[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / StackProtector.cpp
blob510a8e3e4ba2b02aba7e9b78aa4c2de017cafe8b
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <utility>
51 using namespace llvm;
53 #define DEBUG_TYPE "stack-protector"
55 STATISTIC(NumFunProtected, "Number of functions protected");
56 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
57 " taken.");
59 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
60 cl::init(true), cl::Hidden);
62 char StackProtector::ID = 0;
64 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
65 initializeStackProtectorPass(*PassRegistry::getPassRegistry());
68 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
69 "Insert stack protectors", false, true)
70 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
72 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
73 "Insert stack protectors", false, true)
75 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
77 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
78 AU.addRequired<TargetPassConfig>();
79 AU.addPreserved<DominatorTreeWrapperPass>();
82 bool StackProtector::runOnFunction(Function &Fn) {
83 F = &Fn;
84 M = F->getParent();
85 DominatorTreeWrapperPass *DTWP =
86 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
87 DT = DTWP ? &DTWP->getDomTree() : nullptr;
88 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
89 Trip = TM->getTargetTriple();
90 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
91 HasPrologue = false;
92 HasIRCheck = false;
94 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
95 if (Attr.isStringAttribute() &&
96 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
97 return false; // Invalid integer string
99 if (!RequiresStackProtector())
100 return false;
102 // TODO(etienneb): Functions with funclets are not correctly supported now.
103 // Do nothing if this is funclet-based personality.
104 if (Fn.hasPersonalityFn()) {
105 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
106 if (isFuncletEHPersonality(Personality))
107 return false;
110 ++NumFunProtected;
111 return InsertStackProtectors();
114 /// \param [out] IsLarge is set to true if a protectable array is found and
115 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
116 /// multiple arrays, this gets set if any of them is large.
117 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
118 bool Strong,
119 bool InStruct) const {
120 if (!Ty)
121 return false;
122 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
123 if (!AT->getElementType()->isIntegerTy(8)) {
124 // If we're on a non-Darwin platform or we're inside of a structure, don't
125 // add stack protectors unless the array is a character array.
126 // However, in strong mode any array, regardless of type and size,
127 // triggers a protector.
128 if (!Strong && (InStruct || !Trip.isOSDarwin()))
129 return false;
132 // If an array has more than SSPBufferSize bytes of allocated space, then we
133 // emit stack protectors.
134 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
135 IsLarge = true;
136 return true;
139 if (Strong)
140 // Require a protector for all arrays in strong mode
141 return true;
144 const StructType *ST = dyn_cast<StructType>(Ty);
145 if (!ST)
146 return false;
148 bool NeedsProtector = false;
149 for (Type *ET : ST->elements())
150 if (ContainsProtectableArray(ET, IsLarge, Strong, true)) {
151 // If the element is a protectable array and is large (>= SSPBufferSize)
152 // then we are done. If the protectable array is not large, then
153 // keep looking in case a subsequent element is a large array.
154 if (IsLarge)
155 return true;
156 NeedsProtector = true;
159 return NeedsProtector;
162 bool StackProtector::HasAddressTaken(const Instruction *AI,
163 TypeSize AllocSize) {
164 const DataLayout &DL = M->getDataLayout();
165 for (const User *U : AI->users()) {
166 const auto *I = cast<Instruction>(U);
167 // If this instruction accesses memory make sure it doesn't access beyond
168 // the bounds of the allocated object.
169 Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
170 if (MemLoc && MemLoc->Size.hasValue() &&
171 !TypeSize::isKnownGE(AllocSize,
172 TypeSize::getFixed(MemLoc->Size.getValue())))
173 return true;
174 switch (I->getOpcode()) {
175 case Instruction::Store:
176 if (AI == cast<StoreInst>(I)->getValueOperand())
177 return true;
178 break;
179 case Instruction::AtomicCmpXchg:
180 // cmpxchg conceptually includes both a load and store from the same
181 // location. So, like store, the value being stored is what matters.
182 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
183 return true;
184 break;
185 case Instruction::PtrToInt:
186 if (AI == cast<PtrToIntInst>(I)->getOperand(0))
187 return true;
188 break;
189 case Instruction::Call: {
190 // Ignore intrinsics that do not become real instructions.
191 // TODO: Narrow this to intrinsics that have store-like effects.
192 const auto *CI = cast<CallInst>(I);
193 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
194 return true;
195 break;
197 case Instruction::Invoke:
198 return true;
199 case Instruction::GetElementPtr: {
200 // If the GEP offset is out-of-bounds, or is non-constant and so has to be
201 // assumed to be potentially out-of-bounds, then any memory access that
202 // would use it could also be out-of-bounds meaning stack protection is
203 // required.
204 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
205 unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType());
206 APInt Offset(IndexSize, 0);
207 if (!GEP->accumulateConstantOffset(DL, Offset))
208 return true;
209 TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue());
210 if (!TypeSize::isKnownGT(AllocSize, OffsetSize))
211 return true;
212 // Adjust AllocSize to be the space remaining after this offset.
213 // We can't subtract a fixed size from a scalable one, so in that case
214 // assume the scalable value is of minimum size.
215 TypeSize NewAllocSize =
216 TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize;
217 if (HasAddressTaken(I, NewAllocSize))
218 return true;
219 break;
221 case Instruction::BitCast:
222 case Instruction::Select:
223 case Instruction::AddrSpaceCast:
224 if (HasAddressTaken(I, AllocSize))
225 return true;
226 break;
227 case Instruction::PHI: {
228 // Keep track of what PHI nodes we have already visited to ensure
229 // they are only visited once.
230 const auto *PN = cast<PHINode>(I);
231 if (VisitedPHIs.insert(PN).second)
232 if (HasAddressTaken(PN, AllocSize))
233 return true;
234 break;
236 case Instruction::Load:
237 case Instruction::AtomicRMW:
238 case Instruction::Ret:
239 // These instructions take an address operand, but have load-like or
240 // other innocuous behavior that should not trigger a stack protector.
241 // atomicrmw conceptually has both load and store semantics, but the
242 // value being stored must be integer; so if a pointer is being stored,
243 // we'll catch it in the PtrToInt case above.
244 break;
245 default:
246 // Conservatively return true for any instruction that takes an address
247 // operand, but is not handled above.
248 return true;
251 return false;
254 /// Search for the first call to the llvm.stackprotector intrinsic and return it
255 /// if present.
256 static const CallInst *findStackProtectorIntrinsic(Function &F) {
257 for (const BasicBlock &BB : F)
258 for (const Instruction &I : BB)
259 if (const auto *II = dyn_cast<IntrinsicInst>(&I))
260 if (II->getIntrinsicID() == Intrinsic::stackprotector)
261 return II;
262 return nullptr;
265 /// Check whether or not this function needs a stack protector based
266 /// upon the stack protector level.
268 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
269 /// The standard heuristic which will add a guard variable to functions that
270 /// call alloca with a either a variable size or a size >= SSPBufferSize,
271 /// functions with character buffers larger than SSPBufferSize, and functions
272 /// with aggregates containing character buffers larger than SSPBufferSize. The
273 /// strong heuristic will add a guard variables to functions that call alloca
274 /// regardless of size, functions with any buffer regardless of type and size,
275 /// functions with aggregates that contain any buffer regardless of type and
276 /// size, and functions that contain stack-based variables that have had their
277 /// address taken.
278 bool StackProtector::RequiresStackProtector() {
279 bool Strong = false;
280 bool NeedsProtector = false;
282 if (F->hasFnAttribute(Attribute::SafeStack))
283 return false;
285 // We are constructing the OptimizationRemarkEmitter on the fly rather than
286 // using the analysis pass to avoid building DominatorTree and LoopInfo which
287 // are not available this late in the IR pipeline.
288 OptimizationRemarkEmitter ORE(F);
290 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
291 ORE.emit([&]() {
292 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
293 << "Stack protection applied to function "
294 << ore::NV("Function", F)
295 << " due to a function attribute or command-line switch";
297 NeedsProtector = true;
298 Strong = true; // Use the same heuristic as strong to determine SSPLayout
299 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
300 Strong = true;
301 else if (!F->hasFnAttribute(Attribute::StackProtect))
302 return false;
304 for (const BasicBlock &BB : *F) {
305 for (const Instruction &I : BB) {
306 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
307 if (AI->isArrayAllocation()) {
308 auto RemarkBuilder = [&]() {
309 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
311 << "Stack protection applied to function "
312 << ore::NV("Function", F)
313 << " due to a call to alloca or use of a variable length "
314 "array";
316 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
317 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
318 // A call to alloca with size >= SSPBufferSize requires
319 // stack protectors.
320 Layout.insert(std::make_pair(AI,
321 MachineFrameInfo::SSPLK_LargeArray));
322 ORE.emit(RemarkBuilder);
323 NeedsProtector = true;
324 } else if (Strong) {
325 // Require protectors for all alloca calls in strong mode.
326 Layout.insert(std::make_pair(AI,
327 MachineFrameInfo::SSPLK_SmallArray));
328 ORE.emit(RemarkBuilder);
329 NeedsProtector = true;
331 } else {
332 // A call to alloca with a variable size requires protectors.
333 Layout.insert(std::make_pair(AI,
334 MachineFrameInfo::SSPLK_LargeArray));
335 ORE.emit(RemarkBuilder);
336 NeedsProtector = true;
338 continue;
341 bool IsLarge = false;
342 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
343 Layout.insert(std::make_pair(AI, IsLarge
344 ? MachineFrameInfo::SSPLK_LargeArray
345 : MachineFrameInfo::SSPLK_SmallArray));
346 ORE.emit([&]() {
347 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
348 << "Stack protection applied to function "
349 << ore::NV("Function", F)
350 << " due to a stack allocated buffer or struct containing a "
351 "buffer";
353 NeedsProtector = true;
354 continue;
357 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
358 AI->getAllocatedType()))) {
359 ++NumAddrTaken;
360 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
361 ORE.emit([&]() {
362 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
364 << "Stack protection applied to function "
365 << ore::NV("Function", F)
366 << " due to the address of a local variable being taken";
368 NeedsProtector = true;
370 // Clear any PHIs that we visited, to make sure we examine all uses of
371 // any subsequent allocas that we look at.
372 VisitedPHIs.clear();
377 return NeedsProtector;
380 /// Create a stack guard loading and populate whether SelectionDAG SSP is
381 /// supported.
382 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
383 IRBuilder<> &B,
384 bool *SupportsSelectionDAGSP = nullptr) {
385 Value *Guard = TLI->getIRStackGuard(B);
386 StringRef GuardMode = M->getStackProtectorGuard();
387 if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
388 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
390 // Use SelectionDAG SSP handling, since there isn't an IR guard.
392 // This is more or less weird, since we optionally output whether we
393 // should perform a SelectionDAG SP here. The reason is that it's strictly
394 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
395 // mutating. There is no way to get this bit without mutating the IR, so
396 // getting this bit has to happen in this right time.
398 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
399 // will put more burden on the backends' overriding work, especially when it
400 // actually conveys the same information getIRStackGuard() already gives.
401 if (SupportsSelectionDAGSP)
402 *SupportsSelectionDAGSP = true;
403 TLI->insertSSPDeclarations(*M);
404 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
407 /// Insert code into the entry block that stores the stack guard
408 /// variable onto the stack:
410 /// entry:
411 /// StackGuardSlot = alloca i8*
412 /// StackGuard = <stack guard>
413 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
415 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
416 /// node.
417 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
418 const TargetLoweringBase *TLI, AllocaInst *&AI) {
419 bool SupportsSelectionDAGSP = false;
420 IRBuilder<> B(&F->getEntryBlock().front());
421 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
422 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
424 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
425 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
426 {GuardSlot, AI});
427 return SupportsSelectionDAGSP;
430 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
431 /// function.
433 /// - The prologue code loads and stores the stack guard onto the stack.
434 /// - The epilogue checks the value stored in the prologue against the original
435 /// value. It calls __stack_chk_fail if they differ.
436 bool StackProtector::InsertStackProtectors() {
437 // If the target wants to XOR the frame pointer into the guard value, it's
438 // impossible to emit the check in IR, so the target *must* support stack
439 // protection in SDAG.
440 bool SupportsSelectionDAGSP =
441 TLI->useStackGuardXorFP() ||
442 (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
443 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
445 for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
446 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
447 if (!RI)
448 continue;
450 // Generate prologue instrumentation if not already generated.
451 if (!HasPrologue) {
452 HasPrologue = true;
453 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
456 // SelectionDAG based code generation. Nothing else needs to be done here.
457 // The epilogue instrumentation is postponed to SelectionDAG.
458 if (SupportsSelectionDAGSP)
459 break;
461 // Find the stack guard slot if the prologue was not created by this pass
462 // itself via a previous call to CreatePrologue().
463 if (!AI) {
464 const CallInst *SPCall = findStackProtectorIntrinsic(*F);
465 assert(SPCall && "Call to llvm.stackprotector is missing");
466 AI = cast<AllocaInst>(SPCall->getArgOperand(1));
469 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
470 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
471 // instrumentation has already been generated.
472 HasIRCheck = true;
474 // If we're instrumenting a block with a musttail call, the check has to be
475 // inserted before the call rather than between it and the return. The
476 // verifier guarantees that a musttail call is either directly before the
477 // return or with a single correct bitcast of the return value in between so
478 // we don't need to worry about many situations here.
479 Instruction *CheckLoc = RI;
480 Instruction *Prev = RI->getPrevNonDebugInstruction();
481 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
482 CheckLoc = Prev;
483 else if (Prev) {
484 Prev = Prev->getPrevNonDebugInstruction();
485 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
486 CheckLoc = Prev;
489 // Generate epilogue instrumentation. The epilogue intrumentation can be
490 // function-based or inlined depending on which mechanism the target is
491 // providing.
492 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
493 // Generate the function-based epilogue instrumentation.
494 // The target provides a guard check function, generate a call to it.
495 IRBuilder<> B(CheckLoc);
496 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
497 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
498 Call->setAttributes(GuardCheck->getAttributes());
499 Call->setCallingConv(GuardCheck->getCallingConv());
500 } else {
501 // Generate the epilogue with inline instrumentation.
502 // If we do not support SelectionDAG based calls, generate IR level
503 // calls.
505 // For each block with a return instruction, convert this:
507 // return:
508 // ...
509 // ret ...
511 // into this:
513 // return:
514 // ...
515 // %1 = <stack guard>
516 // %2 = load StackGuardSlot
517 // %3 = cmp i1 %1, %2
518 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
520 // SP_return:
521 // ret ...
523 // CallStackCheckFailBlk:
524 // call void @__stack_chk_fail()
525 // unreachable
527 // Create the FailBB. We duplicate the BB every time since the MI tail
528 // merge pass will merge together all of the various BB into one including
529 // fail BB generated by the stack protector pseudo instruction.
530 BasicBlock *FailBB = CreateFailBB();
532 // Split the basic block before the return instruction.
533 BasicBlock *NewBB =
534 BB.splitBasicBlock(CheckLoc->getIterator(), "SP_return");
536 // Update the dominator tree if we need to.
537 if (DT && DT->isReachableFromEntry(&BB)) {
538 DT->addNewBlock(NewBB, &BB);
539 DT->addNewBlock(FailBB, &BB);
542 // Remove default branch instruction to the new BB.
543 BB.getTerminator()->eraseFromParent();
545 // Move the newly created basic block to the point right after the old
546 // basic block so that it's in the "fall through" position.
547 NewBB->moveAfter(&BB);
549 // Generate the stack protector instructions in the old basic block.
550 IRBuilder<> B(&BB);
551 Value *Guard = getStackGuard(TLI, M, B);
552 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
553 Value *Cmp = B.CreateICmpEQ(Guard, LI2);
554 auto SuccessProb =
555 BranchProbabilityInfo::getBranchProbStackProtector(true);
556 auto FailureProb =
557 BranchProbabilityInfo::getBranchProbStackProtector(false);
558 MDNode *Weights = MDBuilder(F->getContext())
559 .createBranchWeights(SuccessProb.getNumerator(),
560 FailureProb.getNumerator());
561 B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
565 // Return if we didn't modify any basic blocks. i.e., there are no return
566 // statements in the function.
567 return HasPrologue;
570 /// CreateFailBB - Create a basic block to jump to when the stack protector
571 /// check fails.
572 BasicBlock *StackProtector::CreateFailBB() {
573 LLVMContext &Context = F->getContext();
574 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
575 IRBuilder<> B(FailBB);
576 if (F->getSubprogram())
577 B.SetCurrentDebugLocation(
578 DILocation::get(Context, 0, 0, F->getSubprogram()));
579 if (Trip.isOSOpenBSD()) {
580 FunctionCallee StackChkFail = M->getOrInsertFunction(
581 "__stack_smash_handler", Type::getVoidTy(Context),
582 Type::getInt8PtrTy(Context));
584 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
585 } else {
586 FunctionCallee StackChkFail =
587 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
589 B.CreateCall(StackChkFail, {});
591 B.CreateUnreachable();
592 return FailBB;
595 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
596 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
599 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
600 if (Layout.empty())
601 return;
603 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
604 if (MFI.isDeadObjectIndex(I))
605 continue;
607 const AllocaInst *AI = MFI.getObjectAllocation(I);
608 if (!AI)
609 continue;
611 SSPLayoutMap::const_iterator LI = Layout.find(AI);
612 if (LI == Layout.end())
613 continue;
615 MFI.setObjectSSPLayout(I, LI->second);