[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / WinEHPrepare.cpp
blobb835503ee9edbebb5177787d0d7e28dc7799ceb1
1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/WinEHFuncInfo.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Verifier.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/SSAUpdater.h"
39 using namespace llvm;
41 #define DEBUG_TYPE "winehprepare"
43 static cl::opt<bool> DisableDemotion(
44 "disable-demotion", cl::Hidden,
45 cl::desc(
46 "Clone multicolor basic blocks but do not demote cross scopes"),
47 cl::init(false));
49 static cl::opt<bool> DisableCleanups(
50 "disable-cleanups", cl::Hidden,
51 cl::desc("Do not remove implausible terminators or other similar cleanups"),
52 cl::init(false));
54 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
55 "demote-catchswitch-only", cl::Hidden,
56 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
58 namespace {
60 class WinEHPrepare : public FunctionPass {
61 public:
62 static char ID; // Pass identification, replacement for typeid.
63 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
64 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
66 bool runOnFunction(Function &Fn) override;
68 bool doFinalization(Module &M) override;
70 void getAnalysisUsage(AnalysisUsage &AU) const override;
72 StringRef getPassName() const override {
73 return "Windows exception handling preparation";
76 private:
77 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
78 void
79 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
80 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
81 AllocaInst *insertPHILoads(PHINode *PN, Function &F);
82 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
83 DenseMap<BasicBlock *, Value *> &Loads, Function &F);
84 bool prepareExplicitEH(Function &F);
85 void colorFunclets(Function &F);
87 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
88 void cloneCommonBlocks(Function &F);
89 void removeImplausibleInstructions(Function &F);
90 void cleanupPreparedFunclets(Function &F);
91 void verifyPreparedFunclets(Function &F);
93 bool DemoteCatchSwitchPHIOnly;
95 // All fields are reset by runOnFunction.
96 EHPersonality Personality = EHPersonality::Unknown;
98 const DataLayout *DL = nullptr;
99 DenseMap<BasicBlock *, ColorVector> BlockColors;
100 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
103 } // end anonymous namespace
105 char WinEHPrepare::ID = 0;
106 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
107 false, false)
109 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
110 return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
113 bool WinEHPrepare::runOnFunction(Function &Fn) {
114 if (!Fn.hasPersonalityFn())
115 return false;
117 // Classify the personality to see what kind of preparation we need.
118 Personality = classifyEHPersonality(Fn.getPersonalityFn());
120 // Do nothing if this is not a scope-based personality.
121 if (!isScopedEHPersonality(Personality))
122 return false;
124 DL = &Fn.getParent()->getDataLayout();
125 return prepareExplicitEH(Fn);
128 bool WinEHPrepare::doFinalization(Module &M) { return false; }
130 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
132 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
133 const BasicBlock *BB) {
134 CxxUnwindMapEntry UME;
135 UME.ToState = ToState;
136 UME.Cleanup = BB;
137 FuncInfo.CxxUnwindMap.push_back(UME);
138 return FuncInfo.getLastStateNumber();
141 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
142 int TryHigh, int CatchHigh,
143 ArrayRef<const CatchPadInst *> Handlers) {
144 WinEHTryBlockMapEntry TBME;
145 TBME.TryLow = TryLow;
146 TBME.TryHigh = TryHigh;
147 TBME.CatchHigh = CatchHigh;
148 assert(TBME.TryLow <= TBME.TryHigh);
149 for (const CatchPadInst *CPI : Handlers) {
150 WinEHHandlerType HT;
151 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
152 if (TypeInfo->isNullValue())
153 HT.TypeDescriptor = nullptr;
154 else
155 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
156 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
157 HT.Handler = CPI->getParent();
158 if (auto *AI =
159 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
160 HT.CatchObj.Alloca = AI;
161 else
162 HT.CatchObj.Alloca = nullptr;
163 TBME.HandlerArray.push_back(HT);
165 FuncInfo.TryBlockMap.push_back(TBME);
168 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
169 for (const User *U : CleanupPad->users())
170 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
171 return CRI->getUnwindDest();
172 return nullptr;
175 static void calculateStateNumbersForInvokes(const Function *Fn,
176 WinEHFuncInfo &FuncInfo) {
177 auto *F = const_cast<Function *>(Fn);
178 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
179 for (BasicBlock &BB : *F) {
180 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
181 if (!II)
182 continue;
184 auto &BBColors = BlockColors[&BB];
185 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
186 BasicBlock *FuncletEntryBB = BBColors.front();
188 BasicBlock *FuncletUnwindDest;
189 auto *FuncletPad =
190 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
191 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
192 if (!FuncletPad)
193 FuncletUnwindDest = nullptr;
194 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
195 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
196 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
197 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
198 else
199 llvm_unreachable("unexpected funclet pad!");
201 BasicBlock *InvokeUnwindDest = II->getUnwindDest();
202 int BaseState = -1;
203 if (FuncletUnwindDest == InvokeUnwindDest) {
204 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
205 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
206 BaseState = BaseStateI->second;
209 if (BaseState != -1) {
210 FuncInfo.InvokeStateMap[II] = BaseState;
211 } else {
212 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
213 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
214 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
219 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
220 // to. If the unwind edge came from an invoke, return null.
221 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
222 Value *ParentPad) {
223 const Instruction *TI = BB->getTerminator();
224 if (isa<InvokeInst>(TI))
225 return nullptr;
226 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
227 if (CatchSwitch->getParentPad() != ParentPad)
228 return nullptr;
229 return BB;
231 assert(!TI->isEHPad() && "unexpected EHPad!");
232 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
233 if (CleanupPad->getParentPad() != ParentPad)
234 return nullptr;
235 return CleanupPad->getParent();
238 // Starting from a EHPad, Backward walk through control-flow graph
239 // to produce two primary outputs:
240 // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
241 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
242 const Instruction *FirstNonPHI,
243 int ParentState) {
244 const BasicBlock *BB = FirstNonPHI->getParent();
245 assert(BB->isEHPad() && "not a funclet!");
247 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
248 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
249 "shouldn't revist catch funclets!");
251 SmallVector<const CatchPadInst *, 2> Handlers;
252 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
253 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
254 Handlers.push_back(CatchPad);
256 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
257 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
258 for (const BasicBlock *PredBlock : predecessors(BB))
259 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
260 CatchSwitch->getParentPad())))
261 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
262 TryLow);
263 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
265 // catchpads are separate funclets in C++ EH due to the way rethrow works.
266 int TryHigh = CatchLow - 1;
268 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
269 // stored in pre-order (outer first, inner next), not post-order
270 // Add to map here. Fix the CatchHigh after children are processed
271 const Module *Mod = BB->getParent()->getParent();
272 bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit();
273 if (IsPreOrder)
274 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers);
275 unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1;
277 for (const auto *CatchPad : Handlers) {
278 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
279 for (const User *U : CatchPad->users()) {
280 const auto *UserI = cast<Instruction>(U);
281 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
282 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
283 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
284 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
286 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
287 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
288 // If a nested cleanup pad reports a null unwind destination and the
289 // enclosing catch pad doesn't it must be post-dominated by an
290 // unreachable instruction.
291 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
292 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
296 int CatchHigh = FuncInfo.getLastStateNumber();
297 // Now child Catches are processed, update CatchHigh
298 if (IsPreOrder)
299 FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh;
300 else // PostOrder
301 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
303 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
304 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
305 << '\n');
306 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
307 << '\n');
308 } else {
309 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
311 // It's possible for a cleanup to be visited twice: it might have multiple
312 // cleanupret instructions.
313 if (FuncInfo.EHPadStateMap.count(CleanupPad))
314 return;
316 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
317 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
318 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
319 << BB->getName() << '\n');
320 for (const BasicBlock *PredBlock : predecessors(BB)) {
321 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
322 CleanupPad->getParentPad()))) {
323 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
324 CleanupState);
327 for (const User *U : CleanupPad->users()) {
328 const auto *UserI = cast<Instruction>(U);
329 if (UserI->isEHPad())
330 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
331 "contain exceptional actions");
336 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
337 const Function *Filter, const BasicBlock *Handler) {
338 SEHUnwindMapEntry Entry;
339 Entry.ToState = ParentState;
340 Entry.IsFinally = false;
341 Entry.Filter = Filter;
342 Entry.Handler = Handler;
343 FuncInfo.SEHUnwindMap.push_back(Entry);
344 return FuncInfo.SEHUnwindMap.size() - 1;
347 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
348 const BasicBlock *Handler) {
349 SEHUnwindMapEntry Entry;
350 Entry.ToState = ParentState;
351 Entry.IsFinally = true;
352 Entry.Filter = nullptr;
353 Entry.Handler = Handler;
354 FuncInfo.SEHUnwindMap.push_back(Entry);
355 return FuncInfo.SEHUnwindMap.size() - 1;
358 // Starting from a EHPad, Backward walk through control-flow graph
359 // to produce two primary outputs:
360 // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
361 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
362 const Instruction *FirstNonPHI,
363 int ParentState) {
364 const BasicBlock *BB = FirstNonPHI->getParent();
365 assert(BB->isEHPad() && "no a funclet!");
367 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
368 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
369 "shouldn't revist catch funclets!");
371 // Extract the filter function and the __except basic block and create a
372 // state for them.
373 assert(CatchSwitch->getNumHandlers() == 1 &&
374 "SEH doesn't have multiple handlers per __try");
375 const auto *CatchPad =
376 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
377 const BasicBlock *CatchPadBB = CatchPad->getParent();
378 const Constant *FilterOrNull =
379 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
380 const Function *Filter = dyn_cast<Function>(FilterOrNull);
381 assert((Filter || FilterOrNull->isNullValue()) &&
382 "unexpected filter value");
383 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
385 // Everything in the __try block uses TryState as its parent state.
386 FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
387 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
388 << CatchPadBB->getName() << '\n');
389 for (const BasicBlock *PredBlock : predecessors(BB))
390 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
391 CatchSwitch->getParentPad())))
392 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
393 TryState);
395 // Everything in the __except block unwinds to ParentState, just like code
396 // outside the __try.
397 for (const User *U : CatchPad->users()) {
398 const auto *UserI = cast<Instruction>(U);
399 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
400 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
401 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
402 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
404 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
405 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
406 // If a nested cleanup pad reports a null unwind destination and the
407 // enclosing catch pad doesn't it must be post-dominated by an
408 // unreachable instruction.
409 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
410 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
413 } else {
414 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
416 // It's possible for a cleanup to be visited twice: it might have multiple
417 // cleanupret instructions.
418 if (FuncInfo.EHPadStateMap.count(CleanupPad))
419 return;
421 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
422 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
423 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
424 << BB->getName() << '\n');
425 for (const BasicBlock *PredBlock : predecessors(BB))
426 if ((PredBlock =
427 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
428 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
429 CleanupState);
430 for (const User *U : CleanupPad->users()) {
431 const auto *UserI = cast<Instruction>(U);
432 if (UserI->isEHPad())
433 report_fatal_error("Cleanup funclets for the SEH personality cannot "
434 "contain exceptional actions");
439 static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
440 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
441 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
442 CatchSwitch->unwindsToCaller();
443 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
444 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
445 getCleanupRetUnwindDest(CleanupPad) == nullptr;
446 if (isa<CatchPadInst>(EHPad))
447 return false;
448 llvm_unreachable("unexpected EHPad!");
451 void llvm::calculateSEHStateNumbers(const Function *Fn,
452 WinEHFuncInfo &FuncInfo) {
453 // Don't compute state numbers twice.
454 if (!FuncInfo.SEHUnwindMap.empty())
455 return;
457 for (const BasicBlock &BB : *Fn) {
458 if (!BB.isEHPad())
459 continue;
460 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
461 if (!isTopLevelPadForMSVC(FirstNonPHI))
462 continue;
463 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
466 calculateStateNumbersForInvokes(Fn, FuncInfo);
469 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
470 WinEHFuncInfo &FuncInfo) {
471 // Return if it's already been done.
472 if (!FuncInfo.EHPadStateMap.empty())
473 return;
475 for (const BasicBlock &BB : *Fn) {
476 if (!BB.isEHPad())
477 continue;
478 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
479 if (!isTopLevelPadForMSVC(FirstNonPHI))
480 continue;
481 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
484 calculateStateNumbersForInvokes(Fn, FuncInfo);
487 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
488 int TryParentState, ClrHandlerType HandlerType,
489 uint32_t TypeToken, const BasicBlock *Handler) {
490 ClrEHUnwindMapEntry Entry;
491 Entry.HandlerParentState = HandlerParentState;
492 Entry.TryParentState = TryParentState;
493 Entry.Handler = Handler;
494 Entry.HandlerType = HandlerType;
495 Entry.TypeToken = TypeToken;
496 FuncInfo.ClrEHUnwindMap.push_back(Entry);
497 return FuncInfo.ClrEHUnwindMap.size() - 1;
500 void llvm::calculateClrEHStateNumbers(const Function *Fn,
501 WinEHFuncInfo &FuncInfo) {
502 // Return if it's already been done.
503 if (!FuncInfo.EHPadStateMap.empty())
504 return;
506 // This numbering assigns one state number to each catchpad and cleanuppad.
507 // It also computes two tree-like relations over states:
508 // 1) Each state has a "HandlerParentState", which is the state of the next
509 // outer handler enclosing this state's handler (same as nearest ancestor
510 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
511 // 2) Each state has a "TryParentState", which:
512 // a) for a catchpad that's not the last handler on its catchswitch, is
513 // the state of the next catchpad on that catchswitch
514 // b) for all other pads, is the state of the pad whose try region is the
515 // next outer try region enclosing this state's try region. The "try
516 // regions are not present as such in the IR, but will be inferred
517 // based on the placement of invokes and pads which reach each other
518 // by exceptional exits
519 // Catchswitches do not get their own states, but each gets mapped to the
520 // state of its first catchpad.
522 // Step one: walk down from outermost to innermost funclets, assigning each
523 // catchpad and cleanuppad a state number. Add an entry to the
524 // ClrEHUnwindMap for each state, recording its HandlerParentState and
525 // handler attributes. Record the TryParentState as well for each catchpad
526 // that's not the last on its catchswitch, but initialize all other entries'
527 // TryParentStates to a sentinel -1 value that the next pass will update.
529 // Seed a worklist with pads that have no parent.
530 SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
531 for (const BasicBlock &BB : *Fn) {
532 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
533 const Value *ParentPad;
534 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
535 ParentPad = CPI->getParentPad();
536 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
537 ParentPad = CSI->getParentPad();
538 else
539 continue;
540 if (isa<ConstantTokenNone>(ParentPad))
541 Worklist.emplace_back(FirstNonPHI, -1);
544 // Use the worklist to visit all pads, from outer to inner. Record
545 // HandlerParentState for all pads. Record TryParentState only for catchpads
546 // that aren't the last on their catchswitch (setting all other entries'
547 // TryParentStates to an initial value of -1). This loop is also responsible
548 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
549 // catchswitches.
550 while (!Worklist.empty()) {
551 const Instruction *Pad;
552 int HandlerParentState;
553 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
555 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
556 // Create the entry for this cleanup with the appropriate handler
557 // properties. Finally and fault handlers are distinguished by arity.
558 ClrHandlerType HandlerType =
559 (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
560 : ClrHandlerType::Finally);
561 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
562 HandlerType, 0, Pad->getParent());
563 // Queue any child EH pads on the worklist.
564 for (const User *U : Cleanup->users())
565 if (const auto *I = dyn_cast<Instruction>(U))
566 if (I->isEHPad())
567 Worklist.emplace_back(I, CleanupState);
568 // Remember this pad's state.
569 FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
570 } else {
571 // Walk the handlers of this catchswitch in reverse order since all but
572 // the last need to set the following one as its TryParentState.
573 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
574 int CatchState = -1, FollowerState = -1;
575 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
576 for (const BasicBlock *CatchBlock : llvm::reverse(CatchBlocks)) {
577 // Create the entry for this catch with the appropriate handler
578 // properties.
579 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
580 uint32_t TypeToken = static_cast<uint32_t>(
581 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
582 CatchState =
583 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
584 ClrHandlerType::Catch, TypeToken, CatchBlock);
585 // Queue any child EH pads on the worklist.
586 for (const User *U : Catch->users())
587 if (const auto *I = dyn_cast<Instruction>(U))
588 if (I->isEHPad())
589 Worklist.emplace_back(I, CatchState);
590 // Remember this catch's state.
591 FuncInfo.EHPadStateMap[Catch] = CatchState;
592 FollowerState = CatchState;
594 // Associate the catchswitch with the state of its first catch.
595 assert(CatchSwitch->getNumHandlers());
596 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
600 // Step two: record the TryParentState of each state. For cleanuppads that
601 // don't have cleanuprets, we may need to infer this from their child pads,
602 // so visit pads in descendant-most to ancestor-most order.
603 for (ClrEHUnwindMapEntry &Entry : llvm::reverse(FuncInfo.ClrEHUnwindMap)) {
604 const Instruction *Pad =
605 Entry.Handler.get<const BasicBlock *>()->getFirstNonPHI();
606 // For most pads, the TryParentState is the state associated with the
607 // unwind dest of exceptional exits from it.
608 const BasicBlock *UnwindDest;
609 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
610 // If a catch is not the last in its catchswitch, its TryParentState is
611 // the state associated with the next catch in the switch, even though
612 // that's not the unwind dest of exceptions escaping the catch. Those
613 // cases were already assigned a TryParentState in the first pass, so
614 // skip them.
615 if (Entry.TryParentState != -1)
616 continue;
617 // Otherwise, get the unwind dest from the catchswitch.
618 UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
619 } else {
620 const auto *Cleanup = cast<CleanupPadInst>(Pad);
621 UnwindDest = nullptr;
622 for (const User *U : Cleanup->users()) {
623 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
624 // Common and unambiguous case -- cleanupret indicates cleanup's
625 // unwind dest.
626 UnwindDest = CleanupRet->getUnwindDest();
627 break;
630 // Get an unwind dest for the user
631 const BasicBlock *UserUnwindDest = nullptr;
632 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
633 UserUnwindDest = Invoke->getUnwindDest();
634 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
635 UserUnwindDest = CatchSwitch->getUnwindDest();
636 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
637 int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
638 int UserUnwindState =
639 FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
640 if (UserUnwindState != -1)
641 UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
642 .Handler.get<const BasicBlock *>();
645 // Not having an unwind dest for this user might indicate that it
646 // doesn't unwind, so can't be taken as proof that the cleanup itself
647 // may unwind to caller (see e.g. SimplifyUnreachable and
648 // RemoveUnwindEdge).
649 if (!UserUnwindDest)
650 continue;
652 // Now we have an unwind dest for the user, but we need to see if it
653 // unwinds all the way out of the cleanup or if it stays within it.
654 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
655 const Value *UserUnwindParent;
656 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
657 UserUnwindParent = CSI->getParentPad();
658 else
659 UserUnwindParent =
660 cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
662 // The unwind stays within the cleanup iff it targets a child of the
663 // cleanup.
664 if (UserUnwindParent == Cleanup)
665 continue;
667 // This unwind exits the cleanup, so its dest is the cleanup's dest.
668 UnwindDest = UserUnwindDest;
669 break;
673 // Record the state of the unwind dest as the TryParentState.
674 int UnwindDestState;
676 // If UnwindDest is null at this point, either the pad in question can
677 // be exited by unwind to caller, or it cannot be exited by unwind. In
678 // either case, reporting such cases as unwinding to caller is correct.
679 // This can lead to EH tables that "look strange" -- if this pad's is in
680 // a parent funclet which has other children that do unwind to an enclosing
681 // pad, the try region for this pad will be missing the "duplicate" EH
682 // clause entries that you'd expect to see covering the whole parent. That
683 // should be benign, since the unwind never actually happens. If it were
684 // an issue, we could add a subsequent pass that pushes unwind dests down
685 // from parents that have them to children that appear to unwind to caller.
686 if (!UnwindDest) {
687 UnwindDestState = -1;
688 } else {
689 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
692 Entry.TryParentState = UnwindDestState;
695 // Step three: transfer information from pads to invokes.
696 calculateStateNumbersForInvokes(Fn, FuncInfo);
699 void WinEHPrepare::colorFunclets(Function &F) {
700 BlockColors = colorEHFunclets(F);
702 // Invert the map from BB to colors to color to BBs.
703 for (BasicBlock &BB : F) {
704 ColorVector &Colors = BlockColors[&BB];
705 for (BasicBlock *Color : Colors)
706 FuncletBlocks[Color].push_back(&BB);
710 void WinEHPrepare::demotePHIsOnFunclets(Function &F,
711 bool DemoteCatchSwitchPHIOnly) {
712 // Strip PHI nodes off of EH pads.
713 SmallVector<PHINode *, 16> PHINodes;
714 for (BasicBlock &BB : make_early_inc_range(F)) {
715 if (!BB.isEHPad())
716 continue;
717 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB.getFirstNonPHI()))
718 continue;
720 for (Instruction &I : make_early_inc_range(BB)) {
721 auto *PN = dyn_cast<PHINode>(&I);
722 // Stop at the first non-PHI.
723 if (!PN)
724 break;
726 AllocaInst *SpillSlot = insertPHILoads(PN, F);
727 if (SpillSlot)
728 insertPHIStores(PN, SpillSlot);
730 PHINodes.push_back(PN);
734 for (auto *PN : PHINodes) {
735 // There may be lingering uses on other EH PHIs being removed
736 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
737 PN->eraseFromParent();
741 void WinEHPrepare::cloneCommonBlocks(Function &F) {
742 // We need to clone all blocks which belong to multiple funclets. Values are
743 // remapped throughout the funclet to propagate both the new instructions
744 // *and* the new basic blocks themselves.
745 for (auto &Funclets : FuncletBlocks) {
746 BasicBlock *FuncletPadBB = Funclets.first;
747 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
748 Value *FuncletToken;
749 if (FuncletPadBB == &F.getEntryBlock())
750 FuncletToken = ConstantTokenNone::get(F.getContext());
751 else
752 FuncletToken = FuncletPadBB->getFirstNonPHI();
754 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
755 ValueToValueMapTy VMap;
756 for (BasicBlock *BB : BlocksInFunclet) {
757 ColorVector &ColorsForBB = BlockColors[BB];
758 // We don't need to do anything if the block is monochromatic.
759 size_t NumColorsForBB = ColorsForBB.size();
760 if (NumColorsForBB == 1)
761 continue;
763 DEBUG_WITH_TYPE("winehprepare-coloring",
764 dbgs() << " Cloning block \'" << BB->getName()
765 << "\' for funclet \'" << FuncletPadBB->getName()
766 << "\'.\n");
768 // Create a new basic block and copy instructions into it!
769 BasicBlock *CBB =
770 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
771 // Insert the clone immediately after the original to ensure determinism
772 // and to keep the same relative ordering of any funclet's blocks.
773 CBB->insertInto(&F, BB->getNextNode());
775 // Add basic block mapping.
776 VMap[BB] = CBB;
778 // Record delta operations that we need to perform to our color mappings.
779 Orig2Clone.emplace_back(BB, CBB);
782 // If nothing was cloned, we're done cloning in this funclet.
783 if (Orig2Clone.empty())
784 continue;
786 // Update our color mappings to reflect that one block has lost a color and
787 // another has gained a color.
788 for (auto &BBMapping : Orig2Clone) {
789 BasicBlock *OldBlock = BBMapping.first;
790 BasicBlock *NewBlock = BBMapping.second;
792 BlocksInFunclet.push_back(NewBlock);
793 ColorVector &NewColors = BlockColors[NewBlock];
794 assert(NewColors.empty() && "A new block should only have one color!");
795 NewColors.push_back(FuncletPadBB);
797 DEBUG_WITH_TYPE("winehprepare-coloring",
798 dbgs() << " Assigned color \'" << FuncletPadBB->getName()
799 << "\' to block \'" << NewBlock->getName()
800 << "\'.\n");
802 llvm::erase_value(BlocksInFunclet, OldBlock);
803 ColorVector &OldColors = BlockColors[OldBlock];
804 llvm::erase_value(OldColors, FuncletPadBB);
806 DEBUG_WITH_TYPE("winehprepare-coloring",
807 dbgs() << " Removed color \'" << FuncletPadBB->getName()
808 << "\' from block \'" << OldBlock->getName()
809 << "\'.\n");
812 // Loop over all of the instructions in this funclet, fixing up operand
813 // references as we go. This uses VMap to do all the hard work.
814 for (BasicBlock *BB : BlocksInFunclet)
815 // Loop over all instructions, fixing each one as we find it...
816 for (Instruction &I : *BB)
817 RemapInstruction(&I, VMap,
818 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
820 // Catchrets targeting cloned blocks need to be updated separately from
821 // the loop above because they are not in the current funclet.
822 SmallVector<CatchReturnInst *, 2> FixupCatchrets;
823 for (auto &BBMapping : Orig2Clone) {
824 BasicBlock *OldBlock = BBMapping.first;
825 BasicBlock *NewBlock = BBMapping.second;
827 FixupCatchrets.clear();
828 for (BasicBlock *Pred : predecessors(OldBlock))
829 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
830 if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
831 FixupCatchrets.push_back(CatchRet);
833 for (CatchReturnInst *CatchRet : FixupCatchrets)
834 CatchRet->setSuccessor(NewBlock);
837 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
838 unsigned NumPreds = PN->getNumIncomingValues();
839 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
840 ++PredIdx) {
841 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
842 bool EdgeTargetsFunclet;
843 if (auto *CRI =
844 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
845 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
846 } else {
847 ColorVector &IncomingColors = BlockColors[IncomingBlock];
848 assert(!IncomingColors.empty() && "Block not colored!");
849 assert((IncomingColors.size() == 1 ||
850 llvm::all_of(IncomingColors,
851 [&](BasicBlock *Color) {
852 return Color != FuncletPadBB;
853 })) &&
854 "Cloning should leave this funclet's blocks monochromatic");
855 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
857 if (IsForOldBlock != EdgeTargetsFunclet)
858 continue;
859 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
860 // Revisit the next entry.
861 --PredIdx;
862 --PredEnd;
866 for (auto &BBMapping : Orig2Clone) {
867 BasicBlock *OldBlock = BBMapping.first;
868 BasicBlock *NewBlock = BBMapping.second;
869 for (PHINode &OldPN : OldBlock->phis()) {
870 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
872 for (PHINode &NewPN : NewBlock->phis()) {
873 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
877 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
878 // the PHI nodes for NewBB now.
879 for (auto &BBMapping : Orig2Clone) {
880 BasicBlock *OldBlock = BBMapping.first;
881 BasicBlock *NewBlock = BBMapping.second;
882 for (BasicBlock *SuccBB : successors(NewBlock)) {
883 for (PHINode &SuccPN : SuccBB->phis()) {
884 // Ok, we have a PHI node. Figure out what the incoming value was for
885 // the OldBlock.
886 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
887 if (OldBlockIdx == -1)
888 break;
889 Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
891 // Remap the value if necessary.
892 if (auto *Inst = dyn_cast<Instruction>(IV)) {
893 ValueToValueMapTy::iterator I = VMap.find(Inst);
894 if (I != VMap.end())
895 IV = I->second;
898 SuccPN.addIncoming(IV, NewBlock);
903 for (ValueToValueMapTy::value_type VT : VMap) {
904 // If there were values defined in BB that are used outside the funclet,
905 // then we now have to update all uses of the value to use either the
906 // original value, the cloned value, or some PHI derived value. This can
907 // require arbitrary PHI insertion, of which we are prepared to do, clean
908 // these up now.
909 SmallVector<Use *, 16> UsesToRename;
911 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
912 if (!OldI)
913 continue;
914 auto *NewI = cast<Instruction>(VT.second);
915 // Scan all uses of this instruction to see if it is used outside of its
916 // funclet, and if so, record them in UsesToRename.
917 for (Use &U : OldI->uses()) {
918 Instruction *UserI = cast<Instruction>(U.getUser());
919 BasicBlock *UserBB = UserI->getParent();
920 ColorVector &ColorsForUserBB = BlockColors[UserBB];
921 assert(!ColorsForUserBB.empty());
922 if (ColorsForUserBB.size() > 1 ||
923 *ColorsForUserBB.begin() != FuncletPadBB)
924 UsesToRename.push_back(&U);
927 // If there are no uses outside the block, we're done with this
928 // instruction.
929 if (UsesToRename.empty())
930 continue;
932 // We found a use of OldI outside of the funclet. Rename all uses of OldI
933 // that are outside its funclet to be uses of the appropriate PHI node
934 // etc.
935 SSAUpdater SSAUpdate;
936 SSAUpdate.Initialize(OldI->getType(), OldI->getName());
937 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
938 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
940 while (!UsesToRename.empty())
941 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
946 void WinEHPrepare::removeImplausibleInstructions(Function &F) {
947 // Remove implausible terminators and replace them with UnreachableInst.
948 for (auto &Funclet : FuncletBlocks) {
949 BasicBlock *FuncletPadBB = Funclet.first;
950 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
951 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
952 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
953 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
954 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
956 for (BasicBlock *BB : BlocksInFunclet) {
957 for (Instruction &I : *BB) {
958 auto *CB = dyn_cast<CallBase>(&I);
959 if (!CB)
960 continue;
962 Value *FuncletBundleOperand = nullptr;
963 if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet))
964 FuncletBundleOperand = BU->Inputs.front();
966 if (FuncletBundleOperand == FuncletPad)
967 continue;
969 // Skip call sites which are nounwind intrinsics or inline asm.
970 auto *CalledFn =
971 dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
972 if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) ||
973 CB->isInlineAsm()))
974 continue;
976 // This call site was not part of this funclet, remove it.
977 if (isa<InvokeInst>(CB)) {
978 // Remove the unwind edge if it was an invoke.
979 removeUnwindEdge(BB);
980 // Get a pointer to the new call.
981 BasicBlock::iterator CallI =
982 std::prev(BB->getTerminator()->getIterator());
983 auto *CI = cast<CallInst>(&*CallI);
984 changeToUnreachable(CI);
985 } else {
986 changeToUnreachable(&I);
989 // There are no more instructions in the block (except for unreachable),
990 // we are done.
991 break;
994 Instruction *TI = BB->getTerminator();
995 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
996 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
997 // The token consumed by a CatchReturnInst must match the funclet token.
998 bool IsUnreachableCatchret = false;
999 if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
1000 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
1001 // The token consumed by a CleanupReturnInst must match the funclet token.
1002 bool IsUnreachableCleanupret = false;
1003 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
1004 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
1005 if (IsUnreachableRet || IsUnreachableCatchret ||
1006 IsUnreachableCleanupret) {
1007 changeToUnreachable(TI);
1008 } else if (isa<InvokeInst>(TI)) {
1009 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
1010 // Invokes within a cleanuppad for the MSVC++ personality never
1011 // transfer control to their unwind edge: the personality will
1012 // terminate the program.
1013 removeUnwindEdge(BB);
1020 void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1021 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1022 // branches, etc.
1023 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
1024 SimplifyInstructionsInBlock(&BB);
1025 ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true);
1026 MergeBlockIntoPredecessor(&BB);
1029 // We might have some unreachable blocks after cleaning up some impossible
1030 // control flow.
1031 removeUnreachableBlocks(F);
1034 #ifndef NDEBUG
1035 void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1036 for (BasicBlock &BB : F) {
1037 size_t NumColors = BlockColors[&BB].size();
1038 assert(NumColors == 1 && "Expected monochromatic BB!");
1039 if (NumColors == 0)
1040 report_fatal_error("Uncolored BB!");
1041 if (NumColors > 1)
1042 report_fatal_error("Multicolor BB!");
1043 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1044 "EH Pad still has a PHI!");
1047 #endif
1049 bool WinEHPrepare::prepareExplicitEH(Function &F) {
1050 // Remove unreachable blocks. It is not valuable to assign them a color and
1051 // their existence can trick us into thinking values are alive when they are
1052 // not.
1053 removeUnreachableBlocks(F);
1055 // Determine which blocks are reachable from which funclet entries.
1056 colorFunclets(F);
1058 cloneCommonBlocks(F);
1060 if (!DisableDemotion)
1061 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1062 DemoteCatchSwitchPHIOnlyOpt);
1064 if (!DisableCleanups) {
1065 assert(!verifyFunction(F, &dbgs()));
1066 removeImplausibleInstructions(F);
1068 assert(!verifyFunction(F, &dbgs()));
1069 cleanupPreparedFunclets(F);
1072 LLVM_DEBUG(verifyPreparedFunclets(F));
1073 // Recolor the CFG to verify that all is well.
1074 LLVM_DEBUG(colorFunclets(F));
1075 LLVM_DEBUG(verifyPreparedFunclets(F));
1077 BlockColors.clear();
1078 FuncletBlocks.clear();
1080 return true;
1083 // TODO: Share loads when one use dominates another, or when a catchpad exit
1084 // dominates uses (needs dominators).
1085 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1086 BasicBlock *PHIBlock = PN->getParent();
1087 AllocaInst *SpillSlot = nullptr;
1088 Instruction *EHPad = PHIBlock->getFirstNonPHI();
1090 if (!EHPad->isTerminator()) {
1091 // If the EHPad isn't a terminator, then we can insert a load in this block
1092 // that will dominate all uses.
1093 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1094 Twine(PN->getName(), ".wineh.spillslot"),
1095 &F.getEntryBlock().front());
1096 Value *V = new LoadInst(PN->getType(), SpillSlot,
1097 Twine(PN->getName(), ".wineh.reload"),
1098 &*PHIBlock->getFirstInsertionPt());
1099 PN->replaceAllUsesWith(V);
1100 return SpillSlot;
1103 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1104 // loads of the slot before every use.
1105 DenseMap<BasicBlock *, Value *> Loads;
1106 for (Use &U : llvm::make_early_inc_range(PN->uses())) {
1107 auto *UsingInst = cast<Instruction>(U.getUser());
1108 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1109 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1110 // stores for it separately.
1111 continue;
1113 replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1115 return SpillSlot;
1118 // TODO: improve store placement. Inserting at def is probably good, but need
1119 // to be careful not to introduce interfering stores (needs liveness analysis).
1120 // TODO: identify related phi nodes that can share spill slots, and share them
1121 // (also needs liveness).
1122 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1123 AllocaInst *SpillSlot) {
1124 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1125 // stored to the spill slot by the end of the given Block.
1126 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1128 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1130 while (!Worklist.empty()) {
1131 BasicBlock *EHBlock;
1132 Value *InVal;
1133 std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1135 PHINode *PN = dyn_cast<PHINode>(InVal);
1136 if (PN && PN->getParent() == EHBlock) {
1137 // The value is defined by another PHI we need to remove, with no room to
1138 // insert a store after the PHI, so each predecessor needs to store its
1139 // incoming value.
1140 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1141 Value *PredVal = PN->getIncomingValue(i);
1143 // Undef can safely be skipped.
1144 if (isa<UndefValue>(PredVal))
1145 continue;
1147 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1149 } else {
1150 // We need to store InVal, which dominates EHBlock, but can't put a store
1151 // in EHBlock, so need to put stores in each predecessor.
1152 for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1153 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1159 void WinEHPrepare::insertPHIStore(
1160 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1161 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1163 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1164 // Pred is unsplittable, so we need to queue it on the worklist.
1165 Worklist.push_back({PredBlock, PredVal});
1166 return;
1169 // Otherwise, insert the store at the end of the basic block.
1170 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1173 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1174 DenseMap<BasicBlock *, Value *> &Loads,
1175 Function &F) {
1176 // Lazilly create the spill slot.
1177 if (!SpillSlot)
1178 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1179 Twine(V->getName(), ".wineh.spillslot"),
1180 &F.getEntryBlock().front());
1182 auto *UsingInst = cast<Instruction>(U.getUser());
1183 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1184 // If this is a PHI node, we can't insert a load of the value before
1185 // the use. Instead insert the load in the predecessor block
1186 // corresponding to the incoming value.
1188 // Note that if there are multiple edges from a basic block to this
1189 // PHI node that we cannot have multiple loads. The problem is that
1190 // the resulting PHI node will have multiple values (from each load)
1191 // coming in from the same block, which is illegal SSA form.
1192 // For this reason, we keep track of and reuse loads we insert.
1193 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1194 if (auto *CatchRet =
1195 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1196 // Putting a load above a catchret and use on the phi would still leave
1197 // a cross-funclet def/use. We need to split the edge, change the
1198 // catchret to target the new block, and put the load there.
1199 BasicBlock *PHIBlock = UsingInst->getParent();
1200 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1201 // SplitEdge gives us:
1202 // IncomingBlock:
1203 // ...
1204 // br label %NewBlock
1205 // NewBlock:
1206 // catchret label %PHIBlock
1207 // But we need:
1208 // IncomingBlock:
1209 // ...
1210 // catchret label %NewBlock
1211 // NewBlock:
1212 // br label %PHIBlock
1213 // So move the terminators to each others' blocks and swap their
1214 // successors.
1215 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1216 Goto->removeFromParent();
1217 CatchRet->removeFromParent();
1218 IncomingBlock->getInstList().push_back(CatchRet);
1219 NewBlock->getInstList().push_back(Goto);
1220 Goto->setSuccessor(0, PHIBlock);
1221 CatchRet->setSuccessor(NewBlock);
1222 // Update the color mapping for the newly split edge.
1223 // Grab a reference to the ColorVector to be inserted before getting the
1224 // reference to the vector we are copying because inserting the new
1225 // element in BlockColors might cause the map to be reallocated.
1226 ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1227 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1228 ColorsForNewBlock = ColorsForPHIBlock;
1229 for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1230 FuncletBlocks[FuncletPad].push_back(NewBlock);
1231 // Treat the new block as incoming for load insertion.
1232 IncomingBlock = NewBlock;
1234 Value *&Load = Loads[IncomingBlock];
1235 // Insert the load into the predecessor block
1236 if (!Load)
1237 Load = new LoadInst(V->getType(), SpillSlot,
1238 Twine(V->getName(), ".wineh.reload"),
1239 /*isVolatile=*/false, IncomingBlock->getTerminator());
1241 U.set(Load);
1242 } else {
1243 // Reload right before the old use.
1244 auto *Load = new LoadInst(V->getType(), SpillSlot,
1245 Twine(V->getName(), ".wineh.reload"),
1246 /*isVolatile=*/false, UsingInst);
1247 U.set(Load);
1251 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1252 MCSymbol *InvokeBegin,
1253 MCSymbol *InvokeEnd) {
1254 assert(InvokeStateMap.count(II) &&
1255 "should get invoke with precomputed state");
1256 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1259 WinEHFuncInfo::WinEHFuncInfo() = default;