[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / TargetInstrInfo.cpp
blob0c0fdf72b90d1213100438c0e5b90b4923b401c9
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/ADT/StringExtras.h"
15 #include "llvm/BinaryFormat/Dwarf.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineInstrBuilder.h"
18 #include "llvm/CodeGen/MachineMemOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/MachineScheduler.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/CodeGen/TargetFrameLowering.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSchedule.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCInstrItineraries.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
38 static cl::opt<bool> DisableHazardRecognizer(
39 "disable-sched-hazard", cl::Hidden, cl::init(false),
40 cl::desc("Disable hazard detection during preRA scheduling"));
42 TargetInstrInfo::~TargetInstrInfo() = default;
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46 const TargetRegisterInfo *TRI,
47 const MachineFunction &MF) const {
48 if (OpNum >= MCID.getNumOperands())
49 return nullptr;
51 short RegClass = MCID.OpInfo[OpNum].RegClass;
52 if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53 return TRI->getPointerRegClass(MF, RegClass);
55 // Instructions like INSERT_SUBREG do not have fixed register classes.
56 if (RegClass < 0)
57 return nullptr;
59 // Otherwise just look it up normally.
60 return TRI->getRegClass(RegClass);
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66 MachineBasicBlock::iterator MI) const {
67 llvm_unreachable("Target didn't implement insertNoop!");
70 /// insertNoops - Insert noops into the instruction stream at the specified
71 /// point.
72 void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB,
73 MachineBasicBlock::iterator MI,
74 unsigned Quantity) const {
75 for (unsigned i = 0; i < Quantity; ++i)
76 insertNoop(MBB, MI);
79 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
80 return strncmp(Str, MAI.getCommentString().data(),
81 MAI.getCommentString().size()) == 0;
84 /// Measure the specified inline asm to determine an approximation of its
85 /// length.
86 /// Comments (which run till the next SeparatorString or newline) do not
87 /// count as an instruction.
88 /// Any other non-whitespace text is considered an instruction, with
89 /// multiple instructions separated by SeparatorString or newlines.
90 /// Variable-length instructions are not handled here; this function
91 /// may be overloaded in the target code to do that.
92 /// We implement a special case of the .space directive which takes only a
93 /// single integer argument in base 10 that is the size in bytes. This is a
94 /// restricted form of the GAS directive in that we only interpret
95 /// simple--i.e. not a logical or arithmetic expression--size values without
96 /// the optional fill value. This is primarily used for creating arbitrary
97 /// sized inline asm blocks for testing purposes.
98 unsigned TargetInstrInfo::getInlineAsmLength(
99 const char *Str,
100 const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
101 // Count the number of instructions in the asm.
102 bool AtInsnStart = true;
103 unsigned Length = 0;
104 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
105 for (; *Str; ++Str) {
106 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
107 strlen(MAI.getSeparatorString())) == 0) {
108 AtInsnStart = true;
109 } else if (isAsmComment(Str, MAI)) {
110 // Stop counting as an instruction after a comment until the next
111 // separator.
112 AtInsnStart = false;
115 if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
116 unsigned AddLength = MaxInstLength;
117 if (strncmp(Str, ".space", 6) == 0) {
118 char *EStr;
119 int SpaceSize;
120 SpaceSize = strtol(Str + 6, &EStr, 10);
121 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
122 while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
123 ++EStr;
124 if (*EStr == '\0' || *EStr == '\n' ||
125 isAsmComment(EStr, MAI)) // Successfully parsed .space argument
126 AddLength = SpaceSize;
128 Length += AddLength;
129 AtInsnStart = false;
133 return Length;
136 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
137 /// after it, replacing it with an unconditional branch to NewDest.
138 void
139 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
140 MachineBasicBlock *NewDest) const {
141 MachineBasicBlock *MBB = Tail->getParent();
143 // Remove all the old successors of MBB from the CFG.
144 while (!MBB->succ_empty())
145 MBB->removeSuccessor(MBB->succ_begin());
147 // Save off the debug loc before erasing the instruction.
148 DebugLoc DL = Tail->getDebugLoc();
150 // Update call site info and remove all the dead instructions
151 // from the end of MBB.
152 while (Tail != MBB->end()) {
153 auto MI = Tail++;
154 if (MI->shouldUpdateCallSiteInfo())
155 MBB->getParent()->eraseCallSiteInfo(&*MI);
156 MBB->erase(MI);
159 // If MBB isn't immediately before MBB, insert a branch to it.
160 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
161 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
162 MBB->addSuccessor(NewDest);
165 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
166 bool NewMI, unsigned Idx1,
167 unsigned Idx2) const {
168 const MCInstrDesc &MCID = MI.getDesc();
169 bool HasDef = MCID.getNumDefs();
170 if (HasDef && !MI.getOperand(0).isReg())
171 // No idea how to commute this instruction. Target should implement its own.
172 return nullptr;
174 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
175 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
176 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
177 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
178 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
179 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
180 "This only knows how to commute register operands so far");
182 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
183 Register Reg1 = MI.getOperand(Idx1).getReg();
184 Register Reg2 = MI.getOperand(Idx2).getReg();
185 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
186 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
187 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
188 bool Reg1IsKill = MI.getOperand(Idx1).isKill();
189 bool Reg2IsKill = MI.getOperand(Idx2).isKill();
190 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
191 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
192 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
193 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
194 // Avoid calling isRenamable for virtual registers since we assert that
195 // renamable property is only queried/set for physical registers.
196 bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1)
197 ? MI.getOperand(Idx1).isRenamable()
198 : false;
199 bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2)
200 ? MI.getOperand(Idx2).isRenamable()
201 : false;
202 // If destination is tied to either of the commuted source register, then
203 // it must be updated.
204 if (HasDef && Reg0 == Reg1 &&
205 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
206 Reg2IsKill = false;
207 Reg0 = Reg2;
208 SubReg0 = SubReg2;
209 } else if (HasDef && Reg0 == Reg2 &&
210 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
211 Reg1IsKill = false;
212 Reg0 = Reg1;
213 SubReg0 = SubReg1;
216 MachineInstr *CommutedMI = nullptr;
217 if (NewMI) {
218 // Create a new instruction.
219 MachineFunction &MF = *MI.getMF();
220 CommutedMI = MF.CloneMachineInstr(&MI);
221 } else {
222 CommutedMI = &MI;
225 if (HasDef) {
226 CommutedMI->getOperand(0).setReg(Reg0);
227 CommutedMI->getOperand(0).setSubReg(SubReg0);
229 CommutedMI->getOperand(Idx2).setReg(Reg1);
230 CommutedMI->getOperand(Idx1).setReg(Reg2);
231 CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
232 CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
233 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
234 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
235 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
236 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
237 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
238 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
239 // Avoid calling setIsRenamable for virtual registers since we assert that
240 // renamable property is only queried/set for physical registers.
241 if (Register::isPhysicalRegister(Reg1))
242 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
243 if (Register::isPhysicalRegister(Reg2))
244 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
245 return CommutedMI;
248 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
249 unsigned OpIdx1,
250 unsigned OpIdx2) const {
251 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
252 // any commutable operand, which is done in findCommutedOpIndices() method
253 // called below.
254 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
255 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
256 assert(MI.isCommutable() &&
257 "Precondition violation: MI must be commutable.");
258 return nullptr;
260 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
263 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
264 unsigned &ResultIdx2,
265 unsigned CommutableOpIdx1,
266 unsigned CommutableOpIdx2) {
267 if (ResultIdx1 == CommuteAnyOperandIndex &&
268 ResultIdx2 == CommuteAnyOperandIndex) {
269 ResultIdx1 = CommutableOpIdx1;
270 ResultIdx2 = CommutableOpIdx2;
271 } else if (ResultIdx1 == CommuteAnyOperandIndex) {
272 if (ResultIdx2 == CommutableOpIdx1)
273 ResultIdx1 = CommutableOpIdx2;
274 else if (ResultIdx2 == CommutableOpIdx2)
275 ResultIdx1 = CommutableOpIdx1;
276 else
277 return false;
278 } else if (ResultIdx2 == CommuteAnyOperandIndex) {
279 if (ResultIdx1 == CommutableOpIdx1)
280 ResultIdx2 = CommutableOpIdx2;
281 else if (ResultIdx1 == CommutableOpIdx2)
282 ResultIdx2 = CommutableOpIdx1;
283 else
284 return false;
285 } else
286 // Check that the result operand indices match the given commutable
287 // operand indices.
288 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
289 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
291 return true;
294 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
295 unsigned &SrcOpIdx1,
296 unsigned &SrcOpIdx2) const {
297 assert(!MI.isBundle() &&
298 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
300 const MCInstrDesc &MCID = MI.getDesc();
301 if (!MCID.isCommutable())
302 return false;
304 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
305 // is not true, then the target must implement this.
306 unsigned CommutableOpIdx1 = MCID.getNumDefs();
307 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
308 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
309 CommutableOpIdx1, CommutableOpIdx2))
310 return false;
312 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
313 // No idea.
314 return false;
315 return true;
318 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
319 if (!MI.isTerminator()) return false;
321 // Conditional branch is a special case.
322 if (MI.isBranch() && !MI.isBarrier())
323 return true;
324 if (!MI.isPredicable())
325 return true;
326 return !isPredicated(MI);
329 bool TargetInstrInfo::PredicateInstruction(
330 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
331 bool MadeChange = false;
333 assert(!MI.isBundle() &&
334 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
336 const MCInstrDesc &MCID = MI.getDesc();
337 if (!MI.isPredicable())
338 return false;
340 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
341 if (MCID.OpInfo[i].isPredicate()) {
342 MachineOperand &MO = MI.getOperand(i);
343 if (MO.isReg()) {
344 MO.setReg(Pred[j].getReg());
345 MadeChange = true;
346 } else if (MO.isImm()) {
347 MO.setImm(Pred[j].getImm());
348 MadeChange = true;
349 } else if (MO.isMBB()) {
350 MO.setMBB(Pred[j].getMBB());
351 MadeChange = true;
353 ++j;
356 return MadeChange;
359 bool TargetInstrInfo::hasLoadFromStackSlot(
360 const MachineInstr &MI,
361 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
362 size_t StartSize = Accesses.size();
363 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
364 oe = MI.memoperands_end();
365 o != oe; ++o) {
366 if ((*o)->isLoad() &&
367 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
368 Accesses.push_back(*o);
370 return Accesses.size() != StartSize;
373 bool TargetInstrInfo::hasStoreToStackSlot(
374 const MachineInstr &MI,
375 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
376 size_t StartSize = Accesses.size();
377 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
378 oe = MI.memoperands_end();
379 o != oe; ++o) {
380 if ((*o)->isStore() &&
381 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
382 Accesses.push_back(*o);
384 return Accesses.size() != StartSize;
387 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
388 unsigned SubIdx, unsigned &Size,
389 unsigned &Offset,
390 const MachineFunction &MF) const {
391 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
392 if (!SubIdx) {
393 Size = TRI->getSpillSize(*RC);
394 Offset = 0;
395 return true;
397 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
398 // Convert bit size to byte size.
399 if (BitSize % 8)
400 return false;
402 int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
403 if (BitOffset < 0 || BitOffset % 8)
404 return false;
406 Size = BitSize / 8;
407 Offset = (unsigned)BitOffset / 8;
409 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
411 if (!MF.getDataLayout().isLittleEndian()) {
412 Offset = TRI->getSpillSize(*RC) - (Offset + Size);
414 return true;
417 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
418 MachineBasicBlock::iterator I,
419 Register DestReg, unsigned SubIdx,
420 const MachineInstr &Orig,
421 const TargetRegisterInfo &TRI) const {
422 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
423 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
424 MBB.insert(I, MI);
427 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
428 const MachineInstr &MI1,
429 const MachineRegisterInfo *MRI) const {
430 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
433 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
434 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
435 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
436 MachineFunction &MF = *MBB.getParent();
437 return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig);
440 // If the COPY instruction in MI can be folded to a stack operation, return
441 // the register class to use.
442 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
443 unsigned FoldIdx) {
444 assert(MI.isCopy() && "MI must be a COPY instruction");
445 if (MI.getNumOperands() != 2)
446 return nullptr;
447 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
449 const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
450 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
452 if (FoldOp.getSubReg() || LiveOp.getSubReg())
453 return nullptr;
455 Register FoldReg = FoldOp.getReg();
456 Register LiveReg = LiveOp.getReg();
458 assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs");
460 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
461 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
463 if (Register::isPhysicalRegister(LiveOp.getReg()))
464 return RC->contains(LiveOp.getReg()) ? RC : nullptr;
466 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
467 return RC;
469 // FIXME: Allow folding when register classes are memory compatible.
470 return nullptr;
473 MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
475 std::pair<unsigned, unsigned>
476 TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const {
477 switch (MI.getOpcode()) {
478 case TargetOpcode::STACKMAP:
479 // StackMapLiveValues are foldable
480 return std::make_pair(0, StackMapOpers(&MI).getVarIdx());
481 case TargetOpcode::PATCHPOINT:
482 // For PatchPoint, the call args are not foldable (even if reported in the
483 // stackmap e.g. via anyregcc).
484 return std::make_pair(0, PatchPointOpers(&MI).getVarIdx());
485 case TargetOpcode::STATEPOINT:
486 // For statepoints, fold deopt and gc arguments, but not call arguments.
487 return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx());
488 default:
489 llvm_unreachable("unexpected stackmap opcode");
493 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
494 ArrayRef<unsigned> Ops, int FrameIndex,
495 const TargetInstrInfo &TII) {
496 unsigned StartIdx = 0;
497 unsigned NumDefs = 0;
498 // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
499 std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI);
501 unsigned DefToFoldIdx = MI.getNumOperands();
503 // Return false if any operands requested for folding are not foldable (not
504 // part of the stackmap's live values).
505 for (unsigned Op : Ops) {
506 if (Op < NumDefs) {
507 assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs");
508 DefToFoldIdx = Op;
509 } else if (Op < StartIdx) {
510 return nullptr;
512 if (MI.getOperand(Op).isTied())
513 return nullptr;
516 MachineInstr *NewMI =
517 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
518 MachineInstrBuilder MIB(MF, NewMI);
520 // No need to fold return, the meta data, and function arguments
521 for (unsigned i = 0; i < StartIdx; ++i)
522 if (i != DefToFoldIdx)
523 MIB.add(MI.getOperand(i));
525 for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
526 MachineOperand &MO = MI.getOperand(i);
527 unsigned TiedTo = e;
528 (void)MI.isRegTiedToDefOperand(i, &TiedTo);
530 if (is_contained(Ops, i)) {
531 assert(TiedTo == e && "Cannot fold tied operands");
532 unsigned SpillSize;
533 unsigned SpillOffset;
534 // Compute the spill slot size and offset.
535 const TargetRegisterClass *RC =
536 MF.getRegInfo().getRegClass(MO.getReg());
537 bool Valid =
538 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
539 if (!Valid)
540 report_fatal_error("cannot spill patchpoint subregister operand");
541 MIB.addImm(StackMaps::IndirectMemRefOp);
542 MIB.addImm(SpillSize);
543 MIB.addFrameIndex(FrameIndex);
544 MIB.addImm(SpillOffset);
545 } else {
546 MIB.add(MO);
547 if (TiedTo < e) {
548 assert(TiedTo < NumDefs && "Bad tied operand");
549 if (TiedTo > DefToFoldIdx)
550 --TiedTo;
551 NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
555 return NewMI;
558 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
559 ArrayRef<unsigned> Ops, int FI,
560 LiveIntervals *LIS,
561 VirtRegMap *VRM) const {
562 auto Flags = MachineMemOperand::MONone;
563 for (unsigned OpIdx : Ops)
564 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
565 : MachineMemOperand::MOLoad;
567 MachineBasicBlock *MBB = MI.getParent();
568 assert(MBB && "foldMemoryOperand needs an inserted instruction");
569 MachineFunction &MF = *MBB->getParent();
571 // If we're not folding a load into a subreg, the size of the load is the
572 // size of the spill slot. But if we are, we need to figure out what the
573 // actual load size is.
574 int64_t MemSize = 0;
575 const MachineFrameInfo &MFI = MF.getFrameInfo();
576 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
578 if (Flags & MachineMemOperand::MOStore) {
579 MemSize = MFI.getObjectSize(FI);
580 } else {
581 for (unsigned OpIdx : Ops) {
582 int64_t OpSize = MFI.getObjectSize(FI);
584 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
585 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
586 if (SubRegSize > 0 && !(SubRegSize % 8))
587 OpSize = SubRegSize / 8;
590 MemSize = std::max(MemSize, OpSize);
594 assert(MemSize && "Did not expect a zero-sized stack slot");
596 MachineInstr *NewMI = nullptr;
598 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
599 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
600 MI.getOpcode() == TargetOpcode::STATEPOINT) {
601 // Fold stackmap/patchpoint.
602 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
603 if (NewMI)
604 MBB->insert(MI, NewMI);
605 } else {
606 // Ask the target to do the actual folding.
607 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
610 if (NewMI) {
611 NewMI->setMemRefs(MF, MI.memoperands());
612 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
613 assert((!(Flags & MachineMemOperand::MOStore) ||
614 NewMI->mayStore()) &&
615 "Folded a def to a non-store!");
616 assert((!(Flags & MachineMemOperand::MOLoad) ||
617 NewMI->mayLoad()) &&
618 "Folded a use to a non-load!");
619 assert(MFI.getObjectOffset(FI) != -1);
620 MachineMemOperand *MMO =
621 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
622 Flags, MemSize, MFI.getObjectAlign(FI));
623 NewMI->addMemOperand(MF, MMO);
625 // The pass "x86 speculative load hardening" always attaches symbols to
626 // call instructions. We need copy it form old instruction.
627 NewMI->cloneInstrSymbols(MF, MI);
629 return NewMI;
632 // Straight COPY may fold as load/store.
633 if (!MI.isCopy() || Ops.size() != 1)
634 return nullptr;
636 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
637 if (!RC)
638 return nullptr;
640 const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
641 MachineBasicBlock::iterator Pos = MI;
643 if (Flags == MachineMemOperand::MOStore)
644 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
645 else
646 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
647 return &*--Pos;
650 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
651 ArrayRef<unsigned> Ops,
652 MachineInstr &LoadMI,
653 LiveIntervals *LIS) const {
654 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
655 #ifndef NDEBUG
656 for (unsigned OpIdx : Ops)
657 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
658 #endif
660 MachineBasicBlock &MBB = *MI.getParent();
661 MachineFunction &MF = *MBB.getParent();
663 // Ask the target to do the actual folding.
664 MachineInstr *NewMI = nullptr;
665 int FrameIndex = 0;
667 if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
668 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
669 MI.getOpcode() == TargetOpcode::STATEPOINT) &&
670 isLoadFromStackSlot(LoadMI, FrameIndex)) {
671 // Fold stackmap/patchpoint.
672 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
673 if (NewMI)
674 NewMI = &*MBB.insert(MI, NewMI);
675 } else {
676 // Ask the target to do the actual folding.
677 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
680 if (!NewMI)
681 return nullptr;
683 // Copy the memoperands from the load to the folded instruction.
684 if (MI.memoperands_empty()) {
685 NewMI->setMemRefs(MF, LoadMI.memoperands());
686 } else {
687 // Handle the rare case of folding multiple loads.
688 NewMI->setMemRefs(MF, MI.memoperands());
689 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
690 E = LoadMI.memoperands_end();
691 I != E; ++I) {
692 NewMI->addMemOperand(MF, *I);
695 return NewMI;
698 bool TargetInstrInfo::hasReassociableOperands(
699 const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
700 const MachineOperand &Op1 = Inst.getOperand(1);
701 const MachineOperand &Op2 = Inst.getOperand(2);
702 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
704 // We need virtual register definitions for the operands that we will
705 // reassociate.
706 MachineInstr *MI1 = nullptr;
707 MachineInstr *MI2 = nullptr;
708 if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg()))
709 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
710 if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg()))
711 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
713 // And they need to be in the trace (otherwise, they won't have a depth).
714 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
717 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
718 bool &Commuted) const {
719 const MachineBasicBlock *MBB = Inst.getParent();
720 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
721 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
722 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
723 unsigned AssocOpcode = Inst.getOpcode();
725 // If only one operand has the same opcode and it's the second source operand,
726 // the operands must be commuted.
727 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
728 if (Commuted)
729 std::swap(MI1, MI2);
731 // 1. The previous instruction must be the same type as Inst.
732 // 2. The previous instruction must also be associative/commutative (this can
733 // be different even for instructions with the same opcode if traits like
734 // fast-math-flags are included).
735 // 3. The previous instruction must have virtual register definitions for its
736 // operands in the same basic block as Inst.
737 // 4. The previous instruction's result must only be used by Inst.
738 return MI1->getOpcode() == AssocOpcode && isAssociativeAndCommutative(*MI1) &&
739 hasReassociableOperands(*MI1, MBB) &&
740 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
743 // 1. The operation must be associative and commutative.
744 // 2. The instruction must have virtual register definitions for its
745 // operands in the same basic block.
746 // 3. The instruction must have a reassociable sibling.
747 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
748 bool &Commuted) const {
749 return isAssociativeAndCommutative(Inst) &&
750 hasReassociableOperands(Inst, Inst.getParent()) &&
751 hasReassociableSibling(Inst, Commuted);
754 // The concept of the reassociation pass is that these operations can benefit
755 // from this kind of transformation:
757 // A = ? op ?
758 // B = A op X (Prev)
759 // C = B op Y (Root)
760 // -->
761 // A = ? op ?
762 // B = X op Y
763 // C = A op B
765 // breaking the dependency between A and B, allowing them to be executed in
766 // parallel (or back-to-back in a pipeline) instead of depending on each other.
768 // FIXME: This has the potential to be expensive (compile time) while not
769 // improving the code at all. Some ways to limit the overhead:
770 // 1. Track successful transforms; bail out if hit rate gets too low.
771 // 2. Only enable at -O3 or some other non-default optimization level.
772 // 3. Pre-screen pattern candidates here: if an operand of the previous
773 // instruction is known to not increase the critical path, then don't match
774 // that pattern.
775 bool TargetInstrInfo::getMachineCombinerPatterns(
776 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
777 bool DoRegPressureReduce) const {
778 bool Commute;
779 if (isReassociationCandidate(Root, Commute)) {
780 // We found a sequence of instructions that may be suitable for a
781 // reassociation of operands to increase ILP. Specify each commutation
782 // possibility for the Prev instruction in the sequence and let the
783 // machine combiner decide if changing the operands is worthwhile.
784 if (Commute) {
785 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
786 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
787 } else {
788 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
789 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
791 return true;
794 return false;
797 /// Return true when a code sequence can improve loop throughput.
798 bool
799 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
800 return false;
803 /// Attempt the reassociation transformation to reduce critical path length.
804 /// See the above comments before getMachineCombinerPatterns().
805 void TargetInstrInfo::reassociateOps(
806 MachineInstr &Root, MachineInstr &Prev,
807 MachineCombinerPattern Pattern,
808 SmallVectorImpl<MachineInstr *> &InsInstrs,
809 SmallVectorImpl<MachineInstr *> &DelInstrs,
810 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
811 MachineFunction *MF = Root.getMF();
812 MachineRegisterInfo &MRI = MF->getRegInfo();
813 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
814 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
815 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
817 // This array encodes the operand index for each parameter because the
818 // operands may be commuted. Each row corresponds to a pattern value,
819 // and each column specifies the index of A, B, X, Y.
820 unsigned OpIdx[4][4] = {
821 { 1, 1, 2, 2 },
822 { 1, 2, 2, 1 },
823 { 2, 1, 1, 2 },
824 { 2, 2, 1, 1 }
827 int Row;
828 switch (Pattern) {
829 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
830 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
831 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
832 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
833 default: llvm_unreachable("unexpected MachineCombinerPattern");
836 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
837 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
838 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
839 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
840 MachineOperand &OpC = Root.getOperand(0);
842 Register RegA = OpA.getReg();
843 Register RegB = OpB.getReg();
844 Register RegX = OpX.getReg();
845 Register RegY = OpY.getReg();
846 Register RegC = OpC.getReg();
848 if (Register::isVirtualRegister(RegA))
849 MRI.constrainRegClass(RegA, RC);
850 if (Register::isVirtualRegister(RegB))
851 MRI.constrainRegClass(RegB, RC);
852 if (Register::isVirtualRegister(RegX))
853 MRI.constrainRegClass(RegX, RC);
854 if (Register::isVirtualRegister(RegY))
855 MRI.constrainRegClass(RegY, RC);
856 if (Register::isVirtualRegister(RegC))
857 MRI.constrainRegClass(RegC, RC);
859 // Create a new virtual register for the result of (X op Y) instead of
860 // recycling RegB because the MachineCombiner's computation of the critical
861 // path requires a new register definition rather than an existing one.
862 Register NewVR = MRI.createVirtualRegister(RC);
863 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
865 unsigned Opcode = Root.getOpcode();
866 bool KillA = OpA.isKill();
867 bool KillX = OpX.isKill();
868 bool KillY = OpY.isKill();
870 // Create new instructions for insertion.
871 MachineInstrBuilder MIB1 =
872 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
873 .addReg(RegX, getKillRegState(KillX))
874 .addReg(RegY, getKillRegState(KillY))
875 .setMIFlags(Prev.getFlags());
876 MachineInstrBuilder MIB2 =
877 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
878 .addReg(RegA, getKillRegState(KillA))
879 .addReg(NewVR, getKillRegState(true))
880 .setMIFlags(Root.getFlags());
882 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
884 // Record new instructions for insertion and old instructions for deletion.
885 InsInstrs.push_back(MIB1);
886 InsInstrs.push_back(MIB2);
887 DelInstrs.push_back(&Prev);
888 DelInstrs.push_back(&Root);
891 void TargetInstrInfo::genAlternativeCodeSequence(
892 MachineInstr &Root, MachineCombinerPattern Pattern,
893 SmallVectorImpl<MachineInstr *> &InsInstrs,
894 SmallVectorImpl<MachineInstr *> &DelInstrs,
895 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
896 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
898 // Select the previous instruction in the sequence based on the input pattern.
899 MachineInstr *Prev = nullptr;
900 switch (Pattern) {
901 case MachineCombinerPattern::REASSOC_AX_BY:
902 case MachineCombinerPattern::REASSOC_XA_BY:
903 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
904 break;
905 case MachineCombinerPattern::REASSOC_AX_YB:
906 case MachineCombinerPattern::REASSOC_XA_YB:
907 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
908 break;
909 default:
910 break;
913 assert(Prev && "Unknown pattern for machine combiner");
915 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
918 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
919 const MachineInstr &MI) const {
920 const MachineFunction &MF = *MI.getMF();
921 const MachineRegisterInfo &MRI = MF.getRegInfo();
923 // Remat clients assume operand 0 is the defined register.
924 if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
925 return false;
926 Register DefReg = MI.getOperand(0).getReg();
928 // A sub-register definition can only be rematerialized if the instruction
929 // doesn't read the other parts of the register. Otherwise it is really a
930 // read-modify-write operation on the full virtual register which cannot be
931 // moved safely.
932 if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() &&
933 MI.readsVirtualRegister(DefReg))
934 return false;
936 // A load from a fixed stack slot can be rematerialized. This may be
937 // redundant with subsequent checks, but it's target-independent,
938 // simple, and a common case.
939 int FrameIdx = 0;
940 if (isLoadFromStackSlot(MI, FrameIdx) &&
941 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
942 return true;
944 // Avoid instructions obviously unsafe for remat.
945 if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
946 MI.hasUnmodeledSideEffects())
947 return false;
949 // Don't remat inline asm. We have no idea how expensive it is
950 // even if it's side effect free.
951 if (MI.isInlineAsm())
952 return false;
954 // Avoid instructions which load from potentially varying memory.
955 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
956 return false;
958 // If any of the registers accessed are non-constant, conservatively assume
959 // the instruction is not rematerializable.
960 for (const MachineOperand &MO : MI.operands()) {
961 if (!MO.isReg()) continue;
962 Register Reg = MO.getReg();
963 if (Reg == 0)
964 continue;
966 // Check for a well-behaved physical register.
967 if (Register::isPhysicalRegister(Reg)) {
968 if (MO.isUse()) {
969 // If the physreg has no defs anywhere, it's just an ambient register
970 // and we can freely move its uses. Alternatively, if it's allocatable,
971 // it could get allocated to something with a def during allocation.
972 if (!MRI.isConstantPhysReg(Reg))
973 return false;
974 } else {
975 // A physreg def. We can't remat it.
976 return false;
978 continue;
981 // Only allow one virtual-register def. There may be multiple defs of the
982 // same virtual register, though.
983 if (MO.isDef() && Reg != DefReg)
984 return false;
986 // Don't allow any virtual-register uses. Rematting an instruction with
987 // virtual register uses would length the live ranges of the uses, which
988 // is not necessarily a good idea, certainly not "trivial".
989 if (MO.isUse())
990 return false;
993 // Everything checked out.
994 return true;
997 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
998 const MachineFunction *MF = MI.getMF();
999 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
1000 bool StackGrowsDown =
1001 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
1003 unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
1004 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
1006 if (!isFrameInstr(MI))
1007 return 0;
1009 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
1011 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
1012 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
1013 SPAdj = -SPAdj;
1015 return SPAdj;
1018 /// isSchedulingBoundary - Test if the given instruction should be
1019 /// considered a scheduling boundary. This primarily includes labels
1020 /// and terminators.
1021 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1022 const MachineBasicBlock *MBB,
1023 const MachineFunction &MF) const {
1024 // Terminators and labels can't be scheduled around.
1025 if (MI.isTerminator() || MI.isPosition())
1026 return true;
1028 // INLINEASM_BR can jump to another block
1029 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1030 return true;
1032 // Don't attempt to schedule around any instruction that defines
1033 // a stack-oriented pointer, as it's unlikely to be profitable. This
1034 // saves compile time, because it doesn't require every single
1035 // stack slot reference to depend on the instruction that does the
1036 // modification.
1037 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1038 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1039 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1042 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1043 // may choose to honor.
1044 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1045 return !DisableHazardRecognizer;
1048 // Default implementation of CreateTargetRAHazardRecognizer.
1049 ScheduleHazardRecognizer *TargetInstrInfo::
1050 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1051 const ScheduleDAG *DAG) const {
1052 // Dummy hazard recognizer allows all instructions to issue.
1053 return new ScheduleHazardRecognizer();
1056 // Default implementation of CreateTargetMIHazardRecognizer.
1057 ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
1058 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
1059 return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1062 // Default implementation of CreateTargetPostRAHazardRecognizer.
1063 ScheduleHazardRecognizer *TargetInstrInfo::
1064 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1065 const ScheduleDAG *DAG) const {
1066 return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1069 // Default implementation of getMemOperandWithOffset.
1070 bool TargetInstrInfo::getMemOperandWithOffset(
1071 const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
1072 bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
1073 SmallVector<const MachineOperand *, 4> BaseOps;
1074 unsigned Width;
1075 if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
1076 Width, TRI) ||
1077 BaseOps.size() != 1)
1078 return false;
1079 BaseOp = BaseOps.front();
1080 return true;
1083 //===----------------------------------------------------------------------===//
1084 // SelectionDAG latency interface.
1085 //===----------------------------------------------------------------------===//
1088 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1089 SDNode *DefNode, unsigned DefIdx,
1090 SDNode *UseNode, unsigned UseIdx) const {
1091 if (!ItinData || ItinData->isEmpty())
1092 return -1;
1094 if (!DefNode->isMachineOpcode())
1095 return -1;
1097 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1098 if (!UseNode->isMachineOpcode())
1099 return ItinData->getOperandCycle(DefClass, DefIdx);
1100 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1101 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1104 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1105 SDNode *N) const {
1106 if (!ItinData || ItinData->isEmpty())
1107 return 1;
1109 if (!N->isMachineOpcode())
1110 return 1;
1112 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1115 //===----------------------------------------------------------------------===//
1116 // MachineInstr latency interface.
1117 //===----------------------------------------------------------------------===//
1119 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1120 const MachineInstr &MI) const {
1121 if (!ItinData || ItinData->isEmpty())
1122 return 1;
1124 unsigned Class = MI.getDesc().getSchedClass();
1125 int UOps = ItinData->Itineraries[Class].NumMicroOps;
1126 if (UOps >= 0)
1127 return UOps;
1129 // The # of u-ops is dynamically determined. The specific target should
1130 // override this function to return the right number.
1131 return 1;
1134 /// Return the default expected latency for a def based on it's opcode.
1135 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1136 const MachineInstr &DefMI) const {
1137 if (DefMI.isTransient())
1138 return 0;
1139 if (DefMI.mayLoad())
1140 return SchedModel.LoadLatency;
1141 if (isHighLatencyDef(DefMI.getOpcode()))
1142 return SchedModel.HighLatency;
1143 return 1;
1146 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1147 return 0;
1150 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1151 const MachineInstr &MI,
1152 unsigned *PredCost) const {
1153 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1154 // still have a MinLatency property, which getStageLatency checks.
1155 if (!ItinData)
1156 return MI.mayLoad() ? 2 : 1;
1158 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1161 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1162 const MachineInstr &DefMI,
1163 unsigned DefIdx) const {
1164 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1165 if (!ItinData || ItinData->isEmpty())
1166 return false;
1168 unsigned DefClass = DefMI.getDesc().getSchedClass();
1169 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1170 return (DefCycle != -1 && DefCycle <= 1);
1173 Optional<ParamLoadedValue>
1174 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
1175 Register Reg) const {
1176 const MachineFunction *MF = MI.getMF();
1177 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1178 DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
1179 int64_t Offset;
1180 bool OffsetIsScalable;
1182 // To simplify the sub-register handling, verify that we only need to
1183 // consider physical registers.
1184 assert(MF->getProperties().hasProperty(
1185 MachineFunctionProperties::Property::NoVRegs));
1187 if (auto DestSrc = isCopyInstr(MI)) {
1188 Register DestReg = DestSrc->Destination->getReg();
1190 // If the copy destination is the forwarding reg, describe the forwarding
1191 // reg using the copy source as the backup location. Example:
1193 // x0 = MOV x7
1194 // call callee(x0) ; x0 described as x7
1195 if (Reg == DestReg)
1196 return ParamLoadedValue(*DestSrc->Source, Expr);
1198 // Cases where super- or sub-registers needs to be described should
1199 // be handled by the target's hook implementation.
1200 assert(!TRI->isSuperOrSubRegisterEq(Reg, DestReg) &&
1201 "TargetInstrInfo::describeLoadedValue can't describe super- or "
1202 "sub-regs for copy instructions");
1203 return None;
1204 } else if (auto RegImm = isAddImmediate(MI, Reg)) {
1205 Register SrcReg = RegImm->Reg;
1206 Offset = RegImm->Imm;
1207 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
1208 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
1209 } else if (MI.hasOneMemOperand()) {
1210 // Only describe memory which provably does not escape the function. As
1211 // described in llvm.org/PR43343, escaped memory may be clobbered by the
1212 // callee (or by another thread).
1213 const auto &TII = MF->getSubtarget().getInstrInfo();
1214 const MachineFrameInfo &MFI = MF->getFrameInfo();
1215 const MachineMemOperand *MMO = MI.memoperands()[0];
1216 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1218 // If the address points to "special" memory (e.g. a spill slot), it's
1219 // sufficient to check that it isn't aliased by any high-level IR value.
1220 if (!PSV || PSV->mayAlias(&MFI))
1221 return None;
1223 const MachineOperand *BaseOp;
1224 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
1225 TRI))
1226 return None;
1228 // FIXME: Scalable offsets are not yet handled in the offset code below.
1229 if (OffsetIsScalable)
1230 return None;
1232 // TODO: Can currently only handle mem instructions with a single define.
1233 // An example from the x86 target:
1234 // ...
1235 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
1236 // ...
1238 if (MI.getNumExplicitDefs() != 1)
1239 return None;
1241 // TODO: In what way do we need to take Reg into consideration here?
1243 SmallVector<uint64_t, 8> Ops;
1244 DIExpression::appendOffset(Ops, Offset);
1245 Ops.push_back(dwarf::DW_OP_deref_size);
1246 Ops.push_back(MMO->getSize());
1247 Expr = DIExpression::prependOpcodes(Expr, Ops);
1248 return ParamLoadedValue(*BaseOp, Expr);
1251 return None;
1254 /// Both DefMI and UseMI must be valid. By default, call directly to the
1255 /// itinerary. This may be overriden by the target.
1256 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1257 const MachineInstr &DefMI,
1258 unsigned DefIdx,
1259 const MachineInstr &UseMI,
1260 unsigned UseIdx) const {
1261 unsigned DefClass = DefMI.getDesc().getSchedClass();
1262 unsigned UseClass = UseMI.getDesc().getSchedClass();
1263 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1266 bool TargetInstrInfo::getRegSequenceInputs(
1267 const MachineInstr &MI, unsigned DefIdx,
1268 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1269 assert((MI.isRegSequence() ||
1270 MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1272 if (!MI.isRegSequence())
1273 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1275 // We are looking at:
1276 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1277 assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1278 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1279 OpIdx += 2) {
1280 const MachineOperand &MOReg = MI.getOperand(OpIdx);
1281 if (MOReg.isUndef())
1282 continue;
1283 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1284 assert(MOSubIdx.isImm() &&
1285 "One of the subindex of the reg_sequence is not an immediate");
1286 // Record Reg:SubReg, SubIdx.
1287 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1288 (unsigned)MOSubIdx.getImm()));
1290 return true;
1293 bool TargetInstrInfo::getExtractSubregInputs(
1294 const MachineInstr &MI, unsigned DefIdx,
1295 RegSubRegPairAndIdx &InputReg) const {
1296 assert((MI.isExtractSubreg() ||
1297 MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1299 if (!MI.isExtractSubreg())
1300 return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1302 // We are looking at:
1303 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1304 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1305 const MachineOperand &MOReg = MI.getOperand(1);
1306 if (MOReg.isUndef())
1307 return false;
1308 const MachineOperand &MOSubIdx = MI.getOperand(2);
1309 assert(MOSubIdx.isImm() &&
1310 "The subindex of the extract_subreg is not an immediate");
1312 InputReg.Reg = MOReg.getReg();
1313 InputReg.SubReg = MOReg.getSubReg();
1314 InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1315 return true;
1318 bool TargetInstrInfo::getInsertSubregInputs(
1319 const MachineInstr &MI, unsigned DefIdx,
1320 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1321 assert((MI.isInsertSubreg() ||
1322 MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1324 if (!MI.isInsertSubreg())
1325 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1327 // We are looking at:
1328 // Def = INSERT_SEQUENCE v0, v1, sub0.
1329 assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1330 const MachineOperand &MOBaseReg = MI.getOperand(1);
1331 const MachineOperand &MOInsertedReg = MI.getOperand(2);
1332 if (MOInsertedReg.isUndef())
1333 return false;
1334 const MachineOperand &MOSubIdx = MI.getOperand(3);
1335 assert(MOSubIdx.isImm() &&
1336 "One of the subindex of the reg_sequence is not an immediate");
1337 BaseReg.Reg = MOBaseReg.getReg();
1338 BaseReg.SubReg = MOBaseReg.getSubReg();
1340 InsertedReg.Reg = MOInsertedReg.getReg();
1341 InsertedReg.SubReg = MOInsertedReg.getSubReg();
1342 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1343 return true;
1346 // Returns a MIRPrinter comment for this machine operand.
1347 std::string TargetInstrInfo::createMIROperandComment(
1348 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
1349 const TargetRegisterInfo *TRI) const {
1351 if (!MI.isInlineAsm())
1352 return "";
1354 std::string Flags;
1355 raw_string_ostream OS(Flags);
1357 if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
1358 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1359 unsigned ExtraInfo = Op.getImm();
1360 bool First = true;
1361 for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
1362 if (!First)
1363 OS << " ";
1364 First = false;
1365 OS << Info;
1368 return OS.str();
1371 int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
1372 if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
1373 return "";
1375 assert(Op.isImm() && "Expected flag operand to be an immediate");
1376 // Pretty print the inline asm operand descriptor.
1377 unsigned Flag = Op.getImm();
1378 unsigned Kind = InlineAsm::getKind(Flag);
1379 OS << InlineAsm::getKindName(Kind);
1381 unsigned RCID = 0;
1382 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1383 InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1384 if (TRI) {
1385 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1386 } else
1387 OS << ":RC" << RCID;
1390 if (InlineAsm::isMemKind(Flag)) {
1391 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1392 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1395 unsigned TiedTo = 0;
1396 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1397 OS << " tiedto:$" << TiedTo;
1399 return OS.str();
1402 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default;
1404 void TargetInstrInfo::mergeOutliningCandidateAttributes(
1405 Function &F, std::vector<outliner::Candidate> &Candidates) const {
1406 // Include target features from an arbitrary candidate for the outlined
1407 // function. This makes sure the outlined function knows what kinds of
1408 // instructions are going into it. This is fine, since all parent functions
1409 // must necessarily support the instructions that are in the outlined region.
1410 outliner::Candidate &FirstCand = Candidates.front();
1411 const Function &ParentFn = FirstCand.getMF()->getFunction();
1412 if (ParentFn.hasFnAttribute("target-features"))
1413 F.addFnAttr(ParentFn.getFnAttribute("target-features"));
1414 if (ParentFn.hasFnAttribute("target-cpu"))
1415 F.addFnAttr(ParentFn.getFnAttribute("target-cpu"));
1417 // Set nounwind, so we don't generate eh_frame.
1418 if (llvm::all_of(Candidates, [](const outliner::Candidate &C) {
1419 return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
1421 F.addFnAttr(Attribute::NoUnwind);
1424 bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1425 unsigned &Flags) const {
1426 // Some instrumentations create special TargetOpcode at the start which
1427 // expands to special code sequences which must be present.
1428 auto First = MBB.getFirstNonDebugInstr();
1429 if (First != MBB.end() &&
1430 (First->getOpcode() == TargetOpcode::FENTRY_CALL ||
1431 First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER))
1432 return false;
1434 return true;