1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // OpenMP specific optimizations:
11 // - Deduplication of runtime calls, e.g., omp_get_thread_num.
12 // - Replacing globalized device memory with stack memory.
13 // - Replacing globalized device memory with shared memory.
14 // - Parallel region merging.
15 // - Transforming generic-mode device kernels to SPMD mode.
16 // - Specializing the state machine for generic-mode device kernels.
18 //===----------------------------------------------------------------------===//
20 #include "llvm/Transforms/IPO/OpenMPOpt.h"
22 #include "llvm/ADT/EnumeratedArray.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Frontend/OpenMP/OMPConstants.h"
33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DiagnosticInfo.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/IntrinsicsAMDGPU.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Transforms/IPO.h"
49 #include "llvm/Transforms/IPO/Attributor.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
58 #define DEBUG_TYPE "openmp-opt"
60 static cl::opt
<bool> DisableOpenMPOptimizations(
61 "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."),
62 cl::Hidden
, cl::init(false));
64 static cl::opt
<bool> EnableParallelRegionMerging(
65 "openmp-opt-enable-merging",
66 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden
,
70 DisableInternalization("openmp-opt-disable-internalization",
71 cl::desc("Disable function internalization."),
72 cl::Hidden
, cl::init(false));
74 static cl::opt
<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
76 static cl::opt
<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
77 cl::init(false), cl::Hidden
);
79 static cl::opt
<bool> HideMemoryTransferLatency(
80 "openmp-hide-memory-transfer-latency",
81 cl::desc("[WIP] Tries to hide the latency of host to device memory"
83 cl::Hidden
, cl::init(false));
85 static cl::opt
<bool> DisableOpenMPOptDeglobalization(
86 "openmp-opt-disable-deglobalization",
87 cl::desc("Disable OpenMP optimizations involving deglobalization."),
88 cl::Hidden
, cl::init(false));
90 static cl::opt
<bool> DisableOpenMPOptSPMDization(
91 "openmp-opt-disable-spmdization",
92 cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
93 cl::Hidden
, cl::init(false));
95 static cl::opt
<bool> DisableOpenMPOptFolding(
96 "openmp-opt-disable-folding",
97 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden
,
100 static cl::opt
<bool> DisableOpenMPOptStateMachineRewrite(
101 "openmp-opt-disable-state-machine-rewrite",
102 cl::desc("Disable OpenMP optimizations that replace the state machine."),
103 cl::Hidden
, cl::init(false));
105 static cl::opt
<bool> DisableOpenMPOptBarrierElimination(
106 "openmp-opt-disable-barrier-elimination",
107 cl::desc("Disable OpenMP optimizations that eliminate barriers."),
108 cl::Hidden
, cl::init(false));
110 static cl::opt
<bool> PrintModuleAfterOptimizations(
111 "openmp-opt-print-module-after",
112 cl::desc("Print the current module after OpenMP optimizations."),
113 cl::Hidden
, cl::init(false));
115 static cl::opt
<bool> PrintModuleBeforeOptimizations(
116 "openmp-opt-print-module-before",
117 cl::desc("Print the current module before OpenMP optimizations."),
118 cl::Hidden
, cl::init(false));
120 static cl::opt
<bool> AlwaysInlineDeviceFunctions(
121 "openmp-opt-inline-device",
122 cl::desc("Inline all applicible functions on the device."), cl::Hidden
,
126 EnableVerboseRemarks("openmp-opt-verbose-remarks",
127 cl::desc("Enables more verbose remarks."), cl::Hidden
,
130 static cl::opt
<unsigned>
131 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden
,
132 cl::desc("Maximal number of attributor iterations."),
135 static cl::opt
<unsigned>
136 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden
,
137 cl::desc("Maximum amount of shared memory to use."),
138 cl::init(std::numeric_limits
<unsigned>::max()));
140 STATISTIC(NumOpenMPRuntimeCallsDeduplicated
,
141 "Number of OpenMP runtime calls deduplicated");
142 STATISTIC(NumOpenMPParallelRegionsDeleted
,
143 "Number of OpenMP parallel regions deleted");
144 STATISTIC(NumOpenMPRuntimeFunctionsIdentified
,
145 "Number of OpenMP runtime functions identified");
146 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified
,
147 "Number of OpenMP runtime function uses identified");
148 STATISTIC(NumOpenMPTargetRegionKernels
,
149 "Number of OpenMP target region entry points (=kernels) identified");
150 STATISTIC(NumOpenMPTargetRegionKernelsSPMD
,
151 "Number of OpenMP target region entry points (=kernels) executed in "
152 "SPMD-mode instead of generic-mode");
153 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine
,
154 "Number of OpenMP target region entry points (=kernels) executed in "
155 "generic-mode without a state machines");
156 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback
,
157 "Number of OpenMP target region entry points (=kernels) executed in "
158 "generic-mode with customized state machines with fallback");
159 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback
,
160 "Number of OpenMP target region entry points (=kernels) executed in "
161 "generic-mode with customized state machines without fallback");
163 NumOpenMPParallelRegionsReplacedInGPUStateMachine
,
164 "Number of OpenMP parallel regions replaced with ID in GPU state machines");
165 STATISTIC(NumOpenMPParallelRegionsMerged
,
166 "Number of OpenMP parallel regions merged");
167 STATISTIC(NumBytesMovedToSharedMemory
,
168 "Amount of memory pushed to shared memory");
169 STATISTIC(NumBarriersEliminated
, "Number of redundant barriers eliminated");
172 static constexpr auto TAG
= "[" DEBUG_TYPE
"]";
177 struct AAHeapToShared
;
181 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for
183 struct OMPInformationCache
: public InformationCache
{
184 OMPInformationCache(Module
&M
, AnalysisGetter
&AG
,
185 BumpPtrAllocator
&Allocator
, SetVector
<Function
*> &CGSCC
,
187 : InformationCache(M
, AG
, Allocator
, &CGSCC
), OMPBuilder(M
),
190 OMPBuilder
.initialize();
191 initializeRuntimeFunctions();
192 initializeInternalControlVars();
195 /// Generic information that describes an internal control variable.
196 struct InternalControlVarInfo
{
197 /// The kind, as described by InternalControlVar enum.
198 InternalControlVar Kind
;
200 /// The name of the ICV.
203 /// Environment variable associated with this ICV.
204 StringRef EnvVarName
;
206 /// Initial value kind.
207 ICVInitValue InitKind
;
210 ConstantInt
*InitValue
;
212 /// Setter RTL function associated with this ICV.
213 RuntimeFunction Setter
;
215 /// Getter RTL function associated with this ICV.
216 RuntimeFunction Getter
;
218 /// RTL Function corresponding to the override clause of this ICV
219 RuntimeFunction Clause
;
222 /// Generic information that describes a runtime function
223 struct RuntimeFunctionInfo
{
225 /// The kind, as described by the RuntimeFunction enum.
226 RuntimeFunction Kind
;
228 /// The name of the function.
231 /// Flag to indicate a variadic function.
234 /// The return type of the function.
237 /// The argument types of the function.
238 SmallVector
<Type
*, 8> ArgumentTypes
;
240 /// The declaration if available.
241 Function
*Declaration
= nullptr;
243 /// Uses of this runtime function per function containing the use.
244 using UseVector
= SmallVector
<Use
*, 16>;
246 /// Clear UsesMap for runtime function.
247 void clearUsesMap() { UsesMap
.clear(); }
249 /// Boolean conversion that is true if the runtime function was found.
250 operator bool() const { return Declaration
; }
252 /// Return the vector of uses in function \p F.
253 UseVector
&getOrCreateUseVector(Function
*F
) {
254 std::shared_ptr
<UseVector
> &UV
= UsesMap
[F
];
256 UV
= std::make_shared
<UseVector
>();
260 /// Return the vector of uses in function \p F or `nullptr` if there are
262 const UseVector
*getUseVector(Function
&F
) const {
263 auto I
= UsesMap
.find(&F
);
264 if (I
!= UsesMap
.end())
265 return I
->second
.get();
269 /// Return how many functions contain uses of this runtime function.
270 size_t getNumFunctionsWithUses() const { return UsesMap
.size(); }
272 /// Return the number of arguments (or the minimal number for variadic
274 size_t getNumArgs() const { return ArgumentTypes
.size(); }
276 /// Run the callback \p CB on each use and forget the use if the result is
277 /// true. The callback will be fed the function in which the use was
278 /// encountered as second argument.
279 void foreachUse(SmallVectorImpl
<Function
*> &SCC
,
280 function_ref
<bool(Use
&, Function
&)> CB
) {
281 for (Function
*F
: SCC
)
285 /// Run the callback \p CB on each use within the function \p F and forget
286 /// the use if the result is true.
287 void foreachUse(function_ref
<bool(Use
&, Function
&)> CB
, Function
*F
) {
288 SmallVector
<unsigned, 8> ToBeDeleted
;
292 UseVector
&UV
= getOrCreateUseVector(F
);
296 ToBeDeleted
.push_back(Idx
);
300 // Remove the to-be-deleted indices in reverse order as prior
301 // modifications will not modify the smaller indices.
302 while (!ToBeDeleted
.empty()) {
303 unsigned Idx
= ToBeDeleted
.pop_back_val();
310 /// Map from functions to all uses of this runtime function contained in
312 DenseMap
<Function
*, std::shared_ptr
<UseVector
>> UsesMap
;
315 /// Iterators for the uses of this runtime function.
316 decltype(UsesMap
)::iterator
begin() { return UsesMap
.begin(); }
317 decltype(UsesMap
)::iterator
end() { return UsesMap
.end(); }
320 /// An OpenMP-IR-Builder instance
321 OpenMPIRBuilder OMPBuilder
;
323 /// Map from runtime function kind to the runtime function description.
324 EnumeratedArray
<RuntimeFunctionInfo
, RuntimeFunction
,
325 RuntimeFunction::OMPRTL___last
>
328 /// Map from function declarations/definitions to their runtime enum type.
329 DenseMap
<Function
*, RuntimeFunction
> RuntimeFunctionIDMap
;
331 /// Map from ICV kind to the ICV description.
332 EnumeratedArray
<InternalControlVarInfo
, InternalControlVar
,
333 InternalControlVar::ICV___last
>
336 /// Helper to initialize all internal control variable information for those
337 /// defined in OMPKinds.def.
338 void initializeInternalControlVars() {
339 #define ICV_RT_SET(_Name, RTL) \
341 auto &ICV = ICVs[_Name]; \
344 #define ICV_RT_GET(Name, RTL) \
346 auto &ICV = ICVs[Name]; \
349 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \
351 auto &ICV = ICVs[Enum]; \
354 ICV.InitKind = Init; \
355 ICV.EnvVarName = _EnvVarName; \
356 switch (ICV.InitKind) { \
357 case ICV_IMPLEMENTATION_DEFINED: \
358 ICV.InitValue = nullptr; \
361 ICV.InitValue = ConstantInt::get( \
362 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \
365 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \
371 #include "llvm/Frontend/OpenMP/OMPKinds.def"
374 /// Returns true if the function declaration \p F matches the runtime
375 /// function types, that is, return type \p RTFRetType, and argument types
377 static bool declMatchesRTFTypes(Function
*F
, Type
*RTFRetType
,
378 SmallVector
<Type
*, 8> &RTFArgTypes
) {
379 // TODO: We should output information to the user (under debug output
384 if (F
->getReturnType() != RTFRetType
)
386 if (F
->arg_size() != RTFArgTypes
.size())
389 auto *RTFTyIt
= RTFArgTypes
.begin();
390 for (Argument
&Arg
: F
->args()) {
391 if (Arg
.getType() != *RTFTyIt
)
400 // Helper to collect all uses of the declaration in the UsesMap.
401 unsigned collectUses(RuntimeFunctionInfo
&RFI
, bool CollectStats
= true) {
402 unsigned NumUses
= 0;
403 if (!RFI
.Declaration
)
405 OMPBuilder
.addAttributes(RFI
.Kind
, *RFI
.Declaration
);
408 NumOpenMPRuntimeFunctionsIdentified
+= 1;
409 NumOpenMPRuntimeFunctionUsesIdentified
+= RFI
.Declaration
->getNumUses();
412 // TODO: We directly convert uses into proper calls and unknown uses.
413 for (Use
&U
: RFI
.Declaration
->uses()) {
414 if (Instruction
*UserI
= dyn_cast
<Instruction
>(U
.getUser())) {
415 if (ModuleSlice
.count(UserI
->getFunction())) {
416 RFI
.getOrCreateUseVector(UserI
->getFunction()).push_back(&U
);
420 RFI
.getOrCreateUseVector(nullptr).push_back(&U
);
427 // Helper function to recollect uses of a runtime function.
428 void recollectUsesForFunction(RuntimeFunction RTF
) {
429 auto &RFI
= RFIs
[RTF
];
431 collectUses(RFI
, /*CollectStats*/ false);
434 // Helper function to recollect uses of all runtime functions.
435 void recollectUses() {
436 for (int Idx
= 0; Idx
< RFIs
.size(); ++Idx
)
437 recollectUsesForFunction(static_cast<RuntimeFunction
>(Idx
));
440 // Helper function to inherit the calling convention of the function callee.
441 void setCallingConvention(FunctionCallee Callee
, CallInst
*CI
) {
442 if (Function
*Fn
= dyn_cast
<Function
>(Callee
.getCallee()))
443 CI
->setCallingConv(Fn
->getCallingConv());
446 /// Helper to initialize all runtime function information for those defined
447 /// in OpenMPKinds.def.
448 void initializeRuntimeFunctions() {
449 Module
&M
= *((*ModuleSlice
.begin())->getParent());
451 // Helper macros for handling __VA_ARGS__ in OMP_RTL
452 #define OMP_TYPE(VarName, ...) \
453 Type *VarName = OMPBuilder.VarName; \
456 #define OMP_ARRAY_TYPE(VarName, ...) \
457 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \
459 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \
460 (void)VarName##PtrTy;
462 #define OMP_FUNCTION_TYPE(VarName, ...) \
463 FunctionType *VarName = OMPBuilder.VarName; \
465 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
468 #define OMP_STRUCT_TYPE(VarName, ...) \
469 StructType *VarName = OMPBuilder.VarName; \
471 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
474 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \
476 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \
477 Function *F = M.getFunction(_Name); \
478 RTLFunctions.insert(F); \
479 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \
480 RuntimeFunctionIDMap[F] = _Enum; \
481 auto &RFI = RFIs[_Enum]; \
484 RFI.IsVarArg = _IsVarArg; \
485 RFI.ReturnType = OMPBuilder._ReturnType; \
486 RFI.ArgumentTypes = std::move(ArgsTypes); \
487 RFI.Declaration = F; \
488 unsigned NumUses = collectUses(RFI); \
491 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \
493 if (RFI.Declaration) \
494 dbgs() << TAG << "-> got " << NumUses << " uses in " \
495 << RFI.getNumFunctionsWithUses() \
496 << " different functions.\n"; \
500 #include "llvm/Frontend/OpenMP/OMPKinds.def"
502 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_`
503 // functions, except if `optnone` is present.
504 if (isOpenMPDevice(M
)) {
505 for (Function
&F
: M
) {
506 for (StringRef Prefix
: {"__kmpc", "_ZN4_OMP", "omp_"})
507 if (F
.hasFnAttribute(Attribute::NoInline
) &&
508 F
.getName().startswith(Prefix
) &&
509 !F
.hasFnAttribute(Attribute::OptimizeNone
))
510 F
.removeFnAttr(Attribute::NoInline
);
514 // TODO: We should attach the attributes defined in OMPKinds.def.
517 /// Collection of known kernels (\see Kernel) in the module.
520 /// Collection of known OpenMP runtime functions..
521 DenseSet
<const Function
*> RTLFunctions
;
524 template <typename Ty
, bool InsertInvalidates
= true>
525 struct BooleanStateWithSetVector
: public BooleanState
{
526 bool contains(const Ty
&Elem
) const { return Set
.contains(Elem
); }
527 bool insert(const Ty
&Elem
) {
528 if (InsertInvalidates
)
529 BooleanState::indicatePessimisticFixpoint();
530 return Set
.insert(Elem
);
533 const Ty
&operator[](int Idx
) const { return Set
[Idx
]; }
534 bool operator==(const BooleanStateWithSetVector
&RHS
) const {
535 return BooleanState::operator==(RHS
) && Set
== RHS
.Set
;
537 bool operator!=(const BooleanStateWithSetVector
&RHS
) const {
538 return !(*this == RHS
);
541 bool empty() const { return Set
.empty(); }
542 size_t size() const { return Set
.size(); }
544 /// "Clamp" this state with \p RHS.
545 BooleanStateWithSetVector
&operator^=(const BooleanStateWithSetVector
&RHS
) {
546 BooleanState::operator^=(RHS
);
547 Set
.insert(RHS
.Set
.begin(), RHS
.Set
.end());
552 /// A set to keep track of elements.
556 typename
decltype(Set
)::iterator
begin() { return Set
.begin(); }
557 typename
decltype(Set
)::iterator
end() { return Set
.end(); }
558 typename
decltype(Set
)::const_iterator
begin() const { return Set
.begin(); }
559 typename
decltype(Set
)::const_iterator
end() const { return Set
.end(); }
562 template <typename Ty
, bool InsertInvalidates
= true>
563 using BooleanStateWithPtrSetVector
=
564 BooleanStateWithSetVector
<Ty
*, InsertInvalidates
>;
566 struct KernelInfoState
: AbstractState
{
567 /// Flag to track if we reached a fixpoint.
568 bool IsAtFixpoint
= false;
570 /// The parallel regions (identified by the outlined parallel functions) that
571 /// can be reached from the associated function.
572 BooleanStateWithPtrSetVector
<Function
, /* InsertInvalidates */ false>
573 ReachedKnownParallelRegions
;
575 /// State to track what parallel region we might reach.
576 BooleanStateWithPtrSetVector
<CallBase
> ReachedUnknownParallelRegions
;
578 /// State to track if we are in SPMD-mode, assumed or know, and why we decided
579 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be
581 BooleanStateWithPtrSetVector
<Instruction
, false> SPMDCompatibilityTracker
;
583 /// The __kmpc_target_init call in this kernel, if any. If we find more than
584 /// one we abort as the kernel is malformed.
585 CallBase
*KernelInitCB
= nullptr;
587 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than
588 /// one we abort as the kernel is malformed.
589 CallBase
*KernelDeinitCB
= nullptr;
591 /// Flag to indicate if the associated function is a kernel entry.
592 bool IsKernelEntry
= false;
594 /// State to track what kernel entries can reach the associated function.
595 BooleanStateWithPtrSetVector
<Function
, false> ReachingKernelEntries
;
597 /// State to indicate if we can track parallel level of the associated
598 /// function. We will give up tracking if we encounter unknown caller or the
599 /// caller is __kmpc_parallel_51.
600 BooleanStateWithSetVector
<uint8_t> ParallelLevels
;
602 /// Abstract State interface
605 KernelInfoState() = default;
606 KernelInfoState(bool BestState
) {
608 indicatePessimisticFixpoint();
611 /// See AbstractState::isValidState(...)
612 bool isValidState() const override
{ return true; }
614 /// See AbstractState::isAtFixpoint(...)
615 bool isAtFixpoint() const override
{ return IsAtFixpoint
; }
617 /// See AbstractState::indicatePessimisticFixpoint(...)
618 ChangeStatus
indicatePessimisticFixpoint() override
{
620 ReachingKernelEntries
.indicatePessimisticFixpoint();
621 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
622 ReachedKnownParallelRegions
.indicatePessimisticFixpoint();
623 ReachedUnknownParallelRegions
.indicatePessimisticFixpoint();
624 return ChangeStatus::CHANGED
;
627 /// See AbstractState::indicateOptimisticFixpoint(...)
628 ChangeStatus
indicateOptimisticFixpoint() override
{
630 ReachingKernelEntries
.indicateOptimisticFixpoint();
631 SPMDCompatibilityTracker
.indicateOptimisticFixpoint();
632 ReachedKnownParallelRegions
.indicateOptimisticFixpoint();
633 ReachedUnknownParallelRegions
.indicateOptimisticFixpoint();
634 return ChangeStatus::UNCHANGED
;
637 /// Return the assumed state
638 KernelInfoState
&getAssumed() { return *this; }
639 const KernelInfoState
&getAssumed() const { return *this; }
641 bool operator==(const KernelInfoState
&RHS
) const {
642 if (SPMDCompatibilityTracker
!= RHS
.SPMDCompatibilityTracker
)
644 if (ReachedKnownParallelRegions
!= RHS
.ReachedKnownParallelRegions
)
646 if (ReachedUnknownParallelRegions
!= RHS
.ReachedUnknownParallelRegions
)
648 if (ReachingKernelEntries
!= RHS
.ReachingKernelEntries
)
653 /// Returns true if this kernel contains any OpenMP parallel regions.
654 bool mayContainParallelRegion() {
655 return !ReachedKnownParallelRegions
.empty() ||
656 !ReachedUnknownParallelRegions
.empty();
659 /// Return empty set as the best state of potential values.
660 static KernelInfoState
getBestState() { return KernelInfoState(true); }
662 static KernelInfoState
getBestState(KernelInfoState
&KIS
) {
663 return getBestState();
666 /// Return full set as the worst state of potential values.
667 static KernelInfoState
getWorstState() { return KernelInfoState(false); }
669 /// "Clamp" this state with \p KIS.
670 KernelInfoState
operator^=(const KernelInfoState
&KIS
) {
671 // Do not merge two different _init and _deinit call sites.
672 if (KIS
.KernelInitCB
) {
673 if (KernelInitCB
&& KernelInitCB
!= KIS
.KernelInitCB
)
674 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
676 KernelInitCB
= KIS
.KernelInitCB
;
678 if (KIS
.KernelDeinitCB
) {
679 if (KernelDeinitCB
&& KernelDeinitCB
!= KIS
.KernelDeinitCB
)
680 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
682 KernelDeinitCB
= KIS
.KernelDeinitCB
;
684 SPMDCompatibilityTracker
^= KIS
.SPMDCompatibilityTracker
;
685 ReachedKnownParallelRegions
^= KIS
.ReachedKnownParallelRegions
;
686 ReachedUnknownParallelRegions
^= KIS
.ReachedUnknownParallelRegions
;
690 KernelInfoState
operator&=(const KernelInfoState
&KIS
) {
691 return (*this ^= KIS
);
697 /// Used to map the values physically (in the IR) stored in an offload
698 /// array, to a vector in memory.
699 struct OffloadArray
{
700 /// Physical array (in the IR).
701 AllocaInst
*Array
= nullptr;
703 SmallVector
<Value
*, 8> StoredValues
;
704 /// Last stores made in the offload array.
705 SmallVector
<StoreInst
*, 8> LastAccesses
;
707 OffloadArray() = default;
709 /// Initializes the OffloadArray with the values stored in \p Array before
710 /// instruction \p Before is reached. Returns false if the initialization
712 /// This MUST be used immediately after the construction of the object.
713 bool initialize(AllocaInst
&Array
, Instruction
&Before
) {
714 if (!Array
.getAllocatedType()->isArrayTy())
717 if (!getValues(Array
, Before
))
720 this->Array
= &Array
;
724 static const unsigned DeviceIDArgNum
= 1;
725 static const unsigned BasePtrsArgNum
= 3;
726 static const unsigned PtrsArgNum
= 4;
727 static const unsigned SizesArgNum
= 5;
730 /// Traverses the BasicBlock where \p Array is, collecting the stores made to
731 /// \p Array, leaving StoredValues with the values stored before the
732 /// instruction \p Before is reached.
733 bool getValues(AllocaInst
&Array
, Instruction
&Before
) {
734 // Initialize container.
735 const uint64_t NumValues
= Array
.getAllocatedType()->getArrayNumElements();
736 StoredValues
.assign(NumValues
, nullptr);
737 LastAccesses
.assign(NumValues
, nullptr);
739 // TODO: This assumes the instruction \p Before is in the same
740 // BasicBlock as Array. Make it general, for any control flow graph.
741 BasicBlock
*BB
= Array
.getParent();
742 if (BB
!= Before
.getParent())
745 const DataLayout
&DL
= Array
.getModule()->getDataLayout();
746 const unsigned int PointerSize
= DL
.getPointerSize();
748 for (Instruction
&I
: *BB
) {
752 if (!isa
<StoreInst
>(&I
))
755 auto *S
= cast
<StoreInst
>(&I
);
758 GetPointerBaseWithConstantOffset(S
->getPointerOperand(), Offset
, DL
);
760 int64_t Idx
= Offset
/ PointerSize
;
761 StoredValues
[Idx
] = getUnderlyingObject(S
->getValueOperand());
762 LastAccesses
[Idx
] = S
;
769 /// Returns true if all values in StoredValues and
770 /// LastAccesses are not nullptrs.
772 const unsigned NumValues
= StoredValues
.size();
773 for (unsigned I
= 0; I
< NumValues
; ++I
) {
774 if (!StoredValues
[I
] || !LastAccesses
[I
])
784 using OptimizationRemarkGetter
=
785 function_ref
<OptimizationRemarkEmitter
&(Function
*)>;
787 OpenMPOpt(SmallVectorImpl
<Function
*> &SCC
, CallGraphUpdater
&CGUpdater
,
788 OptimizationRemarkGetter OREGetter
,
789 OMPInformationCache
&OMPInfoCache
, Attributor
&A
)
790 : M(*(*SCC
.begin())->getParent()), SCC(SCC
), CGUpdater(CGUpdater
),
791 OREGetter(OREGetter
), OMPInfoCache(OMPInfoCache
), A(A
) {}
793 /// Check if any remarks are enabled for openmp-opt
794 bool remarksEnabled() {
795 auto &Ctx
= M
.getContext();
796 return Ctx
.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE
);
799 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
800 bool run(bool IsModulePass
) {
804 bool Changed
= false;
806 LLVM_DEBUG(dbgs() << TAG
<< "Run on SCC with " << SCC
.size()
807 << " functions in a slice with "
808 << OMPInfoCache
.ModuleSlice
.size() << " functions\n");
811 Changed
|= runAttributor(IsModulePass
);
813 // Recollect uses, in case Attributor deleted any.
814 OMPInfoCache
.recollectUses();
816 // TODO: This should be folded into buildCustomStateMachine.
817 Changed
|= rewriteDeviceCodeStateMachine();
819 if (remarksEnabled())
820 analysisGlobalization();
822 Changed
|= eliminateBarriers();
826 if (PrintOpenMPKernels
)
829 Changed
|= runAttributor(IsModulePass
);
831 // Recollect uses, in case Attributor deleted any.
832 OMPInfoCache
.recollectUses();
834 Changed
|= deleteParallelRegions();
836 if (HideMemoryTransferLatency
)
837 Changed
|= hideMemTransfersLatency();
838 Changed
|= deduplicateRuntimeCalls();
839 if (EnableParallelRegionMerging
) {
840 if (mergeParallelRegions()) {
841 deduplicateRuntimeCalls();
846 Changed
|= eliminateBarriers();
852 /// Print initial ICV values for testing.
853 /// FIXME: This should be done from the Attributor once it is added.
854 void printICVs() const {
855 InternalControlVar ICVs
[] = {ICV_nthreads
, ICV_active_levels
, ICV_cancel
,
858 for (Function
*F
: OMPInfoCache
.ModuleSlice
) {
859 for (auto ICV
: ICVs
) {
860 auto ICVInfo
= OMPInfoCache
.ICVs
[ICV
];
861 auto Remark
= [&](OptimizationRemarkAnalysis ORA
) {
862 return ORA
<< "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo
.Name
)
864 << (ICVInfo
.InitValue
865 ? toString(ICVInfo
.InitValue
->getValue(), 10, true)
866 : "IMPLEMENTATION_DEFINED");
869 emitRemark
<OptimizationRemarkAnalysis
>(F
, "OpenMPICVTracker", Remark
);
874 /// Print OpenMP GPU kernels for testing.
875 void printKernels() const {
876 for (Function
*F
: SCC
) {
877 if (!OMPInfoCache
.Kernels
.count(F
))
880 auto Remark
= [&](OptimizationRemarkAnalysis ORA
) {
881 return ORA
<< "OpenMP GPU kernel "
882 << ore::NV("OpenMPGPUKernel", F
->getName()) << "\n";
885 emitRemark
<OptimizationRemarkAnalysis
>(F
, "OpenMPGPU", Remark
);
889 /// Return the call if \p U is a callee use in a regular call. If \p RFI is
890 /// given it has to be the callee or a nullptr is returned.
891 static CallInst
*getCallIfRegularCall(
892 Use
&U
, OMPInformationCache::RuntimeFunctionInfo
*RFI
= nullptr) {
893 CallInst
*CI
= dyn_cast
<CallInst
>(U
.getUser());
894 if (CI
&& CI
->isCallee(&U
) && !CI
->hasOperandBundles() &&
896 (RFI
->Declaration
&& CI
->getCalledFunction() == RFI
->Declaration
)))
901 /// Return the call if \p V is a regular call. If \p RFI is given it has to be
902 /// the callee or a nullptr is returned.
903 static CallInst
*getCallIfRegularCall(
904 Value
&V
, OMPInformationCache::RuntimeFunctionInfo
*RFI
= nullptr) {
905 CallInst
*CI
= dyn_cast
<CallInst
>(&V
);
906 if (CI
&& !CI
->hasOperandBundles() &&
908 (RFI
->Declaration
&& CI
->getCalledFunction() == RFI
->Declaration
)))
914 /// Merge parallel regions when it is safe.
915 bool mergeParallelRegions() {
916 const unsigned CallbackCalleeOperand
= 2;
917 const unsigned CallbackFirstArgOperand
= 3;
918 using InsertPointTy
= OpenMPIRBuilder::InsertPointTy
;
920 // Check if there are any __kmpc_fork_call calls to merge.
921 OMPInformationCache::RuntimeFunctionInfo
&RFI
=
922 OMPInfoCache
.RFIs
[OMPRTL___kmpc_fork_call
];
924 if (!RFI
.Declaration
)
927 // Unmergable calls that prevent merging a parallel region.
928 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo
[] = {
929 OMPInfoCache
.RFIs
[OMPRTL___kmpc_push_proc_bind
],
930 OMPInfoCache
.RFIs
[OMPRTL___kmpc_push_num_threads
],
933 bool Changed
= false;
934 LoopInfo
*LI
= nullptr;
935 DominatorTree
*DT
= nullptr;
937 SmallDenseMap
<BasicBlock
*, SmallPtrSet
<Instruction
*, 4>> BB2PRMap
;
939 BasicBlock
*StartBB
= nullptr, *EndBB
= nullptr;
940 auto BodyGenCB
= [&](InsertPointTy AllocaIP
, InsertPointTy CodeGenIP
) {
941 BasicBlock
*CGStartBB
= CodeGenIP
.getBlock();
942 BasicBlock
*CGEndBB
=
943 SplitBlock(CGStartBB
, &*CodeGenIP
.getPoint(), DT
, LI
);
944 assert(StartBB
!= nullptr && "StartBB should not be null");
945 CGStartBB
->getTerminator()->setSuccessor(0, StartBB
);
946 assert(EndBB
!= nullptr && "EndBB should not be null");
947 EndBB
->getTerminator()->setSuccessor(0, CGEndBB
);
950 auto PrivCB
= [&](InsertPointTy AllocaIP
, InsertPointTy CodeGenIP
, Value
&,
951 Value
&Inner
, Value
*&ReplacementValue
) -> InsertPointTy
{
952 ReplacementValue
= &Inner
;
956 auto FiniCB
= [&](InsertPointTy CodeGenIP
) {};
958 /// Create a sequential execution region within a merged parallel region,
959 /// encapsulated in a master construct with a barrier for synchronization.
960 auto CreateSequentialRegion
= [&](Function
*OuterFn
,
961 BasicBlock
*OuterPredBB
,
962 Instruction
*SeqStartI
,
963 Instruction
*SeqEndI
) {
964 // Isolate the instructions of the sequential region to a separate
966 BasicBlock
*ParentBB
= SeqStartI
->getParent();
967 BasicBlock
*SeqEndBB
=
968 SplitBlock(ParentBB
, SeqEndI
->getNextNode(), DT
, LI
);
969 BasicBlock
*SeqAfterBB
=
970 SplitBlock(SeqEndBB
, &*SeqEndBB
->getFirstInsertionPt(), DT
, LI
);
971 BasicBlock
*SeqStartBB
=
972 SplitBlock(ParentBB
, SeqStartI
, DT
, LI
, nullptr, "seq.par.merged");
974 assert(ParentBB
->getUniqueSuccessor() == SeqStartBB
&&
975 "Expected a different CFG");
976 const DebugLoc DL
= ParentBB
->getTerminator()->getDebugLoc();
977 ParentBB
->getTerminator()->eraseFromParent();
979 auto BodyGenCB
= [&](InsertPointTy AllocaIP
, InsertPointTy CodeGenIP
) {
980 BasicBlock
*CGStartBB
= CodeGenIP
.getBlock();
981 BasicBlock
*CGEndBB
=
982 SplitBlock(CGStartBB
, &*CodeGenIP
.getPoint(), DT
, LI
);
983 assert(SeqStartBB
!= nullptr && "SeqStartBB should not be null");
984 CGStartBB
->getTerminator()->setSuccessor(0, SeqStartBB
);
985 assert(SeqEndBB
!= nullptr && "SeqEndBB should not be null");
986 SeqEndBB
->getTerminator()->setSuccessor(0, CGEndBB
);
988 auto FiniCB
= [&](InsertPointTy CodeGenIP
) {};
990 // Find outputs from the sequential region to outside users and
991 // broadcast their values to them.
992 for (Instruction
&I
: *SeqStartBB
) {
993 SmallPtrSet
<Instruction
*, 4> OutsideUsers
;
994 for (User
*Usr
: I
.users()) {
995 Instruction
&UsrI
= *cast
<Instruction
>(Usr
);
996 // Ignore outputs to LT intrinsics, code extraction for the merged
997 // parallel region will fix them.
998 if (UsrI
.isLifetimeStartOrEnd())
1001 if (UsrI
.getParent() != SeqStartBB
)
1002 OutsideUsers
.insert(&UsrI
);
1005 if (OutsideUsers
.empty())
1008 // Emit an alloca in the outer region to store the broadcasted
1010 const DataLayout
&DL
= M
.getDataLayout();
1011 AllocaInst
*AllocaI
= new AllocaInst(
1012 I
.getType(), DL
.getAllocaAddrSpace(), nullptr,
1013 I
.getName() + ".seq.output.alloc", &OuterFn
->front().front());
1015 // Emit a store instruction in the sequential BB to update the
1017 new StoreInst(&I
, AllocaI
, SeqStartBB
->getTerminator());
1019 // Emit a load instruction and replace the use of the output value
1021 for (Instruction
*UsrI
: OutsideUsers
) {
1022 LoadInst
*LoadI
= new LoadInst(
1023 I
.getType(), AllocaI
, I
.getName() + ".seq.output.load", UsrI
);
1024 UsrI
->replaceUsesOfWith(&I
, LoadI
);
1028 OpenMPIRBuilder::LocationDescription
Loc(
1029 InsertPointTy(ParentBB
, ParentBB
->end()), DL
);
1030 InsertPointTy SeqAfterIP
=
1031 OMPInfoCache
.OMPBuilder
.createMaster(Loc
, BodyGenCB
, FiniCB
);
1033 OMPInfoCache
.OMPBuilder
.createBarrier(SeqAfterIP
, OMPD_parallel
);
1035 BranchInst::Create(SeqAfterBB
, SeqAfterIP
.getBlock());
1037 LLVM_DEBUG(dbgs() << TAG
<< "After sequential inlining " << *OuterFn
1041 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
1042 // contained in BB and only separated by instructions that can be
1043 // redundantly executed in parallel. The block BB is split before the first
1044 // call (in MergableCIs) and after the last so the entire region we merge
1045 // into a single parallel region is contained in a single basic block
1046 // without any other instructions. We use the OpenMPIRBuilder to outline
1047 // that block and call the resulting function via __kmpc_fork_call.
1048 auto Merge
= [&](const SmallVectorImpl
<CallInst
*> &MergableCIs
,
1050 // TODO: Change the interface to allow single CIs expanded, e.g, to
1051 // include an outer loop.
1052 assert(MergableCIs
.size() > 1 && "Assumed multiple mergable CIs");
1054 auto Remark
= [&](OptimizationRemark OR
) {
1055 OR
<< "Parallel region merged with parallel region"
1056 << (MergableCIs
.size() > 2 ? "s" : "") << " at ";
1057 for (auto *CI
: llvm::drop_begin(MergableCIs
)) {
1058 OR
<< ore::NV("OpenMPParallelMerge", CI
->getDebugLoc());
1059 if (CI
!= MergableCIs
.back())
1065 emitRemark
<OptimizationRemark
>(MergableCIs
.front(), "OMP150", Remark
);
1067 Function
*OriginalFn
= BB
->getParent();
1068 LLVM_DEBUG(dbgs() << TAG
<< "Merge " << MergableCIs
.size()
1069 << " parallel regions in " << OriginalFn
->getName()
1072 // Isolate the calls to merge in a separate block.
1073 EndBB
= SplitBlock(BB
, MergableCIs
.back()->getNextNode(), DT
, LI
);
1074 BasicBlock
*AfterBB
=
1075 SplitBlock(EndBB
, &*EndBB
->getFirstInsertionPt(), DT
, LI
);
1076 StartBB
= SplitBlock(BB
, MergableCIs
.front(), DT
, LI
, nullptr,
1079 assert(BB
->getUniqueSuccessor() == StartBB
&& "Expected a different CFG");
1080 const DebugLoc DL
= BB
->getTerminator()->getDebugLoc();
1081 BB
->getTerminator()->eraseFromParent();
1083 // Create sequential regions for sequential instructions that are
1084 // in-between mergable parallel regions.
1085 for (auto *It
= MergableCIs
.begin(), *End
= MergableCIs
.end() - 1;
1087 Instruction
*ForkCI
= *It
;
1088 Instruction
*NextForkCI
= *(It
+ 1);
1090 // Continue if there are not in-between instructions.
1091 if (ForkCI
->getNextNode() == NextForkCI
)
1094 CreateSequentialRegion(OriginalFn
, BB
, ForkCI
->getNextNode(),
1095 NextForkCI
->getPrevNode());
1098 OpenMPIRBuilder::LocationDescription
Loc(InsertPointTy(BB
, BB
->end()),
1100 IRBuilder
<>::InsertPoint
AllocaIP(
1101 &OriginalFn
->getEntryBlock(),
1102 OriginalFn
->getEntryBlock().getFirstInsertionPt());
1103 // Create the merged parallel region with default proc binding, to
1104 // avoid overriding binding settings, and without explicit cancellation.
1105 InsertPointTy AfterIP
= OMPInfoCache
.OMPBuilder
.createParallel(
1106 Loc
, AllocaIP
, BodyGenCB
, PrivCB
, FiniCB
, nullptr, nullptr,
1107 OMP_PROC_BIND_default
, /* IsCancellable */ false);
1108 BranchInst::Create(AfterBB
, AfterIP
.getBlock());
1110 // Perform the actual outlining.
1111 OMPInfoCache
.OMPBuilder
.finalize(OriginalFn
);
1113 Function
*OutlinedFn
= MergableCIs
.front()->getCaller();
1115 // Replace the __kmpc_fork_call calls with direct calls to the outlined
1117 SmallVector
<Value
*, 8> Args
;
1118 for (auto *CI
: MergableCIs
) {
1119 Value
*Callee
= CI
->getArgOperand(CallbackCalleeOperand
);
1120 FunctionType
*FT
= OMPInfoCache
.OMPBuilder
.ParallelTask
;
1122 Args
.push_back(OutlinedFn
->getArg(0));
1123 Args
.push_back(OutlinedFn
->getArg(1));
1124 for (unsigned U
= CallbackFirstArgOperand
, E
= CI
->arg_size(); U
< E
;
1126 Args
.push_back(CI
->getArgOperand(U
));
1128 CallInst
*NewCI
= CallInst::Create(FT
, Callee
, Args
, "", CI
);
1129 if (CI
->getDebugLoc())
1130 NewCI
->setDebugLoc(CI
->getDebugLoc());
1132 // Forward parameter attributes from the callback to the callee.
1133 for (unsigned U
= CallbackFirstArgOperand
, E
= CI
->arg_size(); U
< E
;
1135 for (const Attribute
&A
: CI
->getAttributes().getParamAttrs(U
))
1136 NewCI
->addParamAttr(
1137 U
- (CallbackFirstArgOperand
- CallbackCalleeOperand
), A
);
1139 // Emit an explicit barrier to replace the implicit fork-join barrier.
1140 if (CI
!= MergableCIs
.back()) {
1141 // TODO: Remove barrier if the merged parallel region includes the
1143 OMPInfoCache
.OMPBuilder
.createBarrier(
1144 InsertPointTy(NewCI
->getParent(),
1145 NewCI
->getNextNode()->getIterator()),
1149 CI
->eraseFromParent();
1152 assert(OutlinedFn
!= OriginalFn
&& "Outlining failed");
1153 CGUpdater
.registerOutlinedFunction(*OriginalFn
, *OutlinedFn
);
1154 CGUpdater
.reanalyzeFunction(*OriginalFn
);
1156 NumOpenMPParallelRegionsMerged
+= MergableCIs
.size();
1161 // Helper function that identifes sequences of
1162 // __kmpc_fork_call uses in a basic block.
1163 auto DetectPRsCB
= [&](Use
&U
, Function
&F
) {
1164 CallInst
*CI
= getCallIfRegularCall(U
, &RFI
);
1165 BB2PRMap
[CI
->getParent()].insert(CI
);
1171 RFI
.foreachUse(SCC
, DetectPRsCB
);
1172 SmallVector
<SmallVector
<CallInst
*, 4>, 4> MergableCIsVector
;
1173 // Find mergable parallel regions within a basic block that are
1174 // safe to merge, that is any in-between instructions can safely
1175 // execute in parallel after merging.
1176 // TODO: support merging across basic-blocks.
1177 for (auto &It
: BB2PRMap
) {
1178 auto &CIs
= It
.getSecond();
1182 BasicBlock
*BB
= It
.getFirst();
1183 SmallVector
<CallInst
*, 4> MergableCIs
;
1185 /// Returns true if the instruction is mergable, false otherwise.
1186 /// A terminator instruction is unmergable by definition since merging
1187 /// works within a BB. Instructions before the mergable region are
1188 /// mergable if they are not calls to OpenMP runtime functions that may
1189 /// set different execution parameters for subsequent parallel regions.
1190 /// Instructions in-between parallel regions are mergable if they are not
1191 /// calls to any non-intrinsic function since that may call a non-mergable
1192 /// OpenMP runtime function.
1193 auto IsMergable
= [&](Instruction
&I
, bool IsBeforeMergableRegion
) {
1194 // We do not merge across BBs, hence return false (unmergable) if the
1195 // instruction is a terminator.
1196 if (I
.isTerminator())
1199 if (!isa
<CallInst
>(&I
))
1202 CallInst
*CI
= cast
<CallInst
>(&I
);
1203 if (IsBeforeMergableRegion
) {
1204 Function
*CalledFunction
= CI
->getCalledFunction();
1205 if (!CalledFunction
)
1207 // Return false (unmergable) if the call before the parallel
1208 // region calls an explicit affinity (proc_bind) or number of
1209 // threads (num_threads) compiler-generated function. Those settings
1210 // may be incompatible with following parallel regions.
1211 // TODO: ICV tracking to detect compatibility.
1212 for (const auto &RFI
: UnmergableCallsInfo
) {
1213 if (CalledFunction
== RFI
.Declaration
)
1217 // Return false (unmergable) if there is a call instruction
1218 // in-between parallel regions when it is not an intrinsic. It
1219 // may call an unmergable OpenMP runtime function in its callpath.
1220 // TODO: Keep track of possible OpenMP calls in the callpath.
1221 if (!isa
<IntrinsicInst
>(CI
))
1227 // Find maximal number of parallel region CIs that are safe to merge.
1228 for (auto It
= BB
->begin(), End
= BB
->end(); It
!= End
;) {
1229 Instruction
&I
= *It
;
1232 if (CIs
.count(&I
)) {
1233 MergableCIs
.push_back(cast
<CallInst
>(&I
));
1237 // Continue expanding if the instruction is mergable.
1238 if (IsMergable(I
, MergableCIs
.empty()))
1241 // Forward the instruction iterator to skip the next parallel region
1242 // since there is an unmergable instruction which can affect it.
1243 for (; It
!= End
; ++It
) {
1244 Instruction
&SkipI
= *It
;
1245 if (CIs
.count(&SkipI
)) {
1246 LLVM_DEBUG(dbgs() << TAG
<< "Skip parallel region " << SkipI
1247 << " due to " << I
<< "\n");
1253 // Store mergable regions found.
1254 if (MergableCIs
.size() > 1) {
1255 MergableCIsVector
.push_back(MergableCIs
);
1256 LLVM_DEBUG(dbgs() << TAG
<< "Found " << MergableCIs
.size()
1257 << " parallel regions in block " << BB
->getName()
1258 << " of function " << BB
->getParent()->getName()
1262 MergableCIs
.clear();
1265 if (!MergableCIsVector
.empty()) {
1268 for (auto &MergableCIs
: MergableCIsVector
)
1269 Merge(MergableCIs
, BB
);
1270 MergableCIsVector
.clear();
1275 /// Re-collect use for fork calls, emitted barrier calls, and
1276 /// any emitted master/end_master calls.
1277 OMPInfoCache
.recollectUsesForFunction(OMPRTL___kmpc_fork_call
);
1278 OMPInfoCache
.recollectUsesForFunction(OMPRTL___kmpc_barrier
);
1279 OMPInfoCache
.recollectUsesForFunction(OMPRTL___kmpc_master
);
1280 OMPInfoCache
.recollectUsesForFunction(OMPRTL___kmpc_end_master
);
1286 /// Try to delete parallel regions if possible.
1287 bool deleteParallelRegions() {
1288 const unsigned CallbackCalleeOperand
= 2;
1290 OMPInformationCache::RuntimeFunctionInfo
&RFI
=
1291 OMPInfoCache
.RFIs
[OMPRTL___kmpc_fork_call
];
1293 if (!RFI
.Declaration
)
1296 bool Changed
= false;
1297 auto DeleteCallCB
= [&](Use
&U
, Function
&) {
1298 CallInst
*CI
= getCallIfRegularCall(U
);
1301 auto *Fn
= dyn_cast
<Function
>(
1302 CI
->getArgOperand(CallbackCalleeOperand
)->stripPointerCasts());
1305 if (!Fn
->onlyReadsMemory())
1307 if (!Fn
->hasFnAttribute(Attribute::WillReturn
))
1310 LLVM_DEBUG(dbgs() << TAG
<< "Delete read-only parallel region in "
1311 << CI
->getCaller()->getName() << "\n");
1313 auto Remark
= [&](OptimizationRemark OR
) {
1314 return OR
<< "Removing parallel region with no side-effects.";
1316 emitRemark
<OptimizationRemark
>(CI
, "OMP160", Remark
);
1318 CGUpdater
.removeCallSite(*CI
);
1319 CI
->eraseFromParent();
1321 ++NumOpenMPParallelRegionsDeleted
;
1325 RFI
.foreachUse(SCC
, DeleteCallCB
);
1330 /// Try to eliminate runtime calls by reusing existing ones.
1331 bool deduplicateRuntimeCalls() {
1332 bool Changed
= false;
1334 RuntimeFunction DeduplicableRuntimeCallIDs
[] = {
1335 OMPRTL_omp_get_num_threads
,
1336 OMPRTL_omp_in_parallel
,
1337 OMPRTL_omp_get_cancellation
,
1338 OMPRTL_omp_get_thread_limit
,
1339 OMPRTL_omp_get_supported_active_levels
,
1340 OMPRTL_omp_get_level
,
1341 OMPRTL_omp_get_ancestor_thread_num
,
1342 OMPRTL_omp_get_team_size
,
1343 OMPRTL_omp_get_active_level
,
1344 OMPRTL_omp_in_final
,
1345 OMPRTL_omp_get_proc_bind
,
1346 OMPRTL_omp_get_num_places
,
1347 OMPRTL_omp_get_num_procs
,
1348 OMPRTL_omp_get_place_num
,
1349 OMPRTL_omp_get_partition_num_places
,
1350 OMPRTL_omp_get_partition_place_nums
};
1352 // Global-tid is handled separately.
1353 SmallSetVector
<Value
*, 16> GTIdArgs
;
1354 collectGlobalThreadIdArguments(GTIdArgs
);
1355 LLVM_DEBUG(dbgs() << TAG
<< "Found " << GTIdArgs
.size()
1356 << " global thread ID arguments\n");
1358 for (Function
*F
: SCC
) {
1359 for (auto DeduplicableRuntimeCallID
: DeduplicableRuntimeCallIDs
)
1360 Changed
|= deduplicateRuntimeCalls(
1361 *F
, OMPInfoCache
.RFIs
[DeduplicableRuntimeCallID
]);
1363 // __kmpc_global_thread_num is special as we can replace it with an
1364 // argument in enough cases to make it worth trying.
1365 Value
*GTIdArg
= nullptr;
1366 for (Argument
&Arg
: F
->args())
1367 if (GTIdArgs
.count(&Arg
)) {
1371 Changed
|= deduplicateRuntimeCalls(
1372 *F
, OMPInfoCache
.RFIs
[OMPRTL___kmpc_global_thread_num
], GTIdArg
);
1378 /// Tries to hide the latency of runtime calls that involve host to
1379 /// device memory transfers by splitting them into their "issue" and "wait"
1380 /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1381 /// moved downards as much as possible. The "issue" issues the memory transfer
1382 /// asynchronously, returning a handle. The "wait" waits in the returned
1383 /// handle for the memory transfer to finish.
1384 bool hideMemTransfersLatency() {
1385 auto &RFI
= OMPInfoCache
.RFIs
[OMPRTL___tgt_target_data_begin_mapper
];
1386 bool Changed
= false;
1387 auto SplitMemTransfers
= [&](Use
&U
, Function
&Decl
) {
1388 auto *RTCall
= getCallIfRegularCall(U
, &RFI
);
1392 OffloadArray OffloadArrays
[3];
1393 if (!getValuesInOffloadArrays(*RTCall
, OffloadArrays
))
1396 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays
));
1398 // TODO: Check if can be moved upwards.
1399 bool WasSplit
= false;
1400 Instruction
*WaitMovementPoint
= canBeMovedDownwards(*RTCall
);
1401 if (WaitMovementPoint
)
1402 WasSplit
= splitTargetDataBeginRTC(*RTCall
, *WaitMovementPoint
);
1404 Changed
|= WasSplit
;
1407 RFI
.foreachUse(SCC
, SplitMemTransfers
);
1412 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels.
1413 /// TODO: Make this an AA and expand it to work across blocks and functions.
1414 bool eliminateBarriers() {
1415 bool Changed
= false;
1417 if (DisableOpenMPOptBarrierElimination
)
1418 return /*Changed=*/false;
1420 if (OMPInfoCache
.Kernels
.empty())
1421 return /*Changed=*/false;
1423 enum ImplicitBarrierType
{ IBT_ENTRY
, IBT_EXIT
};
1427 enum ImplicitBarrierType Type
;
1430 BarrierInfo(enum ImplicitBarrierType Type
) : I(nullptr), Type(Type
) {}
1431 BarrierInfo(Instruction
&I
) : I(&I
) {}
1433 bool isImplicit() { return !I
; }
1435 bool isImplicitEntry() { return isImplicit() && Type
== IBT_ENTRY
; }
1437 bool isImplicitExit() { return isImplicit() && Type
== IBT_EXIT
; }
1439 Instruction
*getInstruction() { return I
; }
1442 for (Function
*Kernel
: OMPInfoCache
.Kernels
) {
1443 for (BasicBlock
&BB
: *Kernel
) {
1444 SmallVector
<BarrierInfo
, 8> BarriersInBlock
;
1445 SmallPtrSet
<Instruction
*, 8> BarriersToBeDeleted
;
1447 // Add the kernel entry implicit barrier.
1448 if (&Kernel
->getEntryBlock() == &BB
)
1449 BarriersInBlock
.push_back(IBT_ENTRY
);
1451 // Find implicit and explicit aligned barriers in the same basic block.
1452 for (Instruction
&I
: BB
) {
1453 if (isa
<ReturnInst
>(I
)) {
1454 // Add the implicit barrier when exiting the kernel.
1455 BarriersInBlock
.push_back(IBT_EXIT
);
1458 CallBase
*CB
= dyn_cast
<CallBase
>(&I
);
1462 auto IsAlignBarrierCB
= [&](CallBase
&CB
) {
1463 switch (CB
.getIntrinsicID()) {
1464 case Intrinsic::nvvm_barrier0
:
1465 case Intrinsic::nvvm_barrier0_and
:
1466 case Intrinsic::nvvm_barrier0_or
:
1467 case Intrinsic::nvvm_barrier0_popc
:
1472 return hasAssumption(CB
,
1473 KnownAssumptionString("ompx_aligned_barrier"));
1476 if (IsAlignBarrierCB(*CB
)) {
1477 // Add an explicit aligned barrier.
1478 BarriersInBlock
.push_back(I
);
1482 if (BarriersInBlock
.size() <= 1)
1485 // A barrier in a barrier pair is removeable if all instructions
1486 // between the barriers in the pair are side-effect free modulo the
1487 // barrier operation.
1488 auto IsBarrierRemoveable
= [&Kernel
](BarrierInfo
*StartBI
,
1489 BarrierInfo
*EndBI
) {
1491 !StartBI
->isImplicitExit() &&
1492 "Expected start barrier to be other than a kernel exit barrier");
1494 !EndBI
->isImplicitEntry() &&
1495 "Expected end barrier to be other than a kernel entry barrier");
1496 // If StarBI instructions is null then this the implicit
1497 // kernel entry barrier, so iterate from the first instruction in the
1499 Instruction
*I
= (StartBI
->isImplicitEntry())
1500 ? &Kernel
->getEntryBlock().front()
1501 : StartBI
->getInstruction()->getNextNode();
1502 assert(I
&& "Expected non-null start instruction");
1503 Instruction
*E
= (EndBI
->isImplicitExit())
1504 ? I
->getParent()->getTerminator()
1505 : EndBI
->getInstruction();
1506 assert(E
&& "Expected non-null end instruction");
1508 for (; I
!= E
; I
= I
->getNextNode()) {
1509 if (!I
->mayHaveSideEffects() && !I
->mayReadFromMemory())
1512 auto IsPotentiallyAffectedByBarrier
=
1513 [](Optional
<MemoryLocation
> Loc
) {
1514 const Value
*Obj
= (Loc
&& Loc
->Ptr
)
1515 ? getUnderlyingObject(Loc
->Ptr
)
1520 << "Access to unknown location requires barriers\n");
1523 if (isa
<UndefValue
>(Obj
))
1525 if (isa
<AllocaInst
>(Obj
))
1527 if (auto *GV
= dyn_cast
<GlobalVariable
>(Obj
)) {
1528 if (GV
->isConstant())
1530 if (GV
->isThreadLocal())
1532 if (GV
->getAddressSpace() == (int)AddressSpace::Local
)
1534 if (GV
->getAddressSpace() == (int)AddressSpace::Constant
)
1537 LLVM_DEBUG(dbgs() << "Access to '" << *Obj
1538 << "' requires barriers\n");
1542 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(I
)) {
1543 Optional
<MemoryLocation
> Loc
= MemoryLocation::getForDest(MI
);
1544 if (IsPotentiallyAffectedByBarrier(Loc
))
1546 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(I
)) {
1547 Optional
<MemoryLocation
> Loc
=
1548 MemoryLocation::getForSource(MTI
);
1549 if (IsPotentiallyAffectedByBarrier(Loc
))
1555 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
1556 if (LI
->hasMetadata(LLVMContext::MD_invariant_load
))
1559 Optional
<MemoryLocation
> Loc
= MemoryLocation::getOrNone(I
);
1560 if (IsPotentiallyAffectedByBarrier(Loc
))
1567 // Iterate barrier pairs and remove an explicit barrier if analysis
1568 // deems it removeable.
1569 for (auto *It
= BarriersInBlock
.begin(),
1570 *End
= BarriersInBlock
.end() - 1;
1573 BarrierInfo
*StartBI
= It
;
1574 BarrierInfo
*EndBI
= (It
+ 1);
1576 // Cannot remove when both are implicit barriers, continue.
1577 if (StartBI
->isImplicit() && EndBI
->isImplicit())
1580 if (!IsBarrierRemoveable(StartBI
, EndBI
))
1583 assert(!(StartBI
->isImplicit() && EndBI
->isImplicit()) &&
1584 "Expected at least one explicit barrier to remove.");
1586 // Remove an explicit barrier, check first, then second.
1587 if (!StartBI
->isImplicit()) {
1588 LLVM_DEBUG(dbgs() << "Remove start barrier "
1589 << *StartBI
->getInstruction() << "\n");
1590 BarriersToBeDeleted
.insert(StartBI
->getInstruction());
1592 LLVM_DEBUG(dbgs() << "Remove end barrier "
1593 << *EndBI
->getInstruction() << "\n");
1594 BarriersToBeDeleted
.insert(EndBI
->getInstruction());
1598 if (BarriersToBeDeleted
.empty())
1602 for (Instruction
*I
: BarriersToBeDeleted
) {
1603 ++NumBarriersEliminated
;
1604 auto Remark
= [&](OptimizationRemark OR
) {
1605 return OR
<< "Redundant barrier eliminated.";
1608 if (EnableVerboseRemarks
)
1609 emitRemark
<OptimizationRemark
>(I
, "OMP190", Remark
);
1610 I
->eraseFromParent();
1618 void analysisGlobalization() {
1619 auto &RFI
= OMPInfoCache
.RFIs
[OMPRTL___kmpc_alloc_shared
];
1621 auto CheckGlobalization
= [&](Use
&U
, Function
&Decl
) {
1622 if (CallInst
*CI
= getCallIfRegularCall(U
, &RFI
)) {
1623 auto Remark
= [&](OptimizationRemarkMissed ORM
) {
1625 << "Found thread data sharing on the GPU. "
1626 << "Expect degraded performance due to data globalization.";
1628 emitRemark
<OptimizationRemarkMissed
>(CI
, "OMP112", Remark
);
1634 RFI
.foreachUse(SCC
, CheckGlobalization
);
1637 /// Maps the values stored in the offload arrays passed as arguments to
1638 /// \p RuntimeCall into the offload arrays in \p OAs.
1639 bool getValuesInOffloadArrays(CallInst
&RuntimeCall
,
1640 MutableArrayRef
<OffloadArray
> OAs
) {
1641 assert(OAs
.size() == 3 && "Need space for three offload arrays!");
1643 // A runtime call that involves memory offloading looks something like:
1644 // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1645 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1647 // So, the idea is to access the allocas that allocate space for these
1648 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1650 // i8** %offload_baseptrs.
1651 Value
*BasePtrsArg
=
1652 RuntimeCall
.getArgOperand(OffloadArray::BasePtrsArgNum
);
1653 // i8** %offload_ptrs.
1654 Value
*PtrsArg
= RuntimeCall
.getArgOperand(OffloadArray::PtrsArgNum
);
1655 // i8** %offload_sizes.
1656 Value
*SizesArg
= RuntimeCall
.getArgOperand(OffloadArray::SizesArgNum
);
1658 // Get values stored in **offload_baseptrs.
1659 auto *V
= getUnderlyingObject(BasePtrsArg
);
1660 if (!isa
<AllocaInst
>(V
))
1662 auto *BasePtrsArray
= cast
<AllocaInst
>(V
);
1663 if (!OAs
[0].initialize(*BasePtrsArray
, RuntimeCall
))
1666 // Get values stored in **offload_baseptrs.
1667 V
= getUnderlyingObject(PtrsArg
);
1668 if (!isa
<AllocaInst
>(V
))
1670 auto *PtrsArray
= cast
<AllocaInst
>(V
);
1671 if (!OAs
[1].initialize(*PtrsArray
, RuntimeCall
))
1674 // Get values stored in **offload_sizes.
1675 V
= getUnderlyingObject(SizesArg
);
1676 // If it's a [constant] global array don't analyze it.
1677 if (isa
<GlobalValue
>(V
))
1678 return isa
<Constant
>(V
);
1679 if (!isa
<AllocaInst
>(V
))
1682 auto *SizesArray
= cast
<AllocaInst
>(V
);
1683 if (!OAs
[2].initialize(*SizesArray
, RuntimeCall
))
1689 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1690 /// For now this is a way to test that the function getValuesInOffloadArrays
1691 /// is working properly.
1692 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
1693 void dumpValuesInOffloadArrays(ArrayRef
<OffloadArray
> OAs
) {
1694 assert(OAs
.size() == 3 && "There are three offload arrays to debug!");
1696 LLVM_DEBUG(dbgs() << TAG
<< " Successfully got offload values:\n");
1697 std::string ValuesStr
;
1698 raw_string_ostream
Printer(ValuesStr
);
1699 std::string Separator
= " --- ";
1701 for (auto *BP
: OAs
[0].StoredValues
) {
1703 Printer
<< Separator
;
1705 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer
.str() << "\n");
1708 for (auto *P
: OAs
[1].StoredValues
) {
1710 Printer
<< Separator
;
1712 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer
.str() << "\n");
1715 for (auto *S
: OAs
[2].StoredValues
) {
1717 Printer
<< Separator
;
1719 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer
.str() << "\n");
1722 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1723 /// moved. Returns nullptr if the movement is not possible, or not worth it.
1724 Instruction
*canBeMovedDownwards(CallInst
&RuntimeCall
) {
1725 // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1726 // Make it traverse the CFG.
1728 Instruction
*CurrentI
= &RuntimeCall
;
1729 bool IsWorthIt
= false;
1730 while ((CurrentI
= CurrentI
->getNextNode())) {
1732 // TODO: Once we detect the regions to be offloaded we should use the
1733 // alias analysis manager to check if CurrentI may modify one of
1734 // the offloaded regions.
1735 if (CurrentI
->mayHaveSideEffects() || CurrentI
->mayReadFromMemory()) {
1742 // FIXME: For now if we move it over anything without side effect
1747 // Return end of BasicBlock.
1748 return RuntimeCall
.getParent()->getTerminator();
1751 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
1752 bool splitTargetDataBeginRTC(CallInst
&RuntimeCall
,
1753 Instruction
&WaitMovementPoint
) {
1754 // Create stack allocated handle (__tgt_async_info) at the beginning of the
1755 // function. Used for storing information of the async transfer, allowing to
1756 // wait on it later.
1757 auto &IRBuilder
= OMPInfoCache
.OMPBuilder
;
1758 auto *F
= RuntimeCall
.getCaller();
1759 Instruction
*FirstInst
= &(F
->getEntryBlock().front());
1760 AllocaInst
*Handle
= new AllocaInst(
1761 IRBuilder
.AsyncInfo
, F
->getAddressSpace(), "handle", FirstInst
);
1763 // Add "issue" runtime call declaration:
1764 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1765 // i8**, i8**, i64*, i64*)
1766 FunctionCallee IssueDecl
= IRBuilder
.getOrCreateRuntimeFunction(
1767 M
, OMPRTL___tgt_target_data_begin_mapper_issue
);
1769 // Change RuntimeCall call site for its asynchronous version.
1770 SmallVector
<Value
*, 16> Args
;
1771 for (auto &Arg
: RuntimeCall
.args())
1772 Args
.push_back(Arg
.get());
1773 Args
.push_back(Handle
);
1775 CallInst
*IssueCallsite
=
1776 CallInst::Create(IssueDecl
, Args
, /*NameStr=*/"", &RuntimeCall
);
1777 OMPInfoCache
.setCallingConvention(IssueDecl
, IssueCallsite
);
1778 RuntimeCall
.eraseFromParent();
1780 // Add "wait" runtime call declaration:
1781 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1782 FunctionCallee WaitDecl
= IRBuilder
.getOrCreateRuntimeFunction(
1783 M
, OMPRTL___tgt_target_data_begin_mapper_wait
);
1785 Value
*WaitParams
[2] = {
1786 IssueCallsite
->getArgOperand(
1787 OffloadArray::DeviceIDArgNum
), // device_id.
1788 Handle
// handle to wait on.
1790 CallInst
*WaitCallsite
= CallInst::Create(
1791 WaitDecl
, WaitParams
, /*NameStr=*/"", &WaitMovementPoint
);
1792 OMPInfoCache
.setCallingConvention(WaitDecl
, WaitCallsite
);
1797 static Value
*combinedIdentStruct(Value
*CurrentIdent
, Value
*NextIdent
,
1798 bool GlobalOnly
, bool &SingleChoice
) {
1799 if (CurrentIdent
== NextIdent
)
1800 return CurrentIdent
;
1802 // TODO: Figure out how to actually combine multiple debug locations. For
1803 // now we just keep an existing one if there is a single choice.
1804 if (!GlobalOnly
|| isa
<GlobalValue
>(NextIdent
)) {
1805 SingleChoice
= !CurrentIdent
;
1811 /// Return an `struct ident_t*` value that represents the ones used in the
1812 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1813 /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1814 /// return value we create one from scratch. We also do not yet combine
1815 /// information, e.g., the source locations, see combinedIdentStruct.
1817 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo
&RFI
,
1818 Function
&F
, bool GlobalOnly
) {
1819 bool SingleChoice
= true;
1820 Value
*Ident
= nullptr;
1821 auto CombineIdentStruct
= [&](Use
&U
, Function
&Caller
) {
1822 CallInst
*CI
= getCallIfRegularCall(U
, &RFI
);
1823 if (!CI
|| &F
!= &Caller
)
1825 Ident
= combinedIdentStruct(Ident
, CI
->getArgOperand(0),
1826 /* GlobalOnly */ true, SingleChoice
);
1829 RFI
.foreachUse(SCC
, CombineIdentStruct
);
1831 if (!Ident
|| !SingleChoice
) {
1832 // The IRBuilder uses the insertion block to get to the module, this is
1833 // unfortunate but we work around it for now.
1834 if (!OMPInfoCache
.OMPBuilder
.getInsertionPoint().getBlock())
1835 OMPInfoCache
.OMPBuilder
.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1836 &F
.getEntryBlock(), F
.getEntryBlock().begin()));
1837 // Create a fallback location if non was found.
1838 // TODO: Use the debug locations of the calls instead.
1839 uint32_t SrcLocStrSize
;
1841 OMPInfoCache
.OMPBuilder
.getOrCreateDefaultSrcLocStr(SrcLocStrSize
);
1842 Ident
= OMPInfoCache
.OMPBuilder
.getOrCreateIdent(Loc
, SrcLocStrSize
);
1847 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1848 /// \p ReplVal if given.
1849 bool deduplicateRuntimeCalls(Function
&F
,
1850 OMPInformationCache::RuntimeFunctionInfo
&RFI
,
1851 Value
*ReplVal
= nullptr) {
1852 auto *UV
= RFI
.getUseVector(F
);
1853 if (!UV
|| UV
->size() + (ReplVal
!= nullptr) < 2)
1857 dbgs() << TAG
<< "Deduplicate " << UV
->size() << " uses of " << RFI
.Name
1858 << (ReplVal
? " with an existing value\n" : "\n") << "\n");
1860 assert((!ReplVal
|| (isa
<Argument
>(ReplVal
) &&
1861 cast
<Argument
>(ReplVal
)->getParent() == &F
)) &&
1862 "Unexpected replacement value!");
1864 // TODO: Use dominance to find a good position instead.
1865 auto CanBeMoved
= [this](CallBase
&CB
) {
1866 unsigned NumArgs
= CB
.arg_size();
1869 if (CB
.getArgOperand(0)->getType() != OMPInfoCache
.OMPBuilder
.IdentPtr
)
1871 for (unsigned U
= 1; U
< NumArgs
; ++U
)
1872 if (isa
<Instruction
>(CB
.getArgOperand(U
)))
1879 if (CallInst
*CI
= getCallIfRegularCall(*U
, &RFI
)) {
1880 if (!CanBeMoved(*CI
))
1883 // If the function is a kernel, dedup will move
1884 // the runtime call right after the kernel init callsite. Otherwise,
1885 // it will move it to the beginning of the caller function.
1887 auto &KernelInitRFI
= OMPInfoCache
.RFIs
[OMPRTL___kmpc_target_init
];
1888 auto *KernelInitUV
= KernelInitRFI
.getUseVector(F
);
1890 if (KernelInitUV
->empty())
1893 assert(KernelInitUV
->size() == 1 &&
1894 "Expected a single __kmpc_target_init in kernel\n");
1896 CallInst
*KernelInitCI
=
1897 getCallIfRegularCall(*KernelInitUV
->front(), &KernelInitRFI
);
1898 assert(KernelInitCI
&&
1899 "Expected a call to __kmpc_target_init in kernel\n");
1901 CI
->moveAfter(KernelInitCI
);
1903 CI
->moveBefore(&*F
.getEntryBlock().getFirstInsertionPt());
1911 // If we use a call as a replacement value we need to make sure the ident is
1912 // valid at the new location. For now we just pick a global one, either
1913 // existing and used by one of the calls, or created from scratch.
1914 if (CallBase
*CI
= dyn_cast
<CallBase
>(ReplVal
)) {
1915 if (!CI
->arg_empty() &&
1916 CI
->getArgOperand(0)->getType() == OMPInfoCache
.OMPBuilder
.IdentPtr
) {
1917 Value
*Ident
= getCombinedIdentFromCallUsesIn(RFI
, F
,
1918 /* GlobalOnly */ true);
1919 CI
->setArgOperand(0, Ident
);
1923 bool Changed
= false;
1924 auto ReplaceAndDeleteCB
= [&](Use
&U
, Function
&Caller
) {
1925 CallInst
*CI
= getCallIfRegularCall(U
, &RFI
);
1926 if (!CI
|| CI
== ReplVal
|| &F
!= &Caller
)
1928 assert(CI
->getCaller() == &F
&& "Unexpected call!");
1930 auto Remark
= [&](OptimizationRemark OR
) {
1931 return OR
<< "OpenMP runtime call "
1932 << ore::NV("OpenMPOptRuntime", RFI
.Name
) << " deduplicated.";
1934 if (CI
->getDebugLoc())
1935 emitRemark
<OptimizationRemark
>(CI
, "OMP170", Remark
);
1937 emitRemark
<OptimizationRemark
>(&F
, "OMP170", Remark
);
1939 CGUpdater
.removeCallSite(*CI
);
1940 CI
->replaceAllUsesWith(ReplVal
);
1941 CI
->eraseFromParent();
1942 ++NumOpenMPRuntimeCallsDeduplicated
;
1946 RFI
.foreachUse(SCC
, ReplaceAndDeleteCB
);
1951 /// Collect arguments that represent the global thread id in \p GTIdArgs.
1952 void collectGlobalThreadIdArguments(SmallSetVector
<Value
*, 16> >IdArgs
) {
1953 // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1954 // initialization. We could define an AbstractAttribute instead and
1955 // run the Attributor here once it can be run as an SCC pass.
1957 // Helper to check the argument \p ArgNo at all call sites of \p F for
1959 auto CallArgOpIsGTId
= [&](Function
&F
, unsigned ArgNo
, CallInst
&RefCI
) {
1960 if (!F
.hasLocalLinkage())
1962 for (Use
&U
: F
.uses()) {
1963 if (CallInst
*CI
= getCallIfRegularCall(U
)) {
1964 Value
*ArgOp
= CI
->getArgOperand(ArgNo
);
1965 if (CI
== &RefCI
|| GTIdArgs
.count(ArgOp
) ||
1966 getCallIfRegularCall(
1967 *ArgOp
, &OMPInfoCache
.RFIs
[OMPRTL___kmpc_global_thread_num
]))
1975 // Helper to identify uses of a GTId as GTId arguments.
1976 auto AddUserArgs
= [&](Value
>Id
) {
1977 for (Use
&U
: GTId
.uses())
1978 if (CallInst
*CI
= dyn_cast
<CallInst
>(U
.getUser()))
1979 if (CI
->isArgOperand(&U
))
1980 if (Function
*Callee
= CI
->getCalledFunction())
1981 if (CallArgOpIsGTId(*Callee
, U
.getOperandNo(), *CI
))
1982 GTIdArgs
.insert(Callee
->getArg(U
.getOperandNo()));
1985 // The argument users of __kmpc_global_thread_num calls are GTIds.
1986 OMPInformationCache::RuntimeFunctionInfo
&GlobThreadNumRFI
=
1987 OMPInfoCache
.RFIs
[OMPRTL___kmpc_global_thread_num
];
1989 GlobThreadNumRFI
.foreachUse(SCC
, [&](Use
&U
, Function
&F
) {
1990 if (CallInst
*CI
= getCallIfRegularCall(U
, &GlobThreadNumRFI
))
1995 // Transitively search for more arguments by looking at the users of the
1996 // ones we know already. During the search the GTIdArgs vector is extended
1997 // so we cannot cache the size nor can we use a range based for.
1998 for (unsigned U
= 0; U
< GTIdArgs
.size(); ++U
)
1999 AddUserArgs(*GTIdArgs
[U
]);
2002 /// Kernel (=GPU) optimizations and utility functions
2006 /// Check if \p F is a kernel, hence entry point for target offloading.
2007 bool isKernel(Function
&F
) { return OMPInfoCache
.Kernels
.count(&F
); }
2009 /// Cache to remember the unique kernel for a function.
2010 DenseMap
<Function
*, Optional
<Kernel
>> UniqueKernelMap
;
2012 /// Find the unique kernel that will execute \p F, if any.
2013 Kernel
getUniqueKernelFor(Function
&F
);
2015 /// Find the unique kernel that will execute \p I, if any.
2016 Kernel
getUniqueKernelFor(Instruction
&I
) {
2017 return getUniqueKernelFor(*I
.getFunction());
2020 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
2021 /// the cases we can avoid taking the address of a function.
2022 bool rewriteDeviceCodeStateMachine();
2027 /// Emit a remark generically
2029 /// This template function can be used to generically emit a remark. The
2030 /// RemarkKind should be one of the following:
2031 /// - OptimizationRemark to indicate a successful optimization attempt
2032 /// - OptimizationRemarkMissed to report a failed optimization attempt
2033 /// - OptimizationRemarkAnalysis to provide additional information about an
2034 /// optimization attempt
2036 /// The remark is built using a callback function provided by the caller that
2037 /// takes a RemarkKind as input and returns a RemarkKind.
2038 template <typename RemarkKind
, typename RemarkCallBack
>
2039 void emitRemark(Instruction
*I
, StringRef RemarkName
,
2040 RemarkCallBack
&&RemarkCB
) const {
2041 Function
*F
= I
->getParent()->getParent();
2042 auto &ORE
= OREGetter(F
);
2044 if (RemarkName
.startswith("OMP"))
2046 return RemarkCB(RemarkKind(DEBUG_TYPE
, RemarkName
, I
))
2047 << " [" << RemarkName
<< "]";
2051 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE
, RemarkName
, I
)); });
2054 /// Emit a remark on a function.
2055 template <typename RemarkKind
, typename RemarkCallBack
>
2056 void emitRemark(Function
*F
, StringRef RemarkName
,
2057 RemarkCallBack
&&RemarkCB
) const {
2058 auto &ORE
= OREGetter(F
);
2060 if (RemarkName
.startswith("OMP"))
2062 return RemarkCB(RemarkKind(DEBUG_TYPE
, RemarkName
, F
))
2063 << " [" << RemarkName
<< "]";
2067 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE
, RemarkName
, F
)); });
2070 /// RAII struct to temporarily change an RTL function's linkage to external.
2071 /// This prevents it from being mistakenly removed by other optimizations.
2072 struct ExternalizationRAII
{
2073 ExternalizationRAII(OMPInformationCache
&OMPInfoCache
,
2074 RuntimeFunction RFKind
)
2075 : Declaration(OMPInfoCache
.RFIs
[RFKind
].Declaration
) {
2079 LinkageType
= Declaration
->getLinkage();
2080 Declaration
->setLinkage(GlobalValue::ExternalLinkage
);
2083 ~ExternalizationRAII() {
2087 Declaration
->setLinkage(LinkageType
);
2090 Function
*Declaration
;
2091 GlobalValue::LinkageTypes LinkageType
;
2094 /// The underlying module.
2097 /// The SCC we are operating on.
2098 SmallVectorImpl
<Function
*> &SCC
;
2100 /// Callback to update the call graph, the first argument is a removed call,
2101 /// the second an optional replacement call.
2102 CallGraphUpdater
&CGUpdater
;
2104 /// Callback to get an OptimizationRemarkEmitter from a Function *
2105 OptimizationRemarkGetter OREGetter
;
2107 /// OpenMP-specific information cache. Also Used for Attributor runs.
2108 OMPInformationCache
&OMPInfoCache
;
2110 /// Attributor instance.
2113 /// Helper function to run Attributor on SCC.
2114 bool runAttributor(bool IsModulePass
) {
2118 // Temporarily make these function have external linkage so the Attributor
2119 // doesn't remove them when we try to look them up later.
2120 ExternalizationRAII
Parallel(OMPInfoCache
, OMPRTL___kmpc_kernel_parallel
);
2121 ExternalizationRAII
EndParallel(OMPInfoCache
,
2122 OMPRTL___kmpc_kernel_end_parallel
);
2123 ExternalizationRAII
BarrierSPMD(OMPInfoCache
,
2124 OMPRTL___kmpc_barrier_simple_spmd
);
2125 ExternalizationRAII
BarrierGeneric(OMPInfoCache
,
2126 OMPRTL___kmpc_barrier_simple_generic
);
2127 ExternalizationRAII
ThreadId(OMPInfoCache
,
2128 OMPRTL___kmpc_get_hardware_thread_id_in_block
);
2129 ExternalizationRAII
NumThreads(
2130 OMPInfoCache
, OMPRTL___kmpc_get_hardware_num_threads_in_block
);
2131 ExternalizationRAII
WarpSize(OMPInfoCache
, OMPRTL___kmpc_get_warp_size
);
2133 registerAAs(IsModulePass
);
2135 ChangeStatus Changed
= A
.run();
2137 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC
.size()
2138 << " functions, result: " << Changed
<< ".\n");
2140 return Changed
== ChangeStatus::CHANGED
;
2143 void registerFoldRuntimeCall(RuntimeFunction RF
);
2145 /// Populate the Attributor with abstract attribute opportunities in the
2147 void registerAAs(bool IsModulePass
);
2150 Kernel
OpenMPOpt::getUniqueKernelFor(Function
&F
) {
2151 if (!OMPInfoCache
.ModuleSlice
.count(&F
))
2154 // Use a scope to keep the lifetime of the CachedKernel short.
2156 Optional
<Kernel
> &CachedKernel
= UniqueKernelMap
[&F
];
2158 return *CachedKernel
;
2160 // TODO: We should use an AA to create an (optimistic and callback
2161 // call-aware) call graph. For now we stick to simple patterns that
2162 // are less powerful, basically the worst fixpoint.
2164 CachedKernel
= Kernel(&F
);
2165 return *CachedKernel
;
2168 CachedKernel
= nullptr;
2169 if (!F
.hasLocalLinkage()) {
2171 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
2172 auto Remark
= [&](OptimizationRemarkAnalysis ORA
) {
2173 return ORA
<< "Potentially unknown OpenMP target region caller.";
2175 emitRemark
<OptimizationRemarkAnalysis
>(&F
, "OMP100", Remark
);
2181 auto GetUniqueKernelForUse
= [&](const Use
&U
) -> Kernel
{
2182 if (auto *Cmp
= dyn_cast
<ICmpInst
>(U
.getUser())) {
2183 // Allow use in equality comparisons.
2184 if (Cmp
->isEquality())
2185 return getUniqueKernelFor(*Cmp
);
2188 if (auto *CB
= dyn_cast
<CallBase
>(U
.getUser())) {
2189 // Allow direct calls.
2190 if (CB
->isCallee(&U
))
2191 return getUniqueKernelFor(*CB
);
2193 OMPInformationCache::RuntimeFunctionInfo
&KernelParallelRFI
=
2194 OMPInfoCache
.RFIs
[OMPRTL___kmpc_parallel_51
];
2195 // Allow the use in __kmpc_parallel_51 calls.
2196 if (OpenMPOpt::getCallIfRegularCall(*U
.getUser(), &KernelParallelRFI
))
2197 return getUniqueKernelFor(*CB
);
2200 // Disallow every other use.
2204 // TODO: In the future we want to track more than just a unique kernel.
2205 SmallPtrSet
<Kernel
, 2> PotentialKernels
;
2206 OMPInformationCache::foreachUse(F
, [&](const Use
&U
) {
2207 PotentialKernels
.insert(GetUniqueKernelForUse(U
));
2211 if (PotentialKernels
.size() == 1)
2212 K
= *PotentialKernels
.begin();
2214 // Cache the result.
2215 UniqueKernelMap
[&F
] = K
;
2220 bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
2221 OMPInformationCache::RuntimeFunctionInfo
&KernelParallelRFI
=
2222 OMPInfoCache
.RFIs
[OMPRTL___kmpc_parallel_51
];
2224 bool Changed
= false;
2225 if (!KernelParallelRFI
)
2228 // If we have disabled state machine changes, exit
2229 if (DisableOpenMPOptStateMachineRewrite
)
2232 for (Function
*F
: SCC
) {
2234 // Check if the function is a use in a __kmpc_parallel_51 call at
2236 bool UnknownUse
= false;
2237 bool KernelParallelUse
= false;
2238 unsigned NumDirectCalls
= 0;
2240 SmallVector
<Use
*, 2> ToBeReplacedStateMachineUses
;
2241 OMPInformationCache::foreachUse(*F
, [&](Use
&U
) {
2242 if (auto *CB
= dyn_cast
<CallBase
>(U
.getUser()))
2243 if (CB
->isCallee(&U
)) {
2248 if (isa
<ICmpInst
>(U
.getUser())) {
2249 ToBeReplacedStateMachineUses
.push_back(&U
);
2253 // Find wrapper functions that represent parallel kernels.
2255 OpenMPOpt::getCallIfRegularCall(*U
.getUser(), &KernelParallelRFI
);
2256 const unsigned int WrapperFunctionArgNo
= 6;
2257 if (!KernelParallelUse
&& CI
&&
2258 CI
->getArgOperandNo(&U
) == WrapperFunctionArgNo
) {
2259 KernelParallelUse
= true;
2260 ToBeReplacedStateMachineUses
.push_back(&U
);
2266 // Do not emit a remark if we haven't seen a __kmpc_parallel_51
2268 if (!KernelParallelUse
)
2271 // If this ever hits, we should investigate.
2272 // TODO: Checking the number of uses is not a necessary restriction and
2273 // should be lifted.
2274 if (UnknownUse
|| NumDirectCalls
!= 1 ||
2275 ToBeReplacedStateMachineUses
.size() > 2) {
2276 auto Remark
= [&](OptimizationRemarkAnalysis ORA
) {
2277 return ORA
<< "Parallel region is used in "
2278 << (UnknownUse
? "unknown" : "unexpected")
2279 << " ways. Will not attempt to rewrite the state machine.";
2281 emitRemark
<OptimizationRemarkAnalysis
>(F
, "OMP101", Remark
);
2285 // Even if we have __kmpc_parallel_51 calls, we (for now) give
2286 // up if the function is not called from a unique kernel.
2287 Kernel K
= getUniqueKernelFor(*F
);
2289 auto Remark
= [&](OptimizationRemarkAnalysis ORA
) {
2290 return ORA
<< "Parallel region is not called from a unique kernel. "
2291 "Will not attempt to rewrite the state machine.";
2293 emitRemark
<OptimizationRemarkAnalysis
>(F
, "OMP102", Remark
);
2297 // We now know F is a parallel body function called only from the kernel K.
2298 // We also identified the state machine uses in which we replace the
2299 // function pointer by a new global symbol for identification purposes. This
2300 // ensures only direct calls to the function are left.
2302 Module
&M
= *F
->getParent();
2303 Type
*Int8Ty
= Type::getInt8Ty(M
.getContext());
2305 auto *ID
= new GlobalVariable(
2306 M
, Int8Ty
, /* isConstant */ true, GlobalValue::PrivateLinkage
,
2307 UndefValue::get(Int8Ty
), F
->getName() + ".ID");
2309 for (Use
*U
: ToBeReplacedStateMachineUses
)
2310 U
->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2311 ID
, U
->get()->getType()));
2313 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine
;
2321 /// Abstract Attribute for tracking ICV values.
2322 struct AAICVTracker
: public StateWrapper
<BooleanState
, AbstractAttribute
> {
2323 using Base
= StateWrapper
<BooleanState
, AbstractAttribute
>;
2324 AAICVTracker(const IRPosition
&IRP
, Attributor
&A
) : Base(IRP
) {}
2326 void initialize(Attributor
&A
) override
{
2327 Function
*F
= getAnchorScope();
2328 if (!F
|| !A
.isFunctionIPOAmendable(*F
))
2329 indicatePessimisticFixpoint();
2332 /// Returns true if value is assumed to be tracked.
2333 bool isAssumedTracked() const { return getAssumed(); }
2335 /// Returns true if value is known to be tracked.
2336 bool isKnownTracked() const { return getAssumed(); }
2338 /// Create an abstract attribute biew for the position \p IRP.
2339 static AAICVTracker
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
2341 /// Return the value with which \p I can be replaced for specific \p ICV.
2342 virtual Optional
<Value
*> getReplacementValue(InternalControlVar ICV
,
2343 const Instruction
*I
,
2344 Attributor
&A
) const {
2348 /// Return an assumed unique ICV value if a single candidate is found. If
2349 /// there cannot be one, return a nullptr. If it is not clear yet, return the
2350 /// Optional::NoneType.
2351 virtual Optional
<Value
*>
2352 getUniqueReplacementValue(InternalControlVar ICV
) const = 0;
2354 // Currently only nthreads is being tracked.
2355 // this array will only grow with time.
2356 InternalControlVar TrackableICVs
[1] = {ICV_nthreads
};
2358 /// See AbstractAttribute::getName()
2359 const std::string
getName() const override
{ return "AAICVTracker"; }
2361 /// See AbstractAttribute::getIdAddr()
2362 const char *getIdAddr() const override
{ return &ID
; }
2364 /// This function should return true if the type of the \p AA is AAICVTracker
2365 static bool classof(const AbstractAttribute
*AA
) {
2366 return (AA
->getIdAddr() == &ID
);
2369 static const char ID
;
2372 struct AAICVTrackerFunction
: public AAICVTracker
{
2373 AAICVTrackerFunction(const IRPosition
&IRP
, Attributor
&A
)
2374 : AAICVTracker(IRP
, A
) {}
2376 // FIXME: come up with better string.
2377 const std::string
getAsStr() const override
{ return "ICVTrackerFunction"; }
2379 // FIXME: come up with some stats.
2380 void trackStatistics() const override
{}
2382 /// We don't manifest anything for this AA.
2383 ChangeStatus
manifest(Attributor
&A
) override
{
2384 return ChangeStatus::UNCHANGED
;
2387 // Map of ICV to their values at specific program point.
2388 EnumeratedArray
<DenseMap
<Instruction
*, Value
*>, InternalControlVar
,
2389 InternalControlVar::ICV___last
>
2390 ICVReplacementValuesMap
;
2392 ChangeStatus
updateImpl(Attributor
&A
) override
{
2393 ChangeStatus HasChanged
= ChangeStatus::UNCHANGED
;
2395 Function
*F
= getAnchorScope();
2397 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
2399 for (InternalControlVar ICV
: TrackableICVs
) {
2400 auto &SetterRFI
= OMPInfoCache
.RFIs
[OMPInfoCache
.ICVs
[ICV
].Setter
];
2402 auto &ValuesMap
= ICVReplacementValuesMap
[ICV
];
2403 auto TrackValues
= [&](Use
&U
, Function
&) {
2404 CallInst
*CI
= OpenMPOpt::getCallIfRegularCall(U
);
2408 // FIXME: handle setters with more that 1 arguments.
2409 /// Track new value.
2410 if (ValuesMap
.insert(std::make_pair(CI
, CI
->getArgOperand(0))).second
)
2411 HasChanged
= ChangeStatus::CHANGED
;
2416 auto CallCheck
= [&](Instruction
&I
) {
2417 Optional
<Value
*> ReplVal
= getValueForCall(A
, I
, ICV
);
2418 if (ReplVal
&& ValuesMap
.insert(std::make_pair(&I
, *ReplVal
)).second
)
2419 HasChanged
= ChangeStatus::CHANGED
;
2424 // Track all changes of an ICV.
2425 SetterRFI
.foreachUse(TrackValues
, F
);
2427 bool UsedAssumedInformation
= false;
2428 A
.checkForAllInstructions(CallCheck
, *this, {Instruction::Call
},
2429 UsedAssumedInformation
,
2430 /* CheckBBLivenessOnly */ true);
2432 /// TODO: Figure out a way to avoid adding entry in
2433 /// ICVReplacementValuesMap
2434 Instruction
*Entry
= &F
->getEntryBlock().front();
2435 if (HasChanged
== ChangeStatus::CHANGED
&& !ValuesMap
.count(Entry
))
2436 ValuesMap
.insert(std::make_pair(Entry
, nullptr));
2442 /// Helper to check if \p I is a call and get the value for it if it is
2444 Optional
<Value
*> getValueForCall(Attributor
&A
, const Instruction
&I
,
2445 InternalControlVar
&ICV
) const {
2447 const auto *CB
= dyn_cast
<CallBase
>(&I
);
2448 if (!CB
|| CB
->hasFnAttr("no_openmp") ||
2449 CB
->hasFnAttr("no_openmp_routines"))
2452 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
2453 auto &GetterRFI
= OMPInfoCache
.RFIs
[OMPInfoCache
.ICVs
[ICV
].Getter
];
2454 auto &SetterRFI
= OMPInfoCache
.RFIs
[OMPInfoCache
.ICVs
[ICV
].Setter
];
2455 Function
*CalledFunction
= CB
->getCalledFunction();
2457 // Indirect call, assume ICV changes.
2458 if (CalledFunction
== nullptr)
2460 if (CalledFunction
== GetterRFI
.Declaration
)
2462 if (CalledFunction
== SetterRFI
.Declaration
) {
2463 if (ICVReplacementValuesMap
[ICV
].count(&I
))
2464 return ICVReplacementValuesMap
[ICV
].lookup(&I
);
2469 // Since we don't know, assume it changes the ICV.
2470 if (CalledFunction
->isDeclaration())
2473 const auto &ICVTrackingAA
= A
.getAAFor
<AAICVTracker
>(
2474 *this, IRPosition::callsite_returned(*CB
), DepClassTy::REQUIRED
);
2476 if (ICVTrackingAA
.isAssumedTracked()) {
2477 Optional
<Value
*> URV
= ICVTrackingAA
.getUniqueReplacementValue(ICV
);
2478 if (!URV
|| (*URV
&& AA::isValidAtPosition(AA::ValueAndContext(**URV
, I
),
2483 // If we don't know, assume it changes.
2487 // We don't check unique value for a function, so return None.
2489 getUniqueReplacementValue(InternalControlVar ICV
) const override
{
2493 /// Return the value with which \p I can be replaced for specific \p ICV.
2494 Optional
<Value
*> getReplacementValue(InternalControlVar ICV
,
2495 const Instruction
*I
,
2496 Attributor
&A
) const override
{
2497 const auto &ValuesMap
= ICVReplacementValuesMap
[ICV
];
2498 if (ValuesMap
.count(I
))
2499 return ValuesMap
.lookup(I
);
2501 SmallVector
<const Instruction
*, 16> Worklist
;
2502 SmallPtrSet
<const Instruction
*, 16> Visited
;
2503 Worklist
.push_back(I
);
2505 Optional
<Value
*> ReplVal
;
2507 while (!Worklist
.empty()) {
2508 const Instruction
*CurrInst
= Worklist
.pop_back_val();
2509 if (!Visited
.insert(CurrInst
).second
)
2512 const BasicBlock
*CurrBB
= CurrInst
->getParent();
2514 // Go up and look for all potential setters/calls that might change the
2516 while ((CurrInst
= CurrInst
->getPrevNode())) {
2517 if (ValuesMap
.count(CurrInst
)) {
2518 Optional
<Value
*> NewReplVal
= ValuesMap
.lookup(CurrInst
);
2519 // Unknown value, track new.
2521 ReplVal
= NewReplVal
;
2525 // If we found a new value, we can't know the icv value anymore.
2527 if (ReplVal
!= NewReplVal
)
2533 Optional
<Value
*> NewReplVal
= getValueForCall(A
, *CurrInst
, ICV
);
2537 // Unknown value, track new.
2539 ReplVal
= NewReplVal
;
2543 // if (NewReplVal.hasValue())
2544 // We found a new value, we can't know the icv value anymore.
2545 if (ReplVal
!= NewReplVal
)
2549 // If we are in the same BB and we have a value, we are done.
2550 if (CurrBB
== I
->getParent() && ReplVal
)
2553 // Go through all predecessors and add terminators for analysis.
2554 for (const BasicBlock
*Pred
: predecessors(CurrBB
))
2555 if (const Instruction
*Terminator
= Pred
->getTerminator())
2556 Worklist
.push_back(Terminator
);
2563 struct AAICVTrackerFunctionReturned
: AAICVTracker
{
2564 AAICVTrackerFunctionReturned(const IRPosition
&IRP
, Attributor
&A
)
2565 : AAICVTracker(IRP
, A
) {}
2567 // FIXME: come up with better string.
2568 const std::string
getAsStr() const override
{
2569 return "ICVTrackerFunctionReturned";
2572 // FIXME: come up with some stats.
2573 void trackStatistics() const override
{}
2575 /// We don't manifest anything for this AA.
2576 ChangeStatus
manifest(Attributor
&A
) override
{
2577 return ChangeStatus::UNCHANGED
;
2580 // Map of ICV to their values at specific program point.
2581 EnumeratedArray
<Optional
<Value
*>, InternalControlVar
,
2582 InternalControlVar::ICV___last
>
2583 ICVReplacementValuesMap
;
2585 /// Return the value with which \p I can be replaced for specific \p ICV.
2587 getUniqueReplacementValue(InternalControlVar ICV
) const override
{
2588 return ICVReplacementValuesMap
[ICV
];
2591 ChangeStatus
updateImpl(Attributor
&A
) override
{
2592 ChangeStatus Changed
= ChangeStatus::UNCHANGED
;
2593 const auto &ICVTrackingAA
= A
.getAAFor
<AAICVTracker
>(
2594 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED
);
2596 if (!ICVTrackingAA
.isAssumedTracked())
2597 return indicatePessimisticFixpoint();
2599 for (InternalControlVar ICV
: TrackableICVs
) {
2600 Optional
<Value
*> &ReplVal
= ICVReplacementValuesMap
[ICV
];
2601 Optional
<Value
*> UniqueICVValue
;
2603 auto CheckReturnInst
= [&](Instruction
&I
) {
2604 Optional
<Value
*> NewReplVal
=
2605 ICVTrackingAA
.getReplacementValue(ICV
, &I
, A
);
2607 // If we found a second ICV value there is no unique returned value.
2608 if (UniqueICVValue
&& UniqueICVValue
!= NewReplVal
)
2611 UniqueICVValue
= NewReplVal
;
2616 bool UsedAssumedInformation
= false;
2617 if (!A
.checkForAllInstructions(CheckReturnInst
, *this, {Instruction::Ret
},
2618 UsedAssumedInformation
,
2619 /* CheckBBLivenessOnly */ true))
2620 UniqueICVValue
= nullptr;
2622 if (UniqueICVValue
== ReplVal
)
2625 ReplVal
= UniqueICVValue
;
2626 Changed
= ChangeStatus::CHANGED
;
2633 struct AAICVTrackerCallSite
: AAICVTracker
{
2634 AAICVTrackerCallSite(const IRPosition
&IRP
, Attributor
&A
)
2635 : AAICVTracker(IRP
, A
) {}
2637 void initialize(Attributor
&A
) override
{
2638 Function
*F
= getAnchorScope();
2639 if (!F
|| !A
.isFunctionIPOAmendable(*F
))
2640 indicatePessimisticFixpoint();
2642 // We only initialize this AA for getters, so we need to know which ICV it
2644 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
2645 for (InternalControlVar ICV
: TrackableICVs
) {
2646 auto ICVInfo
= OMPInfoCache
.ICVs
[ICV
];
2647 auto &Getter
= OMPInfoCache
.RFIs
[ICVInfo
.Getter
];
2648 if (Getter
.Declaration
== getAssociatedFunction()) {
2649 AssociatedICV
= ICVInfo
.Kind
;
2655 indicatePessimisticFixpoint();
2658 ChangeStatus
manifest(Attributor
&A
) override
{
2659 if (!ReplVal
|| !*ReplVal
)
2660 return ChangeStatus::UNCHANGED
;
2662 A
.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal
);
2663 A
.deleteAfterManifest(*getCtxI());
2665 return ChangeStatus::CHANGED
;
2668 // FIXME: come up with better string.
2669 const std::string
getAsStr() const override
{ return "ICVTrackerCallSite"; }
2671 // FIXME: come up with some stats.
2672 void trackStatistics() const override
{}
2674 InternalControlVar AssociatedICV
;
2675 Optional
<Value
*> ReplVal
;
2677 ChangeStatus
updateImpl(Attributor
&A
) override
{
2678 const auto &ICVTrackingAA
= A
.getAAFor
<AAICVTracker
>(
2679 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED
);
2681 // We don't have any information, so we assume it changes the ICV.
2682 if (!ICVTrackingAA
.isAssumedTracked())
2683 return indicatePessimisticFixpoint();
2685 Optional
<Value
*> NewReplVal
=
2686 ICVTrackingAA
.getReplacementValue(AssociatedICV
, getCtxI(), A
);
2688 if (ReplVal
== NewReplVal
)
2689 return ChangeStatus::UNCHANGED
;
2691 ReplVal
= NewReplVal
;
2692 return ChangeStatus::CHANGED
;
2695 // Return the value with which associated value can be replaced for specific
2698 getUniqueReplacementValue(InternalControlVar ICV
) const override
{
2703 struct AAICVTrackerCallSiteReturned
: AAICVTracker
{
2704 AAICVTrackerCallSiteReturned(const IRPosition
&IRP
, Attributor
&A
)
2705 : AAICVTracker(IRP
, A
) {}
2707 // FIXME: come up with better string.
2708 const std::string
getAsStr() const override
{
2709 return "ICVTrackerCallSiteReturned";
2712 // FIXME: come up with some stats.
2713 void trackStatistics() const override
{}
2715 /// We don't manifest anything for this AA.
2716 ChangeStatus
manifest(Attributor
&A
) override
{
2717 return ChangeStatus::UNCHANGED
;
2720 // Map of ICV to their values at specific program point.
2721 EnumeratedArray
<Optional
<Value
*>, InternalControlVar
,
2722 InternalControlVar::ICV___last
>
2723 ICVReplacementValuesMap
;
2725 /// Return the value with which associated value can be replaced for specific
2728 getUniqueReplacementValue(InternalControlVar ICV
) const override
{
2729 return ICVReplacementValuesMap
[ICV
];
2732 ChangeStatus
updateImpl(Attributor
&A
) override
{
2733 ChangeStatus Changed
= ChangeStatus::UNCHANGED
;
2734 const auto &ICVTrackingAA
= A
.getAAFor
<AAICVTracker
>(
2735 *this, IRPosition::returned(*getAssociatedFunction()),
2736 DepClassTy::REQUIRED
);
2738 // We don't have any information, so we assume it changes the ICV.
2739 if (!ICVTrackingAA
.isAssumedTracked())
2740 return indicatePessimisticFixpoint();
2742 for (InternalControlVar ICV
: TrackableICVs
) {
2743 Optional
<Value
*> &ReplVal
= ICVReplacementValuesMap
[ICV
];
2744 Optional
<Value
*> NewReplVal
=
2745 ICVTrackingAA
.getUniqueReplacementValue(ICV
);
2747 if (ReplVal
== NewReplVal
)
2750 ReplVal
= NewReplVal
;
2751 Changed
= ChangeStatus::CHANGED
;
2757 struct AAExecutionDomainFunction
: public AAExecutionDomain
{
2758 AAExecutionDomainFunction(const IRPosition
&IRP
, Attributor
&A
)
2759 : AAExecutionDomain(IRP
, A
) {}
2761 const std::string
getAsStr() const override
{
2762 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs
.size()) +
2763 "/" + std::to_string(NumBBs
) + " BBs thread 0 only.";
2766 /// See AbstractAttribute::trackStatistics().
2767 void trackStatistics() const override
{}
2769 void initialize(Attributor
&A
) override
{
2770 Function
*F
= getAnchorScope();
2771 for (const auto &BB
: *F
)
2772 SingleThreadedBBs
.insert(&BB
);
2773 NumBBs
= SingleThreadedBBs
.size();
2776 ChangeStatus
manifest(Attributor
&A
) override
{
2778 for (const BasicBlock
*BB
: SingleThreadedBBs
)
2779 dbgs() << TAG
<< " Basic block @" << getAnchorScope()->getName() << " "
2780 << BB
->getName() << " is executed by a single thread.\n";
2782 return ChangeStatus::UNCHANGED
;
2785 ChangeStatus
updateImpl(Attributor
&A
) override
;
2787 /// Check if an instruction is executed by a single thread.
2788 bool isExecutedByInitialThreadOnly(const Instruction
&I
) const override
{
2789 return isExecutedByInitialThreadOnly(*I
.getParent());
2792 bool isExecutedByInitialThreadOnly(const BasicBlock
&BB
) const override
{
2793 return isValidState() && SingleThreadedBBs
.contains(&BB
);
2796 /// Set of basic blocks that are executed by a single thread.
2797 SmallSetVector
<const BasicBlock
*, 16> SingleThreadedBBs
;
2799 /// Total number of basic blocks in this function.
2800 long unsigned NumBBs
= 0;
2803 ChangeStatus
AAExecutionDomainFunction::updateImpl(Attributor
&A
) {
2804 Function
*F
= getAnchorScope();
2805 ReversePostOrderTraversal
<Function
*> RPOT(F
);
2806 auto NumSingleThreadedBBs
= SingleThreadedBBs
.size();
2808 bool AllCallSitesKnown
;
2809 auto PredForCallSite
= [&](AbstractCallSite ACS
) {
2810 const auto &ExecutionDomainAA
= A
.getAAFor
<AAExecutionDomain
>(
2811 *this, IRPosition::function(*ACS
.getInstruction()->getFunction()),
2812 DepClassTy::REQUIRED
);
2813 return ACS
.isDirectCall() &&
2814 ExecutionDomainAA
.isExecutedByInitialThreadOnly(
2815 *ACS
.getInstruction());
2818 if (!A
.checkForAllCallSites(PredForCallSite
, *this,
2819 /* RequiresAllCallSites */ true,
2821 SingleThreadedBBs
.remove(&F
->getEntryBlock());
2823 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
2824 auto &RFI
= OMPInfoCache
.RFIs
[OMPRTL___kmpc_target_init
];
2826 // Check if the edge into the successor block contains a condition that only
2827 // lets the main thread execute it.
2828 auto IsInitialThreadOnly
= [&](BranchInst
*Edge
, BasicBlock
*SuccessorBB
) {
2829 if (!Edge
|| !Edge
->isConditional())
2831 if (Edge
->getSuccessor(0) != SuccessorBB
)
2834 auto *Cmp
= dyn_cast
<CmpInst
>(Edge
->getCondition());
2835 if (!Cmp
|| !Cmp
->isTrueWhenEqual() || !Cmp
->isEquality())
2838 ConstantInt
*C
= dyn_cast
<ConstantInt
>(Cmp
->getOperand(1));
2842 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
2843 if (C
->isAllOnesValue()) {
2844 auto *CB
= dyn_cast
<CallBase
>(Cmp
->getOperand(0));
2845 CB
= CB
? OpenMPOpt::getCallIfRegularCall(*CB
, &RFI
) : nullptr;
2848 const int InitModeArgNo
= 1;
2849 auto *ModeCI
= dyn_cast
<ConstantInt
>(CB
->getOperand(InitModeArgNo
));
2850 return ModeCI
&& (ModeCI
->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC
);
2854 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
2855 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
->getOperand(0)))
2856 if (II
->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x
)
2859 // Match: 0 == llvm.amdgcn.workitem.id.x()
2860 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
->getOperand(0)))
2861 if (II
->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x
)
2868 // Merge all the predecessor states into the current basic block. A basic
2869 // block is executed by a single thread if all of its predecessors are.
2870 auto MergePredecessorStates
= [&](BasicBlock
*BB
) {
2872 return SingleThreadedBBs
.contains(BB
);
2874 bool IsInitialThread
= true;
2875 for (BasicBlock
*PredBB
: predecessors(BB
)) {
2876 if (!IsInitialThreadOnly(dyn_cast
<BranchInst
>(PredBB
->getTerminator()),
2878 IsInitialThread
&= SingleThreadedBBs
.contains(PredBB
);
2881 return IsInitialThread
;
2884 for (auto *BB
: RPOT
) {
2885 if (!MergePredecessorStates(BB
))
2886 SingleThreadedBBs
.remove(BB
);
2889 return (NumSingleThreadedBBs
== SingleThreadedBBs
.size())
2890 ? ChangeStatus::UNCHANGED
2891 : ChangeStatus::CHANGED
;
2894 /// Try to replace memory allocation calls called by a single thread with a
2895 /// static buffer of shared memory.
2896 struct AAHeapToShared
: public StateWrapper
<BooleanState
, AbstractAttribute
> {
2897 using Base
= StateWrapper
<BooleanState
, AbstractAttribute
>;
2898 AAHeapToShared(const IRPosition
&IRP
, Attributor
&A
) : Base(IRP
) {}
2900 /// Create an abstract attribute view for the position \p IRP.
2901 static AAHeapToShared
&createForPosition(const IRPosition
&IRP
,
2904 /// Returns true if HeapToShared conversion is assumed to be possible.
2905 virtual bool isAssumedHeapToShared(CallBase
&CB
) const = 0;
2907 /// Returns true if HeapToShared conversion is assumed and the CB is a
2908 /// callsite to a free operation to be removed.
2909 virtual bool isAssumedHeapToSharedRemovedFree(CallBase
&CB
) const = 0;
2911 /// See AbstractAttribute::getName().
2912 const std::string
getName() const override
{ return "AAHeapToShared"; }
2914 /// See AbstractAttribute::getIdAddr().
2915 const char *getIdAddr() const override
{ return &ID
; }
2917 /// This function should return true if the type of the \p AA is
2919 static bool classof(const AbstractAttribute
*AA
) {
2920 return (AA
->getIdAddr() == &ID
);
2923 /// Unique ID (due to the unique address)
2924 static const char ID
;
2927 struct AAHeapToSharedFunction
: public AAHeapToShared
{
2928 AAHeapToSharedFunction(const IRPosition
&IRP
, Attributor
&A
)
2929 : AAHeapToShared(IRP
, A
) {}
2931 const std::string
getAsStr() const override
{
2932 return "[AAHeapToShared] " + std::to_string(MallocCalls
.size()) +
2933 " malloc calls eligible.";
2936 /// See AbstractAttribute::trackStatistics().
2937 void trackStatistics() const override
{}
2939 /// This functions finds free calls that will be removed by the
2940 /// HeapToShared transformation.
2941 void findPotentialRemovedFreeCalls(Attributor
&A
) {
2942 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
2943 auto &FreeRFI
= OMPInfoCache
.RFIs
[OMPRTL___kmpc_free_shared
];
2945 PotentialRemovedFreeCalls
.clear();
2946 // Update free call users of found malloc calls.
2947 for (CallBase
*CB
: MallocCalls
) {
2948 SmallVector
<CallBase
*, 4> FreeCalls
;
2949 for (auto *U
: CB
->users()) {
2950 CallBase
*C
= dyn_cast
<CallBase
>(U
);
2951 if (C
&& C
->getCalledFunction() == FreeRFI
.Declaration
)
2952 FreeCalls
.push_back(C
);
2955 if (FreeCalls
.size() != 1)
2958 PotentialRemovedFreeCalls
.insert(FreeCalls
.front());
2962 void initialize(Attributor
&A
) override
{
2963 if (DisableOpenMPOptDeglobalization
) {
2964 indicatePessimisticFixpoint();
2968 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
2969 auto &RFI
= OMPInfoCache
.RFIs
[OMPRTL___kmpc_alloc_shared
];
2971 Attributor::SimplifictionCallbackTy SCB
=
2972 [](const IRPosition
&, const AbstractAttribute
*,
2973 bool &) -> Optional
<Value
*> { return nullptr; };
2974 for (User
*U
: RFI
.Declaration
->users())
2975 if (CallBase
*CB
= dyn_cast
<CallBase
>(U
)) {
2976 MallocCalls
.insert(CB
);
2977 A
.registerSimplificationCallback(IRPosition::callsite_returned(*CB
),
2981 findPotentialRemovedFreeCalls(A
);
2984 bool isAssumedHeapToShared(CallBase
&CB
) const override
{
2985 return isValidState() && MallocCalls
.count(&CB
);
2988 bool isAssumedHeapToSharedRemovedFree(CallBase
&CB
) const override
{
2989 return isValidState() && PotentialRemovedFreeCalls
.count(&CB
);
2992 ChangeStatus
manifest(Attributor
&A
) override
{
2993 if (MallocCalls
.empty())
2994 return ChangeStatus::UNCHANGED
;
2996 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
2997 auto &FreeCall
= OMPInfoCache
.RFIs
[OMPRTL___kmpc_free_shared
];
2999 Function
*F
= getAnchorScope();
3000 auto *HS
= A
.lookupAAFor
<AAHeapToStack
>(IRPosition::function(*F
), this,
3001 DepClassTy::OPTIONAL
);
3003 ChangeStatus Changed
= ChangeStatus::UNCHANGED
;
3004 for (CallBase
*CB
: MallocCalls
) {
3005 // Skip replacing this if HeapToStack has already claimed it.
3006 if (HS
&& HS
->isAssumedHeapToStack(*CB
))
3009 // Find the unique free call to remove it.
3010 SmallVector
<CallBase
*, 4> FreeCalls
;
3011 for (auto *U
: CB
->users()) {
3012 CallBase
*C
= dyn_cast
<CallBase
>(U
);
3013 if (C
&& C
->getCalledFunction() == FreeCall
.Declaration
)
3014 FreeCalls
.push_back(C
);
3016 if (FreeCalls
.size() != 1)
3019 auto *AllocSize
= cast
<ConstantInt
>(CB
->getArgOperand(0));
3021 if (AllocSize
->getZExtValue() + SharedMemoryUsed
> SharedMemoryLimit
) {
3022 LLVM_DEBUG(dbgs() << TAG
<< "Cannot replace call " << *CB
3023 << " with shared memory."
3024 << " Shared memory usage is limited to "
3025 << SharedMemoryLimit
<< " bytes\n");
3029 LLVM_DEBUG(dbgs() << TAG
<< "Replace globalization call " << *CB
3030 << " with " << AllocSize
->getZExtValue()
3031 << " bytes of shared memory\n");
3033 // Create a new shared memory buffer of the same size as the allocation
3034 // and replace all the uses of the original allocation with it.
3035 Module
*M
= CB
->getModule();
3036 Type
*Int8Ty
= Type::getInt8Ty(M
->getContext());
3037 Type
*Int8ArrTy
= ArrayType::get(Int8Ty
, AllocSize
->getZExtValue());
3038 auto *SharedMem
= new GlobalVariable(
3039 *M
, Int8ArrTy
, /* IsConstant */ false, GlobalValue::InternalLinkage
,
3040 UndefValue::get(Int8ArrTy
), CB
->getName() + "_shared", nullptr,
3041 GlobalValue::NotThreadLocal
,
3042 static_cast<unsigned>(AddressSpace::Shared
));
3044 ConstantExpr::getPointerCast(SharedMem
, Int8Ty
->getPointerTo());
3046 auto Remark
= [&](OptimizationRemark OR
) {
3047 return OR
<< "Replaced globalized variable with "
3048 << ore::NV("SharedMemory", AllocSize
->getZExtValue())
3049 << ((AllocSize
->getZExtValue() != 1) ? " bytes " : " byte ")
3050 << "of shared memory.";
3052 A
.emitRemark
<OptimizationRemark
>(CB
, "OMP111", Remark
);
3054 MaybeAlign Alignment
= CB
->getRetAlign();
3056 "HeapToShared on allocation without alignment attribute");
3057 SharedMem
->setAlignment(MaybeAlign(Alignment
));
3059 A
.changeAfterManifest(IRPosition::callsite_returned(*CB
), *NewBuffer
);
3060 A
.deleteAfterManifest(*CB
);
3061 A
.deleteAfterManifest(*FreeCalls
.front());
3063 SharedMemoryUsed
+= AllocSize
->getZExtValue();
3064 NumBytesMovedToSharedMemory
= SharedMemoryUsed
;
3065 Changed
= ChangeStatus::CHANGED
;
3071 ChangeStatus
updateImpl(Attributor
&A
) override
{
3072 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
3073 auto &RFI
= OMPInfoCache
.RFIs
[OMPRTL___kmpc_alloc_shared
];
3074 Function
*F
= getAnchorScope();
3076 auto NumMallocCalls
= MallocCalls
.size();
3078 // Only consider malloc calls executed by a single thread with a constant.
3079 for (User
*U
: RFI
.Declaration
->users()) {
3080 const auto &ED
= A
.getAAFor
<AAExecutionDomain
>(
3081 *this, IRPosition::function(*F
), DepClassTy::REQUIRED
);
3082 if (CallBase
*CB
= dyn_cast
<CallBase
>(U
))
3083 if (!isa
<ConstantInt
>(CB
->getArgOperand(0)) ||
3084 !ED
.isExecutedByInitialThreadOnly(*CB
))
3085 MallocCalls
.remove(CB
);
3088 findPotentialRemovedFreeCalls(A
);
3090 if (NumMallocCalls
!= MallocCalls
.size())
3091 return ChangeStatus::CHANGED
;
3093 return ChangeStatus::UNCHANGED
;
3096 /// Collection of all malloc calls in a function.
3097 SmallSetVector
<CallBase
*, 4> MallocCalls
;
3098 /// Collection of potentially removed free calls in a function.
3099 SmallPtrSet
<CallBase
*, 4> PotentialRemovedFreeCalls
;
3100 /// The total amount of shared memory that has been used for HeapToShared.
3101 unsigned SharedMemoryUsed
= 0;
3104 struct AAKernelInfo
: public StateWrapper
<KernelInfoState
, AbstractAttribute
> {
3105 using Base
= StateWrapper
<KernelInfoState
, AbstractAttribute
>;
3106 AAKernelInfo(const IRPosition
&IRP
, Attributor
&A
) : Base(IRP
) {}
3108 /// Statistics are tracked as part of manifest for now.
3109 void trackStatistics() const override
{}
3111 /// See AbstractAttribute::getAsStr()
3112 const std::string
getAsStr() const override
{
3113 if (!isValidState())
3115 return std::string(SPMDCompatibilityTracker
.isAssumed() ? "SPMD"
3117 std::string(SPMDCompatibilityTracker
.isAtFixpoint() ? " [FIX]"
3119 std::string(" #PRs: ") +
3120 (ReachedKnownParallelRegions
.isValidState()
3121 ? std::to_string(ReachedKnownParallelRegions
.size())
3123 ", #Unknown PRs: " +
3124 (ReachedUnknownParallelRegions
.isValidState()
3125 ? std::to_string(ReachedUnknownParallelRegions
.size())
3127 ", #Reaching Kernels: " +
3128 (ReachingKernelEntries
.isValidState()
3129 ? std::to_string(ReachingKernelEntries
.size())
3133 /// Create an abstract attribute biew for the position \p IRP.
3134 static AAKernelInfo
&createForPosition(const IRPosition
&IRP
, Attributor
&A
);
3136 /// See AbstractAttribute::getName()
3137 const std::string
getName() const override
{ return "AAKernelInfo"; }
3139 /// See AbstractAttribute::getIdAddr()
3140 const char *getIdAddr() const override
{ return &ID
; }
3142 /// This function should return true if the type of the \p AA is AAKernelInfo
3143 static bool classof(const AbstractAttribute
*AA
) {
3144 return (AA
->getIdAddr() == &ID
);
3147 static const char ID
;
3150 /// The function kernel info abstract attribute, basically, what can we say
3151 /// about a function with regards to the KernelInfoState.
3152 struct AAKernelInfoFunction
: AAKernelInfo
{
3153 AAKernelInfoFunction(const IRPosition
&IRP
, Attributor
&A
)
3154 : AAKernelInfo(IRP
, A
) {}
3156 SmallPtrSet
<Instruction
*, 4> GuardedInstructions
;
3158 SmallPtrSetImpl
<Instruction
*> &getGuardedInstructions() {
3159 return GuardedInstructions
;
3162 /// See AbstractAttribute::initialize(...).
3163 void initialize(Attributor
&A
) override
{
3164 // This is a high-level transform that might change the constant arguments
3165 // of the init and dinit calls. We need to tell the Attributor about this
3166 // to avoid other parts using the current constant value for simpliication.
3167 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
3169 Function
*Fn
= getAnchorScope();
3171 OMPInformationCache::RuntimeFunctionInfo
&InitRFI
=
3172 OMPInfoCache
.RFIs
[OMPRTL___kmpc_target_init
];
3173 OMPInformationCache::RuntimeFunctionInfo
&DeinitRFI
=
3174 OMPInfoCache
.RFIs
[OMPRTL___kmpc_target_deinit
];
3176 // For kernels we perform more initialization work, first we find the init
3177 // and deinit calls.
3178 auto StoreCallBase
= [](Use
&U
,
3179 OMPInformationCache::RuntimeFunctionInfo
&RFI
,
3180 CallBase
*&Storage
) {
3181 CallBase
*CB
= OpenMPOpt::getCallIfRegularCall(U
, &RFI
);
3183 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
3185 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
3190 [&](Use
&U
, Function
&) {
3191 StoreCallBase(U
, InitRFI
, KernelInitCB
);
3195 DeinitRFI
.foreachUse(
3196 [&](Use
&U
, Function
&) {
3197 StoreCallBase(U
, DeinitRFI
, KernelDeinitCB
);
3202 // Ignore kernels without initializers such as global constructors.
3203 if (!KernelInitCB
|| !KernelDeinitCB
)
3206 // Add itself to the reaching kernel and set IsKernelEntry.
3207 ReachingKernelEntries
.insert(Fn
);
3208 IsKernelEntry
= true;
3210 // For kernels we might need to initialize/finalize the IsSPMD state and
3211 // we need to register a simplification callback so that the Attributor
3212 // knows the constant arguments to __kmpc_target_init and
3213 // __kmpc_target_deinit might actually change.
3215 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB
=
3216 [&](const IRPosition
&IRP
, const AbstractAttribute
*AA
,
3217 bool &UsedAssumedInformation
) -> Optional
<Value
*> {
3218 // IRP represents the "use generic state machine" argument of an
3219 // __kmpc_target_init call. We will answer this one with the internal
3220 // state. As long as we are not in an invalid state, we will create a
3221 // custom state machine so the value should be a `i1 false`. If we are
3222 // in an invalid state, we won't change the value that is in the IR.
3223 if (!ReachedKnownParallelRegions
.isValidState())
3225 // If we have disabled state machine rewrites, don't make a custom one.
3226 if (DisableOpenMPOptStateMachineRewrite
)
3229 A
.recordDependence(*this, *AA
, DepClassTy::OPTIONAL
);
3230 UsedAssumedInformation
= !isAtFixpoint();
3232 ConstantInt::getBool(IRP
.getAnchorValue().getContext(), false);
3236 Attributor::SimplifictionCallbackTy ModeSimplifyCB
=
3237 [&](const IRPosition
&IRP
, const AbstractAttribute
*AA
,
3238 bool &UsedAssumedInformation
) -> Optional
<Value
*> {
3239 // IRP represents the "SPMDCompatibilityTracker" argument of an
3240 // __kmpc_target_init or
3241 // __kmpc_target_deinit call. We will answer this one with the internal
3243 if (!SPMDCompatibilityTracker
.isValidState())
3245 if (!SPMDCompatibilityTracker
.isAtFixpoint()) {
3247 A
.recordDependence(*this, *AA
, DepClassTy::OPTIONAL
);
3248 UsedAssumedInformation
= true;
3250 UsedAssumedInformation
= false;
3252 auto *Val
= ConstantInt::getSigned(
3253 IntegerType::getInt8Ty(IRP
.getAnchorValue().getContext()),
3254 SPMDCompatibilityTracker
.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD
3255 : OMP_TGT_EXEC_MODE_GENERIC
);
3259 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB
=
3260 [&](const IRPosition
&IRP
, const AbstractAttribute
*AA
,
3261 bool &UsedAssumedInformation
) -> Optional
<Value
*> {
3262 // IRP represents the "RequiresFullRuntime" argument of an
3263 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this
3264 // one with the internal state of the SPMDCompatibilityTracker, so if
3265 // generic then true, if SPMD then false.
3266 if (!SPMDCompatibilityTracker
.isValidState())
3268 if (!SPMDCompatibilityTracker
.isAtFixpoint()) {
3270 A
.recordDependence(*this, *AA
, DepClassTy::OPTIONAL
);
3271 UsedAssumedInformation
= true;
3273 UsedAssumedInformation
= false;
3275 auto *Val
= ConstantInt::getBool(IRP
.getAnchorValue().getContext(),
3276 !SPMDCompatibilityTracker
.isAssumed());
3280 constexpr const int InitModeArgNo
= 1;
3281 constexpr const int DeinitModeArgNo
= 1;
3282 constexpr const int InitUseStateMachineArgNo
= 2;
3283 constexpr const int InitRequiresFullRuntimeArgNo
= 3;
3284 constexpr const int DeinitRequiresFullRuntimeArgNo
= 2;
3285 A
.registerSimplificationCallback(
3286 IRPosition::callsite_argument(*KernelInitCB
, InitUseStateMachineArgNo
),
3287 StateMachineSimplifyCB
);
3288 A
.registerSimplificationCallback(
3289 IRPosition::callsite_argument(*KernelInitCB
, InitModeArgNo
),
3291 A
.registerSimplificationCallback(
3292 IRPosition::callsite_argument(*KernelDeinitCB
, DeinitModeArgNo
),
3294 A
.registerSimplificationCallback(
3295 IRPosition::callsite_argument(*KernelInitCB
,
3296 InitRequiresFullRuntimeArgNo
),
3297 IsGenericModeSimplifyCB
);
3298 A
.registerSimplificationCallback(
3299 IRPosition::callsite_argument(*KernelDeinitCB
,
3300 DeinitRequiresFullRuntimeArgNo
),
3301 IsGenericModeSimplifyCB
);
3303 // Check if we know we are in SPMD-mode already.
3304 ConstantInt
*ModeArg
=
3305 dyn_cast
<ConstantInt
>(KernelInitCB
->getArgOperand(InitModeArgNo
));
3306 if (ModeArg
&& (ModeArg
->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD
))
3307 SPMDCompatibilityTracker
.indicateOptimisticFixpoint();
3308 // This is a generic region but SPMDization is disabled so stop tracking.
3309 else if (DisableOpenMPOptSPMDization
)
3310 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
3313 /// Sanitize the string \p S such that it is a suitable global symbol name.
3314 static std::string
sanitizeForGlobalName(std::string S
) {
3318 return !((C
>= 'a' && C
<= 'z') || (C
>= 'A' && C
<= 'Z') ||
3319 (C
>= '0' && C
<= '9') || C
== '_');
3325 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is
3327 ChangeStatus
manifest(Attributor
&A
) override
{
3328 // If we are not looking at a kernel with __kmpc_target_init and
3329 // __kmpc_target_deinit call we cannot actually manifest the information.
3330 if (!KernelInitCB
|| !KernelDeinitCB
)
3331 return ChangeStatus::UNCHANGED
;
3333 // If we can we change the execution mode to SPMD-mode otherwise we build a
3334 // custom state machine.
3335 ChangeStatus Changed
= ChangeStatus::UNCHANGED
;
3336 if (!changeToSPMDMode(A
, Changed
))
3337 return buildCustomStateMachine(A
);
3342 bool changeToSPMDMode(Attributor
&A
, ChangeStatus
&Changed
) {
3343 if (!mayContainParallelRegion())
3346 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
3348 if (!SPMDCompatibilityTracker
.isAssumed()) {
3349 for (Instruction
*NonCompatibleI
: SPMDCompatibilityTracker
) {
3350 if (!NonCompatibleI
)
3353 // Skip diagnostics on calls to known OpenMP runtime functions for now.
3354 if (auto *CB
= dyn_cast
<CallBase
>(NonCompatibleI
))
3355 if (OMPInfoCache
.RTLFunctions
.contains(CB
->getCalledFunction()))
3358 auto Remark
= [&](OptimizationRemarkAnalysis ORA
) {
3359 ORA
<< "Value has potential side effects preventing SPMD-mode "
3361 if (isa
<CallBase
>(NonCompatibleI
)) {
3362 ORA
<< ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
3363 "the called function to override";
3367 A
.emitRemark
<OptimizationRemarkAnalysis
>(NonCompatibleI
, "OMP121",
3370 LLVM_DEBUG(dbgs() << TAG
<< "SPMD-incompatible side-effect: "
3371 << *NonCompatibleI
<< "\n");
3377 // Get the actual kernel, could be the caller of the anchor scope if we have
3379 Function
*Kernel
= getAnchorScope();
3380 if (Kernel
->hasLocalLinkage()) {
3381 assert(Kernel
->hasOneUse() && "Unexpected use of debug kernel wrapper.");
3382 auto *CB
= cast
<CallBase
>(Kernel
->user_back());
3383 Kernel
= CB
->getCaller();
3385 assert(OMPInfoCache
.Kernels
.count(Kernel
) && "Expected kernel function!");
3387 // Check if the kernel is already in SPMD mode, if so, return success.
3388 GlobalVariable
*ExecMode
= Kernel
->getParent()->getGlobalVariable(
3389 (Kernel
->getName() + "_exec_mode").str());
3390 assert(ExecMode
&& "Kernel without exec mode?");
3391 assert(ExecMode
->getInitializer() && "ExecMode doesn't have initializer!");
3393 // Set the global exec mode flag to indicate SPMD-Generic mode.
3394 assert(isa
<ConstantInt
>(ExecMode
->getInitializer()) &&
3395 "ExecMode is not an integer!");
3396 const int8_t ExecModeVal
=
3397 cast
<ConstantInt
>(ExecMode
->getInitializer())->getSExtValue();
3398 if (ExecModeVal
!= OMP_TGT_EXEC_MODE_GENERIC
)
3401 // We will now unconditionally modify the IR, indicate a change.
3402 Changed
= ChangeStatus::CHANGED
;
3404 auto CreateGuardedRegion
= [&](Instruction
*RegionStartI
,
3405 Instruction
*RegionEndI
) {
3406 LoopInfo
*LI
= nullptr;
3407 DominatorTree
*DT
= nullptr;
3408 MemorySSAUpdater
*MSU
= nullptr;
3409 using InsertPointTy
= OpenMPIRBuilder::InsertPointTy
;
3411 BasicBlock
*ParentBB
= RegionStartI
->getParent();
3412 Function
*Fn
= ParentBB
->getParent();
3413 Module
&M
= *Fn
->getParent();
3415 // Create all the blocks and logic.
3417 // goto RegionCheckTidBB
3418 // RegionCheckTidBB:
3419 // Tid = __kmpc_hardware_thread_id()
3421 // goto RegionBarrierBB
3423 // <execute instructions guarded>
3426 // <store escaping values to shared mem>
3427 // goto RegionBarrierBB
3429 // __kmpc_simple_barrier_spmd()
3430 // // second barrier is omitted if lacking escaping values.
3431 // <load escaping values from shared mem>
3432 // __kmpc_simple_barrier_spmd()
3433 // goto RegionExitBB
3435 // <execute rest of instructions>
3437 BasicBlock
*RegionEndBB
= SplitBlock(ParentBB
, RegionEndI
->getNextNode(),
3438 DT
, LI
, MSU
, "region.guarded.end");
3439 BasicBlock
*RegionBarrierBB
=
3440 SplitBlock(RegionEndBB
, &*RegionEndBB
->getFirstInsertionPt(), DT
, LI
,
3441 MSU
, "region.barrier");
3442 BasicBlock
*RegionExitBB
=
3443 SplitBlock(RegionBarrierBB
, &*RegionBarrierBB
->getFirstInsertionPt(),
3444 DT
, LI
, MSU
, "region.exit");
3445 BasicBlock
*RegionStartBB
=
3446 SplitBlock(ParentBB
, RegionStartI
, DT
, LI
, MSU
, "region.guarded");
3448 assert(ParentBB
->getUniqueSuccessor() == RegionStartBB
&&
3449 "Expected a different CFG");
3451 BasicBlock
*RegionCheckTidBB
= SplitBlock(
3452 ParentBB
, ParentBB
->getTerminator(), DT
, LI
, MSU
, "region.check.tid");
3454 // Register basic blocks with the Attributor.
3455 A
.registerManifestAddedBasicBlock(*RegionEndBB
);
3456 A
.registerManifestAddedBasicBlock(*RegionBarrierBB
);
3457 A
.registerManifestAddedBasicBlock(*RegionExitBB
);
3458 A
.registerManifestAddedBasicBlock(*RegionStartBB
);
3459 A
.registerManifestAddedBasicBlock(*RegionCheckTidBB
);
3461 bool HasBroadcastValues
= false;
3462 // Find escaping outputs from the guarded region to outside users and
3463 // broadcast their values to them.
3464 for (Instruction
&I
: *RegionStartBB
) {
3465 SmallPtrSet
<Instruction
*, 4> OutsideUsers
;
3466 for (User
*Usr
: I
.users()) {
3467 Instruction
&UsrI
= *cast
<Instruction
>(Usr
);
3468 if (UsrI
.getParent() != RegionStartBB
)
3469 OutsideUsers
.insert(&UsrI
);
3472 if (OutsideUsers
.empty())
3475 HasBroadcastValues
= true;
3477 // Emit a global variable in shared memory to store the broadcasted
3479 auto *SharedMem
= new GlobalVariable(
3480 M
, I
.getType(), /* IsConstant */ false,
3481 GlobalValue::InternalLinkage
, UndefValue::get(I
.getType()),
3482 sanitizeForGlobalName(
3483 (I
.getName() + ".guarded.output.alloc").str()),
3484 nullptr, GlobalValue::NotThreadLocal
,
3485 static_cast<unsigned>(AddressSpace::Shared
));
3487 // Emit a store instruction to update the value.
3488 new StoreInst(&I
, SharedMem
, RegionEndBB
->getTerminator());
3490 LoadInst
*LoadI
= new LoadInst(I
.getType(), SharedMem
,
3491 I
.getName() + ".guarded.output.load",
3492 RegionBarrierBB
->getTerminator());
3494 // Emit a load instruction and replace uses of the output value.
3495 for (Instruction
*UsrI
: OutsideUsers
)
3496 UsrI
->replaceUsesOfWith(&I
, LoadI
);
3499 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
3501 // Go to tid check BB in ParentBB.
3502 const DebugLoc DL
= ParentBB
->getTerminator()->getDebugLoc();
3503 ParentBB
->getTerminator()->eraseFromParent();
3504 OpenMPIRBuilder::LocationDescription
Loc(
3505 InsertPointTy(ParentBB
, ParentBB
->end()), DL
);
3506 OMPInfoCache
.OMPBuilder
.updateToLocation(Loc
);
3507 uint32_t SrcLocStrSize
;
3509 OMPInfoCache
.OMPBuilder
.getOrCreateSrcLocStr(Loc
, SrcLocStrSize
);
3511 OMPInfoCache
.OMPBuilder
.getOrCreateIdent(SrcLocStr
, SrcLocStrSize
);
3512 BranchInst::Create(RegionCheckTidBB
, ParentBB
)->setDebugLoc(DL
);
3514 // Add check for Tid in RegionCheckTidBB
3515 RegionCheckTidBB
->getTerminator()->eraseFromParent();
3516 OpenMPIRBuilder::LocationDescription
LocRegionCheckTid(
3517 InsertPointTy(RegionCheckTidBB
, RegionCheckTidBB
->end()), DL
);
3518 OMPInfoCache
.OMPBuilder
.updateToLocation(LocRegionCheckTid
);
3519 FunctionCallee HardwareTidFn
=
3520 OMPInfoCache
.OMPBuilder
.getOrCreateRuntimeFunction(
3521 M
, OMPRTL___kmpc_get_hardware_thread_id_in_block
);
3523 OMPInfoCache
.OMPBuilder
.Builder
.CreateCall(HardwareTidFn
, {});
3524 Tid
->setDebugLoc(DL
);
3525 OMPInfoCache
.setCallingConvention(HardwareTidFn
, Tid
);
3526 Value
*TidCheck
= OMPInfoCache
.OMPBuilder
.Builder
.CreateIsNull(Tid
);
3527 OMPInfoCache
.OMPBuilder
.Builder
3528 .CreateCondBr(TidCheck
, RegionStartBB
, RegionBarrierBB
)
3531 // First barrier for synchronization, ensures main thread has updated
3533 FunctionCallee BarrierFn
=
3534 OMPInfoCache
.OMPBuilder
.getOrCreateRuntimeFunction(
3535 M
, OMPRTL___kmpc_barrier_simple_spmd
);
3536 OMPInfoCache
.OMPBuilder
.updateToLocation(InsertPointTy(
3537 RegionBarrierBB
, RegionBarrierBB
->getFirstInsertionPt()));
3539 OMPInfoCache
.OMPBuilder
.Builder
.CreateCall(BarrierFn
, {Ident
, Tid
});
3540 Barrier
->setDebugLoc(DL
);
3541 OMPInfoCache
.setCallingConvention(BarrierFn
, Barrier
);
3543 // Second barrier ensures workers have read broadcast values.
3544 if (HasBroadcastValues
) {
3545 CallInst
*Barrier
= CallInst::Create(BarrierFn
, {Ident
, Tid
}, "",
3546 RegionBarrierBB
->getTerminator());
3547 Barrier
->setDebugLoc(DL
);
3548 OMPInfoCache
.setCallingConvention(BarrierFn
, Barrier
);
3552 auto &AllocSharedRFI
= OMPInfoCache
.RFIs
[OMPRTL___kmpc_alloc_shared
];
3553 SmallPtrSet
<BasicBlock
*, 8> Visited
;
3554 for (Instruction
*GuardedI
: SPMDCompatibilityTracker
) {
3555 BasicBlock
*BB
= GuardedI
->getParent();
3556 if (!Visited
.insert(BB
).second
)
3559 SmallVector
<std::pair
<Instruction
*, Instruction
*>> Reorders
;
3560 Instruction
*LastEffect
= nullptr;
3561 BasicBlock::reverse_iterator IP
= BB
->rbegin(), IPEnd
= BB
->rend();
3562 while (++IP
!= IPEnd
) {
3563 if (!IP
->mayHaveSideEffects() && !IP
->mayReadFromMemory())
3565 Instruction
*I
= &*IP
;
3566 if (OpenMPOpt::getCallIfRegularCall(*I
, &AllocSharedRFI
))
3568 if (!I
->user_empty() || !SPMDCompatibilityTracker
.contains(I
)) {
3569 LastEffect
= nullptr;
3573 Reorders
.push_back({I
, LastEffect
});
3576 for (auto &Reorder
: Reorders
)
3577 Reorder
.first
->moveBefore(Reorder
.second
);
3580 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 4> GuardedRegions
;
3582 for (Instruction
*GuardedI
: SPMDCompatibilityTracker
) {
3583 BasicBlock
*BB
= GuardedI
->getParent();
3584 auto *CalleeAA
= A
.lookupAAFor
<AAKernelInfo
>(
3585 IRPosition::function(*GuardedI
->getFunction()), nullptr,
3587 assert(CalleeAA
!= nullptr && "Expected Callee AAKernelInfo");
3588 auto &CalleeAAFunction
= *cast
<AAKernelInfoFunction
>(CalleeAA
);
3589 // Continue if instruction is already guarded.
3590 if (CalleeAAFunction
.getGuardedInstructions().contains(GuardedI
))
3593 Instruction
*GuardedRegionStart
= nullptr, *GuardedRegionEnd
= nullptr;
3594 for (Instruction
&I
: *BB
) {
3595 // If instruction I needs to be guarded update the guarded region
3597 if (SPMDCompatibilityTracker
.contains(&I
)) {
3598 CalleeAAFunction
.getGuardedInstructions().insert(&I
);
3599 if (GuardedRegionStart
)
3600 GuardedRegionEnd
= &I
;
3602 GuardedRegionStart
= GuardedRegionEnd
= &I
;
3607 // Instruction I does not need guarding, store
3608 // any region found and reset bounds.
3609 if (GuardedRegionStart
) {
3610 GuardedRegions
.push_back(
3611 std::make_pair(GuardedRegionStart
, GuardedRegionEnd
));
3612 GuardedRegionStart
= nullptr;
3613 GuardedRegionEnd
= nullptr;
3618 for (auto &GR
: GuardedRegions
)
3619 CreateGuardedRegion(GR
.first
, GR
.second
);
3621 // Adjust the global exec mode flag that tells the runtime what mode this
3622 // kernel is executed in.
3623 assert(ExecModeVal
== OMP_TGT_EXEC_MODE_GENERIC
&&
3624 "Initially non-SPMD kernel has SPMD exec mode!");
3625 ExecMode
->setInitializer(
3626 ConstantInt::get(ExecMode
->getInitializer()->getType(),
3627 ExecModeVal
| OMP_TGT_EXEC_MODE_GENERIC_SPMD
));
3629 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now.
3630 const int InitModeArgNo
= 1;
3631 const int DeinitModeArgNo
= 1;
3632 const int InitUseStateMachineArgNo
= 2;
3633 const int InitRequiresFullRuntimeArgNo
= 3;
3634 const int DeinitRequiresFullRuntimeArgNo
= 2;
3636 auto &Ctx
= getAnchorValue().getContext();
3637 A
.changeUseAfterManifest(
3638 KernelInitCB
->getArgOperandUse(InitModeArgNo
),
3639 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx
),
3640 OMP_TGT_EXEC_MODE_SPMD
));
3641 A
.changeUseAfterManifest(
3642 KernelInitCB
->getArgOperandUse(InitUseStateMachineArgNo
),
3643 *ConstantInt::getBool(Ctx
, false));
3644 A
.changeUseAfterManifest(
3645 KernelDeinitCB
->getArgOperandUse(DeinitModeArgNo
),
3646 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx
),
3647 OMP_TGT_EXEC_MODE_SPMD
));
3648 A
.changeUseAfterManifest(
3649 KernelInitCB
->getArgOperandUse(InitRequiresFullRuntimeArgNo
),
3650 *ConstantInt::getBool(Ctx
, false));
3651 A
.changeUseAfterManifest(
3652 KernelDeinitCB
->getArgOperandUse(DeinitRequiresFullRuntimeArgNo
),
3653 *ConstantInt::getBool(Ctx
, false));
3655 ++NumOpenMPTargetRegionKernelsSPMD
;
3657 auto Remark
= [&](OptimizationRemark OR
) {
3658 return OR
<< "Transformed generic-mode kernel to SPMD-mode.";
3660 A
.emitRemark
<OptimizationRemark
>(KernelInitCB
, "OMP120", Remark
);
3664 ChangeStatus
buildCustomStateMachine(Attributor
&A
) {
3665 // If we have disabled state machine rewrites, don't make a custom one
3666 if (DisableOpenMPOptStateMachineRewrite
)
3667 return ChangeStatus::UNCHANGED
;
3669 // Don't rewrite the state machine if we are not in a valid state.
3670 if (!ReachedKnownParallelRegions
.isValidState())
3671 return ChangeStatus::UNCHANGED
;
3673 const int InitModeArgNo
= 1;
3674 const int InitUseStateMachineArgNo
= 2;
3676 // Check if the current configuration is non-SPMD and generic state machine.
3677 // If we already have SPMD mode or a custom state machine we do not need to
3678 // go any further. If it is anything but a constant something is weird and
3680 ConstantInt
*UseStateMachine
= dyn_cast
<ConstantInt
>(
3681 KernelInitCB
->getArgOperand(InitUseStateMachineArgNo
));
3683 dyn_cast
<ConstantInt
>(KernelInitCB
->getArgOperand(InitModeArgNo
));
3685 // If we are stuck with generic mode, try to create a custom device (=GPU)
3686 // state machine which is specialized for the parallel regions that are
3687 // reachable by the kernel.
3688 if (!UseStateMachine
|| UseStateMachine
->isZero() || !Mode
||
3689 (Mode
->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD
))
3690 return ChangeStatus::UNCHANGED
;
3692 // If not SPMD mode, indicate we use a custom state machine now.
3693 auto &Ctx
= getAnchorValue().getContext();
3694 auto *FalseVal
= ConstantInt::getBool(Ctx
, false);
3695 A
.changeUseAfterManifest(
3696 KernelInitCB
->getArgOperandUse(InitUseStateMachineArgNo
), *FalseVal
);
3698 // If we don't actually need a state machine we are done here. This can
3699 // happen if there simply are no parallel regions. In the resulting kernel
3700 // all worker threads will simply exit right away, leaving the main thread
3701 // to do the work alone.
3702 if (!mayContainParallelRegion()) {
3703 ++NumOpenMPTargetRegionKernelsWithoutStateMachine
;
3705 auto Remark
= [&](OptimizationRemark OR
) {
3706 return OR
<< "Removing unused state machine from generic-mode kernel.";
3708 A
.emitRemark
<OptimizationRemark
>(KernelInitCB
, "OMP130", Remark
);
3710 return ChangeStatus::CHANGED
;
3713 // Keep track in the statistics of our new shiny custom state machine.
3714 if (ReachedUnknownParallelRegions
.empty()) {
3715 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback
;
3717 auto Remark
= [&](OptimizationRemark OR
) {
3718 return OR
<< "Rewriting generic-mode kernel with a customized state "
3721 A
.emitRemark
<OptimizationRemark
>(KernelInitCB
, "OMP131", Remark
);
3723 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback
;
3725 auto Remark
= [&](OptimizationRemarkAnalysis OR
) {
3726 return OR
<< "Generic-mode kernel is executed with a customized state "
3727 "machine that requires a fallback.";
3729 A
.emitRemark
<OptimizationRemarkAnalysis
>(KernelInitCB
, "OMP132", Remark
);
3731 // Tell the user why we ended up with a fallback.
3732 for (CallBase
*UnknownParallelRegionCB
: ReachedUnknownParallelRegions
) {
3733 if (!UnknownParallelRegionCB
)
3735 auto Remark
= [&](OptimizationRemarkAnalysis ORA
) {
3736 return ORA
<< "Call may contain unknown parallel regions. Use "
3737 << "`__attribute__((assume(\"omp_no_parallelism\")))` to "
3740 A
.emitRemark
<OptimizationRemarkAnalysis
>(UnknownParallelRegionCB
,
3745 // Create all the blocks:
3747 // InitCB = __kmpc_target_init(...)
3749 // __kmpc_get_hardware_num_threads_in_block();
3750 // WarpSize = __kmpc_get_warp_size();
3751 // BlockSize = BlockHwSize - WarpSize;
3752 // IsWorkerCheckBB: bool IsWorker = InitCB != -1;
3754 // if (InitCB >= BlockSize) return;
3755 // SMBeginBB: __kmpc_barrier_simple_generic(...);
3757 // bool Active = __kmpc_kernel_parallel(&WorkFn);
3758 // if (!WorkFn) return;
3759 // SMIsActiveCheckBB: if (Active) {
3760 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>)
3762 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>)
3765 // SMIfCascadeCurrentBB: else
3766 // ((WorkFnTy*)WorkFn)(...);
3767 // SMEndParallelBB: __kmpc_kernel_end_parallel(...);
3769 // SMDoneBB: __kmpc_barrier_simple_generic(...);
3772 // UserCodeEntryBB: // user code
3773 // __kmpc_target_deinit(...)
3775 Function
*Kernel
= getAssociatedFunction();
3776 assert(Kernel
&& "Expected an associated function!");
3778 BasicBlock
*InitBB
= KernelInitCB
->getParent();
3779 BasicBlock
*UserCodeEntryBB
= InitBB
->splitBasicBlock(
3780 KernelInitCB
->getNextNode(), "thread.user_code.check");
3781 BasicBlock
*IsWorkerCheckBB
=
3782 BasicBlock::Create(Ctx
, "is_worker_check", Kernel
, UserCodeEntryBB
);
3783 BasicBlock
*StateMachineBeginBB
= BasicBlock::Create(
3784 Ctx
, "worker_state_machine.begin", Kernel
, UserCodeEntryBB
);
3785 BasicBlock
*StateMachineFinishedBB
= BasicBlock::Create(
3786 Ctx
, "worker_state_machine.finished", Kernel
, UserCodeEntryBB
);
3787 BasicBlock
*StateMachineIsActiveCheckBB
= BasicBlock::Create(
3788 Ctx
, "worker_state_machine.is_active.check", Kernel
, UserCodeEntryBB
);
3789 BasicBlock
*StateMachineIfCascadeCurrentBB
=
3790 BasicBlock::Create(Ctx
, "worker_state_machine.parallel_region.check",
3791 Kernel
, UserCodeEntryBB
);
3792 BasicBlock
*StateMachineEndParallelBB
=
3793 BasicBlock::Create(Ctx
, "worker_state_machine.parallel_region.end",
3794 Kernel
, UserCodeEntryBB
);
3795 BasicBlock
*StateMachineDoneBarrierBB
= BasicBlock::Create(
3796 Ctx
, "worker_state_machine.done.barrier", Kernel
, UserCodeEntryBB
);
3797 A
.registerManifestAddedBasicBlock(*InitBB
);
3798 A
.registerManifestAddedBasicBlock(*UserCodeEntryBB
);
3799 A
.registerManifestAddedBasicBlock(*IsWorkerCheckBB
);
3800 A
.registerManifestAddedBasicBlock(*StateMachineBeginBB
);
3801 A
.registerManifestAddedBasicBlock(*StateMachineFinishedBB
);
3802 A
.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB
);
3803 A
.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB
);
3804 A
.registerManifestAddedBasicBlock(*StateMachineEndParallelBB
);
3805 A
.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB
);
3807 const DebugLoc
&DLoc
= KernelInitCB
->getDebugLoc();
3808 ReturnInst::Create(Ctx
, StateMachineFinishedBB
)->setDebugLoc(DLoc
);
3809 InitBB
->getTerminator()->eraseFromParent();
3811 Instruction
*IsWorker
=
3812 ICmpInst::Create(ICmpInst::ICmp
, llvm::CmpInst::ICMP_NE
, KernelInitCB
,
3813 ConstantInt::get(KernelInitCB
->getType(), -1),
3814 "thread.is_worker", InitBB
);
3815 IsWorker
->setDebugLoc(DLoc
);
3816 BranchInst::Create(IsWorkerCheckBB
, UserCodeEntryBB
, IsWorker
, InitBB
);
3818 Module
&M
= *Kernel
->getParent();
3819 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
3820 FunctionCallee BlockHwSizeFn
=
3821 OMPInfoCache
.OMPBuilder
.getOrCreateRuntimeFunction(
3822 M
, OMPRTL___kmpc_get_hardware_num_threads_in_block
);
3823 FunctionCallee WarpSizeFn
=
3824 OMPInfoCache
.OMPBuilder
.getOrCreateRuntimeFunction(
3825 M
, OMPRTL___kmpc_get_warp_size
);
3826 CallInst
*BlockHwSize
=
3827 CallInst::Create(BlockHwSizeFn
, "block.hw_size", IsWorkerCheckBB
);
3828 OMPInfoCache
.setCallingConvention(BlockHwSizeFn
, BlockHwSize
);
3829 BlockHwSize
->setDebugLoc(DLoc
);
3830 CallInst
*WarpSize
=
3831 CallInst::Create(WarpSizeFn
, "warp.size", IsWorkerCheckBB
);
3832 OMPInfoCache
.setCallingConvention(WarpSizeFn
, WarpSize
);
3833 WarpSize
->setDebugLoc(DLoc
);
3834 Instruction
*BlockSize
= BinaryOperator::CreateSub(
3835 BlockHwSize
, WarpSize
, "block.size", IsWorkerCheckBB
);
3836 BlockSize
->setDebugLoc(DLoc
);
3837 Instruction
*IsMainOrWorker
= ICmpInst::Create(
3838 ICmpInst::ICmp
, llvm::CmpInst::ICMP_SLT
, KernelInitCB
, BlockSize
,
3839 "thread.is_main_or_worker", IsWorkerCheckBB
);
3840 IsMainOrWorker
->setDebugLoc(DLoc
);
3841 BranchInst::Create(StateMachineBeginBB
, StateMachineFinishedBB
,
3842 IsMainOrWorker
, IsWorkerCheckBB
);
3844 // Create local storage for the work function pointer.
3845 const DataLayout
&DL
= M
.getDataLayout();
3846 Type
*VoidPtrTy
= Type::getInt8PtrTy(Ctx
);
3847 Instruction
*WorkFnAI
=
3848 new AllocaInst(VoidPtrTy
, DL
.getAllocaAddrSpace(), nullptr,
3849 "worker.work_fn.addr", &Kernel
->getEntryBlock().front());
3850 WorkFnAI
->setDebugLoc(DLoc
);
3852 OMPInfoCache
.OMPBuilder
.updateToLocation(
3853 OpenMPIRBuilder::LocationDescription(
3854 IRBuilder
<>::InsertPoint(StateMachineBeginBB
,
3855 StateMachineBeginBB
->end()),
3858 Value
*Ident
= KernelInitCB
->getArgOperand(0);
3859 Value
*GTid
= KernelInitCB
;
3861 FunctionCallee BarrierFn
=
3862 OMPInfoCache
.OMPBuilder
.getOrCreateRuntimeFunction(
3863 M
, OMPRTL___kmpc_barrier_simple_generic
);
3865 CallInst::Create(BarrierFn
, {Ident
, GTid
}, "", StateMachineBeginBB
);
3866 OMPInfoCache
.setCallingConvention(BarrierFn
, Barrier
);
3867 Barrier
->setDebugLoc(DLoc
);
3869 if (WorkFnAI
->getType()->getPointerAddressSpace() !=
3870 (unsigned int)AddressSpace::Generic
) {
3871 WorkFnAI
= new AddrSpaceCastInst(
3873 PointerType::getWithSamePointeeType(
3874 cast
<PointerType
>(WorkFnAI
->getType()),
3875 (unsigned int)AddressSpace::Generic
),
3876 WorkFnAI
->getName() + ".generic", StateMachineBeginBB
);
3877 WorkFnAI
->setDebugLoc(DLoc
);
3880 FunctionCallee KernelParallelFn
=
3881 OMPInfoCache
.OMPBuilder
.getOrCreateRuntimeFunction(
3882 M
, OMPRTL___kmpc_kernel_parallel
);
3883 CallInst
*IsActiveWorker
= CallInst::Create(
3884 KernelParallelFn
, {WorkFnAI
}, "worker.is_active", StateMachineBeginBB
);
3885 OMPInfoCache
.setCallingConvention(KernelParallelFn
, IsActiveWorker
);
3886 IsActiveWorker
->setDebugLoc(DLoc
);
3887 Instruction
*WorkFn
= new LoadInst(VoidPtrTy
, WorkFnAI
, "worker.work_fn",
3888 StateMachineBeginBB
);
3889 WorkFn
->setDebugLoc(DLoc
);
3891 FunctionType
*ParallelRegionFnTy
= FunctionType::get(
3892 Type::getVoidTy(Ctx
), {Type::getInt16Ty(Ctx
), Type::getInt32Ty(Ctx
)},
3894 Value
*WorkFnCast
= BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
3895 WorkFn
, ParallelRegionFnTy
->getPointerTo(), "worker.work_fn.addr_cast",
3896 StateMachineBeginBB
);
3898 Instruction
*IsDone
=
3899 ICmpInst::Create(ICmpInst::ICmp
, llvm::CmpInst::ICMP_EQ
, WorkFn
,
3900 Constant::getNullValue(VoidPtrTy
), "worker.is_done",
3901 StateMachineBeginBB
);
3902 IsDone
->setDebugLoc(DLoc
);
3903 BranchInst::Create(StateMachineFinishedBB
, StateMachineIsActiveCheckBB
,
3904 IsDone
, StateMachineBeginBB
)
3905 ->setDebugLoc(DLoc
);
3907 BranchInst::Create(StateMachineIfCascadeCurrentBB
,
3908 StateMachineDoneBarrierBB
, IsActiveWorker
,
3909 StateMachineIsActiveCheckBB
)
3910 ->setDebugLoc(DLoc
);
3913 Constant::getNullValue(ParallelRegionFnTy
->getParamType(0));
3915 // Now that we have most of the CFG skeleton it is time for the if-cascade
3916 // that checks the function pointer we got from the runtime against the
3917 // parallel regions we expect, if there are any.
3918 for (int I
= 0, E
= ReachedKnownParallelRegions
.size(); I
< E
; ++I
) {
3919 auto *ParallelRegion
= ReachedKnownParallelRegions
[I
];
3920 BasicBlock
*PRExecuteBB
= BasicBlock::Create(
3921 Ctx
, "worker_state_machine.parallel_region.execute", Kernel
,
3922 StateMachineEndParallelBB
);
3923 CallInst::Create(ParallelRegion
, {ZeroArg
, GTid
}, "", PRExecuteBB
)
3924 ->setDebugLoc(DLoc
);
3925 BranchInst::Create(StateMachineEndParallelBB
, PRExecuteBB
)
3926 ->setDebugLoc(DLoc
);
3928 BasicBlock
*PRNextBB
=
3929 BasicBlock::Create(Ctx
, "worker_state_machine.parallel_region.check",
3930 Kernel
, StateMachineEndParallelBB
);
3932 // Check if we need to compare the pointer at all or if we can just
3933 // call the parallel region function.
3935 if (I
+ 1 < E
|| !ReachedUnknownParallelRegions
.empty()) {
3936 Instruction
*CmpI
= ICmpInst::Create(
3937 ICmpInst::ICmp
, llvm::CmpInst::ICMP_EQ
, WorkFnCast
, ParallelRegion
,
3938 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB
);
3939 CmpI
->setDebugLoc(DLoc
);
3942 IsPR
= ConstantInt::getTrue(Ctx
);
3945 BranchInst::Create(PRExecuteBB
, PRNextBB
, IsPR
,
3946 StateMachineIfCascadeCurrentBB
)
3947 ->setDebugLoc(DLoc
);
3948 StateMachineIfCascadeCurrentBB
= PRNextBB
;
3951 // At the end of the if-cascade we place the indirect function pointer call
3952 // in case we might need it, that is if there can be parallel regions we
3953 // have not handled in the if-cascade above.
3954 if (!ReachedUnknownParallelRegions
.empty()) {
3955 StateMachineIfCascadeCurrentBB
->setName(
3956 "worker_state_machine.parallel_region.fallback.execute");
3957 CallInst::Create(ParallelRegionFnTy
, WorkFnCast
, {ZeroArg
, GTid
}, "",
3958 StateMachineIfCascadeCurrentBB
)
3959 ->setDebugLoc(DLoc
);
3961 BranchInst::Create(StateMachineEndParallelBB
,
3962 StateMachineIfCascadeCurrentBB
)
3963 ->setDebugLoc(DLoc
);
3965 FunctionCallee EndParallelFn
=
3966 OMPInfoCache
.OMPBuilder
.getOrCreateRuntimeFunction(
3967 M
, OMPRTL___kmpc_kernel_end_parallel
);
3968 CallInst
*EndParallel
=
3969 CallInst::Create(EndParallelFn
, {}, "", StateMachineEndParallelBB
);
3970 OMPInfoCache
.setCallingConvention(EndParallelFn
, EndParallel
);
3971 EndParallel
->setDebugLoc(DLoc
);
3972 BranchInst::Create(StateMachineDoneBarrierBB
, StateMachineEndParallelBB
)
3973 ->setDebugLoc(DLoc
);
3975 CallInst::Create(BarrierFn
, {Ident
, GTid
}, "", StateMachineDoneBarrierBB
)
3976 ->setDebugLoc(DLoc
);
3977 BranchInst::Create(StateMachineBeginBB
, StateMachineDoneBarrierBB
)
3978 ->setDebugLoc(DLoc
);
3980 return ChangeStatus::CHANGED
;
3983 /// Fixpoint iteration update function. Will be called every time a dependence
3984 /// changed its state (and in the beginning).
3985 ChangeStatus
updateImpl(Attributor
&A
) override
{
3986 KernelInfoState StateBefore
= getState();
3988 // Callback to check a read/write instruction.
3989 auto CheckRWInst
= [&](Instruction
&I
) {
3990 // We handle calls later.
3991 if (isa
<CallBase
>(I
))
3993 // We only care about write effects.
3994 if (!I
.mayWriteToMemory())
3996 if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
3997 SmallVector
<const Value
*> Objects
;
3998 getUnderlyingObjects(SI
->getPointerOperand(), Objects
);
3999 if (llvm::all_of(Objects
,
4000 [](const Value
*Obj
) { return isa
<AllocaInst
>(Obj
); }))
4002 // Check for AAHeapToStack moved objects which must not be guarded.
4003 auto &HS
= A
.getAAFor
<AAHeapToStack
>(
4004 *this, IRPosition::function(*I
.getFunction()),
4005 DepClassTy::OPTIONAL
);
4006 if (llvm::all_of(Objects
, [&HS
](const Value
*Obj
) {
4007 auto *CB
= dyn_cast
<CallBase
>(Obj
);
4010 return HS
.isAssumedHeapToStack(*CB
);
4016 // Insert instruction that needs guarding.
4017 SPMDCompatibilityTracker
.insert(&I
);
4021 bool UsedAssumedInformationInCheckRWInst
= false;
4022 if (!SPMDCompatibilityTracker
.isAtFixpoint())
4023 if (!A
.checkForAllReadWriteInstructions(
4024 CheckRWInst
, *this, UsedAssumedInformationInCheckRWInst
))
4025 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4027 bool UsedAssumedInformationFromReachingKernels
= false;
4028 if (!IsKernelEntry
) {
4029 updateParallelLevels(A
);
4031 bool AllReachingKernelsKnown
= true;
4032 updateReachingKernelEntries(A
, AllReachingKernelsKnown
);
4033 UsedAssumedInformationFromReachingKernels
= !AllReachingKernelsKnown
;
4035 if (!ParallelLevels
.isValidState())
4036 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4037 else if (!ReachingKernelEntries
.isValidState())
4038 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4039 else if (!SPMDCompatibilityTracker
.empty()) {
4040 // Check if all reaching kernels agree on the mode as we can otherwise
4041 // not guard instructions. We might not be sure about the mode so we
4042 // we cannot fix the internal spmd-zation state either.
4043 int SPMD
= 0, Generic
= 0;
4044 for (auto *Kernel
: ReachingKernelEntries
) {
4045 auto &CBAA
= A
.getAAFor
<AAKernelInfo
>(
4046 *this, IRPosition::function(*Kernel
), DepClassTy::OPTIONAL
);
4047 if (CBAA
.SPMDCompatibilityTracker
.isValidState() &&
4048 CBAA
.SPMDCompatibilityTracker
.isAssumed())
4052 if (!CBAA
.SPMDCompatibilityTracker
.isAtFixpoint())
4053 UsedAssumedInformationFromReachingKernels
= true;
4055 if (SPMD
!= 0 && Generic
!= 0)
4056 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4060 // Callback to check a call instruction.
4061 bool AllParallelRegionStatesWereFixed
= true;
4062 bool AllSPMDStatesWereFixed
= true;
4063 auto CheckCallInst
= [&](Instruction
&I
) {
4064 auto &CB
= cast
<CallBase
>(I
);
4065 auto &CBAA
= A
.getAAFor
<AAKernelInfo
>(
4066 *this, IRPosition::callsite_function(CB
), DepClassTy::OPTIONAL
);
4067 getState() ^= CBAA
.getState();
4068 AllSPMDStatesWereFixed
&= CBAA
.SPMDCompatibilityTracker
.isAtFixpoint();
4069 AllParallelRegionStatesWereFixed
&=
4070 CBAA
.ReachedKnownParallelRegions
.isAtFixpoint();
4071 AllParallelRegionStatesWereFixed
&=
4072 CBAA
.ReachedUnknownParallelRegions
.isAtFixpoint();
4076 bool UsedAssumedInformationInCheckCallInst
= false;
4077 if (!A
.checkForAllCallLikeInstructions(
4078 CheckCallInst
, *this, UsedAssumedInformationInCheckCallInst
)) {
4079 LLVM_DEBUG(dbgs() << TAG
4080 << "Failed to visit all call-like instructions!\n";);
4081 return indicatePessimisticFixpoint();
4084 // If we haven't used any assumed information for the reached parallel
4085 // region states we can fix it.
4086 if (!UsedAssumedInformationInCheckCallInst
&&
4087 AllParallelRegionStatesWereFixed
) {
4088 ReachedKnownParallelRegions
.indicateOptimisticFixpoint();
4089 ReachedUnknownParallelRegions
.indicateOptimisticFixpoint();
4092 // If we are sure there are no parallel regions in the kernel we do not
4094 if (IsKernelEntry
&& ReachedUnknownParallelRegions
.isAtFixpoint() &&
4095 ReachedKnownParallelRegions
.isAtFixpoint() &&
4096 ReachedUnknownParallelRegions
.isValidState() &&
4097 ReachedKnownParallelRegions
.isValidState() &&
4098 !mayContainParallelRegion())
4099 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4101 // If we haven't used any assumed information for the SPMD state we can fix
4103 if (!UsedAssumedInformationInCheckRWInst
&&
4104 !UsedAssumedInformationInCheckCallInst
&&
4105 !UsedAssumedInformationFromReachingKernels
&& AllSPMDStatesWereFixed
)
4106 SPMDCompatibilityTracker
.indicateOptimisticFixpoint();
4108 return StateBefore
== getState() ? ChangeStatus::UNCHANGED
4109 : ChangeStatus::CHANGED
;
4113 /// Update info regarding reaching kernels.
4114 void updateReachingKernelEntries(Attributor
&A
,
4115 bool &AllReachingKernelsKnown
) {
4116 auto PredCallSite
= [&](AbstractCallSite ACS
) {
4117 Function
*Caller
= ACS
.getInstruction()->getFunction();
4119 assert(Caller
&& "Caller is nullptr");
4121 auto &CAA
= A
.getOrCreateAAFor
<AAKernelInfo
>(
4122 IRPosition::function(*Caller
), this, DepClassTy::REQUIRED
);
4123 if (CAA
.ReachingKernelEntries
.isValidState()) {
4124 ReachingKernelEntries
^= CAA
.ReachingKernelEntries
;
4128 // We lost track of the caller of the associated function, any kernel
4130 ReachingKernelEntries
.indicatePessimisticFixpoint();
4135 if (!A
.checkForAllCallSites(PredCallSite
, *this,
4136 true /* RequireAllCallSites */,
4137 AllReachingKernelsKnown
))
4138 ReachingKernelEntries
.indicatePessimisticFixpoint();
4141 /// Update info regarding parallel levels.
4142 void updateParallelLevels(Attributor
&A
) {
4143 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
4144 OMPInformationCache::RuntimeFunctionInfo
&Parallel51RFI
=
4145 OMPInfoCache
.RFIs
[OMPRTL___kmpc_parallel_51
];
4147 auto PredCallSite
= [&](AbstractCallSite ACS
) {
4148 Function
*Caller
= ACS
.getInstruction()->getFunction();
4150 assert(Caller
&& "Caller is nullptr");
4153 A
.getOrCreateAAFor
<AAKernelInfo
>(IRPosition::function(*Caller
));
4154 if (CAA
.ParallelLevels
.isValidState()) {
4155 // Any function that is called by `__kmpc_parallel_51` will not be
4156 // folded as the parallel level in the function is updated. In order to
4157 // get it right, all the analysis would depend on the implentation. That
4158 // said, if in the future any change to the implementation, the analysis
4159 // could be wrong. As a consequence, we are just conservative here.
4160 if (Caller
== Parallel51RFI
.Declaration
) {
4161 ParallelLevels
.indicatePessimisticFixpoint();
4165 ParallelLevels
^= CAA
.ParallelLevels
;
4170 // We lost track of the caller of the associated function, any kernel
4172 ParallelLevels
.indicatePessimisticFixpoint();
4177 bool AllCallSitesKnown
= true;
4178 if (!A
.checkForAllCallSites(PredCallSite
, *this,
4179 true /* RequireAllCallSites */,
4181 ParallelLevels
.indicatePessimisticFixpoint();
4185 /// The call site kernel info abstract attribute, basically, what can we say
4186 /// about a call site with regards to the KernelInfoState. For now this simply
4187 /// forwards the information from the callee.
4188 struct AAKernelInfoCallSite
: AAKernelInfo
{
4189 AAKernelInfoCallSite(const IRPosition
&IRP
, Attributor
&A
)
4190 : AAKernelInfo(IRP
, A
) {}
4192 /// See AbstractAttribute::initialize(...).
4193 void initialize(Attributor
&A
) override
{
4194 AAKernelInfo::initialize(A
);
4196 CallBase
&CB
= cast
<CallBase
>(getAssociatedValue());
4197 Function
*Callee
= getAssociatedFunction();
4199 auto &AssumptionAA
= A
.getAAFor
<AAAssumptionInfo
>(
4200 *this, IRPosition::callsite_function(CB
), DepClassTy::OPTIONAL
);
4202 // Check for SPMD-mode assumptions.
4203 if (AssumptionAA
.hasAssumption("ompx_spmd_amenable")) {
4204 SPMDCompatibilityTracker
.indicateOptimisticFixpoint();
4205 indicateOptimisticFixpoint();
4208 // First weed out calls we do not care about, that is readonly/readnone
4209 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
4210 // parallel region or anything else we are looking for.
4211 if (!CB
.mayWriteToMemory() || isa
<IntrinsicInst
>(CB
)) {
4212 indicateOptimisticFixpoint();
4216 // Next we check if we know the callee. If it is a known OpenMP function
4217 // we will handle them explicitly in the switch below. If it is not, we
4218 // will use an AAKernelInfo object on the callee to gather information and
4219 // merge that into the current state. The latter happens in the updateImpl.
4220 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
4221 const auto &It
= OMPInfoCache
.RuntimeFunctionIDMap
.find(Callee
);
4222 if (It
== OMPInfoCache
.RuntimeFunctionIDMap
.end()) {
4223 // Unknown caller or declarations are not analyzable, we give up.
4224 if (!Callee
|| !A
.isFunctionIPOAmendable(*Callee
)) {
4226 // Unknown callees might contain parallel regions, except if they have
4227 // an appropriate assumption attached.
4228 if (!(AssumptionAA
.hasAssumption("omp_no_openmp") ||
4229 AssumptionAA
.hasAssumption("omp_no_parallelism")))
4230 ReachedUnknownParallelRegions
.insert(&CB
);
4232 // If SPMDCompatibilityTracker is not fixed, we need to give up on the
4233 // idea we can run something unknown in SPMD-mode.
4234 if (!SPMDCompatibilityTracker
.isAtFixpoint()) {
4235 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4236 SPMDCompatibilityTracker
.insert(&CB
);
4239 // We have updated the state for this unknown call properly, there won't
4240 // be any change so we indicate a fixpoint.
4241 indicateOptimisticFixpoint();
4243 // If the callee is known and can be used in IPO, we will update the state
4244 // based on the callee state in updateImpl.
4248 const unsigned int WrapperFunctionArgNo
= 6;
4249 RuntimeFunction RF
= It
->getSecond();
4251 // All the functions we know are compatible with SPMD mode.
4252 case OMPRTL___kmpc_is_spmd_exec_mode
:
4253 case OMPRTL___kmpc_distribute_static_fini
:
4254 case OMPRTL___kmpc_for_static_fini
:
4255 case OMPRTL___kmpc_global_thread_num
:
4256 case OMPRTL___kmpc_get_hardware_num_threads_in_block
:
4257 case OMPRTL___kmpc_get_hardware_num_blocks
:
4258 case OMPRTL___kmpc_single
:
4259 case OMPRTL___kmpc_end_single
:
4260 case OMPRTL___kmpc_master
:
4261 case OMPRTL___kmpc_end_master
:
4262 case OMPRTL___kmpc_barrier
:
4263 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2
:
4264 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2
:
4265 case OMPRTL___kmpc_nvptx_end_reduce_nowait
:
4267 case OMPRTL___kmpc_distribute_static_init_4
:
4268 case OMPRTL___kmpc_distribute_static_init_4u
:
4269 case OMPRTL___kmpc_distribute_static_init_8
:
4270 case OMPRTL___kmpc_distribute_static_init_8u
:
4271 case OMPRTL___kmpc_for_static_init_4
:
4272 case OMPRTL___kmpc_for_static_init_4u
:
4273 case OMPRTL___kmpc_for_static_init_8
:
4274 case OMPRTL___kmpc_for_static_init_8u
: {
4275 // Check the schedule and allow static schedule in SPMD mode.
4276 unsigned ScheduleArgOpNo
= 2;
4277 auto *ScheduleTypeCI
=
4278 dyn_cast
<ConstantInt
>(CB
.getArgOperand(ScheduleArgOpNo
));
4279 unsigned ScheduleTypeVal
=
4280 ScheduleTypeCI
? ScheduleTypeCI
->getZExtValue() : 0;
4281 switch (OMPScheduleType(ScheduleTypeVal
)) {
4282 case OMPScheduleType::UnorderedStatic
:
4283 case OMPScheduleType::UnorderedStaticChunked
:
4284 case OMPScheduleType::OrderedDistribute
:
4285 case OMPScheduleType::OrderedDistributeChunked
:
4288 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4289 SPMDCompatibilityTracker
.insert(&CB
);
4293 case OMPRTL___kmpc_target_init
:
4296 case OMPRTL___kmpc_target_deinit
:
4297 KernelDeinitCB
= &CB
;
4299 case OMPRTL___kmpc_parallel_51
:
4300 if (auto *ParallelRegion
= dyn_cast
<Function
>(
4301 CB
.getArgOperand(WrapperFunctionArgNo
)->stripPointerCasts())) {
4302 ReachedKnownParallelRegions
.insert(ParallelRegion
);
4305 // The condition above should usually get the parallel region function
4306 // pointer and record it. In the off chance it doesn't we assume the
4308 ReachedUnknownParallelRegions
.insert(&CB
);
4310 case OMPRTL___kmpc_omp_task
:
4311 // We do not look into tasks right now, just give up.
4312 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4313 SPMDCompatibilityTracker
.insert(&CB
);
4314 ReachedUnknownParallelRegions
.insert(&CB
);
4316 case OMPRTL___kmpc_alloc_shared
:
4317 case OMPRTL___kmpc_free_shared
:
4318 // Return without setting a fixpoint, to be resolved in updateImpl.
4321 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
4322 // generally. However, they do not hide parallel regions.
4323 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4324 SPMDCompatibilityTracker
.insert(&CB
);
4327 // All other OpenMP runtime calls will not reach parallel regions so they
4328 // can be safely ignored for now. Since it is a known OpenMP runtime call we
4329 // have now modeled all effects and there is no need for any update.
4330 indicateOptimisticFixpoint();
4333 ChangeStatus
updateImpl(Attributor
&A
) override
{
4334 // TODO: Once we have call site specific value information we can provide
4335 // call site specific liveness information and then it makes
4336 // sense to specialize attributes for call sites arguments instead of
4337 // redirecting requests to the callee argument.
4338 Function
*F
= getAssociatedFunction();
4340 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
4341 const auto &It
= OMPInfoCache
.RuntimeFunctionIDMap
.find(F
);
4343 // If F is not a runtime function, propagate the AAKernelInfo of the callee.
4344 if (It
== OMPInfoCache
.RuntimeFunctionIDMap
.end()) {
4345 const IRPosition
&FnPos
= IRPosition::function(*F
);
4346 auto &FnAA
= A
.getAAFor
<AAKernelInfo
>(*this, FnPos
, DepClassTy::REQUIRED
);
4347 if (getState() == FnAA
.getState())
4348 return ChangeStatus::UNCHANGED
;
4349 getState() = FnAA
.getState();
4350 return ChangeStatus::CHANGED
;
4353 // F is a runtime function that allocates or frees memory, check
4354 // AAHeapToStack and AAHeapToShared.
4355 KernelInfoState StateBefore
= getState();
4356 assert((It
->getSecond() == OMPRTL___kmpc_alloc_shared
||
4357 It
->getSecond() == OMPRTL___kmpc_free_shared
) &&
4358 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
4360 CallBase
&CB
= cast
<CallBase
>(getAssociatedValue());
4362 auto &HeapToStackAA
= A
.getAAFor
<AAHeapToStack
>(
4363 *this, IRPosition::function(*CB
.getCaller()), DepClassTy::OPTIONAL
);
4364 auto &HeapToSharedAA
= A
.getAAFor
<AAHeapToShared
>(
4365 *this, IRPosition::function(*CB
.getCaller()), DepClassTy::OPTIONAL
);
4367 RuntimeFunction RF
= It
->getSecond();
4370 // If neither HeapToStack nor HeapToShared assume the call is removed,
4371 // assume SPMD incompatibility.
4372 case OMPRTL___kmpc_alloc_shared
:
4373 if (!HeapToStackAA
.isAssumedHeapToStack(CB
) &&
4374 !HeapToSharedAA
.isAssumedHeapToShared(CB
))
4375 SPMDCompatibilityTracker
.insert(&CB
);
4377 case OMPRTL___kmpc_free_shared
:
4378 if (!HeapToStackAA
.isAssumedHeapToStackRemovedFree(CB
) &&
4379 !HeapToSharedAA
.isAssumedHeapToSharedRemovedFree(CB
))
4380 SPMDCompatibilityTracker
.insert(&CB
);
4383 SPMDCompatibilityTracker
.indicatePessimisticFixpoint();
4384 SPMDCompatibilityTracker
.insert(&CB
);
4387 return StateBefore
== getState() ? ChangeStatus::UNCHANGED
4388 : ChangeStatus::CHANGED
;
4392 struct AAFoldRuntimeCall
4393 : public StateWrapper
<BooleanState
, AbstractAttribute
> {
4394 using Base
= StateWrapper
<BooleanState
, AbstractAttribute
>;
4396 AAFoldRuntimeCall(const IRPosition
&IRP
, Attributor
&A
) : Base(IRP
) {}
4398 /// Statistics are tracked as part of manifest for now.
4399 void trackStatistics() const override
{}
4401 /// Create an abstract attribute biew for the position \p IRP.
4402 static AAFoldRuntimeCall
&createForPosition(const IRPosition
&IRP
,
4405 /// See AbstractAttribute::getName()
4406 const std::string
getName() const override
{ return "AAFoldRuntimeCall"; }
4408 /// See AbstractAttribute::getIdAddr()
4409 const char *getIdAddr() const override
{ return &ID
; }
4411 /// This function should return true if the type of the \p AA is
4412 /// AAFoldRuntimeCall
4413 static bool classof(const AbstractAttribute
*AA
) {
4414 return (AA
->getIdAddr() == &ID
);
4417 static const char ID
;
4420 struct AAFoldRuntimeCallCallSiteReturned
: AAFoldRuntimeCall
{
4421 AAFoldRuntimeCallCallSiteReturned(const IRPosition
&IRP
, Attributor
&A
)
4422 : AAFoldRuntimeCall(IRP
, A
) {}
4424 /// See AbstractAttribute::getAsStr()
4425 const std::string
getAsStr() const override
{
4426 if (!isValidState())
4429 std::string
Str("simplified value: ");
4431 if (!SimplifiedValue
)
4432 return Str
+ std::string("none");
4434 if (!SimplifiedValue
.value())
4435 return Str
+ std::string("nullptr");
4437 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(SimplifiedValue
.value()))
4438 return Str
+ std::to_string(CI
->getSExtValue());
4440 return Str
+ std::string("unknown");
4443 void initialize(Attributor
&A
) override
{
4444 if (DisableOpenMPOptFolding
)
4445 indicatePessimisticFixpoint();
4447 Function
*Callee
= getAssociatedFunction();
4449 auto &OMPInfoCache
= static_cast<OMPInformationCache
&>(A
.getInfoCache());
4450 const auto &It
= OMPInfoCache
.RuntimeFunctionIDMap
.find(Callee
);
4451 assert(It
!= OMPInfoCache
.RuntimeFunctionIDMap
.end() &&
4452 "Expected a known OpenMP runtime function");
4454 RFKind
= It
->getSecond();
4456 CallBase
&CB
= cast
<CallBase
>(getAssociatedValue());
4457 A
.registerSimplificationCallback(
4458 IRPosition::callsite_returned(CB
),
4459 [&](const IRPosition
&IRP
, const AbstractAttribute
*AA
,
4460 bool &UsedAssumedInformation
) -> Optional
<Value
*> {
4461 assert((isValidState() ||
4462 (SimplifiedValue
&& SimplifiedValue
.value() == nullptr)) &&
4463 "Unexpected invalid state!");
4465 if (!isAtFixpoint()) {
4466 UsedAssumedInformation
= true;
4468 A
.recordDependence(*this, *AA
, DepClassTy::OPTIONAL
);
4470 return SimplifiedValue
;
4474 ChangeStatus
updateImpl(Attributor
&A
) override
{
4475 ChangeStatus Changed
= ChangeStatus::UNCHANGED
;
4477 case OMPRTL___kmpc_is_spmd_exec_mode
:
4478 Changed
|= foldIsSPMDExecMode(A
);
4480 case OMPRTL___kmpc_is_generic_main_thread_id
:
4481 Changed
|= foldIsGenericMainThread(A
);
4483 case OMPRTL___kmpc_parallel_level
:
4484 Changed
|= foldParallelLevel(A
);
4486 case OMPRTL___kmpc_get_hardware_num_threads_in_block
:
4487 Changed
= Changed
| foldKernelFnAttribute(A
, "omp_target_thread_limit");
4489 case OMPRTL___kmpc_get_hardware_num_blocks
:
4490 Changed
= Changed
| foldKernelFnAttribute(A
, "omp_target_num_teams");
4493 llvm_unreachable("Unhandled OpenMP runtime function!");
4499 ChangeStatus
manifest(Attributor
&A
) override
{
4500 ChangeStatus Changed
= ChangeStatus::UNCHANGED
;
4502 if (SimplifiedValue
&& *SimplifiedValue
) {
4503 Instruction
&I
= *getCtxI();
4504 A
.changeAfterManifest(IRPosition::inst(I
), **SimplifiedValue
);
4505 A
.deleteAfterManifest(I
);
4507 CallBase
*CB
= dyn_cast
<CallBase
>(&I
);
4508 auto Remark
= [&](OptimizationRemark OR
) {
4509 if (auto *C
= dyn_cast
<ConstantInt
>(*SimplifiedValue
))
4510 return OR
<< "Replacing OpenMP runtime call "
4511 << CB
->getCalledFunction()->getName() << " with "
4512 << ore::NV("FoldedValue", C
->getZExtValue()) << ".";
4513 return OR
<< "Replacing OpenMP runtime call "
4514 << CB
->getCalledFunction()->getName() << ".";
4517 if (CB
&& EnableVerboseRemarks
)
4518 A
.emitRemark
<OptimizationRemark
>(CB
, "OMP180", Remark
);
4520 LLVM_DEBUG(dbgs() << TAG
<< "Replacing runtime call: " << I
<< " with "
4521 << **SimplifiedValue
<< "\n");
4523 Changed
= ChangeStatus::CHANGED
;
4529 ChangeStatus
indicatePessimisticFixpoint() override
{
4530 SimplifiedValue
= nullptr;
4531 return AAFoldRuntimeCall::indicatePessimisticFixpoint();
4535 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
4536 ChangeStatus
foldIsSPMDExecMode(Attributor
&A
) {
4537 Optional
<Value
*> SimplifiedValueBefore
= SimplifiedValue
;
4539 unsigned AssumedSPMDCount
= 0, KnownSPMDCount
= 0;
4540 unsigned AssumedNonSPMDCount
= 0, KnownNonSPMDCount
= 0;
4541 auto &CallerKernelInfoAA
= A
.getAAFor
<AAKernelInfo
>(
4542 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED
);
4544 if (!CallerKernelInfoAA
.ReachingKernelEntries
.isValidState())
4545 return indicatePessimisticFixpoint();
4547 for (Kernel K
: CallerKernelInfoAA
.ReachingKernelEntries
) {
4548 auto &AA
= A
.getAAFor
<AAKernelInfo
>(*this, IRPosition::function(*K
),
4549 DepClassTy::REQUIRED
);
4551 if (!AA
.isValidState()) {
4552 SimplifiedValue
= nullptr;
4553 return indicatePessimisticFixpoint();
4556 if (AA
.SPMDCompatibilityTracker
.isAssumed()) {
4557 if (AA
.SPMDCompatibilityTracker
.isAtFixpoint())
4562 if (AA
.SPMDCompatibilityTracker
.isAtFixpoint())
4563 ++KnownNonSPMDCount
;
4565 ++AssumedNonSPMDCount
;
4569 if ((AssumedSPMDCount
+ KnownSPMDCount
) &&
4570 (AssumedNonSPMDCount
+ KnownNonSPMDCount
))
4571 return indicatePessimisticFixpoint();
4573 auto &Ctx
= getAnchorValue().getContext();
4574 if (KnownSPMDCount
|| AssumedSPMDCount
) {
4575 assert(KnownNonSPMDCount
== 0 && AssumedNonSPMDCount
== 0 &&
4576 "Expected only SPMD kernels!");
4577 // All reaching kernels are in SPMD mode. Update all function calls to
4578 // __kmpc_is_spmd_exec_mode to 1.
4579 SimplifiedValue
= ConstantInt::get(Type::getInt8Ty(Ctx
), true);
4580 } else if (KnownNonSPMDCount
|| AssumedNonSPMDCount
) {
4581 assert(KnownSPMDCount
== 0 && AssumedSPMDCount
== 0 &&
4582 "Expected only non-SPMD kernels!");
4583 // All reaching kernels are in non-SPMD mode. Update all function
4584 // calls to __kmpc_is_spmd_exec_mode to 0.
4585 SimplifiedValue
= ConstantInt::get(Type::getInt8Ty(Ctx
), false);
4587 // We have empty reaching kernels, therefore we cannot tell if the
4588 // associated call site can be folded. At this moment, SimplifiedValue
4590 assert(!SimplifiedValue
&& "SimplifiedValue should be none");
4593 return SimplifiedValue
== SimplifiedValueBefore
? ChangeStatus::UNCHANGED
4594 : ChangeStatus::CHANGED
;
4597 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible.
4598 ChangeStatus
foldIsGenericMainThread(Attributor
&A
) {
4599 Optional
<Value
*> SimplifiedValueBefore
= SimplifiedValue
;
4601 CallBase
&CB
= cast
<CallBase
>(getAssociatedValue());
4602 Function
*F
= CB
.getFunction();
4603 const auto &ExecutionDomainAA
= A
.getAAFor
<AAExecutionDomain
>(
4604 *this, IRPosition::function(*F
), DepClassTy::REQUIRED
);
4606 if (!ExecutionDomainAA
.isValidState())
4607 return indicatePessimisticFixpoint();
4609 auto &Ctx
= getAnchorValue().getContext();
4610 if (ExecutionDomainAA
.isExecutedByInitialThreadOnly(CB
))
4611 SimplifiedValue
= ConstantInt::get(Type::getInt8Ty(Ctx
), true);
4613 return indicatePessimisticFixpoint();
4615 return SimplifiedValue
== SimplifiedValueBefore
? ChangeStatus::UNCHANGED
4616 : ChangeStatus::CHANGED
;
4619 /// Fold __kmpc_parallel_level into a constant if possible.
4620 ChangeStatus
foldParallelLevel(Attributor
&A
) {
4621 Optional
<Value
*> SimplifiedValueBefore
= SimplifiedValue
;
4623 auto &CallerKernelInfoAA
= A
.getAAFor
<AAKernelInfo
>(
4624 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED
);
4626 if (!CallerKernelInfoAA
.ParallelLevels
.isValidState())
4627 return indicatePessimisticFixpoint();
4629 if (!CallerKernelInfoAA
.ReachingKernelEntries
.isValidState())
4630 return indicatePessimisticFixpoint();
4632 if (CallerKernelInfoAA
.ReachingKernelEntries
.empty()) {
4633 assert(!SimplifiedValue
&&
4634 "SimplifiedValue should keep none at this point");
4635 return ChangeStatus::UNCHANGED
;
4638 unsigned AssumedSPMDCount
= 0, KnownSPMDCount
= 0;
4639 unsigned AssumedNonSPMDCount
= 0, KnownNonSPMDCount
= 0;
4640 for (Kernel K
: CallerKernelInfoAA
.ReachingKernelEntries
) {
4641 auto &AA
= A
.getAAFor
<AAKernelInfo
>(*this, IRPosition::function(*K
),
4642 DepClassTy::REQUIRED
);
4643 if (!AA
.SPMDCompatibilityTracker
.isValidState())
4644 return indicatePessimisticFixpoint();
4646 if (AA
.SPMDCompatibilityTracker
.isAssumed()) {
4647 if (AA
.SPMDCompatibilityTracker
.isAtFixpoint())
4652 if (AA
.SPMDCompatibilityTracker
.isAtFixpoint())
4653 ++KnownNonSPMDCount
;
4655 ++AssumedNonSPMDCount
;
4659 if ((AssumedSPMDCount
+ KnownSPMDCount
) &&
4660 (AssumedNonSPMDCount
+ KnownNonSPMDCount
))
4661 return indicatePessimisticFixpoint();
4663 auto &Ctx
= getAnchorValue().getContext();
4664 // If the caller can only be reached by SPMD kernel entries, the parallel
4665 // level is 1. Similarly, if the caller can only be reached by non-SPMD
4666 // kernel entries, it is 0.
4667 if (AssumedSPMDCount
|| KnownSPMDCount
) {
4668 assert(KnownNonSPMDCount
== 0 && AssumedNonSPMDCount
== 0 &&
4669 "Expected only SPMD kernels!");
4670 SimplifiedValue
= ConstantInt::get(Type::getInt8Ty(Ctx
), 1);
4672 assert(KnownSPMDCount
== 0 && AssumedSPMDCount
== 0 &&
4673 "Expected only non-SPMD kernels!");
4674 SimplifiedValue
= ConstantInt::get(Type::getInt8Ty(Ctx
), 0);
4676 return SimplifiedValue
== SimplifiedValueBefore
? ChangeStatus::UNCHANGED
4677 : ChangeStatus::CHANGED
;
4680 ChangeStatus
foldKernelFnAttribute(Attributor
&A
, llvm::StringRef Attr
) {
4681 // Specialize only if all the calls agree with the attribute constant value
4682 int32_t CurrentAttrValue
= -1;
4683 Optional
<Value
*> SimplifiedValueBefore
= SimplifiedValue
;
4685 auto &CallerKernelInfoAA
= A
.getAAFor
<AAKernelInfo
>(
4686 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED
);
4688 if (!CallerKernelInfoAA
.ReachingKernelEntries
.isValidState())
4689 return indicatePessimisticFixpoint();
4691 // Iterate over the kernels that reach this function
4692 for (Kernel K
: CallerKernelInfoAA
.ReachingKernelEntries
) {
4693 int32_t NextAttrVal
= -1;
4694 if (K
->hasFnAttribute(Attr
))
4696 std::stoi(K
->getFnAttribute(Attr
).getValueAsString().str());
4698 if (NextAttrVal
== -1 ||
4699 (CurrentAttrValue
!= -1 && CurrentAttrValue
!= NextAttrVal
))
4700 return indicatePessimisticFixpoint();
4701 CurrentAttrValue
= NextAttrVal
;
4704 if (CurrentAttrValue
!= -1) {
4705 auto &Ctx
= getAnchorValue().getContext();
4707 ConstantInt::get(Type::getInt32Ty(Ctx
), CurrentAttrValue
);
4709 return SimplifiedValue
== SimplifiedValueBefore
? ChangeStatus::UNCHANGED
4710 : ChangeStatus::CHANGED
;
4713 /// An optional value the associated value is assumed to fold to. That is, we
4714 /// assume the associated value (which is a call) can be replaced by this
4715 /// simplified value.
4716 Optional
<Value
*> SimplifiedValue
;
4718 /// The runtime function kind of the callee of the associated call site.
4719 RuntimeFunction RFKind
;
4724 /// Register folding callsite
4725 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF
) {
4726 auto &RFI
= OMPInfoCache
.RFIs
[RF
];
4727 RFI
.foreachUse(SCC
, [&](Use
&U
, Function
&F
) {
4728 CallInst
*CI
= OpenMPOpt::getCallIfRegularCall(U
, &RFI
);
4731 A
.getOrCreateAAFor
<AAFoldRuntimeCall
>(
4732 IRPosition::callsite_returned(*CI
), /* QueryingAA */ nullptr,
4733 DepClassTy::NONE
, /* ForceUpdate */ false,
4734 /* UpdateAfterInit */ false);
4739 void OpenMPOpt::registerAAs(bool IsModulePass
) {
4744 // Ensure we create the AAKernelInfo AAs first and without triggering an
4745 // update. This will make sure we register all value simplification
4746 // callbacks before any other AA has the chance to create an AAValueSimplify
4748 auto CreateKernelInfoCB
= [&](Use
&, Function
&Kernel
) {
4749 A
.getOrCreateAAFor
<AAKernelInfo
>(
4750 IRPosition::function(Kernel
), /* QueryingAA */ nullptr,
4751 DepClassTy::NONE
, /* ForceUpdate */ false,
4752 /* UpdateAfterInit */ false);
4755 OMPInformationCache::RuntimeFunctionInfo
&InitRFI
=
4756 OMPInfoCache
.RFIs
[OMPRTL___kmpc_target_init
];
4757 InitRFI
.foreachUse(SCC
, CreateKernelInfoCB
);
4759 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id
);
4760 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode
);
4761 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level
);
4762 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block
);
4763 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks
);
4766 // Create CallSite AA for all Getters.
4767 for (int Idx
= 0; Idx
< OMPInfoCache
.ICVs
.size() - 1; ++Idx
) {
4768 auto ICVInfo
= OMPInfoCache
.ICVs
[static_cast<InternalControlVar
>(Idx
)];
4770 auto &GetterRFI
= OMPInfoCache
.RFIs
[ICVInfo
.Getter
];
4772 auto CreateAA
= [&](Use
&U
, Function
&Caller
) {
4773 CallInst
*CI
= OpenMPOpt::getCallIfRegularCall(U
, &GetterRFI
);
4777 auto &CB
= cast
<CallBase
>(*CI
);
4779 IRPosition CBPos
= IRPosition::callsite_function(CB
);
4780 A
.getOrCreateAAFor
<AAICVTracker
>(CBPos
);
4784 GetterRFI
.foreachUse(SCC
, CreateAA
);
4786 auto &GlobalizationRFI
= OMPInfoCache
.RFIs
[OMPRTL___kmpc_alloc_shared
];
4787 auto CreateAA
= [&](Use
&U
, Function
&F
) {
4788 A
.getOrCreateAAFor
<AAHeapToShared
>(IRPosition::function(F
));
4791 if (!DisableOpenMPOptDeglobalization
)
4792 GlobalizationRFI
.foreachUse(SCC
, CreateAA
);
4794 // Create an ExecutionDomain AA for every function and a HeapToStack AA for
4795 // every function if there is a device kernel.
4796 if (!isOpenMPDevice(M
))
4799 for (auto *F
: SCC
) {
4800 if (F
->isDeclaration())
4803 A
.getOrCreateAAFor
<AAExecutionDomain
>(IRPosition::function(*F
));
4804 if (!DisableOpenMPOptDeglobalization
)
4805 A
.getOrCreateAAFor
<AAHeapToStack
>(IRPosition::function(*F
));
4807 for (auto &I
: instructions(*F
)) {
4808 if (auto *LI
= dyn_cast
<LoadInst
>(&I
)) {
4809 bool UsedAssumedInformation
= false;
4810 A
.getAssumedSimplified(IRPosition::value(*LI
), /* AA */ nullptr,
4811 UsedAssumedInformation
, AA::Interprocedural
);
4812 } else if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
4813 A
.getOrCreateAAFor
<AAIsDead
>(IRPosition::value(*SI
));
4819 const char AAICVTracker::ID
= 0;
4820 const char AAKernelInfo::ID
= 0;
4821 const char AAExecutionDomain::ID
= 0;
4822 const char AAHeapToShared::ID
= 0;
4823 const char AAFoldRuntimeCall::ID
= 0;
4825 AAICVTracker
&AAICVTracker::createForPosition(const IRPosition
&IRP
,
4827 AAICVTracker
*AA
= nullptr;
4828 switch (IRP
.getPositionKind()) {
4829 case IRPosition::IRP_INVALID
:
4830 case IRPosition::IRP_FLOAT
:
4831 case IRPosition::IRP_ARGUMENT
:
4832 case IRPosition::IRP_CALL_SITE_ARGUMENT
:
4833 llvm_unreachable("ICVTracker can only be created for function position!");
4834 case IRPosition::IRP_RETURNED
:
4835 AA
= new (A
.Allocator
) AAICVTrackerFunctionReturned(IRP
, A
);
4837 case IRPosition::IRP_CALL_SITE_RETURNED
:
4838 AA
= new (A
.Allocator
) AAICVTrackerCallSiteReturned(IRP
, A
);
4840 case IRPosition::IRP_CALL_SITE
:
4841 AA
= new (A
.Allocator
) AAICVTrackerCallSite(IRP
, A
);
4843 case IRPosition::IRP_FUNCTION
:
4844 AA
= new (A
.Allocator
) AAICVTrackerFunction(IRP
, A
);
4851 AAExecutionDomain
&AAExecutionDomain::createForPosition(const IRPosition
&IRP
,
4853 AAExecutionDomainFunction
*AA
= nullptr;
4854 switch (IRP
.getPositionKind()) {
4855 case IRPosition::IRP_INVALID
:
4856 case IRPosition::IRP_FLOAT
:
4857 case IRPosition::IRP_ARGUMENT
:
4858 case IRPosition::IRP_CALL_SITE_ARGUMENT
:
4859 case IRPosition::IRP_RETURNED
:
4860 case IRPosition::IRP_CALL_SITE_RETURNED
:
4861 case IRPosition::IRP_CALL_SITE
:
4863 "AAExecutionDomain can only be created for function position!");
4864 case IRPosition::IRP_FUNCTION
:
4865 AA
= new (A
.Allocator
) AAExecutionDomainFunction(IRP
, A
);
4872 AAHeapToShared
&AAHeapToShared::createForPosition(const IRPosition
&IRP
,
4874 AAHeapToSharedFunction
*AA
= nullptr;
4875 switch (IRP
.getPositionKind()) {
4876 case IRPosition::IRP_INVALID
:
4877 case IRPosition::IRP_FLOAT
:
4878 case IRPosition::IRP_ARGUMENT
:
4879 case IRPosition::IRP_CALL_SITE_ARGUMENT
:
4880 case IRPosition::IRP_RETURNED
:
4881 case IRPosition::IRP_CALL_SITE_RETURNED
:
4882 case IRPosition::IRP_CALL_SITE
:
4884 "AAHeapToShared can only be created for function position!");
4885 case IRPosition::IRP_FUNCTION
:
4886 AA
= new (A
.Allocator
) AAHeapToSharedFunction(IRP
, A
);
4893 AAKernelInfo
&AAKernelInfo::createForPosition(const IRPosition
&IRP
,
4895 AAKernelInfo
*AA
= nullptr;
4896 switch (IRP
.getPositionKind()) {
4897 case IRPosition::IRP_INVALID
:
4898 case IRPosition::IRP_FLOAT
:
4899 case IRPosition::IRP_ARGUMENT
:
4900 case IRPosition::IRP_RETURNED
:
4901 case IRPosition::IRP_CALL_SITE_RETURNED
:
4902 case IRPosition::IRP_CALL_SITE_ARGUMENT
:
4903 llvm_unreachable("KernelInfo can only be created for function position!");
4904 case IRPosition::IRP_CALL_SITE
:
4905 AA
= new (A
.Allocator
) AAKernelInfoCallSite(IRP
, A
);
4907 case IRPosition::IRP_FUNCTION
:
4908 AA
= new (A
.Allocator
) AAKernelInfoFunction(IRP
, A
);
4915 AAFoldRuntimeCall
&AAFoldRuntimeCall::createForPosition(const IRPosition
&IRP
,
4917 AAFoldRuntimeCall
*AA
= nullptr;
4918 switch (IRP
.getPositionKind()) {
4919 case IRPosition::IRP_INVALID
:
4920 case IRPosition::IRP_FLOAT
:
4921 case IRPosition::IRP_ARGUMENT
:
4922 case IRPosition::IRP_RETURNED
:
4923 case IRPosition::IRP_FUNCTION
:
4924 case IRPosition::IRP_CALL_SITE
:
4925 case IRPosition::IRP_CALL_SITE_ARGUMENT
:
4926 llvm_unreachable("KernelInfo can only be created for call site position!");
4927 case IRPosition::IRP_CALL_SITE_RETURNED
:
4928 AA
= new (A
.Allocator
) AAFoldRuntimeCallCallSiteReturned(IRP
, A
);
4935 PreservedAnalyses
OpenMPOptPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
4936 if (!containsOpenMP(M
))
4937 return PreservedAnalyses::all();
4938 if (DisableOpenMPOptimizations
)
4939 return PreservedAnalyses::all();
4941 FunctionAnalysisManager
&FAM
=
4942 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
4943 KernelSet Kernels
= getDeviceKernels(M
);
4945 if (PrintModuleBeforeOptimizations
)
4946 LLVM_DEBUG(dbgs() << TAG
<< "Module before OpenMPOpt Module Pass:\n" << M
);
4948 auto IsCalled
= [&](Function
&F
) {
4949 if (Kernels
.contains(&F
))
4951 for (const User
*U
: F
.users())
4952 if (!isa
<BlockAddress
>(U
))
4957 auto EmitRemark
= [&](Function
&F
) {
4958 auto &ORE
= FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
4960 OptimizationRemarkAnalysis
ORA(DEBUG_TYPE
, "OMP140", &F
);
4961 return ORA
<< "Could not internalize function. "
4962 << "Some optimizations may not be possible. [OMP140]";
4966 // Create internal copies of each function if this is a kernel Module. This
4967 // allows iterprocedural passes to see every call edge.
4968 DenseMap
<Function
*, Function
*> InternalizedMap
;
4969 if (isOpenMPDevice(M
)) {
4970 SmallPtrSet
<Function
*, 16> InternalizeFns
;
4971 for (Function
&F
: M
)
4972 if (!F
.isDeclaration() && !Kernels
.contains(&F
) && IsCalled(F
) &&
4973 !DisableInternalization
) {
4974 if (Attributor::isInternalizable(F
)) {
4975 InternalizeFns
.insert(&F
);
4976 } else if (!F
.hasLocalLinkage() && !F
.hasFnAttribute(Attribute::Cold
)) {
4981 Attributor::internalizeFunctions(InternalizeFns
, InternalizedMap
);
4984 // Look at every function in the Module unless it was internalized.
4985 SmallVector
<Function
*, 16> SCC
;
4986 for (Function
&F
: M
)
4987 if (!F
.isDeclaration() && !InternalizedMap
.lookup(&F
))
4991 return PreservedAnalyses::all();
4993 AnalysisGetter
AG(FAM
);
4995 auto OREGetter
= [&FAM
](Function
*F
) -> OptimizationRemarkEmitter
& {
4996 return FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
4999 BumpPtrAllocator Allocator
;
5000 CallGraphUpdater CGUpdater
;
5002 SetVector
<Function
*> Functions(SCC
.begin(), SCC
.end());
5003 OMPInformationCache
InfoCache(M
, AG
, Allocator
, /*CGSCC*/ Functions
, Kernels
);
5005 unsigned MaxFixpointIterations
=
5006 (isOpenMPDevice(M
)) ? SetFixpointIterations
: 32;
5008 AttributorConfig
AC(CGUpdater
);
5009 AC
.DefaultInitializeLiveInternals
= false;
5010 AC
.RewriteSignatures
= false;
5011 AC
.MaxFixpointIterations
= MaxFixpointIterations
;
5012 AC
.OREGetter
= OREGetter
;
5013 AC
.PassName
= DEBUG_TYPE
;
5015 Attributor
A(Functions
, InfoCache
, AC
);
5017 OpenMPOpt
OMPOpt(SCC
, CGUpdater
, OREGetter
, InfoCache
, A
);
5018 bool Changed
= OMPOpt
.run(true);
5020 // Optionally inline device functions for potentially better performance.
5021 if (AlwaysInlineDeviceFunctions
&& isOpenMPDevice(M
))
5022 for (Function
&F
: M
)
5023 if (!F
.isDeclaration() && !Kernels
.contains(&F
) &&
5024 !F
.hasFnAttribute(Attribute::NoInline
))
5025 F
.addFnAttr(Attribute::AlwaysInline
);
5027 if (PrintModuleAfterOptimizations
)
5028 LLVM_DEBUG(dbgs() << TAG
<< "Module after OpenMPOpt Module Pass:\n" << M
);
5031 return PreservedAnalyses::none();
5033 return PreservedAnalyses::all();
5036 PreservedAnalyses
OpenMPOptCGSCCPass::run(LazyCallGraph::SCC
&C
,
5037 CGSCCAnalysisManager
&AM
,
5039 CGSCCUpdateResult
&UR
) {
5040 if (!containsOpenMP(*C
.begin()->getFunction().getParent()))
5041 return PreservedAnalyses::all();
5042 if (DisableOpenMPOptimizations
)
5043 return PreservedAnalyses::all();
5045 SmallVector
<Function
*, 16> SCC
;
5046 // If there are kernels in the module, we have to run on all SCC's.
5047 for (LazyCallGraph::Node
&N
: C
) {
5048 Function
*Fn
= &N
.getFunction();
5053 return PreservedAnalyses::all();
5055 Module
&M
= *C
.begin()->getFunction().getParent();
5057 if (PrintModuleBeforeOptimizations
)
5058 LLVM_DEBUG(dbgs() << TAG
<< "Module before OpenMPOpt CGSCC Pass:\n" << M
);
5060 KernelSet Kernels
= getDeviceKernels(M
);
5062 FunctionAnalysisManager
&FAM
=
5063 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
5065 AnalysisGetter
AG(FAM
);
5067 auto OREGetter
= [&FAM
](Function
*F
) -> OptimizationRemarkEmitter
& {
5068 return FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
5071 BumpPtrAllocator Allocator
;
5072 CallGraphUpdater CGUpdater
;
5073 CGUpdater
.initialize(CG
, C
, AM
, UR
);
5075 SetVector
<Function
*> Functions(SCC
.begin(), SCC
.end());
5076 OMPInformationCache
InfoCache(*(Functions
.back()->getParent()), AG
, Allocator
,
5077 /*CGSCC*/ Functions
, Kernels
);
5079 unsigned MaxFixpointIterations
=
5080 (isOpenMPDevice(M
)) ? SetFixpointIterations
: 32;
5082 AttributorConfig
AC(CGUpdater
);
5083 AC
.DefaultInitializeLiveInternals
= false;
5084 AC
.IsModulePass
= false;
5085 AC
.RewriteSignatures
= false;
5086 AC
.MaxFixpointIterations
= MaxFixpointIterations
;
5087 AC
.OREGetter
= OREGetter
;
5088 AC
.PassName
= DEBUG_TYPE
;
5090 Attributor
A(Functions
, InfoCache
, AC
);
5092 OpenMPOpt
OMPOpt(SCC
, CGUpdater
, OREGetter
, InfoCache
, A
);
5093 bool Changed
= OMPOpt
.run(false);
5095 if (PrintModuleAfterOptimizations
)
5096 LLVM_DEBUG(dbgs() << TAG
<< "Module after OpenMPOpt CGSCC Pass:\n" << M
);
5099 return PreservedAnalyses::none();
5101 return PreservedAnalyses::all();
5106 struct OpenMPOptCGSCCLegacyPass
: public CallGraphSCCPass
{
5107 CallGraphUpdater CGUpdater
;
5110 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID
) {
5111 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
5114 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
5115 CallGraphSCCPass::getAnalysisUsage(AU
);
5118 bool runOnSCC(CallGraphSCC
&CGSCC
) override
{
5119 if (!containsOpenMP(CGSCC
.getCallGraph().getModule()))
5121 if (DisableOpenMPOptimizations
|| skipSCC(CGSCC
))
5124 SmallVector
<Function
*, 16> SCC
;
5125 // If there are kernels in the module, we have to run on all SCC's.
5126 for (CallGraphNode
*CGN
: CGSCC
) {
5127 Function
*Fn
= CGN
->getFunction();
5128 if (!Fn
|| Fn
->isDeclaration())
5136 Module
&M
= CGSCC
.getCallGraph().getModule();
5137 KernelSet Kernels
= getDeviceKernels(M
);
5139 CallGraph
&CG
= getAnalysis
<CallGraphWrapperPass
>().getCallGraph();
5140 CGUpdater
.initialize(CG
, CGSCC
);
5142 // Maintain a map of functions to avoid rebuilding the ORE
5143 DenseMap
<Function
*, std::unique_ptr
<OptimizationRemarkEmitter
>> OREMap
;
5144 auto OREGetter
= [&OREMap
](Function
*F
) -> OptimizationRemarkEmitter
& {
5145 std::unique_ptr
<OptimizationRemarkEmitter
> &ORE
= OREMap
[F
];
5147 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(F
);
5152 SetVector
<Function
*> Functions(SCC
.begin(), SCC
.end());
5153 BumpPtrAllocator Allocator
;
5154 OMPInformationCache
InfoCache(*(Functions
.back()->getParent()), AG
,
5156 /*CGSCC*/ Functions
, Kernels
);
5158 unsigned MaxFixpointIterations
=
5159 (isOpenMPDevice(M
)) ? SetFixpointIterations
: 32;
5161 AttributorConfig
AC(CGUpdater
);
5162 AC
.DefaultInitializeLiveInternals
= false;
5163 AC
.IsModulePass
= false;
5164 AC
.RewriteSignatures
= false;
5165 AC
.MaxFixpointIterations
= MaxFixpointIterations
;
5166 AC
.OREGetter
= OREGetter
;
5167 AC
.PassName
= DEBUG_TYPE
;
5169 Attributor
A(Functions
, InfoCache
, AC
);
5171 OpenMPOpt
OMPOpt(SCC
, CGUpdater
, OREGetter
, InfoCache
, A
);
5172 bool Result
= OMPOpt
.run(false);
5174 if (PrintModuleAfterOptimizations
)
5175 LLVM_DEBUG(dbgs() << TAG
<< "Module after OpenMPOpt CGSCC Pass:\n" << M
);
5180 bool doFinalization(CallGraph
&CG
) override
{ return CGUpdater
.finalize(); }
5183 } // end anonymous namespace
5185 KernelSet
llvm::omp::getDeviceKernels(Module
&M
) {
5186 // TODO: Create a more cross-platform way of determining device kernels.
5187 NamedMDNode
*MD
= M
.getOrInsertNamedMetadata("nvvm.annotations");
5193 for (auto *Op
: MD
->operands()) {
5194 if (Op
->getNumOperands() < 2)
5196 MDString
*KindID
= dyn_cast
<MDString
>(Op
->getOperand(1));
5197 if (!KindID
|| KindID
->getString() != "kernel")
5200 Function
*KernelFn
=
5201 mdconst::dyn_extract_or_null
<Function
>(Op
->getOperand(0));
5205 ++NumOpenMPTargetRegionKernels
;
5207 Kernels
.insert(KernelFn
);
5213 bool llvm::omp::containsOpenMP(Module
&M
) {
5214 Metadata
*MD
= M
.getModuleFlag("openmp");
5221 bool llvm::omp::isOpenMPDevice(Module
&M
) {
5222 Metadata
*MD
= M
.getModuleFlag("openmp-device");
5229 char OpenMPOptCGSCCLegacyPass::ID
= 0;
5231 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass
, "openmp-opt-cgscc",
5232 "OpenMP specific optimizations", false, false)
5233 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass
)
5234 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass
, "openmp-opt-cgscc",
5235 "OpenMP specific optimizations", false, false)
5237 Pass
*llvm::createOpenMPOptCGSCCLegacyPass() {
5238 return new OpenMPOptCGSCCLegacyPass();