[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / Transforms / IPO / DeadArgumentElimination.cpp
blob99fa4baf355db2c11c4a656918ecb54072c58f3d
1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions. Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions. This
12 // pass also deletes dead return values in a similar way.
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DIBuilder.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/NoFolder.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include <cassert>
49 #include <utility>
50 #include <vector>
52 using namespace llvm;
54 #define DEBUG_TYPE "deadargelim"
56 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
57 STATISTIC(NumRetValsEliminated, "Number of unused return values removed");
58 STATISTIC(NumArgumentsReplacedWithPoison,
59 "Number of unread args replaced with poison");
61 namespace {
63 /// The dead argument elimination pass.
64 class DAE : public ModulePass {
65 protected:
66 // DAH uses this to specify a different ID.
67 explicit DAE(char &ID) : ModulePass(ID) {}
69 public:
70 static char ID; // Pass identification, replacement for typeid
72 DAE() : ModulePass(ID) {
73 initializeDAEPass(*PassRegistry::getPassRegistry());
76 bool runOnModule(Module &M) override {
77 if (skipModule(M))
78 return false;
79 DeadArgumentEliminationPass DAEP(shouldHackArguments());
80 ModuleAnalysisManager DummyMAM;
81 PreservedAnalyses PA = DAEP.run(M, DummyMAM);
82 return !PA.areAllPreserved();
85 virtual bool shouldHackArguments() const { return false; }
88 } // end anonymous namespace
90 char DAE::ID = 0;
92 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
94 namespace {
96 /// The DeadArgumentHacking pass, same as dead argument elimination, but deletes
97 /// arguments to functions which are external. This is only for use by bugpoint.
98 struct DAH : public DAE {
99 static char ID;
101 DAH() : DAE(ID) {}
103 bool shouldHackArguments() const override { return true; }
106 } // end anonymous namespace
108 char DAH::ID = 0;
110 INITIALIZE_PASS(DAH, "deadarghaX0r",
111 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false,
112 false)
114 /// This pass removes arguments from functions which are not used by the body of
115 /// the function.
116 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
118 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
120 /// If this is an function that takes a ... list, and if llvm.vastart is never
121 /// called, the varargs list is dead for the function.
122 bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) {
123 assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!");
124 if (F.isDeclaration() || !F.hasLocalLinkage())
125 return false;
127 // Ensure that the function is only directly called.
128 if (F.hasAddressTaken())
129 return false;
131 // Don't touch naked functions. The assembly might be using an argument, or
132 // otherwise rely on the frame layout in a way that this analysis will not
133 // see.
134 if (F.hasFnAttribute(Attribute::Naked)) {
135 return false;
138 // Okay, we know we can transform this function if safe. Scan its body
139 // looking for calls marked musttail or calls to llvm.vastart.
140 for (BasicBlock &BB : F) {
141 for (Instruction &I : BB) {
142 CallInst *CI = dyn_cast<CallInst>(&I);
143 if (!CI)
144 continue;
145 if (CI->isMustTailCall())
146 return false;
147 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
148 if (II->getIntrinsicID() == Intrinsic::vastart)
149 return false;
154 // If we get here, there are no calls to llvm.vastart in the function body,
155 // remove the "..." and adjust all the calls.
157 // Start by computing a new prototype for the function, which is the same as
158 // the old function, but doesn't have isVarArg set.
159 FunctionType *FTy = F.getFunctionType();
161 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
162 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
163 unsigned NumArgs = Params.size();
165 // Create the new function body and insert it into the module...
166 Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
167 NF->copyAttributesFrom(&F);
168 NF->setComdat(F.getComdat());
169 F.getParent()->getFunctionList().insert(F.getIterator(), NF);
170 NF->takeName(&F);
172 // Loop over all the callers of the function, transforming the call sites
173 // to pass in a smaller number of arguments into the new function.
175 std::vector<Value *> Args;
176 for (User *U : llvm::make_early_inc_range(F.users())) {
177 CallBase *CB = dyn_cast<CallBase>(U);
178 if (!CB)
179 continue;
181 // Pass all the same arguments.
182 Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
184 // Drop any attributes that were on the vararg arguments.
185 AttributeList PAL = CB->getAttributes();
186 if (!PAL.isEmpty()) {
187 SmallVector<AttributeSet, 8> ArgAttrs;
188 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
189 ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
190 PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(),
191 PAL.getRetAttrs(), ArgAttrs);
194 SmallVector<OperandBundleDef, 1> OpBundles;
195 CB->getOperandBundlesAsDefs(OpBundles);
197 CallBase *NewCB = nullptr;
198 if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
199 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
200 Args, OpBundles, "", CB);
201 } else {
202 NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
203 cast<CallInst>(NewCB)->setTailCallKind(
204 cast<CallInst>(CB)->getTailCallKind());
206 NewCB->setCallingConv(CB->getCallingConv());
207 NewCB->setAttributes(PAL);
208 NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
210 Args.clear();
212 if (!CB->use_empty())
213 CB->replaceAllUsesWith(NewCB);
215 NewCB->takeName(CB);
217 // Finally, remove the old call from the program, reducing the use-count of
218 // F.
219 CB->eraseFromParent();
222 // Since we have now created the new function, splice the body of the old
223 // function right into the new function, leaving the old rotting hulk of the
224 // function empty.
225 NF->getBasicBlockList().splice(NF->begin(), F.getBasicBlockList());
227 // Loop over the argument list, transferring uses of the old arguments over to
228 // the new arguments, also transferring over the names as well. While we're
229 // at it, remove the dead arguments from the DeadArguments list.
230 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(),
231 I2 = NF->arg_begin();
232 I != E; ++I, ++I2) {
233 // Move the name and users over to the new version.
234 I->replaceAllUsesWith(&*I2);
235 I2->takeName(&*I);
238 // Clone metadata from the old function, including debug info descriptor.
239 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
240 F.getAllMetadata(MDs);
241 for (auto MD : MDs)
242 NF->addMetadata(MD.first, *MD.second);
244 // Fix up any BlockAddresses that refer to the function.
245 F.replaceAllUsesWith(ConstantExpr::getBitCast(NF, F.getType()));
246 // Delete the bitcast that we just created, so that NF does not
247 // appear to be address-taken.
248 NF->removeDeadConstantUsers();
249 // Finally, nuke the old function.
250 F.eraseFromParent();
251 return true;
254 /// Checks if the given function has any arguments that are unused, and changes
255 /// the caller parameters to be poison instead.
256 bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) {
257 // We cannot change the arguments if this TU does not define the function or
258 // if the linker may choose a function body from another TU, even if the
259 // nominal linkage indicates that other copies of the function have the same
260 // semantics. In the below example, the dead load from %p may not have been
261 // eliminated from the linker-chosen copy of f, so replacing %p with poison
262 // in callers may introduce undefined behavior.
264 // define linkonce_odr void @f(i32* %p) {
265 // %v = load i32 %p
266 // ret void
267 // }
268 if (!F.hasExactDefinition())
269 return false;
271 // Functions with local linkage should already have been handled, except if
272 // they are fully alive (e.g., called indirectly) and except for the fragile
273 // (variadic) ones. In these cases, we may still be able to improve their
274 // statically known call sites.
275 if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) &&
276 !F.getFunctionType()->isVarArg())
277 return false;
279 // Don't touch naked functions. The assembly might be using an argument, or
280 // otherwise rely on the frame layout in a way that this analysis will not
281 // see.
282 if (F.hasFnAttribute(Attribute::Naked))
283 return false;
285 if (F.use_empty())
286 return false;
288 SmallVector<unsigned, 8> UnusedArgs;
289 bool Changed = false;
291 AttributeMask UBImplyingAttributes =
292 AttributeFuncs::getUBImplyingAttributes();
293 for (Argument &Arg : F.args()) {
294 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
295 !Arg.hasPassPointeeByValueCopyAttr()) {
296 if (Arg.isUsedByMetadata()) {
297 Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType()));
298 Changed = true;
300 UnusedArgs.push_back(Arg.getArgNo());
301 F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
305 if (UnusedArgs.empty())
306 return false;
308 for (Use &U : F.uses()) {
309 CallBase *CB = dyn_cast<CallBase>(U.getUser());
310 if (!CB || !CB->isCallee(&U) ||
311 CB->getFunctionType() != F.getFunctionType())
312 continue;
314 // Now go through all unused args and replace them with poison.
315 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
316 unsigned ArgNo = UnusedArgs[I];
318 Value *Arg = CB->getArgOperand(ArgNo);
319 CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType()));
320 CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
322 ++NumArgumentsReplacedWithPoison;
323 Changed = true;
327 return Changed;
330 /// Convenience function that returns the number of return values. It returns 0
331 /// for void functions and 1 for functions not returning a struct. It returns
332 /// the number of struct elements for functions returning a struct.
333 static unsigned numRetVals(const Function *F) {
334 Type *RetTy = F->getReturnType();
335 if (RetTy->isVoidTy())
336 return 0;
337 if (StructType *STy = dyn_cast<StructType>(RetTy))
338 return STy->getNumElements();
339 if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
340 return ATy->getNumElements();
341 return 1;
344 /// Returns the sub-type a function will return at a given Idx. Should
345 /// correspond to the result type of an ExtractValue instruction executed with
346 /// just that one Idx (i.e. only top-level structure is considered).
347 static Type *getRetComponentType(const Function *F, unsigned Idx) {
348 Type *RetTy = F->getReturnType();
349 assert(!RetTy->isVoidTy() && "void type has no subtype");
351 if (StructType *STy = dyn_cast<StructType>(RetTy))
352 return STy->getElementType(Idx);
353 if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
354 return ATy->getElementType();
355 return RetTy;
358 /// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to
359 /// the MaybeLiveUses argument. Returns the determined liveness of Use.
360 DeadArgumentEliminationPass::Liveness
361 DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use,
362 UseVector &MaybeLiveUses) {
363 // We're live if our use or its Function is already marked as live.
364 if (isLive(Use))
365 return Live;
367 // We're maybe live otherwise, but remember that we must become live if
368 // Use becomes live.
369 MaybeLiveUses.push_back(Use);
370 return MaybeLive;
373 /// Looks at a single use of an argument or return value and determines if it
374 /// should be alive or not. Adds this use to MaybeLiveUses if it causes the
375 /// used value to become MaybeLive.
377 /// RetValNum is the return value number to use when this use is used in a
378 /// return instruction. This is used in the recursion, you should always leave
379 /// it at 0.
380 DeadArgumentEliminationPass::Liveness
381 DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses,
382 unsigned RetValNum) {
383 const User *V = U->getUser();
384 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
385 // The value is returned from a function. It's only live when the
386 // function's return value is live. We use RetValNum here, for the case
387 // that U is really a use of an insertvalue instruction that uses the
388 // original Use.
389 const Function *F = RI->getParent()->getParent();
390 if (RetValNum != -1U) {
391 RetOrArg Use = createRet(F, RetValNum);
392 // We might be live, depending on the liveness of Use.
393 return markIfNotLive(Use, MaybeLiveUses);
396 DeadArgumentEliminationPass::Liveness Result = MaybeLive;
397 for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) {
398 RetOrArg Use = createRet(F, Ri);
399 // We might be live, depending on the liveness of Use. If any
400 // sub-value is live, then the entire value is considered live. This
401 // is a conservative choice, and better tracking is possible.
402 DeadArgumentEliminationPass::Liveness SubResult =
403 markIfNotLive(Use, MaybeLiveUses);
404 if (Result != Live)
405 Result = SubResult;
407 return Result;
410 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
411 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() &&
412 IV->hasIndices())
413 // The use we are examining is inserted into an aggregate. Our liveness
414 // depends on all uses of that aggregate, but if it is used as a return
415 // value, only index at which we were inserted counts.
416 RetValNum = *IV->idx_begin();
418 // Note that if we are used as the aggregate operand to the insertvalue,
419 // we don't change RetValNum, but do survey all our uses.
421 Liveness Result = MaybeLive;
422 for (const Use &UU : IV->uses()) {
423 Result = surveyUse(&UU, MaybeLiveUses, RetValNum);
424 if (Result == Live)
425 break;
427 return Result;
430 if (const auto *CB = dyn_cast<CallBase>(V)) {
431 const Function *F = CB->getCalledFunction();
432 if (F) {
433 // Used in a direct call.
435 // The function argument is live if it is used as a bundle operand.
436 if (CB->isBundleOperand(U))
437 return Live;
439 // Find the argument number. We know for sure that this use is an
440 // argument, since if it was the function argument this would be an
441 // indirect call and that we know can't be looking at a value of the
442 // label type (for the invoke instruction).
443 unsigned ArgNo = CB->getArgOperandNo(U);
445 if (ArgNo >= F->getFunctionType()->getNumParams())
446 // The value is passed in through a vararg! Must be live.
447 return Live;
449 assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
450 "Argument is not where we expected it");
452 // Value passed to a normal call. It's only live when the corresponding
453 // argument to the called function turns out live.
454 RetOrArg Use = createArg(F, ArgNo);
455 return markIfNotLive(Use, MaybeLiveUses);
458 // Used in any other way? Value must be live.
459 return Live;
462 /// Looks at all the uses of the given value
463 /// Returns the Liveness deduced from the uses of this value.
465 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
466 /// the result is Live, MaybeLiveUses might be modified but its content should
467 /// be ignored (since it might not be complete).
468 DeadArgumentEliminationPass::Liveness
469 DeadArgumentEliminationPass::surveyUses(const Value *V,
470 UseVector &MaybeLiveUses) {
471 // Assume it's dead (which will only hold if there are no uses at all..).
472 Liveness Result = MaybeLive;
473 // Check each use.
474 for (const Use &U : V->uses()) {
475 Result = surveyUse(&U, MaybeLiveUses);
476 if (Result == Live)
477 break;
479 return Result;
482 /// Performs the initial survey of the specified function, checking out whether
483 /// it uses any of its incoming arguments or whether any callers use the return
484 /// value. This fills in the LiveValues set and Uses map.
486 /// We consider arguments of non-internal functions to be intrinsically alive as
487 /// well as arguments to functions which have their "address taken".
488 void DeadArgumentEliminationPass::surveyFunction(const Function &F) {
489 // Functions with inalloca/preallocated parameters are expecting args in a
490 // particular register and memory layout.
491 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
492 F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
493 markLive(F);
494 return;
497 // Don't touch naked functions. The assembly might be using an argument, or
498 // otherwise rely on the frame layout in a way that this analysis will not
499 // see.
500 if (F.hasFnAttribute(Attribute::Naked)) {
501 markLive(F);
502 return;
505 unsigned RetCount = numRetVals(&F);
507 // Assume all return values are dead
508 using RetVals = SmallVector<Liveness, 5>;
510 RetVals RetValLiveness(RetCount, MaybeLive);
512 using RetUses = SmallVector<UseVector, 5>;
514 // These vectors map each return value to the uses that make it MaybeLive, so
515 // we can add those to the Uses map if the return value really turns out to be
516 // MaybeLive. Initialized to a list of RetCount empty lists.
517 RetUses MaybeLiveRetUses(RetCount);
519 bool HasMustTailCalls = false;
520 for (const BasicBlock &BB : F) {
521 // If we have any returns of `musttail` results - the signature can't
522 // change
523 if (BB.getTerminatingMustTailCall() != nullptr)
524 HasMustTailCalls = true;
527 if (HasMustTailCalls) {
528 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
529 << " has musttail calls\n");
532 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
533 markLive(F);
534 return;
537 LLVM_DEBUG(
538 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
539 << F.getName() << "\n");
540 // Keep track of the number of live retvals, so we can skip checks once all
541 // of them turn out to be live.
542 unsigned NumLiveRetVals = 0;
544 bool HasMustTailCallers = false;
546 // Loop all uses of the function.
547 for (const Use &U : F.uses()) {
548 // If the function is PASSED IN as an argument, its address has been
549 // taken.
550 const auto *CB = dyn_cast<CallBase>(U.getUser());
551 if (!CB || !CB->isCallee(&U) ||
552 CB->getFunctionType() != F.getFunctionType()) {
553 markLive(F);
554 return;
557 // The number of arguments for `musttail` call must match the number of
558 // arguments of the caller
559 if (CB->isMustTailCall())
560 HasMustTailCallers = true;
562 // If we end up here, we are looking at a direct call to our function.
564 // Now, check how our return value(s) is/are used in this caller. Don't
565 // bother checking return values if all of them are live already.
566 if (NumLiveRetVals == RetCount)
567 continue;
569 // Check all uses of the return value.
570 for (const Use &UU : CB->uses()) {
571 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) {
572 // This use uses a part of our return value, survey the uses of
573 // that part and store the results for this index only.
574 unsigned Idx = *Ext->idx_begin();
575 if (RetValLiveness[Idx] != Live) {
576 RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]);
577 if (RetValLiveness[Idx] == Live)
578 NumLiveRetVals++;
580 } else {
581 // Used by something else than extractvalue. Survey, but assume that the
582 // result applies to all sub-values.
583 UseVector MaybeLiveAggregateUses;
584 if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) {
585 NumLiveRetVals = RetCount;
586 RetValLiveness.assign(RetCount, Live);
587 break;
590 for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
591 if (RetValLiveness[Ri] != Live)
592 MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
593 MaybeLiveAggregateUses.end());
599 if (HasMustTailCallers) {
600 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
601 << " has musttail callers\n");
604 // Now we've inspected all callers, record the liveness of our return values.
605 for (unsigned Ri = 0; Ri != RetCount; ++Ri)
606 markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
608 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
609 << F.getName() << "\n");
611 // Now, check all of our arguments.
612 unsigned ArgI = 0;
613 UseVector MaybeLiveArgUses;
614 for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
615 AI != E; ++AI, ++ArgI) {
616 Liveness Result;
617 if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
618 HasMustTailCalls) {
619 // Variadic functions will already have a va_arg function expanded inside
620 // them, making them potentially very sensitive to ABI changes resulting
621 // from removing arguments entirely, so don't. For example AArch64 handles
622 // register and stack HFAs very differently, and this is reflected in the
623 // IR which has already been generated.
625 // `musttail` calls to this function restrict argument removal attempts.
626 // The signature of the caller must match the signature of the function.
628 // `musttail` calls in this function prevents us from changing its
629 // signature
630 Result = Live;
631 } else {
632 // See what the effect of this use is (recording any uses that cause
633 // MaybeLive in MaybeLiveArgUses).
634 Result = surveyUses(&*AI, MaybeLiveArgUses);
637 // Mark the result.
638 markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses);
639 // Clear the vector again for the next iteration.
640 MaybeLiveArgUses.clear();
644 /// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes
645 /// all uses in MaybeLiveUses and records them in Uses, such that RA will be
646 /// marked live if any use in MaybeLiveUses gets marked live later on.
647 void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L,
648 const UseVector &MaybeLiveUses) {
649 switch (L) {
650 case Live:
651 markLive(RA);
652 break;
653 case MaybeLive:
654 assert(!isLive(RA) && "Use is already live!");
655 for (const auto &MaybeLiveUse : MaybeLiveUses) {
656 if (isLive(MaybeLiveUse)) {
657 // A use is live, so this value is live.
658 markLive(RA);
659 break;
661 // Note any uses of this value, so this value can be
662 // marked live whenever one of the uses becomes live.
663 Uses.emplace(MaybeLiveUse, RA);
665 break;
669 /// Mark the given Function as alive, meaning that it cannot be changed in any
670 /// way. Additionally, mark any values that are used as this function's
671 /// parameters or by its return values (according to Uses) live as well.
672 void DeadArgumentEliminationPass::markLive(const Function &F) {
673 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
674 << F.getName() << "\n");
675 // Mark the function as live.
676 LiveFunctions.insert(&F);
677 // Mark all arguments as live.
678 for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
679 propagateLiveness(createArg(&F, ArgI));
680 // Mark all return values as live.
681 for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri)
682 propagateLiveness(createRet(&F, Ri));
685 /// Mark the given return value or argument as live. Additionally, mark any
686 /// values that are used by this value (according to Uses) live as well.
687 void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) {
688 if (isLive(RA))
689 return; // Already marked Live.
691 LiveValues.insert(RA);
693 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
694 << RA.getDescription() << " live\n");
695 propagateLiveness(RA);
698 bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) {
699 return LiveFunctions.count(RA.F) || LiveValues.count(RA);
702 /// Given that RA is a live value, propagate it's liveness to any other values
703 /// it uses (according to Uses).
704 void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) {
705 // We don't use upper_bound (or equal_range) here, because our recursive call
706 // to ourselves is likely to cause the upper_bound (which is the first value
707 // not belonging to RA) to become erased and the iterator invalidated.
708 UseMap::iterator Begin = Uses.lower_bound(RA);
709 UseMap::iterator E = Uses.end();
710 UseMap::iterator I;
711 for (I = Begin; I != E && I->first == RA; ++I)
712 markLive(I->second);
714 // Erase RA from the Uses map (from the lower bound to wherever we ended up
715 // after the loop).
716 Uses.erase(Begin, I);
719 /// Remove any arguments and return values from F that are not in LiveValues.
720 /// Transform the function and all the callees of the function to not have these
721 /// arguments and return values.
722 bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) {
723 // Don't modify fully live functions
724 if (LiveFunctions.count(F))
725 return false;
727 // Start by computing a new prototype for the function, which is the same as
728 // the old function, but has fewer arguments and a different return type.
729 FunctionType *FTy = F->getFunctionType();
730 std::vector<Type *> Params;
732 // Keep track of if we have a live 'returned' argument
733 bool HasLiveReturnedArg = false;
735 // Set up to build a new list of parameter attributes.
736 SmallVector<AttributeSet, 8> ArgAttrVec;
737 const AttributeList &PAL = F->getAttributes();
739 // Remember which arguments are still alive.
740 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
741 // Construct the new parameter list from non-dead arguments. Also construct
742 // a new set of parameter attributes to correspond. Skip the first parameter
743 // attribute, since that belongs to the return value.
744 unsigned ArgI = 0;
745 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
746 ++I, ++ArgI) {
747 RetOrArg Arg = createArg(F, ArgI);
748 if (LiveValues.erase(Arg)) {
749 Params.push_back(I->getType());
750 ArgAlive[ArgI] = true;
751 ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
752 HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
753 } else {
754 ++NumArgumentsEliminated;
755 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
756 << ArgI << " (" << I->getName() << ") from "
757 << F->getName() << "\n");
761 // Find out the new return value.
762 Type *RetTy = FTy->getReturnType();
763 Type *NRetTy = nullptr;
764 unsigned RetCount = numRetVals(F);
766 // -1 means unused, other numbers are the new index
767 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
768 std::vector<Type *> RetTypes;
770 // If there is a function with a live 'returned' argument but a dead return
771 // value, then there are two possible actions:
772 // 1) Eliminate the return value and take off the 'returned' attribute on the
773 // argument.
774 // 2) Retain the 'returned' attribute and treat the return value (but not the
775 // entire function) as live so that it is not eliminated.
777 // It's not clear in the general case which option is more profitable because,
778 // even in the absence of explicit uses of the return value, code generation
779 // is free to use the 'returned' attribute to do things like eliding
780 // save/restores of registers across calls. Whether this happens is target and
781 // ABI-specific as well as depending on the amount of register pressure, so
782 // there's no good way for an IR-level pass to figure this out.
784 // Fortunately, the only places where 'returned' is currently generated by
785 // the FE are places where 'returned' is basically free and almost always a
786 // performance win, so the second option can just be used always for now.
788 // This should be revisited if 'returned' is ever applied more liberally.
789 if (RetTy->isVoidTy() || HasLiveReturnedArg) {
790 NRetTy = RetTy;
791 } else {
792 // Look at each of the original return values individually.
793 for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
794 RetOrArg Ret = createRet(F, Ri);
795 if (LiveValues.erase(Ret)) {
796 RetTypes.push_back(getRetComponentType(F, Ri));
797 NewRetIdxs[Ri] = RetTypes.size() - 1;
798 } else {
799 ++NumRetValsEliminated;
800 LLVM_DEBUG(
801 dbgs() << "DeadArgumentEliminationPass - Removing return value "
802 << Ri << " from " << F->getName() << "\n");
805 if (RetTypes.size() > 1) {
806 // More than one return type? Reduce it down to size.
807 if (StructType *STy = dyn_cast<StructType>(RetTy)) {
808 // Make the new struct packed if we used to return a packed struct
809 // already.
810 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
811 } else {
812 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
813 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
815 } else if (RetTypes.size() == 1)
816 // One return type? Just a simple value then, but only if we didn't use to
817 // return a struct with that simple value before.
818 NRetTy = RetTypes.front();
819 else if (RetTypes.empty())
820 // No return types? Make it void, but only if we didn't use to return {}.
821 NRetTy = Type::getVoidTy(F->getContext());
824 assert(NRetTy && "No new return type found?");
826 // The existing function return attributes.
827 AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs());
829 // Remove any incompatible attributes, but only if we removed all return
830 // values. Otherwise, ensure that we don't have any conflicting attributes
831 // here. Currently, this should not be possible, but special handling might be
832 // required when new return value attributes are added.
833 if (NRetTy->isVoidTy())
834 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
835 else
836 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
837 "Return attributes no longer compatible?");
839 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
841 // Strip allocsize attributes. They might refer to the deleted arguments.
842 AttributeSet FnAttrs =
843 PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
845 // Reconstruct the AttributesList based on the vector we constructed.
846 assert(ArgAttrVec.size() == Params.size());
847 AttributeList NewPAL =
848 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
850 // Create the new function type based on the recomputed parameters.
851 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
853 // No change?
854 if (NFTy == FTy)
855 return false;
857 // Create the new function body and insert it into the module...
858 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
859 NF->copyAttributesFrom(F);
860 NF->setComdat(F->getComdat());
861 NF->setAttributes(NewPAL);
862 // Insert the new function before the old function, so we won't be processing
863 // it again.
864 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
865 NF->takeName(F);
867 // Loop over all the callers of the function, transforming the call sites to
868 // pass in a smaller number of arguments into the new function.
869 std::vector<Value *> Args;
870 while (!F->use_empty()) {
871 CallBase &CB = cast<CallBase>(*F->user_back());
873 ArgAttrVec.clear();
874 const AttributeList &CallPAL = CB.getAttributes();
876 // Adjust the call return attributes in case the function was changed to
877 // return void.
878 AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs());
879 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
880 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
882 // Declare these outside of the loops, so we can reuse them for the second
883 // loop, which loops the varargs.
884 auto *I = CB.arg_begin();
885 unsigned Pi = 0;
886 // Loop over those operands, corresponding to the normal arguments to the
887 // original function, and add those that are still alive.
888 for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
889 if (ArgAlive[Pi]) {
890 Args.push_back(*I);
891 // Get original parameter attributes, but skip return attributes.
892 AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
893 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
894 // If the return type has changed, then get rid of 'returned' on the
895 // call site. The alternative is to make all 'returned' attributes on
896 // call sites keep the return value alive just like 'returned'
897 // attributes on function declaration, but it's less clearly a win and
898 // this is not an expected case anyway
899 ArgAttrVec.push_back(AttributeSet::get(
900 F->getContext(), AttrBuilder(F->getContext(), Attrs)
901 .removeAttribute(Attribute::Returned)));
902 } else {
903 // Otherwise, use the original attributes.
904 ArgAttrVec.push_back(Attrs);
908 // Push any varargs arguments on the list. Don't forget their attributes.
909 for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) {
910 Args.push_back(*I);
911 ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
914 // Reconstruct the AttributesList based on the vector we constructed.
915 assert(ArgAttrVec.size() == Args.size());
917 // Again, be sure to remove any allocsize attributes, since their indices
918 // may now be incorrect.
919 AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
920 F->getContext(), Attribute::AllocSize);
922 AttributeList NewCallPAL =
923 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
925 SmallVector<OperandBundleDef, 1> OpBundles;
926 CB.getOperandBundlesAsDefs(OpBundles);
928 CallBase *NewCB = nullptr;
929 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
930 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
931 Args, OpBundles, "", CB.getParent());
932 } else {
933 NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
934 cast<CallInst>(NewCB)->setTailCallKind(
935 cast<CallInst>(&CB)->getTailCallKind());
937 NewCB->setCallingConv(CB.getCallingConv());
938 NewCB->setAttributes(NewCallPAL);
939 NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
940 Args.clear();
941 ArgAttrVec.clear();
943 if (!CB.use_empty() || CB.isUsedByMetadata()) {
944 if (NewCB->getType() == CB.getType()) {
945 // Return type not changed? Just replace users then.
946 CB.replaceAllUsesWith(NewCB);
947 NewCB->takeName(&CB);
948 } else if (NewCB->getType()->isVoidTy()) {
949 // If the return value is dead, replace any uses of it with poison
950 // (any non-debug value uses will get removed later on).
951 if (!CB.getType()->isX86_MMXTy())
952 CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
953 } else {
954 assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
955 "Return type changed, but not into a void. The old return type"
956 " must have been a struct or an array!");
957 Instruction *InsertPt = &CB;
958 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
959 BasicBlock *NewEdge =
960 SplitEdge(NewCB->getParent(), II->getNormalDest());
961 InsertPt = &*NewEdge->getFirstInsertionPt();
964 // We used to return a struct or array. Instead of doing smart stuff
965 // with all the uses, we will just rebuild it using extract/insertvalue
966 // chaining and let instcombine clean that up.
968 // Start out building up our return value from poison
969 Value *RetVal = PoisonValue::get(RetTy);
970 for (unsigned Ri = 0; Ri != RetCount; ++Ri)
971 if (NewRetIdxs[Ri] != -1) {
972 Value *V;
973 IRBuilder<NoFolder> IRB(InsertPt);
974 if (RetTypes.size() > 1)
975 // We are still returning a struct, so extract the value from our
976 // return value
977 V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
978 else
979 // We are now returning a single element, so just insert that
980 V = NewCB;
981 // Insert the value at the old position
982 RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
984 // Now, replace all uses of the old call instruction with the return
985 // struct we built
986 CB.replaceAllUsesWith(RetVal);
987 NewCB->takeName(&CB);
991 // Finally, remove the old call from the program, reducing the use-count of
992 // F.
993 CB.eraseFromParent();
996 // Since we have now created the new function, splice the body of the old
997 // function right into the new function, leaving the old rotting hulk of the
998 // function empty.
999 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1001 // Loop over the argument list, transferring uses of the old arguments over to
1002 // the new arguments, also transferring over the names as well.
1003 ArgI = 0;
1004 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1005 I2 = NF->arg_begin();
1006 I != E; ++I, ++ArgI)
1007 if (ArgAlive[ArgI]) {
1008 // If this is a live argument, move the name and users over to the new
1009 // version.
1010 I->replaceAllUsesWith(&*I2);
1011 I2->takeName(&*I);
1012 ++I2;
1013 } else {
1014 // If this argument is dead, replace any uses of it with poison
1015 // (any non-debug value uses will get removed later on).
1016 if (!I->getType()->isX86_MMXTy())
1017 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1020 // If we change the return value of the function we must rewrite any return
1021 // instructions. Check this now.
1022 if (F->getReturnType() != NF->getReturnType())
1023 for (BasicBlock &BB : *NF)
1024 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1025 IRBuilder<NoFolder> IRB(RI);
1026 Value *RetVal = nullptr;
1028 if (!NFTy->getReturnType()->isVoidTy()) {
1029 assert(RetTy->isStructTy() || RetTy->isArrayTy());
1030 // The original return value was a struct or array, insert
1031 // extractvalue/insertvalue chains to extract only the values we need
1032 // to return and insert them into our new result.
1033 // This does generate messy code, but we'll let it to instcombine to
1034 // clean that up.
1035 Value *OldRet = RI->getOperand(0);
1036 // Start out building up our return value from poison
1037 RetVal = PoisonValue::get(NRetTy);
1038 for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1039 if (NewRetIdxs[RetI] != -1) {
1040 Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1042 if (RetTypes.size() > 1) {
1043 // We're still returning a struct, so reinsert the value into
1044 // our new return value at the new index
1046 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1047 "newret");
1048 } else {
1049 // We are now only returning a simple value, so just return the
1050 // extracted value.
1051 RetVal = EV;
1055 // Replace the return instruction with one returning the new return
1056 // value (possibly 0 if we became void).
1057 auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1058 NewRet->setDebugLoc(RI->getDebugLoc());
1059 BB.getInstList().erase(RI);
1062 // Clone metadata from the old function, including debug info descriptor.
1063 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1064 F->getAllMetadata(MDs);
1065 for (auto MD : MDs)
1066 NF->addMetadata(MD.first, *MD.second);
1068 // If either the return value(s) or argument(s) are removed, then probably the
1069 // function does not follow standard calling conventions anymore. Hence, add
1070 // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe
1071 // to call this function or try to interpret the return value.
1072 if (NFTy != FTy && NF->getSubprogram()) {
1073 DISubprogram *SP = NF->getSubprogram();
1074 auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall);
1075 SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp)));
1078 // Now that the old function is dead, delete it.
1079 F->eraseFromParent();
1081 return true;
1084 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1085 ModuleAnalysisManager &) {
1086 bool Changed = false;
1088 // First pass: Do a simple check to see if any functions can have their "..."
1089 // removed. We can do this if they never call va_start. This loop cannot be
1090 // fused with the next loop, because deleting a function invalidates
1091 // information computed while surveying other functions.
1092 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1093 for (Function &F : llvm::make_early_inc_range(M))
1094 if (F.getFunctionType()->isVarArg())
1095 Changed |= deleteDeadVarargs(F);
1097 // Second phase: Loop through the module, determining which arguments are
1098 // live. We assume all arguments are dead unless proven otherwise (allowing us
1099 // to determine that dead arguments passed into recursive functions are dead).
1100 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1101 for (auto &F : M)
1102 surveyFunction(F);
1104 // Now, remove all dead arguments and return values from each function in
1105 // turn. We use make_early_inc_range here because functions will probably get
1106 // removed (i.e. replaced by new ones).
1107 for (Function &F : llvm::make_early_inc_range(M))
1108 Changed |= removeDeadStuffFromFunction(&F);
1110 // Finally, look for any unused parameters in functions with non-local
1111 // linkage and replace the passed in parameters with poison.
1112 for (auto &F : M)
1113 Changed |= removeDeadArgumentsFromCallers(F);
1115 if (!Changed)
1116 return PreservedAnalyses::all();
1117 return PreservedAnalyses::none();