[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / SplitKit.cpp
blob94149f56e70358f11115897d9f01e1014bea44ba
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
12 //===----------------------------------------------------------------------===//
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
45 using namespace llvm;
47 #define DEBUG_TYPE "regalloc"
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple, "Number of splits that were simple");
51 STATISTIC(NumCopies, "Number of copies inserted for splitting");
52 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
54 //===----------------------------------------------------------------------===//
55 // Last Insert Point Analysis
56 //===----------------------------------------------------------------------===//
58 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
59 unsigned BBNum)
60 : LIS(lis), LastInsertPoint(BBNum) {}
62 SlotIndex
63 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
64 const MachineBasicBlock &MBB) {
65 unsigned Num = MBB.getNumber();
66 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
67 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
69 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
70 bool EHPadSuccessor = false;
71 for (const MachineBasicBlock *SMBB : MBB.successors()) {
72 if (SMBB->isEHPad()) {
73 ExceptionalSuccessors.push_back(SMBB);
74 EHPadSuccessor = true;
75 } else if (SMBB->isInlineAsmBrIndirectTarget())
76 ExceptionalSuccessors.push_back(SMBB);
79 // Compute insert points on the first call. The pair is independent of the
80 // current live interval.
81 if (!LIP.first.isValid()) {
82 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
83 if (FirstTerm == MBB.end())
84 LIP.first = MBBEnd;
85 else
86 LIP.first = LIS.getInstructionIndex(*FirstTerm);
88 // If there is a landing pad or inlineasm_br successor, also find the
89 // instruction. If there is no such instruction, we don't need to do
90 // anything special. We assume there cannot be multiple instructions that
91 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
92 // assume that if there are any, they will be after any other call
93 // instructions in the block.
94 if (ExceptionalSuccessors.empty())
95 return LIP.first;
96 for (const MachineInstr &MI : llvm::reverse(MBB)) {
97 if ((EHPadSuccessor && MI.isCall()) ||
98 MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
99 LIP.second = LIS.getInstructionIndex(MI);
100 break;
105 // If CurLI is live into a landing pad successor, move the last insert point
106 // back to the call that may throw.
107 if (!LIP.second)
108 return LIP.first;
110 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
111 return LIS.isLiveInToMBB(CurLI, EHPad);
113 return LIP.first;
115 // Find the value leaving MBB.
116 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
117 if (!VNI)
118 return LIP.first;
120 // The def of statepoint instruction is a gc relocation and it should be alive
121 // in landing pad. So we cannot split interval after statepoint instruction.
122 if (SlotIndex::isSameInstr(VNI->def, LIP.second))
123 if (auto *I = LIS.getInstructionFromIndex(LIP.second))
124 if (I->getOpcode() == TargetOpcode::STATEPOINT)
125 return LIP.second;
127 // If the value leaving MBB was defined after the call in MBB, it can't
128 // really be live-in to the landing pad. This can happen if the landing pad
129 // has a PHI, and this register is undef on the exceptional edge.
130 // <rdar://problem/10664933>
131 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
132 return LIP.first;
134 // Value is properly live-in to the landing pad.
135 // Only allow inserts before the call.
136 return LIP.second;
139 MachineBasicBlock::iterator
140 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
141 MachineBasicBlock &MBB) {
142 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
143 if (LIP == LIS.getMBBEndIdx(&MBB))
144 return MBB.end();
145 return LIS.getInstructionFromIndex(LIP);
148 //===----------------------------------------------------------------------===//
149 // Split Analysis
150 //===----------------------------------------------------------------------===//
152 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
153 const MachineLoopInfo &mli)
154 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
155 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
157 void SplitAnalysis::clear() {
158 UseSlots.clear();
159 UseBlocks.clear();
160 ThroughBlocks.clear();
161 CurLI = nullptr;
164 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
165 void SplitAnalysis::analyzeUses() {
166 assert(UseSlots.empty() && "Call clear first");
168 // First get all the defs from the interval values. This provides the correct
169 // slots for early clobbers.
170 for (const VNInfo *VNI : CurLI->valnos)
171 if (!VNI->isPHIDef() && !VNI->isUnused())
172 UseSlots.push_back(VNI->def);
174 // Get use slots form the use-def chain.
175 const MachineRegisterInfo &MRI = MF.getRegInfo();
176 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
177 if (!MO.isUndef())
178 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
180 array_pod_sort(UseSlots.begin(), UseSlots.end());
182 // Remove duplicates, keeping the smaller slot for each instruction.
183 // That is what we want for early clobbers.
184 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
185 SlotIndex::isSameInstr),
186 UseSlots.end());
188 // Compute per-live block info.
189 calcLiveBlockInfo();
191 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
192 << UseBlocks.size() << " blocks, through "
193 << NumThroughBlocks << " blocks.\n");
196 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
197 /// where CurLI is live.
198 void SplitAnalysis::calcLiveBlockInfo() {
199 ThroughBlocks.resize(MF.getNumBlockIDs());
200 NumThroughBlocks = NumGapBlocks = 0;
201 if (CurLI->empty())
202 return;
204 LiveInterval::const_iterator LVI = CurLI->begin();
205 LiveInterval::const_iterator LVE = CurLI->end();
207 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
208 UseI = UseSlots.begin();
209 UseE = UseSlots.end();
211 // Loop over basic blocks where CurLI is live.
212 MachineFunction::iterator MFI =
213 LIS.getMBBFromIndex(LVI->start)->getIterator();
214 while (true) {
215 BlockInfo BI;
216 BI.MBB = &*MFI;
217 SlotIndex Start, Stop;
218 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
220 // If the block contains no uses, the range must be live through. At one
221 // point, RegisterCoalescer could create dangling ranges that ended
222 // mid-block.
223 if (UseI == UseE || *UseI >= Stop) {
224 ++NumThroughBlocks;
225 ThroughBlocks.set(BI.MBB->getNumber());
226 // The range shouldn't end mid-block if there are no uses. This shouldn't
227 // happen.
228 assert(LVI->end >= Stop && "range ends mid block with no uses");
229 } else {
230 // This block has uses. Find the first and last uses in the block.
231 BI.FirstInstr = *UseI;
232 assert(BI.FirstInstr >= Start);
233 do ++UseI;
234 while (UseI != UseE && *UseI < Stop);
235 BI.LastInstr = UseI[-1];
236 assert(BI.LastInstr < Stop);
238 // LVI is the first live segment overlapping MBB.
239 BI.LiveIn = LVI->start <= Start;
241 // When not live in, the first use should be a def.
242 if (!BI.LiveIn) {
243 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
244 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
245 BI.FirstDef = BI.FirstInstr;
248 // Look for gaps in the live range.
249 BI.LiveOut = true;
250 while (LVI->end < Stop) {
251 SlotIndex LastStop = LVI->end;
252 if (++LVI == LVE || LVI->start >= Stop) {
253 BI.LiveOut = false;
254 BI.LastInstr = LastStop;
255 break;
258 if (LastStop < LVI->start) {
259 // There is a gap in the live range. Create duplicate entries for the
260 // live-in snippet and the live-out snippet.
261 ++NumGapBlocks;
263 // Push the Live-in part.
264 BI.LiveOut = false;
265 UseBlocks.push_back(BI);
266 UseBlocks.back().LastInstr = LastStop;
268 // Set up BI for the live-out part.
269 BI.LiveIn = false;
270 BI.LiveOut = true;
271 BI.FirstInstr = BI.FirstDef = LVI->start;
274 // A Segment that starts in the middle of the block must be a def.
275 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
276 if (!BI.FirstDef)
277 BI.FirstDef = LVI->start;
280 UseBlocks.push_back(BI);
282 // LVI is now at LVE or LVI->end >= Stop.
283 if (LVI == LVE)
284 break;
287 // Live segment ends exactly at Stop. Move to the next segment.
288 if (LVI->end == Stop && ++LVI == LVE)
289 break;
291 // Pick the next basic block.
292 if (LVI->start < Stop)
293 ++MFI;
294 else
295 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
298 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
301 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
302 if (cli->empty())
303 return 0;
304 LiveInterval *li = const_cast<LiveInterval*>(cli);
305 LiveInterval::iterator LVI = li->begin();
306 LiveInterval::iterator LVE = li->end();
307 unsigned Count = 0;
309 // Loop over basic blocks where li is live.
310 MachineFunction::const_iterator MFI =
311 LIS.getMBBFromIndex(LVI->start)->getIterator();
312 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
313 while (true) {
314 ++Count;
315 LVI = li->advanceTo(LVI, Stop);
316 if (LVI == LVE)
317 return Count;
318 do {
319 ++MFI;
320 Stop = LIS.getMBBEndIdx(&*MFI);
321 } while (Stop <= LVI->start);
325 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
326 unsigned OrigReg = VRM.getOriginal(CurLI->reg());
327 const LiveInterval &Orig = LIS.getInterval(OrigReg);
328 assert(!Orig.empty() && "Splitting empty interval?");
329 LiveInterval::const_iterator I = Orig.find(Idx);
331 // Range containing Idx should begin at Idx.
332 if (I != Orig.end() && I->start <= Idx)
333 return I->start == Idx;
335 // Range does not contain Idx, previous must end at Idx.
336 return I != Orig.begin() && (--I)->end == Idx;
339 void SplitAnalysis::analyze(const LiveInterval *li) {
340 clear();
341 CurLI = li;
342 analyzeUses();
345 //===----------------------------------------------------------------------===//
346 // Split Editor
347 //===----------------------------------------------------------------------===//
349 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
350 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM,
351 MachineDominatorTree &MDT,
352 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
353 : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
354 MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
355 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
356 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
358 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
359 Edit = &LRE;
360 SpillMode = SM;
361 OpenIdx = 0;
362 RegAssign.clear();
363 Values.clear();
365 // Reset the LiveIntervalCalc instances needed for this spill mode.
366 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
367 &LIS.getVNInfoAllocator());
368 if (SpillMode)
369 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
370 &LIS.getVNInfoAllocator());
372 Edit->anyRematerializable();
375 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
376 LLVM_DUMP_METHOD void SplitEditor::dump() const {
377 if (RegAssign.empty()) {
378 dbgs() << " empty\n";
379 return;
382 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
383 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
384 dbgs() << '\n';
386 #endif
388 /// Find a subrange corresponding to the exact lane mask @p LM in the live
389 /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
390 /// This function is used to find corresponding subranges between the
391 /// original interval and the new intervals.
392 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
393 for (auto &S : LI.subranges())
394 if (S.LaneMask == LM)
395 return S;
396 llvm_unreachable("SubRange for this mask not found");
399 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
400 LiveInterval &LI) {
401 return getSubrangeImpl(LM, LI);
404 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
405 const LiveInterval &LI) {
406 return getSubrangeImpl(LM, LI);
409 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
410 /// in the live interval @p LI. The interval @p LI is assumed to contain such
411 /// a subrange. This function is used to find corresponding subranges between
412 /// the original interval and the new intervals.
413 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
414 const LiveInterval &LI) {
415 for (const LiveInterval::SubRange &S : LI.subranges())
416 if ((S.LaneMask & LM) == LM)
417 return S;
418 llvm_unreachable("SubRange for this mask not found");
421 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
422 if (!LI.hasSubRanges()) {
423 LI.createDeadDef(VNI);
424 return;
427 SlotIndex Def = VNI->def;
428 if (Original) {
429 // If we are transferring a def from the original interval, make sure
430 // to only update the subranges for which the original subranges had
431 // a def at this location.
432 for (LiveInterval::SubRange &S : LI.subranges()) {
433 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
434 VNInfo *PV = PS.getVNInfoAt(Def);
435 if (PV != nullptr && PV->def == Def)
436 S.createDeadDef(Def, LIS.getVNInfoAllocator());
438 } else {
439 // This is a new def: either from rematerialization, or from an inserted
440 // copy. Since rematerialization can regenerate a definition of a sub-
441 // register, we need to check which subranges need to be updated.
442 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
443 assert(DefMI != nullptr);
444 LaneBitmask LM;
445 for (const MachineOperand &DefOp : DefMI->defs()) {
446 Register R = DefOp.getReg();
447 if (R != LI.reg())
448 continue;
449 if (unsigned SR = DefOp.getSubReg())
450 LM |= TRI.getSubRegIndexLaneMask(SR);
451 else {
452 LM = MRI.getMaxLaneMaskForVReg(R);
453 break;
456 for (LiveInterval::SubRange &S : LI.subranges())
457 if ((S.LaneMask & LM).any())
458 S.createDeadDef(Def, LIS.getVNInfoAllocator());
462 VNInfo *SplitEditor::defValue(unsigned RegIdx,
463 const VNInfo *ParentVNI,
464 SlotIndex Idx,
465 bool Original) {
466 assert(ParentVNI && "Mapping NULL value");
467 assert(Idx.isValid() && "Invalid SlotIndex");
468 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
469 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
471 // Create a new value.
472 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
474 bool Force = LI->hasSubRanges();
475 ValueForcePair FP(Force ? nullptr : VNI, Force);
476 // Use insert for lookup, so we can add missing values with a second lookup.
477 std::pair<ValueMap::iterator, bool> InsP =
478 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
480 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
481 // forced. Keep it as a simple def without any liveness.
482 if (!Force && InsP.second)
483 return VNI;
485 // If the previous value was a simple mapping, add liveness for it now.
486 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
487 addDeadDef(*LI, OldVNI, Original);
489 // No longer a simple mapping. Switch to a complex mapping. If the
490 // interval has subranges, make it a forced mapping.
491 InsP.first->second = ValueForcePair(nullptr, Force);
494 // This is a complex mapping, add liveness for VNI
495 addDeadDef(*LI, VNI, Original);
496 return VNI;
499 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
500 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
501 VNInfo *VNI = VFP.getPointer();
503 // ParentVNI was either unmapped or already complex mapped. Either way, just
504 // set the force bit.
505 if (!VNI) {
506 VFP.setInt(true);
507 return;
510 // This was previously a single mapping. Make sure the old def is represented
511 // by a trivial live range.
512 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
514 // Mark as complex mapped, forced.
515 VFP = ValueForcePair(nullptr, true);
518 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
519 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
520 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
521 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
522 bool FirstCopy = !Def.isValid();
523 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
524 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
525 | getInternalReadRegState(!FirstCopy), SubIdx)
526 .addReg(FromReg, 0, SubIdx);
528 SlotIndexes &Indexes = *LIS.getSlotIndexes();
529 if (FirstCopy) {
530 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
531 } else {
532 CopyMI->bundleWithPred();
534 return Def;
537 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
538 LaneBitmask LaneMask, MachineBasicBlock &MBB,
539 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
540 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
541 SlotIndexes &Indexes = *LIS.getSlotIndexes();
542 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
543 // The full vreg is copied.
544 MachineInstr *CopyMI =
545 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
546 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
549 // Only a subset of lanes needs to be copied. The following is a simple
550 // heuristic to construct a sequence of COPYs. We could add a target
551 // specific callback if this turns out to be suboptimal.
552 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
554 // First pass: Try to find a perfectly matching subregister index. If none
555 // exists find the one covering the most lanemask bits.
556 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
557 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
559 SmallVector<unsigned, 8> SubIndexes;
561 // Abort if we cannot possibly implement the COPY with the given indexes.
562 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
563 report_fatal_error("Impossible to implement partial COPY");
565 SlotIndex Def;
566 for (unsigned BestIdx : SubIndexes) {
567 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
568 DestLI, Late, Def);
571 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
572 DestLI.refineSubRanges(
573 Allocator, LaneMask,
574 [Def, &Allocator](LiveInterval::SubRange &SR) {
575 SR.createDeadDef(Def, Allocator);
577 Indexes, TRI);
579 return Def;
582 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
583 SlotIndex UseIdx, MachineBasicBlock &MBB,
584 MachineBasicBlock::iterator I) {
585 SlotIndex Def;
586 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
588 // We may be trying to avoid interference that ends at a deleted instruction,
589 // so always begin RegIdx 0 early and all others late.
590 bool Late = RegIdx != 0;
592 // Attempt cheap-as-a-copy rematerialization.
593 unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
594 LiveInterval &OrigLI = LIS.getInterval(Original);
595 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
597 Register Reg = LI->reg();
598 bool DidRemat = false;
599 if (OrigVNI) {
600 LiveRangeEdit::Remat RM(ParentVNI);
601 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
602 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
603 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
604 ++NumRemats;
605 DidRemat = true;
608 if (!DidRemat) {
609 LaneBitmask LaneMask;
610 if (OrigLI.hasSubRanges()) {
611 LaneMask = LaneBitmask::getNone();
612 for (LiveInterval::SubRange &S : OrigLI.subranges()) {
613 if (S.liveAt(UseIdx))
614 LaneMask |= S.LaneMask;
616 } else {
617 LaneMask = LaneBitmask::getAll();
620 if (LaneMask.none()) {
621 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
622 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
623 SlotIndexes &Indexes = *LIS.getSlotIndexes();
624 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
625 } else {
626 ++NumCopies;
627 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
631 // Define the value in Reg.
632 return defValue(RegIdx, ParentVNI, Def, false);
635 /// Create a new virtual register and live interval.
636 unsigned SplitEditor::openIntv() {
637 // Create the complement as index 0.
638 if (Edit->empty())
639 Edit->createEmptyInterval();
641 // Create the open interval.
642 OpenIdx = Edit->size();
643 Edit->createEmptyInterval();
644 return OpenIdx;
647 void SplitEditor::selectIntv(unsigned Idx) {
648 assert(Idx != 0 && "Cannot select the complement interval");
649 assert(Idx < Edit->size() && "Can only select previously opened interval");
650 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
651 OpenIdx = Idx;
654 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
655 assert(OpenIdx && "openIntv not called before enterIntvBefore");
656 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
657 Idx = Idx.getBaseIndex();
658 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
659 if (!ParentVNI) {
660 LLVM_DEBUG(dbgs() << ": not live\n");
661 return Idx;
663 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
664 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
665 assert(MI && "enterIntvBefore called with invalid index");
667 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
668 return VNI->def;
671 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
672 assert(OpenIdx && "openIntv not called before enterIntvAfter");
673 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
674 Idx = Idx.getBoundaryIndex();
675 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
676 if (!ParentVNI) {
677 LLVM_DEBUG(dbgs() << ": not live\n");
678 return Idx;
680 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
681 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
682 assert(MI && "enterIntvAfter called with invalid index");
684 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
685 std::next(MachineBasicBlock::iterator(MI)));
686 return VNI->def;
689 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
690 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
691 SlotIndex End = LIS.getMBBEndIdx(&MBB);
692 SlotIndex Last = End.getPrevSlot();
693 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
694 << Last);
695 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
696 if (!ParentVNI) {
697 LLVM_DEBUG(dbgs() << ": not live\n");
698 return End;
700 SlotIndex LSP = SA.getLastSplitPoint(&MBB);
701 if (LSP < Last) {
702 // It could be that the use after LSP is a def, and thus the ParentVNI
703 // just selected starts at that def. For this case to exist, the def
704 // must be part of a tied def/use pair (as otherwise we'd have split
705 // distinct live ranges into individual live intervals), and thus we
706 // can insert the def into the VNI of the use and the tied def/use
707 // pair can live in the resulting interval.
708 Last = LSP;
709 ParentVNI = Edit->getParent().getVNInfoAt(Last);
710 if (!ParentVNI) {
711 // undef use --> undef tied def
712 LLVM_DEBUG(dbgs() << ": tied use not live\n");
713 return End;
717 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
718 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
719 SA.getLastSplitPointIter(&MBB));
720 RegAssign.insert(VNI->def, End, OpenIdx);
721 LLVM_DEBUG(dump());
722 return VNI->def;
725 /// useIntv - indicate that all instructions in MBB should use OpenLI.
726 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
727 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
730 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
731 assert(OpenIdx && "openIntv not called before useIntv");
732 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
733 RegAssign.insert(Start, End, OpenIdx);
734 LLVM_DEBUG(dump());
737 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
738 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
739 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
741 // The interval must be live beyond the instruction at Idx.
742 SlotIndex Boundary = Idx.getBoundaryIndex();
743 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
744 if (!ParentVNI) {
745 LLVM_DEBUG(dbgs() << ": not live\n");
746 return Boundary.getNextSlot();
748 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
749 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
750 assert(MI && "No instruction at index");
752 // In spill mode, make live ranges as short as possible by inserting the copy
753 // before MI. This is only possible if that instruction doesn't redefine the
754 // value. The inserted COPY is not a kill, and we don't need to recompute
755 // the source live range. The spiller also won't try to hoist this copy.
756 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
757 MI->readsVirtualRegister(Edit->getReg())) {
758 forceRecompute(0, *ParentVNI);
759 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
760 return Idx;
763 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
764 std::next(MachineBasicBlock::iterator(MI)));
765 return VNI->def;
768 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
769 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
770 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
772 // The interval must be live into the instruction at Idx.
773 Idx = Idx.getBaseIndex();
774 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
775 if (!ParentVNI) {
776 LLVM_DEBUG(dbgs() << ": not live\n");
777 return Idx.getNextSlot();
779 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
781 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
782 assert(MI && "No instruction at index");
783 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
784 return VNI->def;
787 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
788 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
789 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
790 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
791 << Start);
793 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
794 if (!ParentVNI) {
795 LLVM_DEBUG(dbgs() << ": not live\n");
796 return Start;
799 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
800 MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
801 RegAssign.insert(Start, VNI->def, OpenIdx);
802 LLVM_DEBUG(dump());
803 return VNI->def;
806 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
807 return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
808 return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
812 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
813 assert(OpenIdx && "openIntv not called before overlapIntv");
814 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
815 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
816 "Parent changes value in extended range");
817 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
818 "Range cannot span basic blocks");
820 // The complement interval will be extended as needed by LICalc.extend().
821 if (ParentVNI)
822 forceRecompute(0, *ParentVNI);
824 // If the last use is tied to a def, we can't mark it as live for the
825 // interval which includes only the use. That would cause the tied pair
826 // to end up in two different intervals.
827 if (auto *MI = LIS.getInstructionFromIndex(End))
828 if (hasTiedUseOf(*MI, Edit->getReg())) {
829 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
830 return;
833 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
834 RegAssign.insert(Start, End, OpenIdx);
835 LLVM_DEBUG(dump());
838 //===----------------------------------------------------------------------===//
839 // Spill modes
840 //===----------------------------------------------------------------------===//
842 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
843 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
844 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
845 RegAssignMap::iterator AssignI;
846 AssignI.setMap(RegAssign);
848 for (const VNInfo *C : Copies) {
849 SlotIndex Def = C->def;
850 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
851 assert(MI && "No instruction for back-copy");
853 MachineBasicBlock *MBB = MI->getParent();
854 MachineBasicBlock::iterator MBBI(MI);
855 bool AtBegin;
856 do AtBegin = MBBI == MBB->begin();
857 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
859 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
860 LIS.removeVRegDefAt(*LI, Def);
861 LIS.RemoveMachineInstrFromMaps(*MI);
862 MI->eraseFromParent();
864 // Adjust RegAssign if a register assignment is killed at Def. We want to
865 // avoid calculating the live range of the source register if possible.
866 AssignI.find(Def.getPrevSlot());
867 if (!AssignI.valid() || AssignI.start() >= Def)
868 continue;
869 // If MI doesn't kill the assigned register, just leave it.
870 if (AssignI.stop() != Def)
871 continue;
872 unsigned RegIdx = AssignI.value();
873 // We could hoist back-copy right after another back-copy. As a result
874 // MMBI points to copy instruction which is actually dead now.
875 // We cannot set its stop to MBBI which will be the same as start and
876 // interval does not support that.
877 SlotIndex Kill =
878 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
879 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
880 Kill <= AssignI.start()) {
881 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
882 << '\n');
883 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
884 } else {
885 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
886 AssignI.setStop(Kill);
891 MachineBasicBlock*
892 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
893 MachineBasicBlock *DefMBB) {
894 if (MBB == DefMBB)
895 return MBB;
896 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
898 const MachineLoopInfo &Loops = SA.Loops;
899 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
900 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
902 // Best candidate so far.
903 MachineBasicBlock *BestMBB = MBB;
904 unsigned BestDepth = std::numeric_limits<unsigned>::max();
906 while (true) {
907 const MachineLoop *Loop = Loops.getLoopFor(MBB);
909 // MBB isn't in a loop, it doesn't get any better. All dominators have a
910 // higher frequency by definition.
911 if (!Loop) {
912 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
913 << " dominates " << printMBBReference(*MBB)
914 << " at depth 0\n");
915 return MBB;
918 // We'll never be able to exit the DefLoop.
919 if (Loop == DefLoop) {
920 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
921 << " dominates " << printMBBReference(*MBB)
922 << " in the same loop\n");
923 return MBB;
926 // Least busy dominator seen so far.
927 unsigned Depth = Loop->getLoopDepth();
928 if (Depth < BestDepth) {
929 BestMBB = MBB;
930 BestDepth = Depth;
931 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
932 << " dominates " << printMBBReference(*MBB)
933 << " at depth " << Depth << '\n');
936 // Leave loop by going to the immediate dominator of the loop header.
937 // This is a bigger stride than simply walking up the dominator tree.
938 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
940 // Too far up the dominator tree?
941 if (!IDom || !MDT.dominates(DefDomNode, IDom))
942 return BestMBB;
944 MBB = IDom->getBlock();
948 void SplitEditor::computeRedundantBackCopies(
949 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
950 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
951 const LiveInterval *Parent = &Edit->getParent();
952 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
953 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
955 // Aggregate VNIs having the same value as ParentVNI.
956 for (VNInfo *VNI : LI->valnos) {
957 if (VNI->isUnused())
958 continue;
959 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
960 EqualVNs[ParentVNI->id].insert(VNI);
963 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
964 // redundant VNIs to BackCopies.
965 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
966 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
967 if (!NotToHoistSet.count(ParentVNI->id))
968 continue;
969 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
970 SmallPtrSetIterator<VNInfo *> It2 = It1;
971 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
972 It2 = It1;
973 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
974 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
975 continue;
977 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
978 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
979 if (MBB1 == MBB2) {
980 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
981 } else if (MDT.dominates(MBB1, MBB2)) {
982 DominatedVNIs.insert(*It2);
983 } else if (MDT.dominates(MBB2, MBB1)) {
984 DominatedVNIs.insert(*It1);
988 if (!DominatedVNIs.empty()) {
989 forceRecompute(0, *ParentVNI);
990 append_range(BackCopies, DominatedVNIs);
991 DominatedVNIs.clear();
996 /// For SM_Size mode, find a common dominator for all the back-copies for
997 /// the same ParentVNI and hoist the backcopies to the dominator BB.
998 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
999 /// to do the hoisting, simply remove the dominated backcopies for the same
1000 /// ParentVNI.
1001 void SplitEditor::hoistCopies() {
1002 // Get the complement interval, always RegIdx 0.
1003 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1004 const LiveInterval *Parent = &Edit->getParent();
1006 // Track the nearest common dominator for all back-copies for each ParentVNI,
1007 // indexed by ParentVNI->id.
1008 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1009 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1010 // The total cost of all the back-copies for each ParentVNI.
1011 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1012 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1013 // for Speed.
1014 DenseSet<unsigned> NotToHoistSet;
1016 // Find the nearest common dominator for parent values with multiple
1017 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1018 for (VNInfo *VNI : LI->valnos) {
1019 if (VNI->isUnused())
1020 continue;
1021 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1022 assert(ParentVNI && "Parent not live at complement def");
1024 // Don't hoist remats. The complement is probably going to disappear
1025 // completely anyway.
1026 if (Edit->didRematerialize(ParentVNI))
1027 continue;
1029 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1031 DomPair &Dom = NearestDom[ParentVNI->id];
1033 // Keep directly defined parent values. This is either a PHI or an
1034 // instruction in the complement range. All other copies of ParentVNI
1035 // should be eliminated.
1036 if (VNI->def == ParentVNI->def) {
1037 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1038 Dom = DomPair(ValMBB, VNI->def);
1039 continue;
1041 // Skip the singly mapped values. There is nothing to gain from hoisting a
1042 // single back-copy.
1043 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1044 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1045 continue;
1048 if (!Dom.first) {
1049 // First time we see ParentVNI. VNI dominates itself.
1050 Dom = DomPair(ValMBB, VNI->def);
1051 } else if (Dom.first == ValMBB) {
1052 // Two defs in the same block. Pick the earlier def.
1053 if (!Dom.second.isValid() || VNI->def < Dom.second)
1054 Dom.second = VNI->def;
1055 } else {
1056 // Different basic blocks. Check if one dominates.
1057 MachineBasicBlock *Near =
1058 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1059 if (Near == ValMBB)
1060 // Def ValMBB dominates.
1061 Dom = DomPair(ValMBB, VNI->def);
1062 else if (Near != Dom.first)
1063 // None dominate. Hoist to common dominator, need new def.
1064 Dom = DomPair(Near, SlotIndex());
1065 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1068 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1069 << VNI->def << " for parent " << ParentVNI->id << '@'
1070 << ParentVNI->def << " hoist to "
1071 << printMBBReference(*Dom.first) << ' ' << Dom.second
1072 << '\n');
1075 // Insert the hoisted copies.
1076 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1077 DomPair &Dom = NearestDom[i];
1078 if (!Dom.first || Dom.second.isValid())
1079 continue;
1080 // This value needs a hoisted copy inserted at the end of Dom.first.
1081 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1082 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1083 // Get a less loopy dominator than Dom.first.
1084 Dom.first = findShallowDominator(Dom.first, DefMBB);
1085 if (SpillMode == SM_Speed &&
1086 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1087 NotToHoistSet.insert(ParentVNI->id);
1088 continue;
1090 SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1091 if (LSP <= ParentVNI->def) {
1092 NotToHoistSet.insert(ParentVNI->id);
1093 continue;
1095 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1096 SA.getLastSplitPointIter(Dom.first))->def;
1099 // Remove redundant back-copies that are now known to be dominated by another
1100 // def with the same value.
1101 SmallVector<VNInfo*, 8> BackCopies;
1102 for (VNInfo *VNI : LI->valnos) {
1103 if (VNI->isUnused())
1104 continue;
1105 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1106 const DomPair &Dom = NearestDom[ParentVNI->id];
1107 if (!Dom.first || Dom.second == VNI->def ||
1108 NotToHoistSet.count(ParentVNI->id))
1109 continue;
1110 BackCopies.push_back(VNI);
1111 forceRecompute(0, *ParentVNI);
1114 // If it is not beneficial to hoist all the BackCopies, simply remove
1115 // redundant BackCopies in speed mode.
1116 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1117 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1119 removeBackCopies(BackCopies);
1122 /// transferValues - Transfer all possible values to the new live ranges.
1123 /// Values that were rematerialized are left alone, they need LICalc.extend().
1124 bool SplitEditor::transferValues() {
1125 bool Skipped = false;
1126 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1127 for (const LiveRange::Segment &S : Edit->getParent()) {
1128 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1129 VNInfo *ParentVNI = S.valno;
1130 // RegAssign has holes where RegIdx 0 should be used.
1131 SlotIndex Start = S.start;
1132 AssignI.advanceTo(Start);
1133 do {
1134 unsigned RegIdx;
1135 SlotIndex End = S.end;
1136 if (!AssignI.valid()) {
1137 RegIdx = 0;
1138 } else if (AssignI.start() <= Start) {
1139 RegIdx = AssignI.value();
1140 if (AssignI.stop() < End) {
1141 End = AssignI.stop();
1142 ++AssignI;
1144 } else {
1145 RegIdx = 0;
1146 End = std::min(End, AssignI.start());
1149 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1150 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1151 << printReg(Edit->get(RegIdx)) << ')');
1152 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1154 // Check for a simply defined value that can be blitted directly.
1155 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1156 if (VNInfo *VNI = VFP.getPointer()) {
1157 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1158 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1159 Start = End;
1160 continue;
1163 // Skip values with forced recomputation.
1164 if (VFP.getInt()) {
1165 LLVM_DEBUG(dbgs() << "(recalc)");
1166 Skipped = true;
1167 Start = End;
1168 continue;
1171 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1173 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1174 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1175 // LiveInBlocks.
1176 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1177 SlotIndex BlockStart, BlockEnd;
1178 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1180 // The first block may be live-in, or it may have its own def.
1181 if (Start != BlockStart) {
1182 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1183 assert(VNI && "Missing def for complex mapped value");
1184 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1185 // MBB has its own def. Is it also live-out?
1186 if (BlockEnd <= End)
1187 LIC.setLiveOutValue(&*MBB, VNI);
1189 // Skip to the next block for live-in.
1190 ++MBB;
1191 BlockStart = BlockEnd;
1194 // Handle the live-in blocks covered by [Start;End).
1195 assert(Start <= BlockStart && "Expected live-in block");
1196 while (BlockStart < End) {
1197 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1198 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1199 if (BlockStart == ParentVNI->def) {
1200 // This block has the def of a parent PHI, so it isn't live-in.
1201 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1202 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1203 assert(VNI && "Missing def for complex mapped parent PHI");
1204 if (End >= BlockEnd)
1205 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1206 } else {
1207 // This block needs a live-in value. The last block covered may not
1208 // be live-out.
1209 if (End < BlockEnd)
1210 LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1211 else {
1212 // Live-through, and we don't know the value.
1213 LIC.addLiveInBlock(LI, MDT[&*MBB]);
1214 LIC.setLiveOutValue(&*MBB, nullptr);
1217 BlockStart = BlockEnd;
1218 ++MBB;
1220 Start = End;
1221 } while (Start != S.end);
1222 LLVM_DEBUG(dbgs() << '\n');
1225 LICalc[0].calculateValues();
1226 if (SpillMode)
1227 LICalc[1].calculateValues();
1229 return Skipped;
1232 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1233 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1234 if (Seg == nullptr)
1235 return true;
1236 if (Seg->end != Def.getDeadSlot())
1237 return false;
1238 // This is a dead PHI. Remove it.
1239 LR.removeSegment(*Seg, true);
1240 return true;
1243 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1244 LiveRange &LR, LaneBitmask LM,
1245 ArrayRef<SlotIndex> Undefs) {
1246 for (MachineBasicBlock *P : B.predecessors()) {
1247 SlotIndex End = LIS.getMBBEndIdx(P);
1248 SlotIndex LastUse = End.getPrevSlot();
1249 // The predecessor may not have a live-out value. That is OK, like an
1250 // undef PHI operand.
1251 const LiveInterval &PLI = Edit->getParent();
1252 // Need the cast because the inputs to ?: would otherwise be deemed
1253 // "incompatible": SubRange vs LiveInterval.
1254 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1255 : static_cast<const LiveRange &>(PLI);
1256 if (PSR.liveAt(LastUse))
1257 LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1261 void SplitEditor::extendPHIKillRanges() {
1262 // Extend live ranges to be live-out for successor PHI values.
1264 // Visit each PHI def slot in the parent live interval. If the def is dead,
1265 // remove it. Otherwise, extend the live interval to reach the end indexes
1266 // of all predecessor blocks.
1268 const LiveInterval &ParentLI = Edit->getParent();
1269 for (const VNInfo *V : ParentLI.valnos) {
1270 if (V->isUnused() || !V->isPHIDef())
1271 continue;
1273 unsigned RegIdx = RegAssign.lookup(V->def);
1274 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1275 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1276 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1277 if (!removeDeadSegment(V->def, LI))
1278 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1281 SmallVector<SlotIndex, 4> Undefs;
1282 LiveIntervalCalc SubLIC;
1284 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1285 for (const VNInfo *V : PS.valnos) {
1286 if (V->isUnused() || !V->isPHIDef())
1287 continue;
1288 unsigned RegIdx = RegAssign.lookup(V->def);
1289 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1290 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1291 if (removeDeadSegment(V->def, S))
1292 continue;
1294 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1295 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1296 &LIS.getVNInfoAllocator());
1297 Undefs.clear();
1298 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1299 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1304 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1305 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1306 struct ExtPoint {
1307 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1308 : MO(O), RegIdx(R), Next(N) {}
1310 MachineOperand MO;
1311 unsigned RegIdx;
1312 SlotIndex Next;
1315 SmallVector<ExtPoint,4> ExtPoints;
1317 for (MachineOperand &MO :
1318 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1319 MachineInstr *MI = MO.getParent();
1320 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1321 if (MI->isDebugValue()) {
1322 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1323 MO.setReg(0);
1324 continue;
1327 // <undef> operands don't really read the register, so it doesn't matter
1328 // which register we choose. When the use operand is tied to a def, we must
1329 // use the same register as the def, so just do that always.
1330 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1331 if (MO.isDef() || MO.isUndef())
1332 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1334 // Rewrite to the mapped register at Idx.
1335 unsigned RegIdx = RegAssign.lookup(Idx);
1336 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1337 MO.setReg(LI.reg());
1338 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1339 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1341 // Extend liveness to Idx if the instruction reads reg.
1342 if (!ExtendRanges || MO.isUndef())
1343 continue;
1345 // Skip instructions that don't read Reg.
1346 if (MO.isDef()) {
1347 if (!MO.getSubReg() && !MO.isEarlyClobber())
1348 continue;
1349 // We may want to extend a live range for a partial redef, or for a use
1350 // tied to an early clobber.
1351 if (!Edit->getParent().liveAt(Idx.getPrevSlot()))
1352 continue;
1353 } else {
1354 assert(MO.isUse());
1355 bool IsEarlyClobber = false;
1356 if (MO.isTied()) {
1357 // We want to extend a live range into `e` slot rather than `r` slot if
1358 // tied-def is early clobber, because the `e` slot already contained
1359 // in the live range of early-clobber tied-def operand, give an example
1360 // here:
1361 // 0 %0 = ...
1362 // 16 early-clobber %0 = Op %0 (tied-def 0), ...
1363 // 32 ... = Op %0
1364 // Before extend:
1365 // %0 = [0r, 0d) [16e, 32d)
1366 // The point we want to extend is 0d to 16e not 16r in this case, but if
1367 // we use 16r here we will extend nothing because that already contained
1368 // in [16e, 32d).
1369 unsigned OpIdx = MI->getOperandNo(&MO);
1370 unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1371 const MachineOperand &DefOp = MI->getOperand(DefOpIdx);
1372 IsEarlyClobber = DefOp.isEarlyClobber();
1375 Idx = Idx.getRegSlot(IsEarlyClobber);
1378 SlotIndex Next = Idx;
1379 if (LI.hasSubRanges()) {
1380 // We have to delay extending subranges until we have seen all operands
1381 // defining the register. This is because a <def,read-undef> operand
1382 // will create an "undef" point, and we cannot extend any subranges
1383 // until all of them have been accounted for.
1384 if (MO.isUse())
1385 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1386 } else {
1387 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1388 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1392 for (ExtPoint &EP : ExtPoints) {
1393 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1394 assert(LI.hasSubRanges());
1396 LiveIntervalCalc SubLIC;
1397 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1398 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1399 : MRI.getMaxLaneMaskForVReg(Reg);
1400 for (LiveInterval::SubRange &S : LI.subranges()) {
1401 if ((S.LaneMask & LM).none())
1402 continue;
1403 // The problem here can be that the new register may have been created
1404 // for a partially defined original register. For example:
1405 // %0:subreg_hireg<def,read-undef> = ...
1406 // ...
1407 // %1 = COPY %0
1408 if (S.empty())
1409 continue;
1410 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1411 &LIS.getVNInfoAllocator());
1412 SmallVector<SlotIndex, 4> Undefs;
1413 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1414 SubLIC.extend(S, EP.Next, 0, Undefs);
1418 for (Register R : *Edit) {
1419 LiveInterval &LI = LIS.getInterval(R);
1420 if (!LI.hasSubRanges())
1421 continue;
1422 LI.clear();
1423 LI.removeEmptySubRanges();
1424 LIS.constructMainRangeFromSubranges(LI);
1428 void SplitEditor::deleteRematVictims() {
1429 SmallVector<MachineInstr*, 8> Dead;
1430 for (const Register &R : *Edit) {
1431 LiveInterval *LI = &LIS.getInterval(R);
1432 for (const LiveRange::Segment &S : LI->segments) {
1433 // Dead defs end at the dead slot.
1434 if (S.end != S.valno->def.getDeadSlot())
1435 continue;
1436 if (S.valno->isPHIDef())
1437 continue;
1438 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1439 assert(MI && "Missing instruction for dead def");
1440 MI->addRegisterDead(LI->reg(), &TRI);
1442 if (!MI->allDefsAreDead())
1443 continue;
1445 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1446 Dead.push_back(MI);
1450 if (Dead.empty())
1451 return;
1453 Edit->eliminateDeadDefs(Dead, None);
1456 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1457 // Fast-path for common case.
1458 if (!ParentVNI.isPHIDef()) {
1459 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1460 forceRecompute(I, ParentVNI);
1461 return;
1464 // Trace value through phis.
1465 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1466 SmallVector<const VNInfo *, 4> WorkList;
1467 Visited.insert(&ParentVNI);
1468 WorkList.push_back(&ParentVNI);
1470 const LiveInterval &ParentLI = Edit->getParent();
1471 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1472 do {
1473 const VNInfo &VNI = *WorkList.back();
1474 WorkList.pop_back();
1475 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1476 forceRecompute(I, VNI);
1477 if (!VNI.isPHIDef())
1478 continue;
1480 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1481 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1482 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1483 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1484 assert(PredVNI && "Value available in PhiVNI predecessor");
1485 if (Visited.insert(PredVNI).second)
1486 WorkList.push_back(PredVNI);
1488 } while(!WorkList.empty());
1491 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1492 ++NumFinished;
1494 // At this point, the live intervals in Edit contain VNInfos corresponding to
1495 // the inserted copies.
1497 // Add the original defs from the parent interval.
1498 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1499 if (ParentVNI->isUnused())
1500 continue;
1501 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1502 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1504 // Force rematted values to be recomputed everywhere.
1505 // The new live ranges may be truncated.
1506 if (Edit->didRematerialize(ParentVNI))
1507 forceRecomputeVNI(*ParentVNI);
1510 // Hoist back-copies to the complement interval when in spill mode.
1511 switch (SpillMode) {
1512 case SM_Partition:
1513 // Leave all back-copies as is.
1514 break;
1515 case SM_Size:
1516 case SM_Speed:
1517 // hoistCopies will behave differently between size and speed.
1518 hoistCopies();
1521 // Transfer the simply mapped values, check if any are skipped.
1522 bool Skipped = transferValues();
1524 // Rewrite virtual registers, possibly extending ranges.
1525 rewriteAssigned(Skipped);
1527 if (Skipped)
1528 extendPHIKillRanges();
1529 else
1530 ++NumSimple;
1532 // Delete defs that were rematted everywhere.
1533 if (Skipped)
1534 deleteRematVictims();
1536 // Get rid of unused values and set phi-kill flags.
1537 for (Register Reg : *Edit) {
1538 LiveInterval &LI = LIS.getInterval(Reg);
1539 LI.removeEmptySubRanges();
1540 LI.RenumberValues();
1543 // Provide a reverse mapping from original indices to Edit ranges.
1544 if (LRMap) {
1545 auto Seq = llvm::seq<unsigned>(0, Edit->size());
1546 LRMap->assign(Seq.begin(), Seq.end());
1549 // Now check if any registers were separated into multiple components.
1550 ConnectedVNInfoEqClasses ConEQ(LIS);
1551 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1552 // Don't use iterators, they are invalidated by create() below.
1553 Register VReg = Edit->get(i);
1554 LiveInterval &LI = LIS.getInterval(VReg);
1555 SmallVector<LiveInterval*, 8> SplitLIs;
1556 LIS.splitSeparateComponents(LI, SplitLIs);
1557 Register Original = VRM.getOriginal(VReg);
1558 for (LiveInterval *SplitLI : SplitLIs)
1559 VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1561 // The new intervals all map back to i.
1562 if (LRMap)
1563 LRMap->resize(Edit->size(), i);
1566 // Calculate spill weight and allocation hints for new intervals.
1567 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1569 assert(!LRMap || LRMap->size() == Edit->size());
1572 //===----------------------------------------------------------------------===//
1573 // Single Block Splitting
1574 //===----------------------------------------------------------------------===//
1576 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1577 bool SingleInstrs) const {
1578 // Always split for multiple instructions.
1579 if (!BI.isOneInstr())
1580 return true;
1581 // Don't split for single instructions unless explicitly requested.
1582 if (!SingleInstrs)
1583 return false;
1584 // Splitting a live-through range always makes progress.
1585 if (BI.LiveIn && BI.LiveOut)
1586 return true;
1587 // No point in isolating a copy. It has no register class constraints.
1588 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1589 return false;
1590 // Finally, don't isolate an end point that was created by earlier splits.
1591 return isOriginalEndpoint(BI.FirstInstr);
1594 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1595 openIntv();
1596 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1597 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1598 LastSplitPoint));
1599 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1600 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1601 } else {
1602 // The last use is after the last valid split point.
1603 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1604 useIntv(SegStart, SegStop);
1605 overlapIntv(SegStop, BI.LastInstr);
1609 //===----------------------------------------------------------------------===//
1610 // Global Live Range Splitting Support
1611 //===----------------------------------------------------------------------===//
1613 // These methods support a method of global live range splitting that uses a
1614 // global algorithm to decide intervals for CFG edges. They will insert split
1615 // points and color intervals in basic blocks while avoiding interference.
1617 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1618 // are on the stack.
1620 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1621 unsigned IntvIn, SlotIndex LeaveBefore,
1622 unsigned IntvOut, SlotIndex EnterAfter){
1623 SlotIndex Start, Stop;
1624 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1626 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1627 << ") intf " << LeaveBefore << '-' << EnterAfter
1628 << ", live-through " << IntvIn << " -> " << IntvOut);
1630 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1632 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1633 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1634 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1636 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1638 if (!IntvOut) {
1639 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1641 // <<<<<<<<< Possible LeaveBefore interference.
1642 // |-----------| Live through.
1643 // -____________ Spill on entry.
1645 selectIntv(IntvIn);
1646 SlotIndex Idx = leaveIntvAtTop(*MBB);
1647 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1648 (void)Idx;
1649 return;
1652 if (!IntvIn) {
1653 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1655 // >>>>>>> Possible EnterAfter interference.
1656 // |-----------| Live through.
1657 // ___________-- Reload on exit.
1659 selectIntv(IntvOut);
1660 SlotIndex Idx = enterIntvAtEnd(*MBB);
1661 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1662 (void)Idx;
1663 return;
1666 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1667 LLVM_DEBUG(dbgs() << ", straight through.\n");
1669 // |-----------| Live through.
1670 // ------------- Straight through, same intv, no interference.
1672 selectIntv(IntvOut);
1673 useIntv(Start, Stop);
1674 return;
1677 // We cannot legally insert splits after LSP.
1678 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1679 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1681 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1682 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1683 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1685 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1686 // |-----------| Live through.
1687 // ------======= Switch intervals between interference.
1689 selectIntv(IntvOut);
1690 SlotIndex Idx;
1691 if (LeaveBefore && LeaveBefore < LSP) {
1692 Idx = enterIntvBefore(LeaveBefore);
1693 useIntv(Idx, Stop);
1694 } else {
1695 Idx = enterIntvAtEnd(*MBB);
1697 selectIntv(IntvIn);
1698 useIntv(Start, Idx);
1699 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1700 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1701 return;
1704 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1706 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1707 // |-----------| Live through.
1708 // ==---------== Switch intervals before/after interference.
1710 assert(LeaveBefore <= EnterAfter && "Missed case");
1712 selectIntv(IntvOut);
1713 SlotIndex Idx = enterIntvAfter(EnterAfter);
1714 useIntv(Idx, Stop);
1715 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1717 selectIntv(IntvIn);
1718 Idx = leaveIntvBefore(LeaveBefore);
1719 useIntv(Start, Idx);
1720 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1723 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1724 unsigned IntvIn, SlotIndex LeaveBefore) {
1725 SlotIndex Start, Stop;
1726 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1728 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1729 << Stop << "), uses " << BI.FirstInstr << '-'
1730 << BI.LastInstr << ", reg-in " << IntvIn
1731 << ", leave before " << LeaveBefore
1732 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1734 assert(IntvIn && "Must have register in");
1735 assert(BI.LiveIn && "Must be live-in");
1736 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1738 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1739 LLVM_DEBUG(dbgs() << " before interference.\n");
1741 // <<< Interference after kill.
1742 // |---o---x | Killed in block.
1743 // ========= Use IntvIn everywhere.
1745 selectIntv(IntvIn);
1746 useIntv(Start, BI.LastInstr);
1747 return;
1750 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1752 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1754 // <<< Possible interference after last use.
1755 // |---o---o---| Live-out on stack.
1756 // =========____ Leave IntvIn after last use.
1758 // < Interference after last use.
1759 // |---o---o--o| Live-out on stack, late last use.
1760 // ============ Copy to stack after LSP, overlap IntvIn.
1761 // \_____ Stack interval is live-out.
1763 if (BI.LastInstr < LSP) {
1764 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1765 selectIntv(IntvIn);
1766 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1767 useIntv(Start, Idx);
1768 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1769 } else {
1770 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1771 selectIntv(IntvIn);
1772 SlotIndex Idx = leaveIntvBefore(LSP);
1773 overlapIntv(Idx, BI.LastInstr);
1774 useIntv(Start, Idx);
1775 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1777 return;
1780 // The interference is overlapping somewhere we wanted to use IntvIn. That
1781 // means we need to create a local interval that can be allocated a
1782 // different register.
1783 unsigned LocalIntv = openIntv();
1784 (void)LocalIntv;
1785 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1787 if (!BI.LiveOut || BI.LastInstr < LSP) {
1789 // <<<<<<< Interference overlapping uses.
1790 // |---o---o---| Live-out on stack.
1791 // =====----____ Leave IntvIn before interference, then spill.
1793 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1794 SlotIndex From = enterIntvBefore(LeaveBefore);
1795 useIntv(From, To);
1796 selectIntv(IntvIn);
1797 useIntv(Start, From);
1798 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1799 return;
1802 // <<<<<<< Interference overlapping uses.
1803 // |---o---o--o| Live-out on stack, late last use.
1804 // =====------- Copy to stack before LSP, overlap LocalIntv.
1805 // \_____ Stack interval is live-out.
1807 SlotIndex To = leaveIntvBefore(LSP);
1808 overlapIntv(To, BI.LastInstr);
1809 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1810 useIntv(From, To);
1811 selectIntv(IntvIn);
1812 useIntv(Start, From);
1813 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1816 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1817 unsigned IntvOut, SlotIndex EnterAfter) {
1818 SlotIndex Start, Stop;
1819 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1821 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1822 << Stop << "), uses " << BI.FirstInstr << '-'
1823 << BI.LastInstr << ", reg-out " << IntvOut
1824 << ", enter after " << EnterAfter
1825 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1827 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1829 assert(IntvOut && "Must have register out");
1830 assert(BI.LiveOut && "Must be live-out");
1831 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1833 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1834 LLVM_DEBUG(dbgs() << " after interference.\n");
1836 // >>>> Interference before def.
1837 // | o---o---| Defined in block.
1838 // ========= Use IntvOut everywhere.
1840 selectIntv(IntvOut);
1841 useIntv(BI.FirstInstr, Stop);
1842 return;
1845 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1846 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1848 // >>>> Interference before def.
1849 // |---o---o---| Live-through, stack-in.
1850 // ____========= Enter IntvOut before first use.
1852 selectIntv(IntvOut);
1853 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1854 useIntv(Idx, Stop);
1855 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1856 return;
1859 // The interference is overlapping somewhere we wanted to use IntvOut. That
1860 // means we need to create a local interval that can be allocated a
1861 // different register.
1862 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1864 // >>>>>>> Interference overlapping uses.
1865 // |---o---o---| Live-through, stack-in.
1866 // ____---====== Create local interval for interference range.
1868 selectIntv(IntvOut);
1869 SlotIndex Idx = enterIntvAfter(EnterAfter);
1870 useIntv(Idx, Stop);
1871 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1873 openIntv();
1874 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1875 useIntv(From, Idx);
1878 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1879 OS << "{" << printMBBReference(*MBB) << ", "
1880 << "uses " << FirstInstr << " to " << LastInstr << ", "
1881 << "1st def " << FirstDef << ", "
1882 << (LiveIn ? "live in" : "dead in") << ", "
1883 << (LiveOut ? "live out" : "dead out") << "}";
1886 void SplitAnalysis::BlockInfo::dump() const {
1887 print(dbgs());
1888 dbgs() << "\n";