.getPointer();
503 // ParentVNI was either unmapped or already complex mapped. Either way, just
504 // set the force bit.
510 // This was previously a single mapping. Make sure the old def is represented
511 // by a trivial live range.
512 addDeadDef(LIS
.getInterval(Edit
->get(RegIdx
)), VNI
, false);
514 // Mark as complex mapped, forced.
515 VFP
= ValueForcePair(nullptr, true);
518 SlotIndex
SplitEditor::buildSingleSubRegCopy(Register FromReg
, Register ToReg
,
519 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertBefore
,
520 unsigned SubIdx
, LiveInterval
&DestLI
, bool Late
, SlotIndex Def
) {
521 const MCInstrDesc
&Desc
= TII
.get(TargetOpcode::COPY
);
522 bool FirstCopy
= !Def
.isValid();
523 MachineInstr
*CopyMI
= BuildMI(MBB
, InsertBefore
, DebugLoc(), Desc
)
524 .addReg(ToReg
, RegState::Define
| getUndefRegState(FirstCopy
)
525 | getInternalReadRegState(!FirstCopy
), SubIdx
)
526 .addReg(FromReg
, 0, SubIdx
);
528 SlotIndexes
&Indexes
= *LIS
.getSlotIndexes();
530 Def
= Indexes
.insertMachineInstrInMaps(*CopyMI
, Late
).getRegSlot();
532 CopyMI
->bundleWithPred();
537 SlotIndex
SplitEditor::buildCopy(Register FromReg
, Register ToReg
,
538 LaneBitmask LaneMask
, MachineBasicBlock
&MBB
,
539 MachineBasicBlock::iterator InsertBefore
, bool Late
, unsigned RegIdx
) {
540 const MCInstrDesc
&Desc
= TII
.get(TargetOpcode::COPY
);
541 SlotIndexes
&Indexes
= *LIS
.getSlotIndexes();
542 if (LaneMask
.all() || LaneMask
== MRI
.getMaxLaneMaskForVReg(FromReg
)) {
543 // The full vreg is copied.
544 MachineInstr
*CopyMI
=
545 BuildMI(MBB
, InsertBefore
, DebugLoc(), Desc
, ToReg
).addReg(FromReg
);
546 return Indexes
.insertMachineInstrInMaps(*CopyMI
, Late
).getRegSlot();
549 // Only a subset of lanes needs to be copied. The following is a simple
550 // heuristic to construct a sequence of COPYs. We could add a target
551 // specific callback if this turns out to be suboptimal.
552 LiveInterval
&DestLI
= LIS
.getInterval(Edit
->get(RegIdx
));
554 // First pass: Try to find a perfectly matching subregister index. If none
555 // exists find the one covering the most lanemask bits.
556 const TargetRegisterClass
*RC
= MRI
.getRegClass(FromReg
);
557 assert(RC
== MRI
.getRegClass(ToReg
) && "Should have same reg class");
559 SmallVector
<unsigned, 8> SubIndexes
;
561 // Abort if we cannot possibly implement the COPY with the given indexes.
562 if (!TRI
.getCoveringSubRegIndexes(MRI
, RC
, LaneMask
, SubIndexes
))
563 report_fatal_error("Impossible to implement partial COPY");
566 for (unsigned BestIdx
: SubIndexes
) {
567 Def
= buildSingleSubRegCopy(FromReg
, ToReg
, MBB
, InsertBefore
, BestIdx
,
571 BumpPtrAllocator
&Allocator
= LIS
.getVNInfoAllocator();
572 DestLI
.refineSubRanges(
574 [Def
, &Allocator
](LiveInterval::SubRange
&SR
) {
575 SR
.createDeadDef(Def
, Allocator
);
582 VNInfo
*SplitEditor::defFromParent(unsigned RegIdx
, const VNInfo
*ParentVNI
,
583 SlotIndex UseIdx
, MachineBasicBlock
&MBB
,
584 MachineBasicBlock::iterator I
) {
586 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(RegIdx
));
588 // We may be trying to avoid interference that ends at a deleted instruction,
589 // so always begin RegIdx 0 early and all others late.
590 bool Late
= RegIdx
!= 0;
592 // Attempt cheap-as-a-copy rematerialization.
593 unsigned Original
= VRM
.getOriginal(Edit
->get(RegIdx
));
594 LiveInterval
&OrigLI
= LIS
.getInterval(Original
);
595 VNInfo
*OrigVNI
= OrigLI
.getVNInfoAt(UseIdx
);
597 Register Reg
= LI
->reg();
598 bool DidRemat
= false;
600 LiveRangeEdit::Remat
RM(ParentVNI
);
601 RM
.OrigMI
= LIS
.getInstructionFromIndex(OrigVNI
->def
);
602 if (Edit
->canRematerializeAt(RM
, OrigVNI
, UseIdx
, true)) {
603 Def
= Edit
->rematerializeAt(MBB
, I
, Reg
, RM
, TRI
, Late
);
609 LaneBitmask LaneMask
;
610 if (OrigLI
.hasSubRanges()) {
611 LaneMask
= LaneBitmask::getNone();
612 for (LiveInterval::SubRange
&S
: OrigLI
.subranges()) {
613 if (S
.liveAt(UseIdx
))
614 LaneMask
|= S
.LaneMask
;
617 LaneMask
= LaneBitmask::getAll();
620 if (LaneMask
.none()) {
621 const MCInstrDesc
&Desc
= TII
.get(TargetOpcode::IMPLICIT_DEF
);
622 MachineInstr
*ImplicitDef
= BuildMI(MBB
, I
, DebugLoc(), Desc
, Reg
);
623 SlotIndexes
&Indexes
= *LIS
.getSlotIndexes();
624 Def
= Indexes
.insertMachineInstrInMaps(*ImplicitDef
, Late
).getRegSlot();
627 Def
= buildCopy(Edit
->getReg(), Reg
, LaneMask
, MBB
, I
, Late
, RegIdx
);
631 // Define the value in Reg.
632 return defValue(RegIdx
, ParentVNI
, Def
, false);
635 /// Create a new virtual register and live interval.
636 unsigned SplitEditor::openIntv() {
637 // Create the complement as index 0.
639 Edit
->createEmptyInterval();
641 // Create the open interval.
642 OpenIdx
= Edit
->size();
643 Edit
->createEmptyInterval();
647 void SplitEditor::selectIntv(unsigned Idx
) {
648 assert(Idx
!= 0 && "Cannot select the complement interval");
649 assert(Idx
< Edit
->size() && "Can only select previously opened interval");
650 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx
<< " -> " << Idx
<< '\n');
654 SlotIndex
SplitEditor::enterIntvBefore(SlotIndex Idx
) {
655 assert(OpenIdx
&& "openIntv not called before enterIntvBefore");
656 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx
);
657 Idx
= Idx
.getBaseIndex();
658 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Idx
);
660 LLVM_DEBUG(dbgs() << ": not live\n");
663 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
664 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Idx
);
665 assert(MI
&& "enterIntvBefore called with invalid index");
667 VNInfo
*VNI
= defFromParent(OpenIdx
, ParentVNI
, Idx
, *MI
->getParent(), MI
);
671 SlotIndex
SplitEditor::enterIntvAfter(SlotIndex Idx
) {
672 assert(OpenIdx
&& "openIntv not called before enterIntvAfter");
673 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx
);
674 Idx
= Idx
.getBoundaryIndex();
675 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Idx
);
677 LLVM_DEBUG(dbgs() << ": not live\n");
680 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
681 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Idx
);
682 assert(MI
&& "enterIntvAfter called with invalid index");
684 VNInfo
*VNI
= defFromParent(OpenIdx
, ParentVNI
, Idx
, *MI
->getParent(),
685 std::next(MachineBasicBlock::iterator(MI
)));
689 SlotIndex
SplitEditor::enterIntvAtEnd(MachineBasicBlock
&MBB
) {
690 assert(OpenIdx
&& "openIntv not called before enterIntvAtEnd");
691 SlotIndex End
= LIS
.getMBBEndIdx(&MBB
);
692 SlotIndex Last
= End
.getPrevSlot();
693 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB
) << ", "
695 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Last
);
697 LLVM_DEBUG(dbgs() << ": not live\n");
700 SlotIndex LSP
= SA
.getLastSplitPoint(&MBB
);
702 // It could be that the use after LSP is a def, and thus the ParentVNI
703 // just selected starts at that def. For this case to exist, the def
704 // must be part of a tied def/use pair (as otherwise we'd have split
705 // distinct live ranges into individual live intervals), and thus we
706 // can insert the def into the VNI of the use and the tied def/use
707 // pair can live in the resulting interval.
709 ParentVNI
= Edit
->getParent().getVNInfoAt(Last
);
711 // undef use --> undef tied def
712 LLVM_DEBUG(dbgs() << ": tied use not live\n");
717 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
);
718 VNInfo
*VNI
= defFromParent(OpenIdx
, ParentVNI
, Last
, MBB
,
719 SA
.getLastSplitPointIter(&MBB
));
720 RegAssign
.insert(VNI
->def
, End
, OpenIdx
);
725 /// useIntv - indicate that all instructions in MBB should use OpenLI.
726 void SplitEditor::useIntv(const MachineBasicBlock
&MBB
) {
727 useIntv(LIS
.getMBBStartIdx(&MBB
), LIS
.getMBBEndIdx(&MBB
));
730 void SplitEditor::useIntv(SlotIndex Start
, SlotIndex End
) {
731 assert(OpenIdx
&& "openIntv not called before useIntv");
732 LLVM_DEBUG(dbgs() << " useIntv [" << Start
<< ';' << End
<< "):");
733 RegAssign
.insert(Start
, End
, OpenIdx
);
737 SlotIndex
SplitEditor::leaveIntvAfter(SlotIndex Idx
) {
738 assert(OpenIdx
&& "openIntv not called before leaveIntvAfter");
739 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx
);
741 // The interval must be live beyond the instruction at Idx.
742 SlotIndex Boundary
= Idx
.getBoundaryIndex();
743 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Boundary
);
745 LLVM_DEBUG(dbgs() << ": not live\n");
746 return Boundary
.getNextSlot();
748 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
749 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Boundary
);
750 assert(MI
&& "No instruction at index");
752 // In spill mode, make live ranges as short as possible by inserting the copy
753 // before MI. This is only possible if that instruction doesn't redefine the
754 // value. The inserted COPY is not a kill, and we don't need to recompute
755 // the source live range. The spiller also won't try to hoist this copy.
756 if (SpillMode
&& !SlotIndex::isSameInstr(ParentVNI
->def
, Idx
) &&
757 MI
->readsVirtualRegister(Edit
->getReg())) {
758 forceRecompute(0, *ParentVNI
);
759 defFromParent(0, ParentVNI
, Idx
, *MI
->getParent(), MI
);
763 VNInfo
*VNI
= defFromParent(0, ParentVNI
, Boundary
, *MI
->getParent(),
764 std::next(MachineBasicBlock::iterator(MI
)));
768 SlotIndex
SplitEditor::leaveIntvBefore(SlotIndex Idx
) {
769 assert(OpenIdx
&& "openIntv not called before leaveIntvBefore");
770 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx
);
772 // The interval must be live into the instruction at Idx.
773 Idx
= Idx
.getBaseIndex();
774 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Idx
);
776 LLVM_DEBUG(dbgs() << ": not live\n");
777 return Idx
.getNextSlot();
779 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI
->id
<< '\n');
781 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Idx
);
782 assert(MI
&& "No instruction at index");
783 VNInfo
*VNI
= defFromParent(0, ParentVNI
, Idx
, *MI
->getParent(), MI
);
787 SlotIndex
SplitEditor::leaveIntvAtTop(MachineBasicBlock
&MBB
) {
788 assert(OpenIdx
&& "openIntv not called before leaveIntvAtTop");
789 SlotIndex Start
= LIS
.getMBBStartIdx(&MBB
);
790 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB
) << ", "
793 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Start
);
795 LLVM_DEBUG(dbgs() << ": not live\n");
799 VNInfo
*VNI
= defFromParent(0, ParentVNI
, Start
, MBB
,
800 MBB
.SkipPHIsLabelsAndDebug(MBB
.begin()));
801 RegAssign
.insert(Start
, VNI
->def
, OpenIdx
);
806 static bool hasTiedUseOf(MachineInstr
&MI
, unsigned Reg
) {
807 return any_of(MI
.defs(), [Reg
](const MachineOperand
&MO
) {
808 return MO
.isReg() && MO
.isTied() && MO
.getReg() == Reg
;
812 void SplitEditor::overlapIntv(SlotIndex Start
, SlotIndex End
) {
813 assert(OpenIdx
&& "openIntv not called before overlapIntv");
814 const VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(Start
);
815 assert(ParentVNI
== Edit
->getParent().getVNInfoBefore(End
) &&
816 "Parent changes value in extended range");
817 assert(LIS
.getMBBFromIndex(Start
) == LIS
.getMBBFromIndex(End
) &&
818 "Range cannot span basic blocks");
820 // The complement interval will be extended as needed by LICalc.extend().
822 forceRecompute(0, *ParentVNI
);
824 // If the last use is tied to a def, we can't mark it as live for the
825 // interval which includes only the use. That would cause the tied pair
826 // to end up in two different intervals.
827 if (auto *MI
= LIS
.getInstructionFromIndex(End
))
828 if (hasTiedUseOf(*MI
, Edit
->getReg())) {
829 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
833 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start
<< ';' << End
<< "):");
834 RegAssign
.insert(Start
, End
, OpenIdx
);
838 //===----------------------------------------------------------------------===//
840 //===----------------------------------------------------------------------===//
842 void SplitEditor::removeBackCopies(SmallVectorImpl
<VNInfo
*> &Copies
) {
843 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(0));
844 LLVM_DEBUG(dbgs() << "Removing " << Copies
.size() << " back-copies.\n");
845 RegAssignMap::iterator AssignI
;
846 AssignI
.setMap(RegAssign
);
848 for (const VNInfo
*C
: Copies
) {
849 SlotIndex Def
= C
->def
;
850 MachineInstr
*MI
= LIS
.getInstructionFromIndex(Def
);
851 assert(MI
&& "No instruction for back-copy");
853 MachineBasicBlock
*MBB
= MI
->getParent();
854 MachineBasicBlock::iterator
MBBI(MI
);
856 do AtBegin
= MBBI
== MBB
->begin();
857 while (!AtBegin
&& (--MBBI
)->isDebugOrPseudoInstr());
859 LLVM_DEBUG(dbgs() << "Removing " << Def
<< '\t' << *MI
);
860 LIS
.removeVRegDefAt(*LI
, Def
);
861 LIS
.RemoveMachineInstrFromMaps(*MI
);
862 MI
->eraseFromParent();
864 // Adjust RegAssign if a register assignment is killed at Def. We want to
865 // avoid calculating the live range of the source register if possible.
866 AssignI
.find(Def
.getPrevSlot());
867 if (!AssignI
.valid() || AssignI
.start() >= Def
)
869 // If MI doesn't kill the assigned register, just leave it.
870 if (AssignI
.stop() != Def
)
872 unsigned RegIdx
= AssignI
.value();
873 // We could hoist back-copy right after another back-copy. As a result
874 // MMBI points to copy instruction which is actually dead now.
875 // We cannot set its stop to MBBI which will be the same as start and
876 // interval does not support that.
878 AtBegin
? SlotIndex() : LIS
.getInstructionIndex(*MBBI
).getRegSlot();
879 if (AtBegin
|| !MBBI
->readsVirtualRegister(Edit
->getReg()) ||
880 Kill
<= AssignI
.start()) {
881 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
883 forceRecompute(RegIdx
, *Edit
->getParent().getVNInfoAt(Def
));
885 LLVM_DEBUG(dbgs() << " move kill to " << Kill
<< '\t' << *MBBI
);
886 AssignI
.setStop(Kill
);
892 SplitEditor::findShallowDominator(MachineBasicBlock
*MBB
,
893 MachineBasicBlock
*DefMBB
) {
896 assert(MDT
.dominates(DefMBB
, MBB
) && "MBB must be dominated by the def.");
898 const MachineLoopInfo
&Loops
= SA
.Loops
;
899 const MachineLoop
*DefLoop
= Loops
.getLoopFor(DefMBB
);
900 MachineDomTreeNode
*DefDomNode
= MDT
[DefMBB
];
902 // Best candidate so far.
903 MachineBasicBlock
*BestMBB
= MBB
;
904 unsigned BestDepth
= std::numeric_limits
<unsigned>::max();
907 const MachineLoop
*Loop
= Loops
.getLoopFor(MBB
);
909 // MBB isn't in a loop, it doesn't get any better. All dominators have a
910 // higher frequency by definition.
912 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB
)
913 << " dominates " << printMBBReference(*MBB
)
918 // We'll never be able to exit the DefLoop.
919 if (Loop
== DefLoop
) {
920 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB
)
921 << " dominates " << printMBBReference(*MBB
)
922 << " in the same loop\n");
926 // Least busy dominator seen so far.
927 unsigned Depth
= Loop
->getLoopDepth();
928 if (Depth
< BestDepth
) {
931 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB
)
932 << " dominates " << printMBBReference(*MBB
)
933 << " at depth " << Depth
<< '\n');
936 // Leave loop by going to the immediate dominator of the loop header.
937 // This is a bigger stride than simply walking up the dominator tree.
938 MachineDomTreeNode
*IDom
= MDT
[Loop
->getHeader()]->getIDom();
940 // Too far up the dominator tree?
941 if (!IDom
|| !MDT
.dominates(DefDomNode
, IDom
))
944 MBB
= IDom
->getBlock();
948 void SplitEditor::computeRedundantBackCopies(
949 DenseSet
<unsigned> &NotToHoistSet
, SmallVectorImpl
<VNInfo
*> &BackCopies
) {
950 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(0));
951 const LiveInterval
*Parent
= &Edit
->getParent();
952 SmallVector
<SmallPtrSet
<VNInfo
*, 8>, 8> EqualVNs(Parent
->getNumValNums());
953 SmallPtrSet
<VNInfo
*, 8> DominatedVNIs
;
955 // Aggregate VNIs having the same value as ParentVNI.
956 for (VNInfo
*VNI
: LI
->valnos
) {
959 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(VNI
->def
);
960 EqualVNs
[ParentVNI
->id
].insert(VNI
);
963 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
964 // redundant VNIs to BackCopies.
965 for (unsigned i
= 0, e
= Parent
->getNumValNums(); i
!= e
; ++i
) {
966 const VNInfo
*ParentVNI
= Parent
->getValNumInfo(i
);
967 if (!NotToHoistSet
.count(ParentVNI
->id
))
969 SmallPtrSetIterator
<VNInfo
*> It1
= EqualVNs
[ParentVNI
->id
].begin();
970 SmallPtrSetIterator
<VNInfo
*> It2
= It1
;
971 for (; It1
!= EqualVNs
[ParentVNI
->id
].end(); ++It1
) {
973 for (++It2
; It2
!= EqualVNs
[ParentVNI
->id
].end(); ++It2
) {
974 if (DominatedVNIs
.count(*It1
) || DominatedVNIs
.count(*It2
))
977 MachineBasicBlock
*MBB1
= LIS
.getMBBFromIndex((*It1
)->def
);
978 MachineBasicBlock
*MBB2
= LIS
.getMBBFromIndex((*It2
)->def
);
980 DominatedVNIs
.insert((*It1
)->def
< (*It2
)->def
? (*It2
) : (*It1
));
981 } else if (MDT
.dominates(MBB1
, MBB2
)) {
982 DominatedVNIs
.insert(*It2
);
983 } else if (MDT
.dominates(MBB2
, MBB1
)) {
984 DominatedVNIs
.insert(*It1
);
988 if (!DominatedVNIs
.empty()) {
989 forceRecompute(0, *ParentVNI
);
990 append_range(BackCopies
, DominatedVNIs
);
991 DominatedVNIs
.clear();
996 /// For SM_Size mode, find a common dominator for all the back-copies for
997 /// the same ParentVNI and hoist the backcopies to the dominator BB.
998 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
999 /// to do the hoisting, simply remove the dominated backcopies for the same
1001 void SplitEditor::hoistCopies() {
1002 // Get the complement interval, always RegIdx 0.
1003 LiveInterval
*LI
= &LIS
.getInterval(Edit
->get(0));
1004 const LiveInterval
*Parent
= &Edit
->getParent();
1006 // Track the nearest common dominator for all back-copies for each ParentVNI,
1007 // indexed by ParentVNI->id.
1008 using DomPair
= std::pair
<MachineBasicBlock
*, SlotIndex
>;
1009 SmallVector
<DomPair
, 8> NearestDom(Parent
->getNumValNums());
1010 // The total cost of all the back-copies for each ParentVNI.
1011 SmallVector
<BlockFrequency
, 8> Costs(Parent
->getNumValNums());
1012 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1014 DenseSet
<unsigned> NotToHoistSet
;
1016 // Find the nearest common dominator for parent values with multiple
1017 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1018 for (VNInfo
*VNI
: LI
->valnos
) {
1019 if (VNI
->isUnused())
1021 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(VNI
->def
);
1022 assert(ParentVNI
&& "Parent not live at complement def");
1024 // Don't hoist remats. The complement is probably going to disappear
1025 // completely anyway.
1026 if (Edit
->didRematerialize(ParentVNI
))
1029 MachineBasicBlock
*ValMBB
= LIS
.getMBBFromIndex(VNI
->def
);
1031 DomPair
&Dom
= NearestDom
[ParentVNI
->id
];
1033 // Keep directly defined parent values. This is either a PHI or an
1034 // instruction in the complement range. All other copies of ParentVNI
1035 // should be eliminated.
1036 if (VNI
->def
== ParentVNI
->def
) {
1037 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI
->def
<< '\n');
1038 Dom
= DomPair(ValMBB
, VNI
->def
);
1041 // Skip the singly mapped values. There is nothing to gain from hoisting a
1042 // single back-copy.
1043 if (Values
.lookup(std::make_pair(0, ParentVNI
->id
)).getPointer()) {
1044 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI
->def
<< '\n');
1049 // First time we see ParentVNI. VNI dominates itself.
1050 Dom
= DomPair(ValMBB
, VNI
->def
);
1051 } else if (Dom
.first
== ValMBB
) {
1052 // Two defs in the same block. Pick the earlier def.
1053 if (!Dom
.second
.isValid() || VNI
->def
< Dom
.second
)
1054 Dom
.second
= VNI
->def
;
1056 // Different basic blocks. Check if one dominates.
1057 MachineBasicBlock
*Near
=
1058 MDT
.findNearestCommonDominator(Dom
.first
, ValMBB
);
1060 // Def ValMBB dominates.
1061 Dom
= DomPair(ValMBB
, VNI
->def
);
1062 else if (Near
!= Dom
.first
)
1063 // None dominate. Hoist to common dominator, need new def.
1064 Dom
= DomPair(Near
, SlotIndex());
1065 Costs
[ParentVNI
->id
] += MBFI
.getBlockFreq(ValMBB
);
1068 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI
->id
<< '@'
1069 << VNI
->def
<< " for parent " << ParentVNI
->id
<< '@'
1070 << ParentVNI
->def
<< " hoist to "
1071 << printMBBReference(*Dom
.first
) << ' ' << Dom
.second
1075 // Insert the hoisted copies.
1076 for (unsigned i
= 0, e
= Parent
->getNumValNums(); i
!= e
; ++i
) {
1077 DomPair
&Dom
= NearestDom
[i
];
1078 if (!Dom
.first
|| Dom
.second
.isValid())
1080 // This value needs a hoisted copy inserted at the end of Dom.first.
1081 const VNInfo
*ParentVNI
= Parent
->getValNumInfo(i
);
1082 MachineBasicBlock
*DefMBB
= LIS
.getMBBFromIndex(ParentVNI
->def
);
1083 // Get a less loopy dominator than Dom.first.
1084 Dom
.first
= findShallowDominator(Dom
.first
, DefMBB
);
1085 if (SpillMode
== SM_Speed
&&
1086 MBFI
.getBlockFreq(Dom
.first
) > Costs
[ParentVNI
->id
]) {
1087 NotToHoistSet
.insert(ParentVNI
->id
);
1090 SlotIndex LSP
= SA
.getLastSplitPoint(Dom
.first
);
1091 if (LSP
<= ParentVNI
->def
) {
1092 NotToHoistSet
.insert(ParentVNI
->id
);
1095 Dom
.second
= defFromParent(0, ParentVNI
, LSP
, *Dom
.first
,
1096 SA
.getLastSplitPointIter(Dom
.first
))->def
;
1099 // Remove redundant back-copies that are now known to be dominated by another
1100 // def with the same value.
1101 SmallVector
<VNInfo
*, 8> BackCopies
;
1102 for (VNInfo
*VNI
: LI
->valnos
) {
1103 if (VNI
->isUnused())
1105 VNInfo
*ParentVNI
= Edit
->getParent().getVNInfoAt(VNI
->def
);
1106 const DomPair
&Dom
= NearestDom
[ParentVNI
->id
];
1107 if (!Dom
.first
|| Dom
.second
== VNI
->def
||
1108 NotToHoistSet
.count(ParentVNI
->id
))
1110 BackCopies
.push_back(VNI
);
1111 forceRecompute(0, *ParentVNI
);
1114 // If it is not beneficial to hoist all the BackCopies, simply remove
1115 // redundant BackCopies in speed mode.
1116 if (SpillMode
== SM_Speed
&& !NotToHoistSet
.empty())
1117 computeRedundantBackCopies(NotToHoistSet
, BackCopies
);
1119 removeBackCopies(BackCopies
);
1122 /// transferValues - Transfer all possible values to the new live ranges.
1123 /// Values that were rematerialized are left alone, they need LICalc.extend().
1124 bool SplitEditor::transferValues() {
1125 bool Skipped
= false;
1126 RegAssignMap::const_iterator AssignI
= RegAssign
.begin();
1127 for (const LiveRange::Segment
&S
: Edit
->getParent()) {
1128 LLVM_DEBUG(dbgs() << " blit " << S
<< ':');
1129 VNInfo
*ParentVNI
= S
.valno
;
1130 // RegAssign has holes where RegIdx 0 should be used.
1131 SlotIndex Start
= S
.start
;
1132 AssignI
.advanceTo(Start
);
1135 SlotIndex End
= S
.end
;
1136 if (!AssignI
.valid()) {
1138 } else if (AssignI
.start() <= Start
) {
1139 RegIdx
= AssignI
.value();
1140 if (AssignI
.stop() < End
) {
1141 End
= AssignI
.stop();
1146 End
= std::min(End
, AssignI
.start());
1149 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1150 LLVM_DEBUG(dbgs() << " [" << Start
<< ';' << End
<< ")=" << RegIdx
<< '('
1151 << printReg(Edit
->get(RegIdx
)) << ')');
1152 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(RegIdx
));
1154 // Check for a simply defined value that can be blitted directly.
1155 ValueForcePair VFP
= Values
.lookup(std::make_pair(RegIdx
, ParentVNI
->id
));
1156 if (VNInfo
*VNI
= VFP
.getPointer()) {
1157 LLVM_DEBUG(dbgs() << ':' << VNI
->id
);
1158 LI
.addSegment(LiveInterval::Segment(Start
, End
, VNI
));
1163 // Skip values with forced recomputation.
1165 LLVM_DEBUG(dbgs() << "(recalc)");
1171 LiveIntervalCalc
&LIC
= getLICalc(RegIdx
);
1173 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1174 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1176 MachineFunction::iterator MBB
= LIS
.getMBBFromIndex(Start
)->getIterator();
1177 SlotIndex BlockStart
, BlockEnd
;
1178 std::tie(BlockStart
, BlockEnd
) = LIS
.getSlotIndexes()->getMBBRange(&*MBB
);
1180 // The first block may be live-in, or it may have its own def.
1181 if (Start
!= BlockStart
) {
1182 VNInfo
*VNI
= LI
.extendInBlock(BlockStart
, std::min(BlockEnd
, End
));
1183 assert(VNI
&& "Missing def for complex mapped value");
1184 LLVM_DEBUG(dbgs() << ':' << VNI
->id
<< "*" << printMBBReference(*MBB
));
1185 // MBB has its own def. Is it also live-out?
1186 if (BlockEnd
<= End
)
1187 LIC
.setLiveOutValue(&*MBB
, VNI
);
1189 // Skip to the next block for live-in.
1191 BlockStart
= BlockEnd
;
1194 // Handle the live-in blocks covered by [Start;End).
1195 assert(Start
<= BlockStart
&& "Expected live-in block");
1196 while (BlockStart
< End
) {
1197 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB
));
1198 BlockEnd
= LIS
.getMBBEndIdx(&*MBB
);
1199 if (BlockStart
== ParentVNI
->def
) {
1200 // This block has the def of a parent PHI, so it isn't live-in.
1201 assert(ParentVNI
->isPHIDef() && "Non-phi defined at block start?");
1202 VNInfo
*VNI
= LI
.extendInBlock(BlockStart
, std::min(BlockEnd
, End
));
1203 assert(VNI
&& "Missing def for complex mapped parent PHI");
1204 if (End
>= BlockEnd
)
1205 LIC
.setLiveOutValue(&*MBB
, VNI
); // Live-out as well.
1207 // This block needs a live-in value. The last block covered may not
1210 LIC
.addLiveInBlock(LI
, MDT
[&*MBB
], End
);
1212 // Live-through, and we don't know the value.
1213 LIC
.addLiveInBlock(LI
, MDT
[&*MBB
]);
1214 LIC
.setLiveOutValue(&*MBB
, nullptr);
1217 BlockStart
= BlockEnd
;
1221 } while (Start
!= S
.end
);
1222 LLVM_DEBUG(dbgs() << '\n');
1225 LICalc
[0].calculateValues();
1227 LICalc
[1].calculateValues();
1232 static bool removeDeadSegment(SlotIndex Def
, LiveRange
&LR
) {
1233 const LiveRange::Segment
*Seg
= LR
.getSegmentContaining(Def
);
1236 if (Seg
->end
!= Def
.getDeadSlot())
1238 // This is a dead PHI. Remove it.
1239 LR
.removeSegment(*Seg
, true);
1243 void SplitEditor::extendPHIRange(MachineBasicBlock
&B
, LiveIntervalCalc
&LIC
,
1244 LiveRange
&LR
, LaneBitmask LM
,
1245 ArrayRef
<SlotIndex
> Undefs
) {
1246 for (MachineBasicBlock
*P
: B
.predecessors()) {
1247 SlotIndex End
= LIS
.getMBBEndIdx(P
);
1248 SlotIndex LastUse
= End
.getPrevSlot();
1249 // The predecessor may not have a live-out value. That is OK, like an
1250 // undef PHI operand.
1251 const LiveInterval
&PLI
= Edit
->getParent();
1252 // Need the cast because the inputs to ?: would otherwise be deemed
1253 // "incompatible": SubRange vs LiveInterval.
1254 const LiveRange
&PSR
= !LM
.all() ? getSubRangeForMaskExact(LM
, PLI
)
1255 : static_cast<const LiveRange
&>(PLI
);
1256 if (PSR
.liveAt(LastUse
))
1257 LIC
.extend(LR
, End
, /*PhysReg=*/0, Undefs
);
1261 void SplitEditor::extendPHIKillRanges() {
1262 // Extend live ranges to be live-out for successor PHI values.
1264 // Visit each PHI def slot in the parent live interval. If the def is dead,
1265 // remove it. Otherwise, extend the live interval to reach the end indexes
1266 // of all predecessor blocks.
1268 const LiveInterval
&ParentLI
= Edit
->getParent();
1269 for (const VNInfo
*V
: ParentLI
.valnos
) {
1270 if (V
->isUnused() || !V
->isPHIDef())
1273 unsigned RegIdx
= RegAssign
.lookup(V
->def
);
1274 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(RegIdx
));
1275 LiveIntervalCalc
&LIC
= getLICalc(RegIdx
);
1276 MachineBasicBlock
&B
= *LIS
.getMBBFromIndex(V
->def
);
1277 if (!removeDeadSegment(V
->def
, LI
))
1278 extendPHIRange(B
, LIC
, LI
, LaneBitmask::getAll(), /*Undefs=*/{});
1281 SmallVector
<SlotIndex
, 4> Undefs
;
1282 LiveIntervalCalc SubLIC
;
1284 for (const LiveInterval::SubRange
&PS
: ParentLI
.subranges()) {
1285 for (const VNInfo
*V
: PS
.valnos
) {
1286 if (V
->isUnused() || !V
->isPHIDef())
1288 unsigned RegIdx
= RegAssign
.lookup(V
->def
);
1289 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(RegIdx
));
1290 LiveInterval::SubRange
&S
= getSubRangeForMaskExact(PS
.LaneMask
, LI
);
1291 if (removeDeadSegment(V
->def
, S
))
1294 MachineBasicBlock
&B
= *LIS
.getMBBFromIndex(V
->def
);
1295 SubLIC
.reset(&VRM
.getMachineFunction(), LIS
.getSlotIndexes(), &MDT
,
1296 &LIS
.getVNInfoAllocator());
1298 LI
.computeSubRangeUndefs(Undefs
, PS
.LaneMask
, MRI
, *LIS
.getSlotIndexes());
1299 extendPHIRange(B
, SubLIC
, S
, PS
.LaneMask
, Undefs
);
1304 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1305 void SplitEditor::rewriteAssigned(bool ExtendRanges
) {
1307 ExtPoint(const MachineOperand
&O
, unsigned R
, SlotIndex N
)
1308 : MO(O
), RegIdx(R
), Next(N
) {}
1315 SmallVector
<ExtPoint
,4> ExtPoints
;
1317 for (MachineOperand
&MO
:
1318 llvm::make_early_inc_range(MRI
.reg_operands(Edit
->getReg()))) {
1319 MachineInstr
*MI
= MO
.getParent();
1320 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1321 if (MI
->isDebugValue()) {
1322 LLVM_DEBUG(dbgs() << "Zapping " << *MI
);
1327 // <undef> operands don't really read the register, so it doesn't matter
1328 // which register we choose. When the use operand is tied to a def, we must
1329 // use the same register as the def, so just do that always.
1330 SlotIndex Idx
= LIS
.getInstructionIndex(*MI
);
1331 if (MO
.isDef() || MO
.isUndef())
1332 Idx
= Idx
.getRegSlot(MO
.isEarlyClobber());
1334 // Rewrite to the mapped register at Idx.
1335 unsigned RegIdx
= RegAssign
.lookup(Idx
);
1336 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(RegIdx
));
1337 MO
.setReg(LI
.reg());
1338 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI
->getParent())
1339 << '\t' << Idx
<< ':' << RegIdx
<< '\t' << *MI
);
1341 // Extend liveness to Idx if the instruction reads reg.
1342 if (!ExtendRanges
|| MO
.isUndef())
1345 // Skip instructions that don't read Reg.
1347 if (!MO
.getSubReg() && !MO
.isEarlyClobber())
1349 // We may want to extend a live range for a partial redef, or for a use
1350 // tied to an early clobber.
1351 if (!Edit
->getParent().liveAt(Idx
.getPrevSlot()))
1355 bool IsEarlyClobber
= false;
1357 // We want to extend a live range into `e` slot rather than `r` slot if
1358 // tied-def is early clobber, because the `e` slot already contained
1359 // in the live range of early-clobber tied-def operand, give an example
1362 // 16 early-clobber %0 = Op %0 (tied-def 0), ...
1365 // %0 = [0r, 0d) [16e, 32d)
1366 // The point we want to extend is 0d to 16e not 16r in this case, but if
1367 // we use 16r here we will extend nothing because that already contained
1369 unsigned OpIdx
= MI
->getOperandNo(&MO
);
1370 unsigned DefOpIdx
= MI
->findTiedOperandIdx(OpIdx
);
1371 const MachineOperand
&DefOp
= MI
->getOperand(DefOpIdx
);
1372 IsEarlyClobber
= DefOp
.isEarlyClobber();
1375 Idx
= Idx
.getRegSlot(IsEarlyClobber
);
1378 SlotIndex Next
= Idx
;
1379 if (LI
.hasSubRanges()) {
1380 // We have to delay extending subranges until we have seen all operands
1381 // defining the register. This is because a <def,read-undef> operand
1382 // will create an "undef" point, and we cannot extend any subranges
1383 // until all of them have been accounted for.
1385 ExtPoints
.push_back(ExtPoint(MO
, RegIdx
, Next
));
1387 LiveIntervalCalc
&LIC
= getLICalc(RegIdx
);
1388 LIC
.extend(LI
, Next
, 0, ArrayRef
<SlotIndex
>());
1392 for (ExtPoint
&EP
: ExtPoints
) {
1393 LiveInterval
&LI
= LIS
.getInterval(Edit
->get(EP
.RegIdx
));
1394 assert(LI
.hasSubRanges());
1396 LiveIntervalCalc SubLIC
;
1397 Register Reg
= EP
.MO
.getReg(), Sub
= EP
.MO
.getSubReg();
1398 LaneBitmask LM
= Sub
!= 0 ? TRI
.getSubRegIndexLaneMask(Sub
)
1399 : MRI
.getMaxLaneMaskForVReg(Reg
);
1400 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1401 if ((S
.LaneMask
& LM
).none())
1403 // The problem here can be that the new register may have been created
1404 // for a partially defined original register. For example:
1405 // %0:subreg_hireg<def,read-undef> = ...
1410 SubLIC
.reset(&VRM
.getMachineFunction(), LIS
.getSlotIndexes(), &MDT
,
1411 &LIS
.getVNInfoAllocator());
1412 SmallVector
<SlotIndex
, 4> Undefs
;
1413 LI
.computeSubRangeUndefs(Undefs
, S
.LaneMask
, MRI
, *LIS
.getSlotIndexes());
1414 SubLIC
.extend(S
, EP
.Next
, 0, Undefs
);
1418 for (Register R
: *Edit
) {
1419 LiveInterval
&LI
= LIS
.getInterval(R
);
1420 if (!LI
.hasSubRanges())
1423 LI
.removeEmptySubRanges();
1424 LIS
.constructMainRangeFromSubranges(LI
);
1428 void SplitEditor::deleteRematVictims() {
1429 SmallVector
<MachineInstr
*, 8> Dead
;
1430 for (const Register
&R
: *Edit
) {
1431 LiveInterval
*LI
= &LIS
.getInterval(R
);
1432 for (const LiveRange::Segment
&S
: LI
->segments
) {
1433 // Dead defs end at the dead slot.
1434 if (S
.end
!= S
.valno
->def
.getDeadSlot())
1436 if (S
.valno
->isPHIDef())
1438 MachineInstr
*MI
= LIS
.getInstructionFromIndex(S
.valno
->def
);
1439 assert(MI
&& "Missing instruction for dead def");
1440 MI
->addRegisterDead(LI
->reg(), &TRI
);
1442 if (!MI
->allDefsAreDead())
1445 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI
);
1453 Edit
->eliminateDeadDefs(Dead
, None
);
1456 void SplitEditor::forceRecomputeVNI(const VNInfo
&ParentVNI
) {
1457 // Fast-path for common case.
1458 if (!ParentVNI
.isPHIDef()) {
1459 for (unsigned I
= 0, E
= Edit
->size(); I
!= E
; ++I
)
1460 forceRecompute(I
, ParentVNI
);
1464 // Trace value through phis.
1465 SmallPtrSet
<const VNInfo
*, 8> Visited
; ///< whether VNI was/is in worklist.
1466 SmallVector
<const VNInfo
*, 4> WorkList
;
1467 Visited
.insert(&ParentVNI
);
1468 WorkList
.push_back(&ParentVNI
);
1470 const LiveInterval
&ParentLI
= Edit
->getParent();
1471 const SlotIndexes
&Indexes
= *LIS
.getSlotIndexes();
1473 const VNInfo
&VNI
= *WorkList
.back();
1474 WorkList
.pop_back();
1475 for (unsigned I
= 0, E
= Edit
->size(); I
!= E
; ++I
)
1476 forceRecompute(I
, VNI
);
1477 if (!VNI
.isPHIDef())
1480 MachineBasicBlock
&MBB
= *Indexes
.getMBBFromIndex(VNI
.def
);
1481 for (const MachineBasicBlock
*Pred
: MBB
.predecessors()) {
1482 SlotIndex PredEnd
= Indexes
.getMBBEndIdx(Pred
);
1483 VNInfo
*PredVNI
= ParentLI
.getVNInfoBefore(PredEnd
);
1484 assert(PredVNI
&& "Value available in PhiVNI predecessor");
1485 if (Visited
.insert(PredVNI
).second
)
1486 WorkList
.push_back(PredVNI
);
1488 } while(!WorkList
.empty());
1491 void SplitEditor::finish(SmallVectorImpl
<unsigned> *LRMap
) {
1494 // At this point, the live intervals in Edit contain VNInfos corresponding to
1495 // the inserted copies.
1497 // Add the original defs from the parent interval.
1498 for (const VNInfo
*ParentVNI
: Edit
->getParent().valnos
) {
1499 if (ParentVNI
->isUnused())
1501 unsigned RegIdx
= RegAssign
.lookup(ParentVNI
->def
);
1502 defValue(RegIdx
, ParentVNI
, ParentVNI
->def
, true);
1504 // Force rematted values to be recomputed everywhere.
1505 // The new live ranges may be truncated.
1506 if (Edit
->didRematerialize(ParentVNI
))
1507 forceRecomputeVNI(*ParentVNI
);
1510 // Hoist back-copies to the complement interval when in spill mode.
1511 switch (SpillMode
) {
1513 // Leave all back-copies as is.
1517 // hoistCopies will behave differently between size and speed.
1521 // Transfer the simply mapped values, check if any are skipped.
1522 bool Skipped
= transferValues();
1524 // Rewrite virtual registers, possibly extending ranges.
1525 rewriteAssigned(Skipped
);
1528 extendPHIKillRanges();
1532 // Delete defs that were rematted everywhere.
1534 deleteRematVictims();
1536 // Get rid of unused values and set phi-kill flags.
1537 for (Register Reg
: *Edit
) {
1538 LiveInterval
&LI
= LIS
.getInterval(Reg
);
1539 LI
.removeEmptySubRanges();
1540 LI
.RenumberValues();
1543 // Provide a reverse mapping from original indices to Edit ranges.
1545 auto Seq
= llvm::seq
<unsigned>(0, Edit
->size());
1546 LRMap
->assign(Seq
.begin(), Seq
.end());
1549 // Now check if any registers were separated into multiple components.
1550 ConnectedVNInfoEqClasses
ConEQ(LIS
);
1551 for (unsigned i
= 0, e
= Edit
->size(); i
!= e
; ++i
) {
1552 // Don't use iterators, they are invalidated by create() below.
1553 Register VReg
= Edit
->get(i
);
1554 LiveInterval
&LI
= LIS
.getInterval(VReg
);
1555 SmallVector
<LiveInterval
*, 8> SplitLIs
;
1556 LIS
.splitSeparateComponents(LI
, SplitLIs
);
1557 Register Original
= VRM
.getOriginal(VReg
);
1558 for (LiveInterval
*SplitLI
: SplitLIs
)
1559 VRM
.setIsSplitFromReg(SplitLI
->reg(), Original
);
1561 // The new intervals all map back to i.
1563 LRMap
->resize(Edit
->size(), i
);
1566 // Calculate spill weight and allocation hints for new intervals.
1567 Edit
->calculateRegClassAndHint(VRM
.getMachineFunction(), VRAI
);
1569 assert(!LRMap
|| LRMap
->size() == Edit
->size());
1572 //===----------------------------------------------------------------------===//
1573 // Single Block Splitting
1574 //===----------------------------------------------------------------------===//
1576 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo
&BI
,
1577 bool SingleInstrs
) const {
1578 // Always split for multiple instructions.
1579 if (!BI
.isOneInstr())
1581 // Don't split for single instructions unless explicitly requested.
1584 // Splitting a live-through range always makes progress.
1585 if (BI
.LiveIn
&& BI
.LiveOut
)
1587 // No point in isolating a copy. It has no register class constraints.
1588 if (LIS
.getInstructionFromIndex(BI
.FirstInstr
)->isCopyLike())
1590 // Finally, don't isolate an end point that was created by earlier splits.
1591 return isOriginalEndpoint(BI
.FirstInstr
);
1594 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo
&BI
) {
1596 SlotIndex LastSplitPoint
= SA
.getLastSplitPoint(BI
.MBB
);
1597 SlotIndex SegStart
= enterIntvBefore(std::min(BI
.FirstInstr
,
1599 if (!BI
.LiveOut
|| BI
.LastInstr
< LastSplitPoint
) {
1600 useIntv(SegStart
, leaveIntvAfter(BI
.LastInstr
));
1602 // The last use is after the last valid split point.
1603 SlotIndex SegStop
= leaveIntvBefore(LastSplitPoint
);
1604 useIntv(SegStart
, SegStop
);
1605 overlapIntv(SegStop
, BI
.LastInstr
);
1609 //===----------------------------------------------------------------------===//
1610 // Global Live Range Splitting Support
1611 //===----------------------------------------------------------------------===//
1613 // These methods support a method of global live range splitting that uses a
1614 // global algorithm to decide intervals for CFG edges. They will insert split
1615 // points and color intervals in basic blocks while avoiding interference.
1617 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1618 // are on the stack.
1620 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum
,
1621 unsigned IntvIn
, SlotIndex LeaveBefore
,
1622 unsigned IntvOut
, SlotIndex EnterAfter
){
1623 SlotIndex Start
, Stop
;
1624 std::tie(Start
, Stop
) = LIS
.getSlotIndexes()->getMBBRange(MBBNum
);
1626 LLVM_DEBUG(dbgs() << "%bb." << MBBNum
<< " [" << Start
<< ';' << Stop
1627 << ") intf " << LeaveBefore
<< '-' << EnterAfter
1628 << ", live-through " << IntvIn
<< " -> " << IntvOut
);
1630 assert((IntvIn
|| IntvOut
) && "Use splitSingleBlock for isolated blocks");
1632 assert((!LeaveBefore
|| LeaveBefore
< Stop
) && "Interference after block");
1633 assert((!IntvIn
|| !LeaveBefore
|| LeaveBefore
> Start
) && "Impossible intf");
1634 assert((!EnterAfter
|| EnterAfter
>= Start
) && "Interference before block");
1636 MachineBasicBlock
*MBB
= VRM
.getMachineFunction().getBlockNumbered(MBBNum
);
1639 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1641 // <<<<<<<<< Possible LeaveBefore interference.
1642 // |-----------| Live through.
1643 // -____________ Spill on entry.
1646 SlotIndex Idx
= leaveIntvAtTop(*MBB
);
1647 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1653 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1655 // >>>>>>> Possible EnterAfter interference.
1656 // |-----------| Live through.
1657 // ___________-- Reload on exit.
1659 selectIntv(IntvOut
);
1660 SlotIndex Idx
= enterIntvAtEnd(*MBB
);
1661 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1666 if (IntvIn
== IntvOut
&& !LeaveBefore
&& !EnterAfter
) {
1667 LLVM_DEBUG(dbgs() << ", straight through.\n");
1669 // |-----------| Live through.
1670 // ------------- Straight through, same intv, no interference.
1672 selectIntv(IntvOut
);
1673 useIntv(Start
, Stop
);
1677 // We cannot legally insert splits after LSP.
1678 SlotIndex LSP
= SA
.getLastSplitPoint(MBBNum
);
1679 assert((!IntvOut
|| !EnterAfter
|| EnterAfter
< LSP
) && "Impossible intf");
1681 if (IntvIn
!= IntvOut
&& (!LeaveBefore
|| !EnterAfter
||
1682 LeaveBefore
.getBaseIndex() > EnterAfter
.getBoundaryIndex())) {
1683 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1685 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1686 // |-----------| Live through.
1687 // ------======= Switch intervals between interference.
1689 selectIntv(IntvOut
);
1691 if (LeaveBefore
&& LeaveBefore
< LSP
) {
1692 Idx
= enterIntvBefore(LeaveBefore
);
1695 Idx
= enterIntvAtEnd(*MBB
);
1698 useIntv(Start
, Idx
);
1699 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1700 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1704 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1706 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1707 // |-----------| Live through.
1708 // ==---------== Switch intervals before/after interference.
1710 assert(LeaveBefore
<= EnterAfter
&& "Missed case");
1712 selectIntv(IntvOut
);
1713 SlotIndex Idx
= enterIntvAfter(EnterAfter
);
1715 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1718 Idx
= leaveIntvBefore(LeaveBefore
);
1719 useIntv(Start
, Idx
);
1720 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1723 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo
&BI
,
1724 unsigned IntvIn
, SlotIndex LeaveBefore
) {
1725 SlotIndex Start
, Stop
;
1726 std::tie(Start
, Stop
) = LIS
.getSlotIndexes()->getMBBRange(BI
.MBB
);
1728 LLVM_DEBUG(dbgs() << printMBBReference(*BI
.MBB
) << " [" << Start
<< ';'
1729 << Stop
<< "), uses " << BI
.FirstInstr
<< '-'
1730 << BI
.LastInstr
<< ", reg-in " << IntvIn
1731 << ", leave before " << LeaveBefore
1732 << (BI
.LiveOut
? ", stack-out" : ", killed in block"));
1734 assert(IntvIn
&& "Must have register in");
1735 assert(BI
.LiveIn
&& "Must be live-in");
1736 assert((!LeaveBefore
|| LeaveBefore
> Start
) && "Bad interference");
1738 if (!BI
.LiveOut
&& (!LeaveBefore
|| LeaveBefore
>= BI
.LastInstr
)) {
1739 LLVM_DEBUG(dbgs() << " before interference.\n");
1741 // <<< Interference after kill.
1742 // |---o---x | Killed in block.
1743 // ========= Use IntvIn everywhere.
1746 useIntv(Start
, BI
.LastInstr
);
1750 SlotIndex LSP
= SA
.getLastSplitPoint(BI
.MBB
);
1752 if (!LeaveBefore
|| LeaveBefore
> BI
.LastInstr
.getBoundaryIndex()) {
1754 // <<< Possible interference after last use.
1755 // |---o---o---| Live-out on stack.
1756 // =========____ Leave IntvIn after last use.
1758 // < Interference after last use.
1759 // |---o---o--o| Live-out on stack, late last use.
1760 // ============ Copy to stack after LSP, overlap IntvIn.
1761 // \_____ Stack interval is live-out.
1763 if (BI
.LastInstr
< LSP
) {
1764 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1766 SlotIndex Idx
= leaveIntvAfter(BI
.LastInstr
);
1767 useIntv(Start
, Idx
);
1768 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1770 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1772 SlotIndex Idx
= leaveIntvBefore(LSP
);
1773 overlapIntv(Idx
, BI
.LastInstr
);
1774 useIntv(Start
, Idx
);
1775 assert((!LeaveBefore
|| Idx
<= LeaveBefore
) && "Interference");
1780 // The interference is overlapping somewhere we wanted to use IntvIn. That
1781 // means we need to create a local interval that can be allocated a
1782 // different register.
1783 unsigned LocalIntv
= openIntv();
1785 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv
<< ".\n");
1787 if (!BI
.LiveOut
|| BI
.LastInstr
< LSP
) {
1789 // <<<<<<< Interference overlapping uses.
1790 // |---o---o---| Live-out on stack.
1791 // =====----____ Leave IntvIn before interference, then spill.
1793 SlotIndex To
= leaveIntvAfter(BI
.LastInstr
);
1794 SlotIndex From
= enterIntvBefore(LeaveBefore
);
1797 useIntv(Start
, From
);
1798 assert((!LeaveBefore
|| From
<= LeaveBefore
) && "Interference");
1802 // <<<<<<< Interference overlapping uses.
1803 // |---o---o--o| Live-out on stack, late last use.
1804 // =====------- Copy to stack before LSP, overlap LocalIntv.
1805 // \_____ Stack interval is live-out.
1807 SlotIndex To
= leaveIntvBefore(LSP
);
1808 overlapIntv(To
, BI
.LastInstr
);
1809 SlotIndex From
= enterIntvBefore(std::min(To
, LeaveBefore
));
1812 useIntv(Start
, From
);
1813 assert((!LeaveBefore
|| From
<= LeaveBefore
) && "Interference");
1816 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo
&BI
,
1817 unsigned IntvOut
, SlotIndex EnterAfter
) {
1818 SlotIndex Start
, Stop
;
1819 std::tie(Start
, Stop
) = LIS
.getSlotIndexes()->getMBBRange(BI
.MBB
);
1821 LLVM_DEBUG(dbgs() << printMBBReference(*BI
.MBB
) << " [" << Start
<< ';'
1822 << Stop
<< "), uses " << BI
.FirstInstr
<< '-'
1823 << BI
.LastInstr
<< ", reg-out " << IntvOut
1824 << ", enter after " << EnterAfter
1825 << (BI
.LiveIn
? ", stack-in" : ", defined in block"));
1827 SlotIndex LSP
= SA
.getLastSplitPoint(BI
.MBB
);
1829 assert(IntvOut
&& "Must have register out");
1830 assert(BI
.LiveOut
&& "Must be live-out");
1831 assert((!EnterAfter
|| EnterAfter
< LSP
) && "Bad interference");
1833 if (!BI
.LiveIn
&& (!EnterAfter
|| EnterAfter
<= BI
.FirstInstr
)) {
1834 LLVM_DEBUG(dbgs() << " after interference.\n");
1836 // >>>> Interference before def.
1837 // | o---o---| Defined in block.
1838 // ========= Use IntvOut everywhere.
1840 selectIntv(IntvOut
);
1841 useIntv(BI
.FirstInstr
, Stop
);
1845 if (!EnterAfter
|| EnterAfter
< BI
.FirstInstr
.getBaseIndex()) {
1846 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1848 // >>>> Interference before def.
1849 // |---o---o---| Live-through, stack-in.
1850 // ____========= Enter IntvOut before first use.
1852 selectIntv(IntvOut
);
1853 SlotIndex Idx
= enterIntvBefore(std::min(LSP
, BI
.FirstInstr
));
1855 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1859 // The interference is overlapping somewhere we wanted to use IntvOut. That
1860 // means we need to create a local interval that can be allocated a
1861 // different register.
1862 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1864 // >>>>>>> Interference overlapping uses.
1865 // |---o---o---| Live-through, stack-in.
1866 // ____---====== Create local interval for interference range.
1868 selectIntv(IntvOut
);
1869 SlotIndex Idx
= enterIntvAfter(EnterAfter
);
1871 assert((!EnterAfter
|| Idx
>= EnterAfter
) && "Interference");
1874 SlotIndex From
= enterIntvBefore(std::min(Idx
, BI
.FirstInstr
));
1878 void SplitAnalysis::BlockInfo::print(raw_ostream
&OS
) const {
1879 OS
<< "{" << printMBBReference(*MBB
) << ", "
1880 << "uses " << FirstInstr
<< " to " << LastInstr
<< ", "
1881 << "1st def " << FirstDef
<< ", "
1882 << (LiveIn
? "live in" : "dead in") << ", "
1883 << (LiveOut
? "live out" : "dead out") << "}";
1886 void SplitAnalysis::BlockInfo::dump() const {