[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / Transforms / IPO / OpenMPOpt.cpp
blob0b42fc1519918bc5a74b402aafdcd1029f03583e
1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // OpenMP specific optimizations:
11 // - Deduplication of runtime calls, e.g., omp_get_thread_num.
12 // - Replacing globalized device memory with stack memory.
13 // - Replacing globalized device memory with shared memory.
14 // - Parallel region merging.
15 // - Transforming generic-mode device kernels to SPMD mode.
16 // - Specializing the state machine for generic-mode device kernels.
18 //===----------------------------------------------------------------------===//
20 #include "llvm/Transforms/IPO/OpenMPOpt.h"
22 #include "llvm/ADT/EnumeratedArray.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Frontend/OpenMP/OMPConstants.h"
33 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DiagnosticInfo.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/IntrinsicsAMDGPU.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Transforms/IPO.h"
49 #include "llvm/Transforms/IPO/Attributor.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
53 #include <algorithm>
55 using namespace llvm;
56 using namespace omp;
58 #define DEBUG_TYPE "openmp-opt"
60 static cl::opt<bool> DisableOpenMPOptimizations(
61 "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."),
62 cl::Hidden, cl::init(false));
64 static cl::opt<bool> EnableParallelRegionMerging(
65 "openmp-opt-enable-merging",
66 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
67 cl::init(false));
69 static cl::opt<bool>
70 DisableInternalization("openmp-opt-disable-internalization",
71 cl::desc("Disable function internalization."),
72 cl::Hidden, cl::init(false));
74 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
75 cl::Hidden);
76 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
77 cl::init(false), cl::Hidden);
79 static cl::opt<bool> HideMemoryTransferLatency(
80 "openmp-hide-memory-transfer-latency",
81 cl::desc("[WIP] Tries to hide the latency of host to device memory"
82 " transfers"),
83 cl::Hidden, cl::init(false));
85 static cl::opt<bool> DisableOpenMPOptDeglobalization(
86 "openmp-opt-disable-deglobalization",
87 cl::desc("Disable OpenMP optimizations involving deglobalization."),
88 cl::Hidden, cl::init(false));
90 static cl::opt<bool> DisableOpenMPOptSPMDization(
91 "openmp-opt-disable-spmdization",
92 cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
93 cl::Hidden, cl::init(false));
95 static cl::opt<bool> DisableOpenMPOptFolding(
96 "openmp-opt-disable-folding",
97 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden,
98 cl::init(false));
100 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite(
101 "openmp-opt-disable-state-machine-rewrite",
102 cl::desc("Disable OpenMP optimizations that replace the state machine."),
103 cl::Hidden, cl::init(false));
105 static cl::opt<bool> DisableOpenMPOptBarrierElimination(
106 "openmp-opt-disable-barrier-elimination",
107 cl::desc("Disable OpenMP optimizations that eliminate barriers."),
108 cl::Hidden, cl::init(false));
110 static cl::opt<bool> PrintModuleAfterOptimizations(
111 "openmp-opt-print-module-after",
112 cl::desc("Print the current module after OpenMP optimizations."),
113 cl::Hidden, cl::init(false));
115 static cl::opt<bool> PrintModuleBeforeOptimizations(
116 "openmp-opt-print-module-before",
117 cl::desc("Print the current module before OpenMP optimizations."),
118 cl::Hidden, cl::init(false));
120 static cl::opt<bool> AlwaysInlineDeviceFunctions(
121 "openmp-opt-inline-device",
122 cl::desc("Inline all applicible functions on the device."), cl::Hidden,
123 cl::init(false));
125 static cl::opt<bool>
126 EnableVerboseRemarks("openmp-opt-verbose-remarks",
127 cl::desc("Enables more verbose remarks."), cl::Hidden,
128 cl::init(false));
130 static cl::opt<unsigned>
131 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden,
132 cl::desc("Maximal number of attributor iterations."),
133 cl::init(256));
135 static cl::opt<unsigned>
136 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden,
137 cl::desc("Maximum amount of shared memory to use."),
138 cl::init(std::numeric_limits<unsigned>::max()));
140 STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
141 "Number of OpenMP runtime calls deduplicated");
142 STATISTIC(NumOpenMPParallelRegionsDeleted,
143 "Number of OpenMP parallel regions deleted");
144 STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
145 "Number of OpenMP runtime functions identified");
146 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
147 "Number of OpenMP runtime function uses identified");
148 STATISTIC(NumOpenMPTargetRegionKernels,
149 "Number of OpenMP target region entry points (=kernels) identified");
150 STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
151 "Number of OpenMP target region entry points (=kernels) executed in "
152 "SPMD-mode instead of generic-mode");
153 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
154 "Number of OpenMP target region entry points (=kernels) executed in "
155 "generic-mode without a state machines");
156 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
157 "Number of OpenMP target region entry points (=kernels) executed in "
158 "generic-mode with customized state machines with fallback");
159 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
160 "Number of OpenMP target region entry points (=kernels) executed in "
161 "generic-mode with customized state machines without fallback");
162 STATISTIC(
163 NumOpenMPParallelRegionsReplacedInGPUStateMachine,
164 "Number of OpenMP parallel regions replaced with ID in GPU state machines");
165 STATISTIC(NumOpenMPParallelRegionsMerged,
166 "Number of OpenMP parallel regions merged");
167 STATISTIC(NumBytesMovedToSharedMemory,
168 "Amount of memory pushed to shared memory");
169 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated");
171 #if !defined(NDEBUG)
172 static constexpr auto TAG = "[" DEBUG_TYPE "]";
173 #endif
175 namespace {
177 struct AAHeapToShared;
179 struct AAICVTracker;
181 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for
182 /// Attributor runs.
183 struct OMPInformationCache : public InformationCache {
184 OMPInformationCache(Module &M, AnalysisGetter &AG,
185 BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC,
186 KernelSet &Kernels)
187 : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M),
188 Kernels(Kernels) {
190 OMPBuilder.initialize();
191 initializeRuntimeFunctions();
192 initializeInternalControlVars();
195 /// Generic information that describes an internal control variable.
196 struct InternalControlVarInfo {
197 /// The kind, as described by InternalControlVar enum.
198 InternalControlVar Kind;
200 /// The name of the ICV.
201 StringRef Name;
203 /// Environment variable associated with this ICV.
204 StringRef EnvVarName;
206 /// Initial value kind.
207 ICVInitValue InitKind;
209 /// Initial value.
210 ConstantInt *InitValue;
212 /// Setter RTL function associated with this ICV.
213 RuntimeFunction Setter;
215 /// Getter RTL function associated with this ICV.
216 RuntimeFunction Getter;
218 /// RTL Function corresponding to the override clause of this ICV
219 RuntimeFunction Clause;
222 /// Generic information that describes a runtime function
223 struct RuntimeFunctionInfo {
225 /// The kind, as described by the RuntimeFunction enum.
226 RuntimeFunction Kind;
228 /// The name of the function.
229 StringRef Name;
231 /// Flag to indicate a variadic function.
232 bool IsVarArg;
234 /// The return type of the function.
235 Type *ReturnType;
237 /// The argument types of the function.
238 SmallVector<Type *, 8> ArgumentTypes;
240 /// The declaration if available.
241 Function *Declaration = nullptr;
243 /// Uses of this runtime function per function containing the use.
244 using UseVector = SmallVector<Use *, 16>;
246 /// Clear UsesMap for runtime function.
247 void clearUsesMap() { UsesMap.clear(); }
249 /// Boolean conversion that is true if the runtime function was found.
250 operator bool() const { return Declaration; }
252 /// Return the vector of uses in function \p F.
253 UseVector &getOrCreateUseVector(Function *F) {
254 std::shared_ptr<UseVector> &UV = UsesMap[F];
255 if (!UV)
256 UV = std::make_shared<UseVector>();
257 return *UV;
260 /// Return the vector of uses in function \p F or `nullptr` if there are
261 /// none.
262 const UseVector *getUseVector(Function &F) const {
263 auto I = UsesMap.find(&F);
264 if (I != UsesMap.end())
265 return I->second.get();
266 return nullptr;
269 /// Return how many functions contain uses of this runtime function.
270 size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
272 /// Return the number of arguments (or the minimal number for variadic
273 /// functions).
274 size_t getNumArgs() const { return ArgumentTypes.size(); }
276 /// Run the callback \p CB on each use and forget the use if the result is
277 /// true. The callback will be fed the function in which the use was
278 /// encountered as second argument.
279 void foreachUse(SmallVectorImpl<Function *> &SCC,
280 function_ref<bool(Use &, Function &)> CB) {
281 for (Function *F : SCC)
282 foreachUse(CB, F);
285 /// Run the callback \p CB on each use within the function \p F and forget
286 /// the use if the result is true.
287 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
288 SmallVector<unsigned, 8> ToBeDeleted;
289 ToBeDeleted.clear();
291 unsigned Idx = 0;
292 UseVector &UV = getOrCreateUseVector(F);
294 for (Use *U : UV) {
295 if (CB(*U, *F))
296 ToBeDeleted.push_back(Idx);
297 ++Idx;
300 // Remove the to-be-deleted indices in reverse order as prior
301 // modifications will not modify the smaller indices.
302 while (!ToBeDeleted.empty()) {
303 unsigned Idx = ToBeDeleted.pop_back_val();
304 UV[Idx] = UV.back();
305 UV.pop_back();
309 private:
310 /// Map from functions to all uses of this runtime function contained in
311 /// them.
312 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
314 public:
315 /// Iterators for the uses of this runtime function.
316 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
317 decltype(UsesMap)::iterator end() { return UsesMap.end(); }
320 /// An OpenMP-IR-Builder instance
321 OpenMPIRBuilder OMPBuilder;
323 /// Map from runtime function kind to the runtime function description.
324 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
325 RuntimeFunction::OMPRTL___last>
326 RFIs;
328 /// Map from function declarations/definitions to their runtime enum type.
329 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
331 /// Map from ICV kind to the ICV description.
332 EnumeratedArray<InternalControlVarInfo, InternalControlVar,
333 InternalControlVar::ICV___last>
334 ICVs;
336 /// Helper to initialize all internal control variable information for those
337 /// defined in OMPKinds.def.
338 void initializeInternalControlVars() {
339 #define ICV_RT_SET(_Name, RTL) \
341 auto &ICV = ICVs[_Name]; \
342 ICV.Setter = RTL; \
344 #define ICV_RT_GET(Name, RTL) \
346 auto &ICV = ICVs[Name]; \
347 ICV.Getter = RTL; \
349 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \
351 auto &ICV = ICVs[Enum]; \
352 ICV.Name = _Name; \
353 ICV.Kind = Enum; \
354 ICV.InitKind = Init; \
355 ICV.EnvVarName = _EnvVarName; \
356 switch (ICV.InitKind) { \
357 case ICV_IMPLEMENTATION_DEFINED: \
358 ICV.InitValue = nullptr; \
359 break; \
360 case ICV_ZERO: \
361 ICV.InitValue = ConstantInt::get( \
362 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \
363 break; \
364 case ICV_FALSE: \
365 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \
366 break; \
367 case ICV_LAST: \
368 break; \
371 #include "llvm/Frontend/OpenMP/OMPKinds.def"
374 /// Returns true if the function declaration \p F matches the runtime
375 /// function types, that is, return type \p RTFRetType, and argument types
376 /// \p RTFArgTypes.
377 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
378 SmallVector<Type *, 8> &RTFArgTypes) {
379 // TODO: We should output information to the user (under debug output
380 // and via remarks).
382 if (!F)
383 return false;
384 if (F->getReturnType() != RTFRetType)
385 return false;
386 if (F->arg_size() != RTFArgTypes.size())
387 return false;
389 auto *RTFTyIt = RTFArgTypes.begin();
390 for (Argument &Arg : F->args()) {
391 if (Arg.getType() != *RTFTyIt)
392 return false;
394 ++RTFTyIt;
397 return true;
400 // Helper to collect all uses of the declaration in the UsesMap.
401 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
402 unsigned NumUses = 0;
403 if (!RFI.Declaration)
404 return NumUses;
405 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
407 if (CollectStats) {
408 NumOpenMPRuntimeFunctionsIdentified += 1;
409 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
412 // TODO: We directly convert uses into proper calls and unknown uses.
413 for (Use &U : RFI.Declaration->uses()) {
414 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
415 if (ModuleSlice.count(UserI->getFunction())) {
416 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
417 ++NumUses;
419 } else {
420 RFI.getOrCreateUseVector(nullptr).push_back(&U);
421 ++NumUses;
424 return NumUses;
427 // Helper function to recollect uses of a runtime function.
428 void recollectUsesForFunction(RuntimeFunction RTF) {
429 auto &RFI = RFIs[RTF];
430 RFI.clearUsesMap();
431 collectUses(RFI, /*CollectStats*/ false);
434 // Helper function to recollect uses of all runtime functions.
435 void recollectUses() {
436 for (int Idx = 0; Idx < RFIs.size(); ++Idx)
437 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
440 // Helper function to inherit the calling convention of the function callee.
441 void setCallingConvention(FunctionCallee Callee, CallInst *CI) {
442 if (Function *Fn = dyn_cast<Function>(Callee.getCallee()))
443 CI->setCallingConv(Fn->getCallingConv());
446 /// Helper to initialize all runtime function information for those defined
447 /// in OpenMPKinds.def.
448 void initializeRuntimeFunctions() {
449 Module &M = *((*ModuleSlice.begin())->getParent());
451 // Helper macros for handling __VA_ARGS__ in OMP_RTL
452 #define OMP_TYPE(VarName, ...) \
453 Type *VarName = OMPBuilder.VarName; \
454 (void)VarName;
456 #define OMP_ARRAY_TYPE(VarName, ...) \
457 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \
458 (void)VarName##Ty; \
459 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \
460 (void)VarName##PtrTy;
462 #define OMP_FUNCTION_TYPE(VarName, ...) \
463 FunctionType *VarName = OMPBuilder.VarName; \
464 (void)VarName; \
465 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
466 (void)VarName##Ptr;
468 #define OMP_STRUCT_TYPE(VarName, ...) \
469 StructType *VarName = OMPBuilder.VarName; \
470 (void)VarName; \
471 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
472 (void)VarName##Ptr;
474 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \
476 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \
477 Function *F = M.getFunction(_Name); \
478 RTLFunctions.insert(F); \
479 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \
480 RuntimeFunctionIDMap[F] = _Enum; \
481 auto &RFI = RFIs[_Enum]; \
482 RFI.Kind = _Enum; \
483 RFI.Name = _Name; \
484 RFI.IsVarArg = _IsVarArg; \
485 RFI.ReturnType = OMPBuilder._ReturnType; \
486 RFI.ArgumentTypes = std::move(ArgsTypes); \
487 RFI.Declaration = F; \
488 unsigned NumUses = collectUses(RFI); \
489 (void)NumUses; \
490 LLVM_DEBUG({ \
491 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \
492 << " found\n"; \
493 if (RFI.Declaration) \
494 dbgs() << TAG << "-> got " << NumUses << " uses in " \
495 << RFI.getNumFunctionsWithUses() \
496 << " different functions.\n"; \
497 }); \
500 #include "llvm/Frontend/OpenMP/OMPKinds.def"
502 // Remove the `noinline` attribute from `__kmpc`, `_OMP::` and `omp_`
503 // functions, except if `optnone` is present.
504 if (isOpenMPDevice(M)) {
505 for (Function &F : M) {
506 for (StringRef Prefix : {"__kmpc", "_ZN4_OMP", "omp_"})
507 if (F.hasFnAttribute(Attribute::NoInline) &&
508 F.getName().startswith(Prefix) &&
509 !F.hasFnAttribute(Attribute::OptimizeNone))
510 F.removeFnAttr(Attribute::NoInline);
514 // TODO: We should attach the attributes defined in OMPKinds.def.
517 /// Collection of known kernels (\see Kernel) in the module.
518 KernelSet &Kernels;
520 /// Collection of known OpenMP runtime functions..
521 DenseSet<const Function *> RTLFunctions;
524 template <typename Ty, bool InsertInvalidates = true>
525 struct BooleanStateWithSetVector : public BooleanState {
526 bool contains(const Ty &Elem) const { return Set.contains(Elem); }
527 bool insert(const Ty &Elem) {
528 if (InsertInvalidates)
529 BooleanState::indicatePessimisticFixpoint();
530 return Set.insert(Elem);
533 const Ty &operator[](int Idx) const { return Set[Idx]; }
534 bool operator==(const BooleanStateWithSetVector &RHS) const {
535 return BooleanState::operator==(RHS) && Set == RHS.Set;
537 bool operator!=(const BooleanStateWithSetVector &RHS) const {
538 return !(*this == RHS);
541 bool empty() const { return Set.empty(); }
542 size_t size() const { return Set.size(); }
544 /// "Clamp" this state with \p RHS.
545 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
546 BooleanState::operator^=(RHS);
547 Set.insert(RHS.Set.begin(), RHS.Set.end());
548 return *this;
551 private:
552 /// A set to keep track of elements.
553 SetVector<Ty> Set;
555 public:
556 typename decltype(Set)::iterator begin() { return Set.begin(); }
557 typename decltype(Set)::iterator end() { return Set.end(); }
558 typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
559 typename decltype(Set)::const_iterator end() const { return Set.end(); }
562 template <typename Ty, bool InsertInvalidates = true>
563 using BooleanStateWithPtrSetVector =
564 BooleanStateWithSetVector<Ty *, InsertInvalidates>;
566 struct KernelInfoState : AbstractState {
567 /// Flag to track if we reached a fixpoint.
568 bool IsAtFixpoint = false;
570 /// The parallel regions (identified by the outlined parallel functions) that
571 /// can be reached from the associated function.
572 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false>
573 ReachedKnownParallelRegions;
575 /// State to track what parallel region we might reach.
576 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
578 /// State to track if we are in SPMD-mode, assumed or know, and why we decided
579 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be
580 /// false.
581 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker;
583 /// The __kmpc_target_init call in this kernel, if any. If we find more than
584 /// one we abort as the kernel is malformed.
585 CallBase *KernelInitCB = nullptr;
587 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than
588 /// one we abort as the kernel is malformed.
589 CallBase *KernelDeinitCB = nullptr;
591 /// Flag to indicate if the associated function is a kernel entry.
592 bool IsKernelEntry = false;
594 /// State to track what kernel entries can reach the associated function.
595 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
597 /// State to indicate if we can track parallel level of the associated
598 /// function. We will give up tracking if we encounter unknown caller or the
599 /// caller is __kmpc_parallel_51.
600 BooleanStateWithSetVector<uint8_t> ParallelLevels;
602 /// Abstract State interface
603 ///{
605 KernelInfoState() = default;
606 KernelInfoState(bool BestState) {
607 if (!BestState)
608 indicatePessimisticFixpoint();
611 /// See AbstractState::isValidState(...)
612 bool isValidState() const override { return true; }
614 /// See AbstractState::isAtFixpoint(...)
615 bool isAtFixpoint() const override { return IsAtFixpoint; }
617 /// See AbstractState::indicatePessimisticFixpoint(...)
618 ChangeStatus indicatePessimisticFixpoint() override {
619 IsAtFixpoint = true;
620 ReachingKernelEntries.indicatePessimisticFixpoint();
621 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
622 ReachedKnownParallelRegions.indicatePessimisticFixpoint();
623 ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
624 return ChangeStatus::CHANGED;
627 /// See AbstractState::indicateOptimisticFixpoint(...)
628 ChangeStatus indicateOptimisticFixpoint() override {
629 IsAtFixpoint = true;
630 ReachingKernelEntries.indicateOptimisticFixpoint();
631 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
632 ReachedKnownParallelRegions.indicateOptimisticFixpoint();
633 ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
634 return ChangeStatus::UNCHANGED;
637 /// Return the assumed state
638 KernelInfoState &getAssumed() { return *this; }
639 const KernelInfoState &getAssumed() const { return *this; }
641 bool operator==(const KernelInfoState &RHS) const {
642 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
643 return false;
644 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
645 return false;
646 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
647 return false;
648 if (ReachingKernelEntries != RHS.ReachingKernelEntries)
649 return false;
650 return true;
653 /// Returns true if this kernel contains any OpenMP parallel regions.
654 bool mayContainParallelRegion() {
655 return !ReachedKnownParallelRegions.empty() ||
656 !ReachedUnknownParallelRegions.empty();
659 /// Return empty set as the best state of potential values.
660 static KernelInfoState getBestState() { return KernelInfoState(true); }
662 static KernelInfoState getBestState(KernelInfoState &KIS) {
663 return getBestState();
666 /// Return full set as the worst state of potential values.
667 static KernelInfoState getWorstState() { return KernelInfoState(false); }
669 /// "Clamp" this state with \p KIS.
670 KernelInfoState operator^=(const KernelInfoState &KIS) {
671 // Do not merge two different _init and _deinit call sites.
672 if (KIS.KernelInitCB) {
673 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
674 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
675 "assumptions.");
676 KernelInitCB = KIS.KernelInitCB;
678 if (KIS.KernelDeinitCB) {
679 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
680 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
681 "assumptions.");
682 KernelDeinitCB = KIS.KernelDeinitCB;
684 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
685 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
686 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
687 return *this;
690 KernelInfoState operator&=(const KernelInfoState &KIS) {
691 return (*this ^= KIS);
694 ///}
697 /// Used to map the values physically (in the IR) stored in an offload
698 /// array, to a vector in memory.
699 struct OffloadArray {
700 /// Physical array (in the IR).
701 AllocaInst *Array = nullptr;
702 /// Mapped values.
703 SmallVector<Value *, 8> StoredValues;
704 /// Last stores made in the offload array.
705 SmallVector<StoreInst *, 8> LastAccesses;
707 OffloadArray() = default;
709 /// Initializes the OffloadArray with the values stored in \p Array before
710 /// instruction \p Before is reached. Returns false if the initialization
711 /// fails.
712 /// This MUST be used immediately after the construction of the object.
713 bool initialize(AllocaInst &Array, Instruction &Before) {
714 if (!Array.getAllocatedType()->isArrayTy())
715 return false;
717 if (!getValues(Array, Before))
718 return false;
720 this->Array = &Array;
721 return true;
724 static const unsigned DeviceIDArgNum = 1;
725 static const unsigned BasePtrsArgNum = 3;
726 static const unsigned PtrsArgNum = 4;
727 static const unsigned SizesArgNum = 5;
729 private:
730 /// Traverses the BasicBlock where \p Array is, collecting the stores made to
731 /// \p Array, leaving StoredValues with the values stored before the
732 /// instruction \p Before is reached.
733 bool getValues(AllocaInst &Array, Instruction &Before) {
734 // Initialize container.
735 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
736 StoredValues.assign(NumValues, nullptr);
737 LastAccesses.assign(NumValues, nullptr);
739 // TODO: This assumes the instruction \p Before is in the same
740 // BasicBlock as Array. Make it general, for any control flow graph.
741 BasicBlock *BB = Array.getParent();
742 if (BB != Before.getParent())
743 return false;
745 const DataLayout &DL = Array.getModule()->getDataLayout();
746 const unsigned int PointerSize = DL.getPointerSize();
748 for (Instruction &I : *BB) {
749 if (&I == &Before)
750 break;
752 if (!isa<StoreInst>(&I))
753 continue;
755 auto *S = cast<StoreInst>(&I);
756 int64_t Offset = -1;
757 auto *Dst =
758 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
759 if (Dst == &Array) {
760 int64_t Idx = Offset / PointerSize;
761 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
762 LastAccesses[Idx] = S;
766 return isFilled();
769 /// Returns true if all values in StoredValues and
770 /// LastAccesses are not nullptrs.
771 bool isFilled() {
772 const unsigned NumValues = StoredValues.size();
773 for (unsigned I = 0; I < NumValues; ++I) {
774 if (!StoredValues[I] || !LastAccesses[I])
775 return false;
778 return true;
782 struct OpenMPOpt {
784 using OptimizationRemarkGetter =
785 function_ref<OptimizationRemarkEmitter &(Function *)>;
787 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
788 OptimizationRemarkGetter OREGetter,
789 OMPInformationCache &OMPInfoCache, Attributor &A)
790 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
791 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
793 /// Check if any remarks are enabled for openmp-opt
794 bool remarksEnabled() {
795 auto &Ctx = M.getContext();
796 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
799 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
800 bool run(bool IsModulePass) {
801 if (SCC.empty())
802 return false;
804 bool Changed = false;
806 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
807 << " functions in a slice with "
808 << OMPInfoCache.ModuleSlice.size() << " functions\n");
810 if (IsModulePass) {
811 Changed |= runAttributor(IsModulePass);
813 // Recollect uses, in case Attributor deleted any.
814 OMPInfoCache.recollectUses();
816 // TODO: This should be folded into buildCustomStateMachine.
817 Changed |= rewriteDeviceCodeStateMachine();
819 if (remarksEnabled())
820 analysisGlobalization();
822 Changed |= eliminateBarriers();
823 } else {
824 if (PrintICVValues)
825 printICVs();
826 if (PrintOpenMPKernels)
827 printKernels();
829 Changed |= runAttributor(IsModulePass);
831 // Recollect uses, in case Attributor deleted any.
832 OMPInfoCache.recollectUses();
834 Changed |= deleteParallelRegions();
836 if (HideMemoryTransferLatency)
837 Changed |= hideMemTransfersLatency();
838 Changed |= deduplicateRuntimeCalls();
839 if (EnableParallelRegionMerging) {
840 if (mergeParallelRegions()) {
841 deduplicateRuntimeCalls();
842 Changed = true;
846 Changed |= eliminateBarriers();
849 return Changed;
852 /// Print initial ICV values for testing.
853 /// FIXME: This should be done from the Attributor once it is added.
854 void printICVs() const {
855 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
856 ICV_proc_bind};
858 for (Function *F : OMPInfoCache.ModuleSlice) {
859 for (auto ICV : ICVs) {
860 auto ICVInfo = OMPInfoCache.ICVs[ICV];
861 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
862 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
863 << " Value: "
864 << (ICVInfo.InitValue
865 ? toString(ICVInfo.InitValue->getValue(), 10, true)
866 : "IMPLEMENTATION_DEFINED");
869 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
874 /// Print OpenMP GPU kernels for testing.
875 void printKernels() const {
876 for (Function *F : SCC) {
877 if (!OMPInfoCache.Kernels.count(F))
878 continue;
880 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
881 return ORA << "OpenMP GPU kernel "
882 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
885 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
889 /// Return the call if \p U is a callee use in a regular call. If \p RFI is
890 /// given it has to be the callee or a nullptr is returned.
891 static CallInst *getCallIfRegularCall(
892 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
893 CallInst *CI = dyn_cast<CallInst>(U.getUser());
894 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
895 (!RFI ||
896 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
897 return CI;
898 return nullptr;
901 /// Return the call if \p V is a regular call. If \p RFI is given it has to be
902 /// the callee or a nullptr is returned.
903 static CallInst *getCallIfRegularCall(
904 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
905 CallInst *CI = dyn_cast<CallInst>(&V);
906 if (CI && !CI->hasOperandBundles() &&
907 (!RFI ||
908 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
909 return CI;
910 return nullptr;
913 private:
914 /// Merge parallel regions when it is safe.
915 bool mergeParallelRegions() {
916 const unsigned CallbackCalleeOperand = 2;
917 const unsigned CallbackFirstArgOperand = 3;
918 using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
920 // Check if there are any __kmpc_fork_call calls to merge.
921 OMPInformationCache::RuntimeFunctionInfo &RFI =
922 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
924 if (!RFI.Declaration)
925 return false;
927 // Unmergable calls that prevent merging a parallel region.
928 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
929 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
930 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
933 bool Changed = false;
934 LoopInfo *LI = nullptr;
935 DominatorTree *DT = nullptr;
937 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
939 BasicBlock *StartBB = nullptr, *EndBB = nullptr;
940 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
941 BasicBlock *CGStartBB = CodeGenIP.getBlock();
942 BasicBlock *CGEndBB =
943 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
944 assert(StartBB != nullptr && "StartBB should not be null");
945 CGStartBB->getTerminator()->setSuccessor(0, StartBB);
946 assert(EndBB != nullptr && "EndBB should not be null");
947 EndBB->getTerminator()->setSuccessor(0, CGEndBB);
950 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
951 Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
952 ReplacementValue = &Inner;
953 return CodeGenIP;
956 auto FiniCB = [&](InsertPointTy CodeGenIP) {};
958 /// Create a sequential execution region within a merged parallel region,
959 /// encapsulated in a master construct with a barrier for synchronization.
960 auto CreateSequentialRegion = [&](Function *OuterFn,
961 BasicBlock *OuterPredBB,
962 Instruction *SeqStartI,
963 Instruction *SeqEndI) {
964 // Isolate the instructions of the sequential region to a separate
965 // block.
966 BasicBlock *ParentBB = SeqStartI->getParent();
967 BasicBlock *SeqEndBB =
968 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
969 BasicBlock *SeqAfterBB =
970 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
971 BasicBlock *SeqStartBB =
972 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
974 assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
975 "Expected a different CFG");
976 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
977 ParentBB->getTerminator()->eraseFromParent();
979 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
980 BasicBlock *CGStartBB = CodeGenIP.getBlock();
981 BasicBlock *CGEndBB =
982 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
983 assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
984 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
985 assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
986 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
988 auto FiniCB = [&](InsertPointTy CodeGenIP) {};
990 // Find outputs from the sequential region to outside users and
991 // broadcast their values to them.
992 for (Instruction &I : *SeqStartBB) {
993 SmallPtrSet<Instruction *, 4> OutsideUsers;
994 for (User *Usr : I.users()) {
995 Instruction &UsrI = *cast<Instruction>(Usr);
996 // Ignore outputs to LT intrinsics, code extraction for the merged
997 // parallel region will fix them.
998 if (UsrI.isLifetimeStartOrEnd())
999 continue;
1001 if (UsrI.getParent() != SeqStartBB)
1002 OutsideUsers.insert(&UsrI);
1005 if (OutsideUsers.empty())
1006 continue;
1008 // Emit an alloca in the outer region to store the broadcasted
1009 // value.
1010 const DataLayout &DL = M.getDataLayout();
1011 AllocaInst *AllocaI = new AllocaInst(
1012 I.getType(), DL.getAllocaAddrSpace(), nullptr,
1013 I.getName() + ".seq.output.alloc", &OuterFn->front().front());
1015 // Emit a store instruction in the sequential BB to update the
1016 // value.
1017 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
1019 // Emit a load instruction and replace the use of the output value
1020 // with it.
1021 for (Instruction *UsrI : OutsideUsers) {
1022 LoadInst *LoadI = new LoadInst(
1023 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
1024 UsrI->replaceUsesOfWith(&I, LoadI);
1028 OpenMPIRBuilder::LocationDescription Loc(
1029 InsertPointTy(ParentBB, ParentBB->end()), DL);
1030 InsertPointTy SeqAfterIP =
1031 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
1033 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
1035 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
1037 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
1038 << "\n");
1041 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
1042 // contained in BB and only separated by instructions that can be
1043 // redundantly executed in parallel. The block BB is split before the first
1044 // call (in MergableCIs) and after the last so the entire region we merge
1045 // into a single parallel region is contained in a single basic block
1046 // without any other instructions. We use the OpenMPIRBuilder to outline
1047 // that block and call the resulting function via __kmpc_fork_call.
1048 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs,
1049 BasicBlock *BB) {
1050 // TODO: Change the interface to allow single CIs expanded, e.g, to
1051 // include an outer loop.
1052 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
1054 auto Remark = [&](OptimizationRemark OR) {
1055 OR << "Parallel region merged with parallel region"
1056 << (MergableCIs.size() > 2 ? "s" : "") << " at ";
1057 for (auto *CI : llvm::drop_begin(MergableCIs)) {
1058 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
1059 if (CI != MergableCIs.back())
1060 OR << ", ";
1062 return OR << ".";
1065 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
1067 Function *OriginalFn = BB->getParent();
1068 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
1069 << " parallel regions in " << OriginalFn->getName()
1070 << "\n");
1072 // Isolate the calls to merge in a separate block.
1073 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
1074 BasicBlock *AfterBB =
1075 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
1076 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
1077 "omp.par.merged");
1079 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
1080 const DebugLoc DL = BB->getTerminator()->getDebugLoc();
1081 BB->getTerminator()->eraseFromParent();
1083 // Create sequential regions for sequential instructions that are
1084 // in-between mergable parallel regions.
1085 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
1086 It != End; ++It) {
1087 Instruction *ForkCI = *It;
1088 Instruction *NextForkCI = *(It + 1);
1090 // Continue if there are not in-between instructions.
1091 if (ForkCI->getNextNode() == NextForkCI)
1092 continue;
1094 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
1095 NextForkCI->getPrevNode());
1098 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
1099 DL);
1100 IRBuilder<>::InsertPoint AllocaIP(
1101 &OriginalFn->getEntryBlock(),
1102 OriginalFn->getEntryBlock().getFirstInsertionPt());
1103 // Create the merged parallel region with default proc binding, to
1104 // avoid overriding binding settings, and without explicit cancellation.
1105 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
1106 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
1107 OMP_PROC_BIND_default, /* IsCancellable */ false);
1108 BranchInst::Create(AfterBB, AfterIP.getBlock());
1110 // Perform the actual outlining.
1111 OMPInfoCache.OMPBuilder.finalize(OriginalFn);
1113 Function *OutlinedFn = MergableCIs.front()->getCaller();
1115 // Replace the __kmpc_fork_call calls with direct calls to the outlined
1116 // callbacks.
1117 SmallVector<Value *, 8> Args;
1118 for (auto *CI : MergableCIs) {
1119 Value *Callee = CI->getArgOperand(CallbackCalleeOperand);
1120 FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask;
1121 Args.clear();
1122 Args.push_back(OutlinedFn->getArg(0));
1123 Args.push_back(OutlinedFn->getArg(1));
1124 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1125 ++U)
1126 Args.push_back(CI->getArgOperand(U));
1128 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
1129 if (CI->getDebugLoc())
1130 NewCI->setDebugLoc(CI->getDebugLoc());
1132 // Forward parameter attributes from the callback to the callee.
1133 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1134 ++U)
1135 for (const Attribute &A : CI->getAttributes().getParamAttrs(U))
1136 NewCI->addParamAttr(
1137 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
1139 // Emit an explicit barrier to replace the implicit fork-join barrier.
1140 if (CI != MergableCIs.back()) {
1141 // TODO: Remove barrier if the merged parallel region includes the
1142 // 'nowait' clause.
1143 OMPInfoCache.OMPBuilder.createBarrier(
1144 InsertPointTy(NewCI->getParent(),
1145 NewCI->getNextNode()->getIterator()),
1146 OMPD_parallel);
1149 CI->eraseFromParent();
1152 assert(OutlinedFn != OriginalFn && "Outlining failed");
1153 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
1154 CGUpdater.reanalyzeFunction(*OriginalFn);
1156 NumOpenMPParallelRegionsMerged += MergableCIs.size();
1158 return true;
1161 // Helper function that identifes sequences of
1162 // __kmpc_fork_call uses in a basic block.
1163 auto DetectPRsCB = [&](Use &U, Function &F) {
1164 CallInst *CI = getCallIfRegularCall(U, &RFI);
1165 BB2PRMap[CI->getParent()].insert(CI);
1167 return false;
1170 BB2PRMap.clear();
1171 RFI.foreachUse(SCC, DetectPRsCB);
1172 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
1173 // Find mergable parallel regions within a basic block that are
1174 // safe to merge, that is any in-between instructions can safely
1175 // execute in parallel after merging.
1176 // TODO: support merging across basic-blocks.
1177 for (auto &It : BB2PRMap) {
1178 auto &CIs = It.getSecond();
1179 if (CIs.size() < 2)
1180 continue;
1182 BasicBlock *BB = It.getFirst();
1183 SmallVector<CallInst *, 4> MergableCIs;
1185 /// Returns true if the instruction is mergable, false otherwise.
1186 /// A terminator instruction is unmergable by definition since merging
1187 /// works within a BB. Instructions before the mergable region are
1188 /// mergable if they are not calls to OpenMP runtime functions that may
1189 /// set different execution parameters for subsequent parallel regions.
1190 /// Instructions in-between parallel regions are mergable if they are not
1191 /// calls to any non-intrinsic function since that may call a non-mergable
1192 /// OpenMP runtime function.
1193 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
1194 // We do not merge across BBs, hence return false (unmergable) if the
1195 // instruction is a terminator.
1196 if (I.isTerminator())
1197 return false;
1199 if (!isa<CallInst>(&I))
1200 return true;
1202 CallInst *CI = cast<CallInst>(&I);
1203 if (IsBeforeMergableRegion) {
1204 Function *CalledFunction = CI->getCalledFunction();
1205 if (!CalledFunction)
1206 return false;
1207 // Return false (unmergable) if the call before the parallel
1208 // region calls an explicit affinity (proc_bind) or number of
1209 // threads (num_threads) compiler-generated function. Those settings
1210 // may be incompatible with following parallel regions.
1211 // TODO: ICV tracking to detect compatibility.
1212 for (const auto &RFI : UnmergableCallsInfo) {
1213 if (CalledFunction == RFI.Declaration)
1214 return false;
1216 } else {
1217 // Return false (unmergable) if there is a call instruction
1218 // in-between parallel regions when it is not an intrinsic. It
1219 // may call an unmergable OpenMP runtime function in its callpath.
1220 // TODO: Keep track of possible OpenMP calls in the callpath.
1221 if (!isa<IntrinsicInst>(CI))
1222 return false;
1225 return true;
1227 // Find maximal number of parallel region CIs that are safe to merge.
1228 for (auto It = BB->begin(), End = BB->end(); It != End;) {
1229 Instruction &I = *It;
1230 ++It;
1232 if (CIs.count(&I)) {
1233 MergableCIs.push_back(cast<CallInst>(&I));
1234 continue;
1237 // Continue expanding if the instruction is mergable.
1238 if (IsMergable(I, MergableCIs.empty()))
1239 continue;
1241 // Forward the instruction iterator to skip the next parallel region
1242 // since there is an unmergable instruction which can affect it.
1243 for (; It != End; ++It) {
1244 Instruction &SkipI = *It;
1245 if (CIs.count(&SkipI)) {
1246 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
1247 << " due to " << I << "\n");
1248 ++It;
1249 break;
1253 // Store mergable regions found.
1254 if (MergableCIs.size() > 1) {
1255 MergableCIsVector.push_back(MergableCIs);
1256 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
1257 << " parallel regions in block " << BB->getName()
1258 << " of function " << BB->getParent()->getName()
1259 << "\n";);
1262 MergableCIs.clear();
1265 if (!MergableCIsVector.empty()) {
1266 Changed = true;
1268 for (auto &MergableCIs : MergableCIsVector)
1269 Merge(MergableCIs, BB);
1270 MergableCIsVector.clear();
1274 if (Changed) {
1275 /// Re-collect use for fork calls, emitted barrier calls, and
1276 /// any emitted master/end_master calls.
1277 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
1278 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
1279 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
1280 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
1283 return Changed;
1286 /// Try to delete parallel regions if possible.
1287 bool deleteParallelRegions() {
1288 const unsigned CallbackCalleeOperand = 2;
1290 OMPInformationCache::RuntimeFunctionInfo &RFI =
1291 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1293 if (!RFI.Declaration)
1294 return false;
1296 bool Changed = false;
1297 auto DeleteCallCB = [&](Use &U, Function &) {
1298 CallInst *CI = getCallIfRegularCall(U);
1299 if (!CI)
1300 return false;
1301 auto *Fn = dyn_cast<Function>(
1302 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
1303 if (!Fn)
1304 return false;
1305 if (!Fn->onlyReadsMemory())
1306 return false;
1307 if (!Fn->hasFnAttribute(Attribute::WillReturn))
1308 return false;
1310 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
1311 << CI->getCaller()->getName() << "\n");
1313 auto Remark = [&](OptimizationRemark OR) {
1314 return OR << "Removing parallel region with no side-effects.";
1316 emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
1318 CGUpdater.removeCallSite(*CI);
1319 CI->eraseFromParent();
1320 Changed = true;
1321 ++NumOpenMPParallelRegionsDeleted;
1322 return true;
1325 RFI.foreachUse(SCC, DeleteCallCB);
1327 return Changed;
1330 /// Try to eliminate runtime calls by reusing existing ones.
1331 bool deduplicateRuntimeCalls() {
1332 bool Changed = false;
1334 RuntimeFunction DeduplicableRuntimeCallIDs[] = {
1335 OMPRTL_omp_get_num_threads,
1336 OMPRTL_omp_in_parallel,
1337 OMPRTL_omp_get_cancellation,
1338 OMPRTL_omp_get_thread_limit,
1339 OMPRTL_omp_get_supported_active_levels,
1340 OMPRTL_omp_get_level,
1341 OMPRTL_omp_get_ancestor_thread_num,
1342 OMPRTL_omp_get_team_size,
1343 OMPRTL_omp_get_active_level,
1344 OMPRTL_omp_in_final,
1345 OMPRTL_omp_get_proc_bind,
1346 OMPRTL_omp_get_num_places,
1347 OMPRTL_omp_get_num_procs,
1348 OMPRTL_omp_get_place_num,
1349 OMPRTL_omp_get_partition_num_places,
1350 OMPRTL_omp_get_partition_place_nums};
1352 // Global-tid is handled separately.
1353 SmallSetVector<Value *, 16> GTIdArgs;
1354 collectGlobalThreadIdArguments(GTIdArgs);
1355 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
1356 << " global thread ID arguments\n");
1358 for (Function *F : SCC) {
1359 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
1360 Changed |= deduplicateRuntimeCalls(
1361 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
1363 // __kmpc_global_thread_num is special as we can replace it with an
1364 // argument in enough cases to make it worth trying.
1365 Value *GTIdArg = nullptr;
1366 for (Argument &Arg : F->args())
1367 if (GTIdArgs.count(&Arg)) {
1368 GTIdArg = &Arg;
1369 break;
1371 Changed |= deduplicateRuntimeCalls(
1372 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
1375 return Changed;
1378 /// Tries to hide the latency of runtime calls that involve host to
1379 /// device memory transfers by splitting them into their "issue" and "wait"
1380 /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1381 /// moved downards as much as possible. The "issue" issues the memory transfer
1382 /// asynchronously, returning a handle. The "wait" waits in the returned
1383 /// handle for the memory transfer to finish.
1384 bool hideMemTransfersLatency() {
1385 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
1386 bool Changed = false;
1387 auto SplitMemTransfers = [&](Use &U, Function &Decl) {
1388 auto *RTCall = getCallIfRegularCall(U, &RFI);
1389 if (!RTCall)
1390 return false;
1392 OffloadArray OffloadArrays[3];
1393 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
1394 return false;
1396 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
1398 // TODO: Check if can be moved upwards.
1399 bool WasSplit = false;
1400 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
1401 if (WaitMovementPoint)
1402 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
1404 Changed |= WasSplit;
1405 return WasSplit;
1407 RFI.foreachUse(SCC, SplitMemTransfers);
1409 return Changed;
1412 /// Eliminates redundant, aligned barriers in OpenMP offloaded kernels.
1413 /// TODO: Make this an AA and expand it to work across blocks and functions.
1414 bool eliminateBarriers() {
1415 bool Changed = false;
1417 if (DisableOpenMPOptBarrierElimination)
1418 return /*Changed=*/false;
1420 if (OMPInfoCache.Kernels.empty())
1421 return /*Changed=*/false;
1423 enum ImplicitBarrierType { IBT_ENTRY, IBT_EXIT };
1425 class BarrierInfo {
1426 Instruction *I;
1427 enum ImplicitBarrierType Type;
1429 public:
1430 BarrierInfo(enum ImplicitBarrierType Type) : I(nullptr), Type(Type) {}
1431 BarrierInfo(Instruction &I) : I(&I) {}
1433 bool isImplicit() { return !I; }
1435 bool isImplicitEntry() { return isImplicit() && Type == IBT_ENTRY; }
1437 bool isImplicitExit() { return isImplicit() && Type == IBT_EXIT; }
1439 Instruction *getInstruction() { return I; }
1442 for (Function *Kernel : OMPInfoCache.Kernels) {
1443 for (BasicBlock &BB : *Kernel) {
1444 SmallVector<BarrierInfo, 8> BarriersInBlock;
1445 SmallPtrSet<Instruction *, 8> BarriersToBeDeleted;
1447 // Add the kernel entry implicit barrier.
1448 if (&Kernel->getEntryBlock() == &BB)
1449 BarriersInBlock.push_back(IBT_ENTRY);
1451 // Find implicit and explicit aligned barriers in the same basic block.
1452 for (Instruction &I : BB) {
1453 if (isa<ReturnInst>(I)) {
1454 // Add the implicit barrier when exiting the kernel.
1455 BarriersInBlock.push_back(IBT_EXIT);
1456 continue;
1458 CallBase *CB = dyn_cast<CallBase>(&I);
1459 if (!CB)
1460 continue;
1462 auto IsAlignBarrierCB = [&](CallBase &CB) {
1463 switch (CB.getIntrinsicID()) {
1464 case Intrinsic::nvvm_barrier0:
1465 case Intrinsic::nvvm_barrier0_and:
1466 case Intrinsic::nvvm_barrier0_or:
1467 case Intrinsic::nvvm_barrier0_popc:
1468 return true;
1469 default:
1470 break;
1472 return hasAssumption(CB,
1473 KnownAssumptionString("ompx_aligned_barrier"));
1476 if (IsAlignBarrierCB(*CB)) {
1477 // Add an explicit aligned barrier.
1478 BarriersInBlock.push_back(I);
1482 if (BarriersInBlock.size() <= 1)
1483 continue;
1485 // A barrier in a barrier pair is removeable if all instructions
1486 // between the barriers in the pair are side-effect free modulo the
1487 // barrier operation.
1488 auto IsBarrierRemoveable = [&Kernel](BarrierInfo *StartBI,
1489 BarrierInfo *EndBI) {
1490 assert(
1491 !StartBI->isImplicitExit() &&
1492 "Expected start barrier to be other than a kernel exit barrier");
1493 assert(
1494 !EndBI->isImplicitEntry() &&
1495 "Expected end barrier to be other than a kernel entry barrier");
1496 // If StarBI instructions is null then this the implicit
1497 // kernel entry barrier, so iterate from the first instruction in the
1498 // entry block.
1499 Instruction *I = (StartBI->isImplicitEntry())
1500 ? &Kernel->getEntryBlock().front()
1501 : StartBI->getInstruction()->getNextNode();
1502 assert(I && "Expected non-null start instruction");
1503 Instruction *E = (EndBI->isImplicitExit())
1504 ? I->getParent()->getTerminator()
1505 : EndBI->getInstruction();
1506 assert(E && "Expected non-null end instruction");
1508 for (; I != E; I = I->getNextNode()) {
1509 if (!I->mayHaveSideEffects() && !I->mayReadFromMemory())
1510 continue;
1512 auto IsPotentiallyAffectedByBarrier =
1513 [](Optional<MemoryLocation> Loc) {
1514 const Value *Obj = (Loc && Loc->Ptr)
1515 ? getUnderlyingObject(Loc->Ptr)
1516 : nullptr;
1517 if (!Obj) {
1518 LLVM_DEBUG(
1519 dbgs()
1520 << "Access to unknown location requires barriers\n");
1521 return true;
1523 if (isa<UndefValue>(Obj))
1524 return false;
1525 if (isa<AllocaInst>(Obj))
1526 return false;
1527 if (auto *GV = dyn_cast<GlobalVariable>(Obj)) {
1528 if (GV->isConstant())
1529 return false;
1530 if (GV->isThreadLocal())
1531 return false;
1532 if (GV->getAddressSpace() == (int)AddressSpace::Local)
1533 return false;
1534 if (GV->getAddressSpace() == (int)AddressSpace::Constant)
1535 return false;
1537 LLVM_DEBUG(dbgs() << "Access to '" << *Obj
1538 << "' requires barriers\n");
1539 return true;
1542 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
1543 Optional<MemoryLocation> Loc = MemoryLocation::getForDest(MI);
1544 if (IsPotentiallyAffectedByBarrier(Loc))
1545 return false;
1546 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
1547 Optional<MemoryLocation> Loc =
1548 MemoryLocation::getForSource(MTI);
1549 if (IsPotentiallyAffectedByBarrier(Loc))
1550 return false;
1552 continue;
1555 if (auto *LI = dyn_cast<LoadInst>(I))
1556 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1557 continue;
1559 Optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
1560 if (IsPotentiallyAffectedByBarrier(Loc))
1561 return false;
1564 return true;
1567 // Iterate barrier pairs and remove an explicit barrier if analysis
1568 // deems it removeable.
1569 for (auto *It = BarriersInBlock.begin(),
1570 *End = BarriersInBlock.end() - 1;
1571 It != End; ++It) {
1573 BarrierInfo *StartBI = It;
1574 BarrierInfo *EndBI = (It + 1);
1576 // Cannot remove when both are implicit barriers, continue.
1577 if (StartBI->isImplicit() && EndBI->isImplicit())
1578 continue;
1580 if (!IsBarrierRemoveable(StartBI, EndBI))
1581 continue;
1583 assert(!(StartBI->isImplicit() && EndBI->isImplicit()) &&
1584 "Expected at least one explicit barrier to remove.");
1586 // Remove an explicit barrier, check first, then second.
1587 if (!StartBI->isImplicit()) {
1588 LLVM_DEBUG(dbgs() << "Remove start barrier "
1589 << *StartBI->getInstruction() << "\n");
1590 BarriersToBeDeleted.insert(StartBI->getInstruction());
1591 } else {
1592 LLVM_DEBUG(dbgs() << "Remove end barrier "
1593 << *EndBI->getInstruction() << "\n");
1594 BarriersToBeDeleted.insert(EndBI->getInstruction());
1598 if (BarriersToBeDeleted.empty())
1599 continue;
1601 Changed = true;
1602 for (Instruction *I : BarriersToBeDeleted) {
1603 ++NumBarriersEliminated;
1604 auto Remark = [&](OptimizationRemark OR) {
1605 return OR << "Redundant barrier eliminated.";
1608 if (EnableVerboseRemarks)
1609 emitRemark<OptimizationRemark>(I, "OMP190", Remark);
1610 I->eraseFromParent();
1615 return Changed;
1618 void analysisGlobalization() {
1619 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
1621 auto CheckGlobalization = [&](Use &U, Function &Decl) {
1622 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
1623 auto Remark = [&](OptimizationRemarkMissed ORM) {
1624 return ORM
1625 << "Found thread data sharing on the GPU. "
1626 << "Expect degraded performance due to data globalization.";
1628 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
1631 return false;
1634 RFI.foreachUse(SCC, CheckGlobalization);
1637 /// Maps the values stored in the offload arrays passed as arguments to
1638 /// \p RuntimeCall into the offload arrays in \p OAs.
1639 bool getValuesInOffloadArrays(CallInst &RuntimeCall,
1640 MutableArrayRef<OffloadArray> OAs) {
1641 assert(OAs.size() == 3 && "Need space for three offload arrays!");
1643 // A runtime call that involves memory offloading looks something like:
1644 // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1645 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1646 // ...)
1647 // So, the idea is to access the allocas that allocate space for these
1648 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1649 // Therefore:
1650 // i8** %offload_baseptrs.
1651 Value *BasePtrsArg =
1652 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
1653 // i8** %offload_ptrs.
1654 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
1655 // i8** %offload_sizes.
1656 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
1658 // Get values stored in **offload_baseptrs.
1659 auto *V = getUnderlyingObject(BasePtrsArg);
1660 if (!isa<AllocaInst>(V))
1661 return false;
1662 auto *BasePtrsArray = cast<AllocaInst>(V);
1663 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
1664 return false;
1666 // Get values stored in **offload_baseptrs.
1667 V = getUnderlyingObject(PtrsArg);
1668 if (!isa<AllocaInst>(V))
1669 return false;
1670 auto *PtrsArray = cast<AllocaInst>(V);
1671 if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
1672 return false;
1674 // Get values stored in **offload_sizes.
1675 V = getUnderlyingObject(SizesArg);
1676 // If it's a [constant] global array don't analyze it.
1677 if (isa<GlobalValue>(V))
1678 return isa<Constant>(V);
1679 if (!isa<AllocaInst>(V))
1680 return false;
1682 auto *SizesArray = cast<AllocaInst>(V);
1683 if (!OAs[2].initialize(*SizesArray, RuntimeCall))
1684 return false;
1686 return true;
1689 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1690 /// For now this is a way to test that the function getValuesInOffloadArrays
1691 /// is working properly.
1692 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
1693 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
1694 assert(OAs.size() == 3 && "There are three offload arrays to debug!");
1696 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
1697 std::string ValuesStr;
1698 raw_string_ostream Printer(ValuesStr);
1699 std::string Separator = " --- ";
1701 for (auto *BP : OAs[0].StoredValues) {
1702 BP->print(Printer);
1703 Printer << Separator;
1705 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
1706 ValuesStr.clear();
1708 for (auto *P : OAs[1].StoredValues) {
1709 P->print(Printer);
1710 Printer << Separator;
1712 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
1713 ValuesStr.clear();
1715 for (auto *S : OAs[2].StoredValues) {
1716 S->print(Printer);
1717 Printer << Separator;
1719 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
1722 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1723 /// moved. Returns nullptr if the movement is not possible, or not worth it.
1724 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
1725 // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1726 // Make it traverse the CFG.
1728 Instruction *CurrentI = &RuntimeCall;
1729 bool IsWorthIt = false;
1730 while ((CurrentI = CurrentI->getNextNode())) {
1732 // TODO: Once we detect the regions to be offloaded we should use the
1733 // alias analysis manager to check if CurrentI may modify one of
1734 // the offloaded regions.
1735 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
1736 if (IsWorthIt)
1737 return CurrentI;
1739 return nullptr;
1742 // FIXME: For now if we move it over anything without side effect
1743 // is worth it.
1744 IsWorthIt = true;
1747 // Return end of BasicBlock.
1748 return RuntimeCall.getParent()->getTerminator();
1751 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
1752 bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
1753 Instruction &WaitMovementPoint) {
1754 // Create stack allocated handle (__tgt_async_info) at the beginning of the
1755 // function. Used for storing information of the async transfer, allowing to
1756 // wait on it later.
1757 auto &IRBuilder = OMPInfoCache.OMPBuilder;
1758 auto *F = RuntimeCall.getCaller();
1759 Instruction *FirstInst = &(F->getEntryBlock().front());
1760 AllocaInst *Handle = new AllocaInst(
1761 IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst);
1763 // Add "issue" runtime call declaration:
1764 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1765 // i8**, i8**, i64*, i64*)
1766 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
1767 M, OMPRTL___tgt_target_data_begin_mapper_issue);
1769 // Change RuntimeCall call site for its asynchronous version.
1770 SmallVector<Value *, 16> Args;
1771 for (auto &Arg : RuntimeCall.args())
1772 Args.push_back(Arg.get());
1773 Args.push_back(Handle);
1775 CallInst *IssueCallsite =
1776 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
1777 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite);
1778 RuntimeCall.eraseFromParent();
1780 // Add "wait" runtime call declaration:
1781 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1782 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
1783 M, OMPRTL___tgt_target_data_begin_mapper_wait);
1785 Value *WaitParams[2] = {
1786 IssueCallsite->getArgOperand(
1787 OffloadArray::DeviceIDArgNum), // device_id.
1788 Handle // handle to wait on.
1790 CallInst *WaitCallsite = CallInst::Create(
1791 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
1792 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite);
1794 return true;
1797 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
1798 bool GlobalOnly, bool &SingleChoice) {
1799 if (CurrentIdent == NextIdent)
1800 return CurrentIdent;
1802 // TODO: Figure out how to actually combine multiple debug locations. For
1803 // now we just keep an existing one if there is a single choice.
1804 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
1805 SingleChoice = !CurrentIdent;
1806 return NextIdent;
1808 return nullptr;
1811 /// Return an `struct ident_t*` value that represents the ones used in the
1812 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1813 /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1814 /// return value we create one from scratch. We also do not yet combine
1815 /// information, e.g., the source locations, see combinedIdentStruct.
1816 Value *
1817 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
1818 Function &F, bool GlobalOnly) {
1819 bool SingleChoice = true;
1820 Value *Ident = nullptr;
1821 auto CombineIdentStruct = [&](Use &U, Function &Caller) {
1822 CallInst *CI = getCallIfRegularCall(U, &RFI);
1823 if (!CI || &F != &Caller)
1824 return false;
1825 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
1826 /* GlobalOnly */ true, SingleChoice);
1827 return false;
1829 RFI.foreachUse(SCC, CombineIdentStruct);
1831 if (!Ident || !SingleChoice) {
1832 // The IRBuilder uses the insertion block to get to the module, this is
1833 // unfortunate but we work around it for now.
1834 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
1835 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1836 &F.getEntryBlock(), F.getEntryBlock().begin()));
1837 // Create a fallback location if non was found.
1838 // TODO: Use the debug locations of the calls instead.
1839 uint32_t SrcLocStrSize;
1840 Constant *Loc =
1841 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
1842 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize);
1844 return Ident;
1847 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1848 /// \p ReplVal if given.
1849 bool deduplicateRuntimeCalls(Function &F,
1850 OMPInformationCache::RuntimeFunctionInfo &RFI,
1851 Value *ReplVal = nullptr) {
1852 auto *UV = RFI.getUseVector(F);
1853 if (!UV || UV->size() + (ReplVal != nullptr) < 2)
1854 return false;
1856 LLVM_DEBUG(
1857 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
1858 << (ReplVal ? " with an existing value\n" : "\n") << "\n");
1860 assert((!ReplVal || (isa<Argument>(ReplVal) &&
1861 cast<Argument>(ReplVal)->getParent() == &F)) &&
1862 "Unexpected replacement value!");
1864 // TODO: Use dominance to find a good position instead.
1865 auto CanBeMoved = [this](CallBase &CB) {
1866 unsigned NumArgs = CB.arg_size();
1867 if (NumArgs == 0)
1868 return true;
1869 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
1870 return false;
1871 for (unsigned U = 1; U < NumArgs; ++U)
1872 if (isa<Instruction>(CB.getArgOperand(U)))
1873 return false;
1874 return true;
1877 if (!ReplVal) {
1878 for (Use *U : *UV)
1879 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
1880 if (!CanBeMoved(*CI))
1881 continue;
1883 // If the function is a kernel, dedup will move
1884 // the runtime call right after the kernel init callsite. Otherwise,
1885 // it will move it to the beginning of the caller function.
1886 if (isKernel(F)) {
1887 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
1888 auto *KernelInitUV = KernelInitRFI.getUseVector(F);
1890 if (KernelInitUV->empty())
1891 continue;
1893 assert(KernelInitUV->size() == 1 &&
1894 "Expected a single __kmpc_target_init in kernel\n");
1896 CallInst *KernelInitCI =
1897 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI);
1898 assert(KernelInitCI &&
1899 "Expected a call to __kmpc_target_init in kernel\n");
1901 CI->moveAfter(KernelInitCI);
1902 } else
1903 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
1904 ReplVal = CI;
1905 break;
1907 if (!ReplVal)
1908 return false;
1911 // If we use a call as a replacement value we need to make sure the ident is
1912 // valid at the new location. For now we just pick a global one, either
1913 // existing and used by one of the calls, or created from scratch.
1914 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
1915 if (!CI->arg_empty() &&
1916 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
1917 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
1918 /* GlobalOnly */ true);
1919 CI->setArgOperand(0, Ident);
1923 bool Changed = false;
1924 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
1925 CallInst *CI = getCallIfRegularCall(U, &RFI);
1926 if (!CI || CI == ReplVal || &F != &Caller)
1927 return false;
1928 assert(CI->getCaller() == &F && "Unexpected call!");
1930 auto Remark = [&](OptimizationRemark OR) {
1931 return OR << "OpenMP runtime call "
1932 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
1934 if (CI->getDebugLoc())
1935 emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
1936 else
1937 emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
1939 CGUpdater.removeCallSite(*CI);
1940 CI->replaceAllUsesWith(ReplVal);
1941 CI->eraseFromParent();
1942 ++NumOpenMPRuntimeCallsDeduplicated;
1943 Changed = true;
1944 return true;
1946 RFI.foreachUse(SCC, ReplaceAndDeleteCB);
1948 return Changed;
1951 /// Collect arguments that represent the global thread id in \p GTIdArgs.
1952 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
1953 // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1954 // initialization. We could define an AbstractAttribute instead and
1955 // run the Attributor here once it can be run as an SCC pass.
1957 // Helper to check the argument \p ArgNo at all call sites of \p F for
1958 // a GTId.
1959 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
1960 if (!F.hasLocalLinkage())
1961 return false;
1962 for (Use &U : F.uses()) {
1963 if (CallInst *CI = getCallIfRegularCall(U)) {
1964 Value *ArgOp = CI->getArgOperand(ArgNo);
1965 if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
1966 getCallIfRegularCall(
1967 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
1968 continue;
1970 return false;
1972 return true;
1975 // Helper to identify uses of a GTId as GTId arguments.
1976 auto AddUserArgs = [&](Value &GTId) {
1977 for (Use &U : GTId.uses())
1978 if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
1979 if (CI->isArgOperand(&U))
1980 if (Function *Callee = CI->getCalledFunction())
1981 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
1982 GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
1985 // The argument users of __kmpc_global_thread_num calls are GTIds.
1986 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
1987 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
1989 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
1990 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
1991 AddUserArgs(*CI);
1992 return false;
1995 // Transitively search for more arguments by looking at the users of the
1996 // ones we know already. During the search the GTIdArgs vector is extended
1997 // so we cannot cache the size nor can we use a range based for.
1998 for (unsigned U = 0; U < GTIdArgs.size(); ++U)
1999 AddUserArgs(*GTIdArgs[U]);
2002 /// Kernel (=GPU) optimizations and utility functions
2004 ///{{
2006 /// Check if \p F is a kernel, hence entry point for target offloading.
2007 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }
2009 /// Cache to remember the unique kernel for a function.
2010 DenseMap<Function *, Optional<Kernel>> UniqueKernelMap;
2012 /// Find the unique kernel that will execute \p F, if any.
2013 Kernel getUniqueKernelFor(Function &F);
2015 /// Find the unique kernel that will execute \p I, if any.
2016 Kernel getUniqueKernelFor(Instruction &I) {
2017 return getUniqueKernelFor(*I.getFunction());
2020 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
2021 /// the cases we can avoid taking the address of a function.
2022 bool rewriteDeviceCodeStateMachine();
2025 ///}}
2027 /// Emit a remark generically
2029 /// This template function can be used to generically emit a remark. The
2030 /// RemarkKind should be one of the following:
2031 /// - OptimizationRemark to indicate a successful optimization attempt
2032 /// - OptimizationRemarkMissed to report a failed optimization attempt
2033 /// - OptimizationRemarkAnalysis to provide additional information about an
2034 /// optimization attempt
2036 /// The remark is built using a callback function provided by the caller that
2037 /// takes a RemarkKind as input and returns a RemarkKind.
2038 template <typename RemarkKind, typename RemarkCallBack>
2039 void emitRemark(Instruction *I, StringRef RemarkName,
2040 RemarkCallBack &&RemarkCB) const {
2041 Function *F = I->getParent()->getParent();
2042 auto &ORE = OREGetter(F);
2044 if (RemarkName.startswith("OMP"))
2045 ORE.emit([&]() {
2046 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
2047 << " [" << RemarkName << "]";
2049 else
2050 ORE.emit(
2051 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
2054 /// Emit a remark on a function.
2055 template <typename RemarkKind, typename RemarkCallBack>
2056 void emitRemark(Function *F, StringRef RemarkName,
2057 RemarkCallBack &&RemarkCB) const {
2058 auto &ORE = OREGetter(F);
2060 if (RemarkName.startswith("OMP"))
2061 ORE.emit([&]() {
2062 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
2063 << " [" << RemarkName << "]";
2065 else
2066 ORE.emit(
2067 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
2070 /// RAII struct to temporarily change an RTL function's linkage to external.
2071 /// This prevents it from being mistakenly removed by other optimizations.
2072 struct ExternalizationRAII {
2073 ExternalizationRAII(OMPInformationCache &OMPInfoCache,
2074 RuntimeFunction RFKind)
2075 : Declaration(OMPInfoCache.RFIs[RFKind].Declaration) {
2076 if (!Declaration)
2077 return;
2079 LinkageType = Declaration->getLinkage();
2080 Declaration->setLinkage(GlobalValue::ExternalLinkage);
2083 ~ExternalizationRAII() {
2084 if (!Declaration)
2085 return;
2087 Declaration->setLinkage(LinkageType);
2090 Function *Declaration;
2091 GlobalValue::LinkageTypes LinkageType;
2094 /// The underlying module.
2095 Module &M;
2097 /// The SCC we are operating on.
2098 SmallVectorImpl<Function *> &SCC;
2100 /// Callback to update the call graph, the first argument is a removed call,
2101 /// the second an optional replacement call.
2102 CallGraphUpdater &CGUpdater;
2104 /// Callback to get an OptimizationRemarkEmitter from a Function *
2105 OptimizationRemarkGetter OREGetter;
2107 /// OpenMP-specific information cache. Also Used for Attributor runs.
2108 OMPInformationCache &OMPInfoCache;
2110 /// Attributor instance.
2111 Attributor &A;
2113 /// Helper function to run Attributor on SCC.
2114 bool runAttributor(bool IsModulePass) {
2115 if (SCC.empty())
2116 return false;
2118 // Temporarily make these function have external linkage so the Attributor
2119 // doesn't remove them when we try to look them up later.
2120 ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel);
2121 ExternalizationRAII EndParallel(OMPInfoCache,
2122 OMPRTL___kmpc_kernel_end_parallel);
2123 ExternalizationRAII BarrierSPMD(OMPInfoCache,
2124 OMPRTL___kmpc_barrier_simple_spmd);
2125 ExternalizationRAII BarrierGeneric(OMPInfoCache,
2126 OMPRTL___kmpc_barrier_simple_generic);
2127 ExternalizationRAII ThreadId(OMPInfoCache,
2128 OMPRTL___kmpc_get_hardware_thread_id_in_block);
2129 ExternalizationRAII NumThreads(
2130 OMPInfoCache, OMPRTL___kmpc_get_hardware_num_threads_in_block);
2131 ExternalizationRAII WarpSize(OMPInfoCache, OMPRTL___kmpc_get_warp_size);
2133 registerAAs(IsModulePass);
2135 ChangeStatus Changed = A.run();
2137 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
2138 << " functions, result: " << Changed << ".\n");
2140 return Changed == ChangeStatus::CHANGED;
2143 void registerFoldRuntimeCall(RuntimeFunction RF);
2145 /// Populate the Attributor with abstract attribute opportunities in the
2146 /// function.
2147 void registerAAs(bool IsModulePass);
2150 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
2151 if (!OMPInfoCache.ModuleSlice.count(&F))
2152 return nullptr;
2154 // Use a scope to keep the lifetime of the CachedKernel short.
2156 Optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
2157 if (CachedKernel)
2158 return *CachedKernel;
2160 // TODO: We should use an AA to create an (optimistic and callback
2161 // call-aware) call graph. For now we stick to simple patterns that
2162 // are less powerful, basically the worst fixpoint.
2163 if (isKernel(F)) {
2164 CachedKernel = Kernel(&F);
2165 return *CachedKernel;
2168 CachedKernel = nullptr;
2169 if (!F.hasLocalLinkage()) {
2171 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
2172 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2173 return ORA << "Potentially unknown OpenMP target region caller.";
2175 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
2177 return nullptr;
2181 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
2182 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2183 // Allow use in equality comparisons.
2184 if (Cmp->isEquality())
2185 return getUniqueKernelFor(*Cmp);
2186 return nullptr;
2188 if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
2189 // Allow direct calls.
2190 if (CB->isCallee(&U))
2191 return getUniqueKernelFor(*CB);
2193 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2194 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2195 // Allow the use in __kmpc_parallel_51 calls.
2196 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
2197 return getUniqueKernelFor(*CB);
2198 return nullptr;
2200 // Disallow every other use.
2201 return nullptr;
2204 // TODO: In the future we want to track more than just a unique kernel.
2205 SmallPtrSet<Kernel, 2> PotentialKernels;
2206 OMPInformationCache::foreachUse(F, [&](const Use &U) {
2207 PotentialKernels.insert(GetUniqueKernelForUse(U));
2210 Kernel K = nullptr;
2211 if (PotentialKernels.size() == 1)
2212 K = *PotentialKernels.begin();
2214 // Cache the result.
2215 UniqueKernelMap[&F] = K;
2217 return K;
2220 bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
2221 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2222 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2224 bool Changed = false;
2225 if (!KernelParallelRFI)
2226 return Changed;
2228 // If we have disabled state machine changes, exit
2229 if (DisableOpenMPOptStateMachineRewrite)
2230 return Changed;
2232 for (Function *F : SCC) {
2234 // Check if the function is a use in a __kmpc_parallel_51 call at
2235 // all.
2236 bool UnknownUse = false;
2237 bool KernelParallelUse = false;
2238 unsigned NumDirectCalls = 0;
2240 SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
2241 OMPInformationCache::foreachUse(*F, [&](Use &U) {
2242 if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2243 if (CB->isCallee(&U)) {
2244 ++NumDirectCalls;
2245 return;
2248 if (isa<ICmpInst>(U.getUser())) {
2249 ToBeReplacedStateMachineUses.push_back(&U);
2250 return;
2253 // Find wrapper functions that represent parallel kernels.
2254 CallInst *CI =
2255 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
2256 const unsigned int WrapperFunctionArgNo = 6;
2257 if (!KernelParallelUse && CI &&
2258 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
2259 KernelParallelUse = true;
2260 ToBeReplacedStateMachineUses.push_back(&U);
2261 return;
2263 UnknownUse = true;
2266 // Do not emit a remark if we haven't seen a __kmpc_parallel_51
2267 // use.
2268 if (!KernelParallelUse)
2269 continue;
2271 // If this ever hits, we should investigate.
2272 // TODO: Checking the number of uses is not a necessary restriction and
2273 // should be lifted.
2274 if (UnknownUse || NumDirectCalls != 1 ||
2275 ToBeReplacedStateMachineUses.size() > 2) {
2276 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2277 return ORA << "Parallel region is used in "
2278 << (UnknownUse ? "unknown" : "unexpected")
2279 << " ways. Will not attempt to rewrite the state machine.";
2281 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
2282 continue;
2285 // Even if we have __kmpc_parallel_51 calls, we (for now) give
2286 // up if the function is not called from a unique kernel.
2287 Kernel K = getUniqueKernelFor(*F);
2288 if (!K) {
2289 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2290 return ORA << "Parallel region is not called from a unique kernel. "
2291 "Will not attempt to rewrite the state machine.";
2293 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
2294 continue;
2297 // We now know F is a parallel body function called only from the kernel K.
2298 // We also identified the state machine uses in which we replace the
2299 // function pointer by a new global symbol for identification purposes. This
2300 // ensures only direct calls to the function are left.
2302 Module &M = *F->getParent();
2303 Type *Int8Ty = Type::getInt8Ty(M.getContext());
2305 auto *ID = new GlobalVariable(
2306 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
2307 UndefValue::get(Int8Ty), F->getName() + ".ID");
2309 for (Use *U : ToBeReplacedStateMachineUses)
2310 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2311 ID, U->get()->getType()));
2313 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
2315 Changed = true;
2318 return Changed;
2321 /// Abstract Attribute for tracking ICV values.
2322 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
2323 using Base = StateWrapper<BooleanState, AbstractAttribute>;
2324 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2326 void initialize(Attributor &A) override {
2327 Function *F = getAnchorScope();
2328 if (!F || !A.isFunctionIPOAmendable(*F))
2329 indicatePessimisticFixpoint();
2332 /// Returns true if value is assumed to be tracked.
2333 bool isAssumedTracked() const { return getAssumed(); }
2335 /// Returns true if value is known to be tracked.
2336 bool isKnownTracked() const { return getAssumed(); }
2338 /// Create an abstract attribute biew for the position \p IRP.
2339 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
2341 /// Return the value with which \p I can be replaced for specific \p ICV.
2342 virtual Optional<Value *> getReplacementValue(InternalControlVar ICV,
2343 const Instruction *I,
2344 Attributor &A) const {
2345 return None;
2348 /// Return an assumed unique ICV value if a single candidate is found. If
2349 /// there cannot be one, return a nullptr. If it is not clear yet, return the
2350 /// Optional::NoneType.
2351 virtual Optional<Value *>
2352 getUniqueReplacementValue(InternalControlVar ICV) const = 0;
2354 // Currently only nthreads is being tracked.
2355 // this array will only grow with time.
2356 InternalControlVar TrackableICVs[1] = {ICV_nthreads};
2358 /// See AbstractAttribute::getName()
2359 const std::string getName() const override { return "AAICVTracker"; }
2361 /// See AbstractAttribute::getIdAddr()
2362 const char *getIdAddr() const override { return &ID; }
2364 /// This function should return true if the type of the \p AA is AAICVTracker
2365 static bool classof(const AbstractAttribute *AA) {
2366 return (AA->getIdAddr() == &ID);
2369 static const char ID;
2372 struct AAICVTrackerFunction : public AAICVTracker {
2373 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
2374 : AAICVTracker(IRP, A) {}
2376 // FIXME: come up with better string.
2377 const std::string getAsStr() const override { return "ICVTrackerFunction"; }
2379 // FIXME: come up with some stats.
2380 void trackStatistics() const override {}
2382 /// We don't manifest anything for this AA.
2383 ChangeStatus manifest(Attributor &A) override {
2384 return ChangeStatus::UNCHANGED;
2387 // Map of ICV to their values at specific program point.
2388 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
2389 InternalControlVar::ICV___last>
2390 ICVReplacementValuesMap;
2392 ChangeStatus updateImpl(Attributor &A) override {
2393 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
2395 Function *F = getAnchorScope();
2397 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2399 for (InternalControlVar ICV : TrackableICVs) {
2400 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2402 auto &ValuesMap = ICVReplacementValuesMap[ICV];
2403 auto TrackValues = [&](Use &U, Function &) {
2404 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
2405 if (!CI)
2406 return false;
2408 // FIXME: handle setters with more that 1 arguments.
2409 /// Track new value.
2410 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
2411 HasChanged = ChangeStatus::CHANGED;
2413 return false;
2416 auto CallCheck = [&](Instruction &I) {
2417 Optional<Value *> ReplVal = getValueForCall(A, I, ICV);
2418 if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
2419 HasChanged = ChangeStatus::CHANGED;
2421 return true;
2424 // Track all changes of an ICV.
2425 SetterRFI.foreachUse(TrackValues, F);
2427 bool UsedAssumedInformation = false;
2428 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
2429 UsedAssumedInformation,
2430 /* CheckBBLivenessOnly */ true);
2432 /// TODO: Figure out a way to avoid adding entry in
2433 /// ICVReplacementValuesMap
2434 Instruction *Entry = &F->getEntryBlock().front();
2435 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
2436 ValuesMap.insert(std::make_pair(Entry, nullptr));
2439 return HasChanged;
2442 /// Helper to check if \p I is a call and get the value for it if it is
2443 /// unique.
2444 Optional<Value *> getValueForCall(Attributor &A, const Instruction &I,
2445 InternalControlVar &ICV) const {
2447 const auto *CB = dyn_cast<CallBase>(&I);
2448 if (!CB || CB->hasFnAttr("no_openmp") ||
2449 CB->hasFnAttr("no_openmp_routines"))
2450 return None;
2452 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2453 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
2454 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2455 Function *CalledFunction = CB->getCalledFunction();
2457 // Indirect call, assume ICV changes.
2458 if (CalledFunction == nullptr)
2459 return nullptr;
2460 if (CalledFunction == GetterRFI.Declaration)
2461 return None;
2462 if (CalledFunction == SetterRFI.Declaration) {
2463 if (ICVReplacementValuesMap[ICV].count(&I))
2464 return ICVReplacementValuesMap[ICV].lookup(&I);
2466 return nullptr;
2469 // Since we don't know, assume it changes the ICV.
2470 if (CalledFunction->isDeclaration())
2471 return nullptr;
2473 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2474 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
2476 if (ICVTrackingAA.isAssumedTracked()) {
2477 Optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV);
2478 if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I),
2479 OMPInfoCache)))
2480 return URV;
2483 // If we don't know, assume it changes.
2484 return nullptr;
2487 // We don't check unique value for a function, so return None.
2488 Optional<Value *>
2489 getUniqueReplacementValue(InternalControlVar ICV) const override {
2490 return None;
2493 /// Return the value with which \p I can be replaced for specific \p ICV.
2494 Optional<Value *> getReplacementValue(InternalControlVar ICV,
2495 const Instruction *I,
2496 Attributor &A) const override {
2497 const auto &ValuesMap = ICVReplacementValuesMap[ICV];
2498 if (ValuesMap.count(I))
2499 return ValuesMap.lookup(I);
2501 SmallVector<const Instruction *, 16> Worklist;
2502 SmallPtrSet<const Instruction *, 16> Visited;
2503 Worklist.push_back(I);
2505 Optional<Value *> ReplVal;
2507 while (!Worklist.empty()) {
2508 const Instruction *CurrInst = Worklist.pop_back_val();
2509 if (!Visited.insert(CurrInst).second)
2510 continue;
2512 const BasicBlock *CurrBB = CurrInst->getParent();
2514 // Go up and look for all potential setters/calls that might change the
2515 // ICV.
2516 while ((CurrInst = CurrInst->getPrevNode())) {
2517 if (ValuesMap.count(CurrInst)) {
2518 Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
2519 // Unknown value, track new.
2520 if (!ReplVal) {
2521 ReplVal = NewReplVal;
2522 break;
2525 // If we found a new value, we can't know the icv value anymore.
2526 if (NewReplVal)
2527 if (ReplVal != NewReplVal)
2528 return nullptr;
2530 break;
2533 Optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV);
2534 if (!NewReplVal)
2535 continue;
2537 // Unknown value, track new.
2538 if (!ReplVal) {
2539 ReplVal = NewReplVal;
2540 break;
2543 // if (NewReplVal.hasValue())
2544 // We found a new value, we can't know the icv value anymore.
2545 if (ReplVal != NewReplVal)
2546 return nullptr;
2549 // If we are in the same BB and we have a value, we are done.
2550 if (CurrBB == I->getParent() && ReplVal)
2551 return ReplVal;
2553 // Go through all predecessors and add terminators for analysis.
2554 for (const BasicBlock *Pred : predecessors(CurrBB))
2555 if (const Instruction *Terminator = Pred->getTerminator())
2556 Worklist.push_back(Terminator);
2559 return ReplVal;
2563 struct AAICVTrackerFunctionReturned : AAICVTracker {
2564 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
2565 : AAICVTracker(IRP, A) {}
2567 // FIXME: come up with better string.
2568 const std::string getAsStr() const override {
2569 return "ICVTrackerFunctionReturned";
2572 // FIXME: come up with some stats.
2573 void trackStatistics() const override {}
2575 /// We don't manifest anything for this AA.
2576 ChangeStatus manifest(Attributor &A) override {
2577 return ChangeStatus::UNCHANGED;
2580 // Map of ICV to their values at specific program point.
2581 EnumeratedArray<Optional<Value *>, InternalControlVar,
2582 InternalControlVar::ICV___last>
2583 ICVReplacementValuesMap;
2585 /// Return the value with which \p I can be replaced for specific \p ICV.
2586 Optional<Value *>
2587 getUniqueReplacementValue(InternalControlVar ICV) const override {
2588 return ICVReplacementValuesMap[ICV];
2591 ChangeStatus updateImpl(Attributor &A) override {
2592 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2593 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2594 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2596 if (!ICVTrackingAA.isAssumedTracked())
2597 return indicatePessimisticFixpoint();
2599 for (InternalControlVar ICV : TrackableICVs) {
2600 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2601 Optional<Value *> UniqueICVValue;
2603 auto CheckReturnInst = [&](Instruction &I) {
2604 Optional<Value *> NewReplVal =
2605 ICVTrackingAA.getReplacementValue(ICV, &I, A);
2607 // If we found a second ICV value there is no unique returned value.
2608 if (UniqueICVValue && UniqueICVValue != NewReplVal)
2609 return false;
2611 UniqueICVValue = NewReplVal;
2613 return true;
2616 bool UsedAssumedInformation = false;
2617 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
2618 UsedAssumedInformation,
2619 /* CheckBBLivenessOnly */ true))
2620 UniqueICVValue = nullptr;
2622 if (UniqueICVValue == ReplVal)
2623 continue;
2625 ReplVal = UniqueICVValue;
2626 Changed = ChangeStatus::CHANGED;
2629 return Changed;
2633 struct AAICVTrackerCallSite : AAICVTracker {
2634 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
2635 : AAICVTracker(IRP, A) {}
2637 void initialize(Attributor &A) override {
2638 Function *F = getAnchorScope();
2639 if (!F || !A.isFunctionIPOAmendable(*F))
2640 indicatePessimisticFixpoint();
2642 // We only initialize this AA for getters, so we need to know which ICV it
2643 // gets.
2644 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2645 for (InternalControlVar ICV : TrackableICVs) {
2646 auto ICVInfo = OMPInfoCache.ICVs[ICV];
2647 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
2648 if (Getter.Declaration == getAssociatedFunction()) {
2649 AssociatedICV = ICVInfo.Kind;
2650 return;
2654 /// Unknown ICV.
2655 indicatePessimisticFixpoint();
2658 ChangeStatus manifest(Attributor &A) override {
2659 if (!ReplVal || !*ReplVal)
2660 return ChangeStatus::UNCHANGED;
2662 A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal);
2663 A.deleteAfterManifest(*getCtxI());
2665 return ChangeStatus::CHANGED;
2668 // FIXME: come up with better string.
2669 const std::string getAsStr() const override { return "ICVTrackerCallSite"; }
2671 // FIXME: come up with some stats.
2672 void trackStatistics() const override {}
2674 InternalControlVar AssociatedICV;
2675 Optional<Value *> ReplVal;
2677 ChangeStatus updateImpl(Attributor &A) override {
2678 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2679 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2681 // We don't have any information, so we assume it changes the ICV.
2682 if (!ICVTrackingAA.isAssumedTracked())
2683 return indicatePessimisticFixpoint();
2685 Optional<Value *> NewReplVal =
2686 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);
2688 if (ReplVal == NewReplVal)
2689 return ChangeStatus::UNCHANGED;
2691 ReplVal = NewReplVal;
2692 return ChangeStatus::CHANGED;
2695 // Return the value with which associated value can be replaced for specific
2696 // \p ICV.
2697 Optional<Value *>
2698 getUniqueReplacementValue(InternalControlVar ICV) const override {
2699 return ReplVal;
2703 struct AAICVTrackerCallSiteReturned : AAICVTracker {
2704 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
2705 : AAICVTracker(IRP, A) {}
2707 // FIXME: come up with better string.
2708 const std::string getAsStr() const override {
2709 return "ICVTrackerCallSiteReturned";
2712 // FIXME: come up with some stats.
2713 void trackStatistics() const override {}
2715 /// We don't manifest anything for this AA.
2716 ChangeStatus manifest(Attributor &A) override {
2717 return ChangeStatus::UNCHANGED;
2720 // Map of ICV to their values at specific program point.
2721 EnumeratedArray<Optional<Value *>, InternalControlVar,
2722 InternalControlVar::ICV___last>
2723 ICVReplacementValuesMap;
2725 /// Return the value with which associated value can be replaced for specific
2726 /// \p ICV.
2727 Optional<Value *>
2728 getUniqueReplacementValue(InternalControlVar ICV) const override {
2729 return ICVReplacementValuesMap[ICV];
2732 ChangeStatus updateImpl(Attributor &A) override {
2733 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2734 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2735 *this, IRPosition::returned(*getAssociatedFunction()),
2736 DepClassTy::REQUIRED);
2738 // We don't have any information, so we assume it changes the ICV.
2739 if (!ICVTrackingAA.isAssumedTracked())
2740 return indicatePessimisticFixpoint();
2742 for (InternalControlVar ICV : TrackableICVs) {
2743 Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2744 Optional<Value *> NewReplVal =
2745 ICVTrackingAA.getUniqueReplacementValue(ICV);
2747 if (ReplVal == NewReplVal)
2748 continue;
2750 ReplVal = NewReplVal;
2751 Changed = ChangeStatus::CHANGED;
2753 return Changed;
2757 struct AAExecutionDomainFunction : public AAExecutionDomain {
2758 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
2759 : AAExecutionDomain(IRP, A) {}
2761 const std::string getAsStr() const override {
2762 return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) +
2763 "/" + std::to_string(NumBBs) + " BBs thread 0 only.";
2766 /// See AbstractAttribute::trackStatistics().
2767 void trackStatistics() const override {}
2769 void initialize(Attributor &A) override {
2770 Function *F = getAnchorScope();
2771 for (const auto &BB : *F)
2772 SingleThreadedBBs.insert(&BB);
2773 NumBBs = SingleThreadedBBs.size();
2776 ChangeStatus manifest(Attributor &A) override {
2777 LLVM_DEBUG({
2778 for (const BasicBlock *BB : SingleThreadedBBs)
2779 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
2780 << BB->getName() << " is executed by a single thread.\n";
2782 return ChangeStatus::UNCHANGED;
2785 ChangeStatus updateImpl(Attributor &A) override;
2787 /// Check if an instruction is executed by a single thread.
2788 bool isExecutedByInitialThreadOnly(const Instruction &I) const override {
2789 return isExecutedByInitialThreadOnly(*I.getParent());
2792 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
2793 return isValidState() && SingleThreadedBBs.contains(&BB);
2796 /// Set of basic blocks that are executed by a single thread.
2797 SmallSetVector<const BasicBlock *, 16> SingleThreadedBBs;
2799 /// Total number of basic blocks in this function.
2800 long unsigned NumBBs = 0;
2803 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
2804 Function *F = getAnchorScope();
2805 ReversePostOrderTraversal<Function *> RPOT(F);
2806 auto NumSingleThreadedBBs = SingleThreadedBBs.size();
2808 bool AllCallSitesKnown;
2809 auto PredForCallSite = [&](AbstractCallSite ACS) {
2810 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
2811 *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2812 DepClassTy::REQUIRED);
2813 return ACS.isDirectCall() &&
2814 ExecutionDomainAA.isExecutedByInitialThreadOnly(
2815 *ACS.getInstruction());
2818 if (!A.checkForAllCallSites(PredForCallSite, *this,
2819 /* RequiresAllCallSites */ true,
2820 AllCallSitesKnown))
2821 SingleThreadedBBs.remove(&F->getEntryBlock());
2823 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2824 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
2826 // Check if the edge into the successor block contains a condition that only
2827 // lets the main thread execute it.
2828 auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) {
2829 if (!Edge || !Edge->isConditional())
2830 return false;
2831 if (Edge->getSuccessor(0) != SuccessorBB)
2832 return false;
2834 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
2835 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
2836 return false;
2838 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2839 if (!C)
2840 return false;
2842 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
2843 if (C->isAllOnesValue()) {
2844 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
2845 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
2846 if (!CB)
2847 return false;
2848 const int InitModeArgNo = 1;
2849 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo));
2850 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC);
2853 if (C->isZero()) {
2854 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
2855 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2856 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
2857 return true;
2859 // Match: 0 == llvm.amdgcn.workitem.id.x()
2860 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2861 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
2862 return true;
2865 return false;
2868 // Merge all the predecessor states into the current basic block. A basic
2869 // block is executed by a single thread if all of its predecessors are.
2870 auto MergePredecessorStates = [&](BasicBlock *BB) {
2871 if (pred_empty(BB))
2872 return SingleThreadedBBs.contains(BB);
2874 bool IsInitialThread = true;
2875 for (BasicBlock *PredBB : predecessors(BB)) {
2876 if (!IsInitialThreadOnly(dyn_cast<BranchInst>(PredBB->getTerminator()),
2877 BB))
2878 IsInitialThread &= SingleThreadedBBs.contains(PredBB);
2881 return IsInitialThread;
2884 for (auto *BB : RPOT) {
2885 if (!MergePredecessorStates(BB))
2886 SingleThreadedBBs.remove(BB);
2889 return (NumSingleThreadedBBs == SingleThreadedBBs.size())
2890 ? ChangeStatus::UNCHANGED
2891 : ChangeStatus::CHANGED;
2894 /// Try to replace memory allocation calls called by a single thread with a
2895 /// static buffer of shared memory.
2896 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
2897 using Base = StateWrapper<BooleanState, AbstractAttribute>;
2898 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2900 /// Create an abstract attribute view for the position \p IRP.
2901 static AAHeapToShared &createForPosition(const IRPosition &IRP,
2902 Attributor &A);
2904 /// Returns true if HeapToShared conversion is assumed to be possible.
2905 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
2907 /// Returns true if HeapToShared conversion is assumed and the CB is a
2908 /// callsite to a free operation to be removed.
2909 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
2911 /// See AbstractAttribute::getName().
2912 const std::string getName() const override { return "AAHeapToShared"; }
2914 /// See AbstractAttribute::getIdAddr().
2915 const char *getIdAddr() const override { return &ID; }
2917 /// This function should return true if the type of the \p AA is
2918 /// AAHeapToShared.
2919 static bool classof(const AbstractAttribute *AA) {
2920 return (AA->getIdAddr() == &ID);
2923 /// Unique ID (due to the unique address)
2924 static const char ID;
2927 struct AAHeapToSharedFunction : public AAHeapToShared {
2928 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
2929 : AAHeapToShared(IRP, A) {}
2931 const std::string getAsStr() const override {
2932 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
2933 " malloc calls eligible.";
2936 /// See AbstractAttribute::trackStatistics().
2937 void trackStatistics() const override {}
2939 /// This functions finds free calls that will be removed by the
2940 /// HeapToShared transformation.
2941 void findPotentialRemovedFreeCalls(Attributor &A) {
2942 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2943 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
2945 PotentialRemovedFreeCalls.clear();
2946 // Update free call users of found malloc calls.
2947 for (CallBase *CB : MallocCalls) {
2948 SmallVector<CallBase *, 4> FreeCalls;
2949 for (auto *U : CB->users()) {
2950 CallBase *C = dyn_cast<CallBase>(U);
2951 if (C && C->getCalledFunction() == FreeRFI.Declaration)
2952 FreeCalls.push_back(C);
2955 if (FreeCalls.size() != 1)
2956 continue;
2958 PotentialRemovedFreeCalls.insert(FreeCalls.front());
2962 void initialize(Attributor &A) override {
2963 if (DisableOpenMPOptDeglobalization) {
2964 indicatePessimisticFixpoint();
2965 return;
2968 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2969 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
2971 Attributor::SimplifictionCallbackTy SCB =
2972 [](const IRPosition &, const AbstractAttribute *,
2973 bool &) -> Optional<Value *> { return nullptr; };
2974 for (User *U : RFI.Declaration->users())
2975 if (CallBase *CB = dyn_cast<CallBase>(U)) {
2976 MallocCalls.insert(CB);
2977 A.registerSimplificationCallback(IRPosition::callsite_returned(*CB),
2978 SCB);
2981 findPotentialRemovedFreeCalls(A);
2984 bool isAssumedHeapToShared(CallBase &CB) const override {
2985 return isValidState() && MallocCalls.count(&CB);
2988 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
2989 return isValidState() && PotentialRemovedFreeCalls.count(&CB);
2992 ChangeStatus manifest(Attributor &A) override {
2993 if (MallocCalls.empty())
2994 return ChangeStatus::UNCHANGED;
2996 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2997 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
2999 Function *F = getAnchorScope();
3000 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
3001 DepClassTy::OPTIONAL);
3003 ChangeStatus Changed = ChangeStatus::UNCHANGED;
3004 for (CallBase *CB : MallocCalls) {
3005 // Skip replacing this if HeapToStack has already claimed it.
3006 if (HS && HS->isAssumedHeapToStack(*CB))
3007 continue;
3009 // Find the unique free call to remove it.
3010 SmallVector<CallBase *, 4> FreeCalls;
3011 for (auto *U : CB->users()) {
3012 CallBase *C = dyn_cast<CallBase>(U);
3013 if (C && C->getCalledFunction() == FreeCall.Declaration)
3014 FreeCalls.push_back(C);
3016 if (FreeCalls.size() != 1)
3017 continue;
3019 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0));
3021 if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) {
3022 LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB
3023 << " with shared memory."
3024 << " Shared memory usage is limited to "
3025 << SharedMemoryLimit << " bytes\n");
3026 continue;
3029 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB
3030 << " with " << AllocSize->getZExtValue()
3031 << " bytes of shared memory\n");
3033 // Create a new shared memory buffer of the same size as the allocation
3034 // and replace all the uses of the original allocation with it.
3035 Module *M = CB->getModule();
3036 Type *Int8Ty = Type::getInt8Ty(M->getContext());
3037 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
3038 auto *SharedMem = new GlobalVariable(
3039 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
3040 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr,
3041 GlobalValue::NotThreadLocal,
3042 static_cast<unsigned>(AddressSpace::Shared));
3043 auto *NewBuffer =
3044 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
3046 auto Remark = [&](OptimizationRemark OR) {
3047 return OR << "Replaced globalized variable with "
3048 << ore::NV("SharedMemory", AllocSize->getZExtValue())
3049 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ")
3050 << "of shared memory.";
3052 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
3054 MaybeAlign Alignment = CB->getRetAlign();
3055 assert(Alignment &&
3056 "HeapToShared on allocation without alignment attribute");
3057 SharedMem->setAlignment(MaybeAlign(Alignment));
3059 A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer);
3060 A.deleteAfterManifest(*CB);
3061 A.deleteAfterManifest(*FreeCalls.front());
3063 SharedMemoryUsed += AllocSize->getZExtValue();
3064 NumBytesMovedToSharedMemory = SharedMemoryUsed;
3065 Changed = ChangeStatus::CHANGED;
3068 return Changed;
3071 ChangeStatus updateImpl(Attributor &A) override {
3072 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3073 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3074 Function *F = getAnchorScope();
3076 auto NumMallocCalls = MallocCalls.size();
3078 // Only consider malloc calls executed by a single thread with a constant.
3079 for (User *U : RFI.Declaration->users()) {
3080 const auto &ED = A.getAAFor<AAExecutionDomain>(
3081 *this, IRPosition::function(*F), DepClassTy::REQUIRED);
3082 if (CallBase *CB = dyn_cast<CallBase>(U))
3083 if (!isa<ConstantInt>(CB->getArgOperand(0)) ||
3084 !ED.isExecutedByInitialThreadOnly(*CB))
3085 MallocCalls.remove(CB);
3088 findPotentialRemovedFreeCalls(A);
3090 if (NumMallocCalls != MallocCalls.size())
3091 return ChangeStatus::CHANGED;
3093 return ChangeStatus::UNCHANGED;
3096 /// Collection of all malloc calls in a function.
3097 SmallSetVector<CallBase *, 4> MallocCalls;
3098 /// Collection of potentially removed free calls in a function.
3099 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
3100 /// The total amount of shared memory that has been used for HeapToShared.
3101 unsigned SharedMemoryUsed = 0;
3104 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
3105 using Base = StateWrapper<KernelInfoState, AbstractAttribute>;
3106 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3108 /// Statistics are tracked as part of manifest for now.
3109 void trackStatistics() const override {}
3111 /// See AbstractAttribute::getAsStr()
3112 const std::string getAsStr() const override {
3113 if (!isValidState())
3114 return "<invalid>";
3115 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
3116 : "generic") +
3117 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
3118 : "") +
3119 std::string(" #PRs: ") +
3120 (ReachedKnownParallelRegions.isValidState()
3121 ? std::to_string(ReachedKnownParallelRegions.size())
3122 : "<invalid>") +
3123 ", #Unknown PRs: " +
3124 (ReachedUnknownParallelRegions.isValidState()
3125 ? std::to_string(ReachedUnknownParallelRegions.size())
3126 : "<invalid>") +
3127 ", #Reaching Kernels: " +
3128 (ReachingKernelEntries.isValidState()
3129 ? std::to_string(ReachingKernelEntries.size())
3130 : "<invalid>");
3133 /// Create an abstract attribute biew for the position \p IRP.
3134 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
3136 /// See AbstractAttribute::getName()
3137 const std::string getName() const override { return "AAKernelInfo"; }
3139 /// See AbstractAttribute::getIdAddr()
3140 const char *getIdAddr() const override { return &ID; }
3142 /// This function should return true if the type of the \p AA is AAKernelInfo
3143 static bool classof(const AbstractAttribute *AA) {
3144 return (AA->getIdAddr() == &ID);
3147 static const char ID;
3150 /// The function kernel info abstract attribute, basically, what can we say
3151 /// about a function with regards to the KernelInfoState.
3152 struct AAKernelInfoFunction : AAKernelInfo {
3153 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
3154 : AAKernelInfo(IRP, A) {}
3156 SmallPtrSet<Instruction *, 4> GuardedInstructions;
3158 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() {
3159 return GuardedInstructions;
3162 /// See AbstractAttribute::initialize(...).
3163 void initialize(Attributor &A) override {
3164 // This is a high-level transform that might change the constant arguments
3165 // of the init and dinit calls. We need to tell the Attributor about this
3166 // to avoid other parts using the current constant value for simpliication.
3167 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3169 Function *Fn = getAnchorScope();
3171 OMPInformationCache::RuntimeFunctionInfo &InitRFI =
3172 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
3173 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
3174 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
3176 // For kernels we perform more initialization work, first we find the init
3177 // and deinit calls.
3178 auto StoreCallBase = [](Use &U,
3179 OMPInformationCache::RuntimeFunctionInfo &RFI,
3180 CallBase *&Storage) {
3181 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
3182 assert(CB &&
3183 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
3184 assert(!Storage &&
3185 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
3186 Storage = CB;
3187 return false;
3189 InitRFI.foreachUse(
3190 [&](Use &U, Function &) {
3191 StoreCallBase(U, InitRFI, KernelInitCB);
3192 return false;
3194 Fn);
3195 DeinitRFI.foreachUse(
3196 [&](Use &U, Function &) {
3197 StoreCallBase(U, DeinitRFI, KernelDeinitCB);
3198 return false;
3200 Fn);
3202 // Ignore kernels without initializers such as global constructors.
3203 if (!KernelInitCB || !KernelDeinitCB)
3204 return;
3206 // Add itself to the reaching kernel and set IsKernelEntry.
3207 ReachingKernelEntries.insert(Fn);
3208 IsKernelEntry = true;
3210 // For kernels we might need to initialize/finalize the IsSPMD state and
3211 // we need to register a simplification callback so that the Attributor
3212 // knows the constant arguments to __kmpc_target_init and
3213 // __kmpc_target_deinit might actually change.
3215 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB =
3216 [&](const IRPosition &IRP, const AbstractAttribute *AA,
3217 bool &UsedAssumedInformation) -> Optional<Value *> {
3218 // IRP represents the "use generic state machine" argument of an
3219 // __kmpc_target_init call. We will answer this one with the internal
3220 // state. As long as we are not in an invalid state, we will create a
3221 // custom state machine so the value should be a `i1 false`. If we are
3222 // in an invalid state, we won't change the value that is in the IR.
3223 if (!ReachedKnownParallelRegions.isValidState())
3224 return nullptr;
3225 // If we have disabled state machine rewrites, don't make a custom one.
3226 if (DisableOpenMPOptStateMachineRewrite)
3227 return nullptr;
3228 if (AA)
3229 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3230 UsedAssumedInformation = !isAtFixpoint();
3231 auto *FalseVal =
3232 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false);
3233 return FalseVal;
3236 Attributor::SimplifictionCallbackTy ModeSimplifyCB =
3237 [&](const IRPosition &IRP, const AbstractAttribute *AA,
3238 bool &UsedAssumedInformation) -> Optional<Value *> {
3239 // IRP represents the "SPMDCompatibilityTracker" argument of an
3240 // __kmpc_target_init or
3241 // __kmpc_target_deinit call. We will answer this one with the internal
3242 // state.
3243 if (!SPMDCompatibilityTracker.isValidState())
3244 return nullptr;
3245 if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3246 if (AA)
3247 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3248 UsedAssumedInformation = true;
3249 } else {
3250 UsedAssumedInformation = false;
3252 auto *Val = ConstantInt::getSigned(
3253 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()),
3254 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD
3255 : OMP_TGT_EXEC_MODE_GENERIC);
3256 return Val;
3259 Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB =
3260 [&](const IRPosition &IRP, const AbstractAttribute *AA,
3261 bool &UsedAssumedInformation) -> Optional<Value *> {
3262 // IRP represents the "RequiresFullRuntime" argument of an
3263 // __kmpc_target_init or __kmpc_target_deinit call. We will answer this
3264 // one with the internal state of the SPMDCompatibilityTracker, so if
3265 // generic then true, if SPMD then false.
3266 if (!SPMDCompatibilityTracker.isValidState())
3267 return nullptr;
3268 if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3269 if (AA)
3270 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3271 UsedAssumedInformation = true;
3272 } else {
3273 UsedAssumedInformation = false;
3275 auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(),
3276 !SPMDCompatibilityTracker.isAssumed());
3277 return Val;
3280 constexpr const int InitModeArgNo = 1;
3281 constexpr const int DeinitModeArgNo = 1;
3282 constexpr const int InitUseStateMachineArgNo = 2;
3283 constexpr const int InitRequiresFullRuntimeArgNo = 3;
3284 constexpr const int DeinitRequiresFullRuntimeArgNo = 2;
3285 A.registerSimplificationCallback(
3286 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo),
3287 StateMachineSimplifyCB);
3288 A.registerSimplificationCallback(
3289 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo),
3290 ModeSimplifyCB);
3291 A.registerSimplificationCallback(
3292 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo),
3293 ModeSimplifyCB);
3294 A.registerSimplificationCallback(
3295 IRPosition::callsite_argument(*KernelInitCB,
3296 InitRequiresFullRuntimeArgNo),
3297 IsGenericModeSimplifyCB);
3298 A.registerSimplificationCallback(
3299 IRPosition::callsite_argument(*KernelDeinitCB,
3300 DeinitRequiresFullRuntimeArgNo),
3301 IsGenericModeSimplifyCB);
3303 // Check if we know we are in SPMD-mode already.
3304 ConstantInt *ModeArg =
3305 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3306 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3307 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
3308 // This is a generic region but SPMDization is disabled so stop tracking.
3309 else if (DisableOpenMPOptSPMDization)
3310 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
3313 /// Sanitize the string \p S such that it is a suitable global symbol name.
3314 static std::string sanitizeForGlobalName(std::string S) {
3315 std::replace_if(
3316 S.begin(), S.end(),
3317 [](const char C) {
3318 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') ||
3319 (C >= '0' && C <= '9') || C == '_');
3321 '.');
3322 return S;
3325 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is
3326 /// finished now.
3327 ChangeStatus manifest(Attributor &A) override {
3328 // If we are not looking at a kernel with __kmpc_target_init and
3329 // __kmpc_target_deinit call we cannot actually manifest the information.
3330 if (!KernelInitCB || !KernelDeinitCB)
3331 return ChangeStatus::UNCHANGED;
3333 // If we can we change the execution mode to SPMD-mode otherwise we build a
3334 // custom state machine.
3335 ChangeStatus Changed = ChangeStatus::UNCHANGED;
3336 if (!changeToSPMDMode(A, Changed))
3337 return buildCustomStateMachine(A);
3339 return Changed;
3342 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) {
3343 if (!mayContainParallelRegion())
3344 return false;
3346 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3348 if (!SPMDCompatibilityTracker.isAssumed()) {
3349 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
3350 if (!NonCompatibleI)
3351 continue;
3353 // Skip diagnostics on calls to known OpenMP runtime functions for now.
3354 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
3355 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
3356 continue;
3358 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3359 ORA << "Value has potential side effects preventing SPMD-mode "
3360 "execution";
3361 if (isa<CallBase>(NonCompatibleI)) {
3362 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
3363 "the called function to override";
3365 return ORA << ".";
3367 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
3368 Remark);
3370 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
3371 << *NonCompatibleI << "\n");
3374 return false;
3377 // Get the actual kernel, could be the caller of the anchor scope if we have
3378 // a debug wrapper.
3379 Function *Kernel = getAnchorScope();
3380 if (Kernel->hasLocalLinkage()) {
3381 assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper.");
3382 auto *CB = cast<CallBase>(Kernel->user_back());
3383 Kernel = CB->getCaller();
3385 assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!");
3387 // Check if the kernel is already in SPMD mode, if so, return success.
3388 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable(
3389 (Kernel->getName() + "_exec_mode").str());
3390 assert(ExecMode && "Kernel without exec mode?");
3391 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!");
3393 // Set the global exec mode flag to indicate SPMD-Generic mode.
3394 assert(isa<ConstantInt>(ExecMode->getInitializer()) &&
3395 "ExecMode is not an integer!");
3396 const int8_t ExecModeVal =
3397 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue();
3398 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC)
3399 return true;
3401 // We will now unconditionally modify the IR, indicate a change.
3402 Changed = ChangeStatus::CHANGED;
3404 auto CreateGuardedRegion = [&](Instruction *RegionStartI,
3405 Instruction *RegionEndI) {
3406 LoopInfo *LI = nullptr;
3407 DominatorTree *DT = nullptr;
3408 MemorySSAUpdater *MSU = nullptr;
3409 using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
3411 BasicBlock *ParentBB = RegionStartI->getParent();
3412 Function *Fn = ParentBB->getParent();
3413 Module &M = *Fn->getParent();
3415 // Create all the blocks and logic.
3416 // ParentBB:
3417 // goto RegionCheckTidBB
3418 // RegionCheckTidBB:
3419 // Tid = __kmpc_hardware_thread_id()
3420 // if (Tid != 0)
3421 // goto RegionBarrierBB
3422 // RegionStartBB:
3423 // <execute instructions guarded>
3424 // goto RegionEndBB
3425 // RegionEndBB:
3426 // <store escaping values to shared mem>
3427 // goto RegionBarrierBB
3428 // RegionBarrierBB:
3429 // __kmpc_simple_barrier_spmd()
3430 // // second barrier is omitted if lacking escaping values.
3431 // <load escaping values from shared mem>
3432 // __kmpc_simple_barrier_spmd()
3433 // goto RegionExitBB
3434 // RegionExitBB:
3435 // <execute rest of instructions>
3437 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(),
3438 DT, LI, MSU, "region.guarded.end");
3439 BasicBlock *RegionBarrierBB =
3440 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI,
3441 MSU, "region.barrier");
3442 BasicBlock *RegionExitBB =
3443 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(),
3444 DT, LI, MSU, "region.exit");
3445 BasicBlock *RegionStartBB =
3446 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded");
3448 assert(ParentBB->getUniqueSuccessor() == RegionStartBB &&
3449 "Expected a different CFG");
3451 BasicBlock *RegionCheckTidBB = SplitBlock(
3452 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid");
3454 // Register basic blocks with the Attributor.
3455 A.registerManifestAddedBasicBlock(*RegionEndBB);
3456 A.registerManifestAddedBasicBlock(*RegionBarrierBB);
3457 A.registerManifestAddedBasicBlock(*RegionExitBB);
3458 A.registerManifestAddedBasicBlock(*RegionStartBB);
3459 A.registerManifestAddedBasicBlock(*RegionCheckTidBB);
3461 bool HasBroadcastValues = false;
3462 // Find escaping outputs from the guarded region to outside users and
3463 // broadcast their values to them.
3464 for (Instruction &I : *RegionStartBB) {
3465 SmallPtrSet<Instruction *, 4> OutsideUsers;
3466 for (User *Usr : I.users()) {
3467 Instruction &UsrI = *cast<Instruction>(Usr);
3468 if (UsrI.getParent() != RegionStartBB)
3469 OutsideUsers.insert(&UsrI);
3472 if (OutsideUsers.empty())
3473 continue;
3475 HasBroadcastValues = true;
3477 // Emit a global variable in shared memory to store the broadcasted
3478 // value.
3479 auto *SharedMem = new GlobalVariable(
3480 M, I.getType(), /* IsConstant */ false,
3481 GlobalValue::InternalLinkage, UndefValue::get(I.getType()),
3482 sanitizeForGlobalName(
3483 (I.getName() + ".guarded.output.alloc").str()),
3484 nullptr, GlobalValue::NotThreadLocal,
3485 static_cast<unsigned>(AddressSpace::Shared));
3487 // Emit a store instruction to update the value.
3488 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator());
3490 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem,
3491 I.getName() + ".guarded.output.load",
3492 RegionBarrierBB->getTerminator());
3494 // Emit a load instruction and replace uses of the output value.
3495 for (Instruction *UsrI : OutsideUsers)
3496 UsrI->replaceUsesOfWith(&I, LoadI);
3499 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3501 // Go to tid check BB in ParentBB.
3502 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
3503 ParentBB->getTerminator()->eraseFromParent();
3504 OpenMPIRBuilder::LocationDescription Loc(
3505 InsertPointTy(ParentBB, ParentBB->end()), DL);
3506 OMPInfoCache.OMPBuilder.updateToLocation(Loc);
3507 uint32_t SrcLocStrSize;
3508 auto *SrcLocStr =
3509 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3510 Value *Ident =
3511 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3512 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL);
3514 // Add check for Tid in RegionCheckTidBB
3515 RegionCheckTidBB->getTerminator()->eraseFromParent();
3516 OpenMPIRBuilder::LocationDescription LocRegionCheckTid(
3517 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL);
3518 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid);
3519 FunctionCallee HardwareTidFn =
3520 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3521 M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3522 CallInst *Tid =
3523 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {});
3524 Tid->setDebugLoc(DL);
3525 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid);
3526 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid);
3527 OMPInfoCache.OMPBuilder.Builder
3528 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB)
3529 ->setDebugLoc(DL);
3531 // First barrier for synchronization, ensures main thread has updated
3532 // values.
3533 FunctionCallee BarrierFn =
3534 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3535 M, OMPRTL___kmpc_barrier_simple_spmd);
3536 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy(
3537 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt()));
3538 CallInst *Barrier =
3539 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid});
3540 Barrier->setDebugLoc(DL);
3541 OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3543 // Second barrier ensures workers have read broadcast values.
3544 if (HasBroadcastValues) {
3545 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "",
3546 RegionBarrierBB->getTerminator());
3547 Barrier->setDebugLoc(DL);
3548 OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3552 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3553 SmallPtrSet<BasicBlock *, 8> Visited;
3554 for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3555 BasicBlock *BB = GuardedI->getParent();
3556 if (!Visited.insert(BB).second)
3557 continue;
3559 SmallVector<std::pair<Instruction *, Instruction *>> Reorders;
3560 Instruction *LastEffect = nullptr;
3561 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend();
3562 while (++IP != IPEnd) {
3563 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory())
3564 continue;
3565 Instruction *I = &*IP;
3566 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI))
3567 continue;
3568 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) {
3569 LastEffect = nullptr;
3570 continue;
3572 if (LastEffect)
3573 Reorders.push_back({I, LastEffect});
3574 LastEffect = &*IP;
3576 for (auto &Reorder : Reorders)
3577 Reorder.first->moveBefore(Reorder.second);
3580 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions;
3582 for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3583 BasicBlock *BB = GuardedI->getParent();
3584 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>(
3585 IRPosition::function(*GuardedI->getFunction()), nullptr,
3586 DepClassTy::NONE);
3587 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo");
3588 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA);
3589 // Continue if instruction is already guarded.
3590 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI))
3591 continue;
3593 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr;
3594 for (Instruction &I : *BB) {
3595 // If instruction I needs to be guarded update the guarded region
3596 // bounds.
3597 if (SPMDCompatibilityTracker.contains(&I)) {
3598 CalleeAAFunction.getGuardedInstructions().insert(&I);
3599 if (GuardedRegionStart)
3600 GuardedRegionEnd = &I;
3601 else
3602 GuardedRegionStart = GuardedRegionEnd = &I;
3604 continue;
3607 // Instruction I does not need guarding, store
3608 // any region found and reset bounds.
3609 if (GuardedRegionStart) {
3610 GuardedRegions.push_back(
3611 std::make_pair(GuardedRegionStart, GuardedRegionEnd));
3612 GuardedRegionStart = nullptr;
3613 GuardedRegionEnd = nullptr;
3618 for (auto &GR : GuardedRegions)
3619 CreateGuardedRegion(GR.first, GR.second);
3621 // Adjust the global exec mode flag that tells the runtime what mode this
3622 // kernel is executed in.
3623 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC &&
3624 "Initially non-SPMD kernel has SPMD exec mode!");
3625 ExecMode->setInitializer(
3626 ConstantInt::get(ExecMode->getInitializer()->getType(),
3627 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD));
3629 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now.
3630 const int InitModeArgNo = 1;
3631 const int DeinitModeArgNo = 1;
3632 const int InitUseStateMachineArgNo = 2;
3633 const int InitRequiresFullRuntimeArgNo = 3;
3634 const int DeinitRequiresFullRuntimeArgNo = 2;
3636 auto &Ctx = getAnchorValue().getContext();
3637 A.changeUseAfterManifest(
3638 KernelInitCB->getArgOperandUse(InitModeArgNo),
3639 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
3640 OMP_TGT_EXEC_MODE_SPMD));
3641 A.changeUseAfterManifest(
3642 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo),
3643 *ConstantInt::getBool(Ctx, false));
3644 A.changeUseAfterManifest(
3645 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo),
3646 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
3647 OMP_TGT_EXEC_MODE_SPMD));
3648 A.changeUseAfterManifest(
3649 KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo),
3650 *ConstantInt::getBool(Ctx, false));
3651 A.changeUseAfterManifest(
3652 KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo),
3653 *ConstantInt::getBool(Ctx, false));
3655 ++NumOpenMPTargetRegionKernelsSPMD;
3657 auto Remark = [&](OptimizationRemark OR) {
3658 return OR << "Transformed generic-mode kernel to SPMD-mode.";
3660 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
3661 return true;
3664 ChangeStatus buildCustomStateMachine(Attributor &A) {
3665 // If we have disabled state machine rewrites, don't make a custom one
3666 if (DisableOpenMPOptStateMachineRewrite)
3667 return ChangeStatus::UNCHANGED;
3669 // Don't rewrite the state machine if we are not in a valid state.
3670 if (!ReachedKnownParallelRegions.isValidState())
3671 return ChangeStatus::UNCHANGED;
3673 const int InitModeArgNo = 1;
3674 const int InitUseStateMachineArgNo = 2;
3676 // Check if the current configuration is non-SPMD and generic state machine.
3677 // If we already have SPMD mode or a custom state machine we do not need to
3678 // go any further. If it is anything but a constant something is weird and
3679 // we give up.
3680 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>(
3681 KernelInitCB->getArgOperand(InitUseStateMachineArgNo));
3682 ConstantInt *Mode =
3683 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3685 // If we are stuck with generic mode, try to create a custom device (=GPU)
3686 // state machine which is specialized for the parallel regions that are
3687 // reachable by the kernel.
3688 if (!UseStateMachine || UseStateMachine->isZero() || !Mode ||
3689 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3690 return ChangeStatus::UNCHANGED;
3692 // If not SPMD mode, indicate we use a custom state machine now.
3693 auto &Ctx = getAnchorValue().getContext();
3694 auto *FalseVal = ConstantInt::getBool(Ctx, false);
3695 A.changeUseAfterManifest(
3696 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal);
3698 // If we don't actually need a state machine we are done here. This can
3699 // happen if there simply are no parallel regions. In the resulting kernel
3700 // all worker threads will simply exit right away, leaving the main thread
3701 // to do the work alone.
3702 if (!mayContainParallelRegion()) {
3703 ++NumOpenMPTargetRegionKernelsWithoutStateMachine;
3705 auto Remark = [&](OptimizationRemark OR) {
3706 return OR << "Removing unused state machine from generic-mode kernel.";
3708 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
3710 return ChangeStatus::CHANGED;
3713 // Keep track in the statistics of our new shiny custom state machine.
3714 if (ReachedUnknownParallelRegions.empty()) {
3715 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
3717 auto Remark = [&](OptimizationRemark OR) {
3718 return OR << "Rewriting generic-mode kernel with a customized state "
3719 "machine.";
3721 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
3722 } else {
3723 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
3725 auto Remark = [&](OptimizationRemarkAnalysis OR) {
3726 return OR << "Generic-mode kernel is executed with a customized state "
3727 "machine that requires a fallback.";
3729 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
3731 // Tell the user why we ended up with a fallback.
3732 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
3733 if (!UnknownParallelRegionCB)
3734 continue;
3735 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3736 return ORA << "Call may contain unknown parallel regions. Use "
3737 << "`__attribute__((assume(\"omp_no_parallelism\")))` to "
3738 "override.";
3740 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
3741 "OMP133", Remark);
3745 // Create all the blocks:
3747 // InitCB = __kmpc_target_init(...)
3748 // BlockHwSize =
3749 // __kmpc_get_hardware_num_threads_in_block();
3750 // WarpSize = __kmpc_get_warp_size();
3751 // BlockSize = BlockHwSize - WarpSize;
3752 // IsWorkerCheckBB: bool IsWorker = InitCB != -1;
3753 // if (IsWorker) {
3754 // if (InitCB >= BlockSize) return;
3755 // SMBeginBB: __kmpc_barrier_simple_generic(...);
3756 // void *WorkFn;
3757 // bool Active = __kmpc_kernel_parallel(&WorkFn);
3758 // if (!WorkFn) return;
3759 // SMIsActiveCheckBB: if (Active) {
3760 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>)
3761 // ParFn0(...);
3762 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>)
3763 // ParFn1(...);
3764 // ...
3765 // SMIfCascadeCurrentBB: else
3766 // ((WorkFnTy*)WorkFn)(...);
3767 // SMEndParallelBB: __kmpc_kernel_end_parallel(...);
3768 // }
3769 // SMDoneBB: __kmpc_barrier_simple_generic(...);
3770 // goto SMBeginBB;
3771 // }
3772 // UserCodeEntryBB: // user code
3773 // __kmpc_target_deinit(...)
3775 Function *Kernel = getAssociatedFunction();
3776 assert(Kernel && "Expected an associated function!");
3778 BasicBlock *InitBB = KernelInitCB->getParent();
3779 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
3780 KernelInitCB->getNextNode(), "thread.user_code.check");
3781 BasicBlock *IsWorkerCheckBB =
3782 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB);
3783 BasicBlock *StateMachineBeginBB = BasicBlock::Create(
3784 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
3785 BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
3786 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
3787 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
3788 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
3789 BasicBlock *StateMachineIfCascadeCurrentBB =
3790 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
3791 Kernel, UserCodeEntryBB);
3792 BasicBlock *StateMachineEndParallelBB =
3793 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
3794 Kernel, UserCodeEntryBB);
3795 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
3796 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
3797 A.registerManifestAddedBasicBlock(*InitBB);
3798 A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
3799 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB);
3800 A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
3801 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
3802 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
3803 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
3804 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
3805 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
3807 const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
3808 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
3809 InitBB->getTerminator()->eraseFromParent();
3811 Instruction *IsWorker =
3812 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
3813 ConstantInt::get(KernelInitCB->getType(), -1),
3814 "thread.is_worker", InitBB);
3815 IsWorker->setDebugLoc(DLoc);
3816 BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB);
3818 Module &M = *Kernel->getParent();
3819 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3820 FunctionCallee BlockHwSizeFn =
3821 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3822 M, OMPRTL___kmpc_get_hardware_num_threads_in_block);
3823 FunctionCallee WarpSizeFn =
3824 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3825 M, OMPRTL___kmpc_get_warp_size);
3826 CallInst *BlockHwSize =
3827 CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB);
3828 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize);
3829 BlockHwSize->setDebugLoc(DLoc);
3830 CallInst *WarpSize =
3831 CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB);
3832 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize);
3833 WarpSize->setDebugLoc(DLoc);
3834 Instruction *BlockSize = BinaryOperator::CreateSub(
3835 BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB);
3836 BlockSize->setDebugLoc(DLoc);
3837 Instruction *IsMainOrWorker = ICmpInst::Create(
3838 ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize,
3839 "thread.is_main_or_worker", IsWorkerCheckBB);
3840 IsMainOrWorker->setDebugLoc(DLoc);
3841 BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB,
3842 IsMainOrWorker, IsWorkerCheckBB);
3844 // Create local storage for the work function pointer.
3845 const DataLayout &DL = M.getDataLayout();
3846 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx);
3847 Instruction *WorkFnAI =
3848 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
3849 "worker.work_fn.addr", &Kernel->getEntryBlock().front());
3850 WorkFnAI->setDebugLoc(DLoc);
3852 OMPInfoCache.OMPBuilder.updateToLocation(
3853 OpenMPIRBuilder::LocationDescription(
3854 IRBuilder<>::InsertPoint(StateMachineBeginBB,
3855 StateMachineBeginBB->end()),
3856 DLoc));
3858 Value *Ident = KernelInitCB->getArgOperand(0);
3859 Value *GTid = KernelInitCB;
3861 FunctionCallee BarrierFn =
3862 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3863 M, OMPRTL___kmpc_barrier_simple_generic);
3864 CallInst *Barrier =
3865 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB);
3866 OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3867 Barrier->setDebugLoc(DLoc);
3869 if (WorkFnAI->getType()->getPointerAddressSpace() !=
3870 (unsigned int)AddressSpace::Generic) {
3871 WorkFnAI = new AddrSpaceCastInst(
3872 WorkFnAI,
3873 PointerType::getWithSamePointeeType(
3874 cast<PointerType>(WorkFnAI->getType()),
3875 (unsigned int)AddressSpace::Generic),
3876 WorkFnAI->getName() + ".generic", StateMachineBeginBB);
3877 WorkFnAI->setDebugLoc(DLoc);
3880 FunctionCallee KernelParallelFn =
3881 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3882 M, OMPRTL___kmpc_kernel_parallel);
3883 CallInst *IsActiveWorker = CallInst::Create(
3884 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
3885 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker);
3886 IsActiveWorker->setDebugLoc(DLoc);
3887 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
3888 StateMachineBeginBB);
3889 WorkFn->setDebugLoc(DLoc);
3891 FunctionType *ParallelRegionFnTy = FunctionType::get(
3892 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)},
3893 false);
3894 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
3895 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast",
3896 StateMachineBeginBB);
3898 Instruction *IsDone =
3899 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
3900 Constant::getNullValue(VoidPtrTy), "worker.is_done",
3901 StateMachineBeginBB);
3902 IsDone->setDebugLoc(DLoc);
3903 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
3904 IsDone, StateMachineBeginBB)
3905 ->setDebugLoc(DLoc);
3907 BranchInst::Create(StateMachineIfCascadeCurrentBB,
3908 StateMachineDoneBarrierBB, IsActiveWorker,
3909 StateMachineIsActiveCheckBB)
3910 ->setDebugLoc(DLoc);
3912 Value *ZeroArg =
3913 Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
3915 // Now that we have most of the CFG skeleton it is time for the if-cascade
3916 // that checks the function pointer we got from the runtime against the
3917 // parallel regions we expect, if there are any.
3918 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) {
3919 auto *ParallelRegion = ReachedKnownParallelRegions[I];
3920 BasicBlock *PRExecuteBB = BasicBlock::Create(
3921 Ctx, "worker_state_machine.parallel_region.execute", Kernel,
3922 StateMachineEndParallelBB);
3923 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
3924 ->setDebugLoc(DLoc);
3925 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
3926 ->setDebugLoc(DLoc);
3928 BasicBlock *PRNextBB =
3929 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
3930 Kernel, StateMachineEndParallelBB);
3932 // Check if we need to compare the pointer at all or if we can just
3933 // call the parallel region function.
3934 Value *IsPR;
3935 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) {
3936 Instruction *CmpI = ICmpInst::Create(
3937 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion,
3938 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
3939 CmpI->setDebugLoc(DLoc);
3940 IsPR = CmpI;
3941 } else {
3942 IsPR = ConstantInt::getTrue(Ctx);
3945 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
3946 StateMachineIfCascadeCurrentBB)
3947 ->setDebugLoc(DLoc);
3948 StateMachineIfCascadeCurrentBB = PRNextBB;
3951 // At the end of the if-cascade we place the indirect function pointer call
3952 // in case we might need it, that is if there can be parallel regions we
3953 // have not handled in the if-cascade above.
3954 if (!ReachedUnknownParallelRegions.empty()) {
3955 StateMachineIfCascadeCurrentBB->setName(
3956 "worker_state_machine.parallel_region.fallback.execute");
3957 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "",
3958 StateMachineIfCascadeCurrentBB)
3959 ->setDebugLoc(DLoc);
3961 BranchInst::Create(StateMachineEndParallelBB,
3962 StateMachineIfCascadeCurrentBB)
3963 ->setDebugLoc(DLoc);
3965 FunctionCallee EndParallelFn =
3966 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3967 M, OMPRTL___kmpc_kernel_end_parallel);
3968 CallInst *EndParallel =
3969 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB);
3970 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel);
3971 EndParallel->setDebugLoc(DLoc);
3972 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
3973 ->setDebugLoc(DLoc);
3975 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
3976 ->setDebugLoc(DLoc);
3977 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
3978 ->setDebugLoc(DLoc);
3980 return ChangeStatus::CHANGED;
3983 /// Fixpoint iteration update function. Will be called every time a dependence
3984 /// changed its state (and in the beginning).
3985 ChangeStatus updateImpl(Attributor &A) override {
3986 KernelInfoState StateBefore = getState();
3988 // Callback to check a read/write instruction.
3989 auto CheckRWInst = [&](Instruction &I) {
3990 // We handle calls later.
3991 if (isa<CallBase>(I))
3992 return true;
3993 // We only care about write effects.
3994 if (!I.mayWriteToMemory())
3995 return true;
3996 if (auto *SI = dyn_cast<StoreInst>(&I)) {
3997 SmallVector<const Value *> Objects;
3998 getUnderlyingObjects(SI->getPointerOperand(), Objects);
3999 if (llvm::all_of(Objects,
4000 [](const Value *Obj) { return isa<AllocaInst>(Obj); }))
4001 return true;
4002 // Check for AAHeapToStack moved objects which must not be guarded.
4003 auto &HS = A.getAAFor<AAHeapToStack>(
4004 *this, IRPosition::function(*I.getFunction()),
4005 DepClassTy::OPTIONAL);
4006 if (llvm::all_of(Objects, [&HS](const Value *Obj) {
4007 auto *CB = dyn_cast<CallBase>(Obj);
4008 if (!CB)
4009 return false;
4010 return HS.isAssumedHeapToStack(*CB);
4011 })) {
4012 return true;
4016 // Insert instruction that needs guarding.
4017 SPMDCompatibilityTracker.insert(&I);
4018 return true;
4021 bool UsedAssumedInformationInCheckRWInst = false;
4022 if (!SPMDCompatibilityTracker.isAtFixpoint())
4023 if (!A.checkForAllReadWriteInstructions(
4024 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
4025 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4027 bool UsedAssumedInformationFromReachingKernels = false;
4028 if (!IsKernelEntry) {
4029 updateParallelLevels(A);
4031 bool AllReachingKernelsKnown = true;
4032 updateReachingKernelEntries(A, AllReachingKernelsKnown);
4033 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown;
4035 if (!ParallelLevels.isValidState())
4036 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4037 else if (!ReachingKernelEntries.isValidState())
4038 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4039 else if (!SPMDCompatibilityTracker.empty()) {
4040 // Check if all reaching kernels agree on the mode as we can otherwise
4041 // not guard instructions. We might not be sure about the mode so we
4042 // we cannot fix the internal spmd-zation state either.
4043 int SPMD = 0, Generic = 0;
4044 for (auto *Kernel : ReachingKernelEntries) {
4045 auto &CBAA = A.getAAFor<AAKernelInfo>(
4046 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL);
4047 if (CBAA.SPMDCompatibilityTracker.isValidState() &&
4048 CBAA.SPMDCompatibilityTracker.isAssumed())
4049 ++SPMD;
4050 else
4051 ++Generic;
4052 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint())
4053 UsedAssumedInformationFromReachingKernels = true;
4055 if (SPMD != 0 && Generic != 0)
4056 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4060 // Callback to check a call instruction.
4061 bool AllParallelRegionStatesWereFixed = true;
4062 bool AllSPMDStatesWereFixed = true;
4063 auto CheckCallInst = [&](Instruction &I) {
4064 auto &CB = cast<CallBase>(I);
4065 auto &CBAA = A.getAAFor<AAKernelInfo>(
4066 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4067 getState() ^= CBAA.getState();
4068 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint();
4069 AllParallelRegionStatesWereFixed &=
4070 CBAA.ReachedKnownParallelRegions.isAtFixpoint();
4071 AllParallelRegionStatesWereFixed &=
4072 CBAA.ReachedUnknownParallelRegions.isAtFixpoint();
4073 return true;
4076 bool UsedAssumedInformationInCheckCallInst = false;
4077 if (!A.checkForAllCallLikeInstructions(
4078 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) {
4079 LLVM_DEBUG(dbgs() << TAG
4080 << "Failed to visit all call-like instructions!\n";);
4081 return indicatePessimisticFixpoint();
4084 // If we haven't used any assumed information for the reached parallel
4085 // region states we can fix it.
4086 if (!UsedAssumedInformationInCheckCallInst &&
4087 AllParallelRegionStatesWereFixed) {
4088 ReachedKnownParallelRegions.indicateOptimisticFixpoint();
4089 ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
4092 // If we are sure there are no parallel regions in the kernel we do not
4093 // want SPMD mode.
4094 if (IsKernelEntry && ReachedUnknownParallelRegions.isAtFixpoint() &&
4095 ReachedKnownParallelRegions.isAtFixpoint() &&
4096 ReachedUnknownParallelRegions.isValidState() &&
4097 ReachedKnownParallelRegions.isValidState() &&
4098 !mayContainParallelRegion())
4099 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4101 // If we haven't used any assumed information for the SPMD state we can fix
4102 // it.
4103 if (!UsedAssumedInformationInCheckRWInst &&
4104 !UsedAssumedInformationInCheckCallInst &&
4105 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed)
4106 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4108 return StateBefore == getState() ? ChangeStatus::UNCHANGED
4109 : ChangeStatus::CHANGED;
4112 private:
4113 /// Update info regarding reaching kernels.
4114 void updateReachingKernelEntries(Attributor &A,
4115 bool &AllReachingKernelsKnown) {
4116 auto PredCallSite = [&](AbstractCallSite ACS) {
4117 Function *Caller = ACS.getInstruction()->getFunction();
4119 assert(Caller && "Caller is nullptr");
4121 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>(
4122 IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
4123 if (CAA.ReachingKernelEntries.isValidState()) {
4124 ReachingKernelEntries ^= CAA.ReachingKernelEntries;
4125 return true;
4128 // We lost track of the caller of the associated function, any kernel
4129 // could reach now.
4130 ReachingKernelEntries.indicatePessimisticFixpoint();
4132 return true;
4135 if (!A.checkForAllCallSites(PredCallSite, *this,
4136 true /* RequireAllCallSites */,
4137 AllReachingKernelsKnown))
4138 ReachingKernelEntries.indicatePessimisticFixpoint();
4141 /// Update info regarding parallel levels.
4142 void updateParallelLevels(Attributor &A) {
4143 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4144 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
4145 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
4147 auto PredCallSite = [&](AbstractCallSite ACS) {
4148 Function *Caller = ACS.getInstruction()->getFunction();
4150 assert(Caller && "Caller is nullptr");
4152 auto &CAA =
4153 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
4154 if (CAA.ParallelLevels.isValidState()) {
4155 // Any function that is called by `__kmpc_parallel_51` will not be
4156 // folded as the parallel level in the function is updated. In order to
4157 // get it right, all the analysis would depend on the implentation. That
4158 // said, if in the future any change to the implementation, the analysis
4159 // could be wrong. As a consequence, we are just conservative here.
4160 if (Caller == Parallel51RFI.Declaration) {
4161 ParallelLevels.indicatePessimisticFixpoint();
4162 return true;
4165 ParallelLevels ^= CAA.ParallelLevels;
4167 return true;
4170 // We lost track of the caller of the associated function, any kernel
4171 // could reach now.
4172 ParallelLevels.indicatePessimisticFixpoint();
4174 return true;
4177 bool AllCallSitesKnown = true;
4178 if (!A.checkForAllCallSites(PredCallSite, *this,
4179 true /* RequireAllCallSites */,
4180 AllCallSitesKnown))
4181 ParallelLevels.indicatePessimisticFixpoint();
4185 /// The call site kernel info abstract attribute, basically, what can we say
4186 /// about a call site with regards to the KernelInfoState. For now this simply
4187 /// forwards the information from the callee.
4188 struct AAKernelInfoCallSite : AAKernelInfo {
4189 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
4190 : AAKernelInfo(IRP, A) {}
4192 /// See AbstractAttribute::initialize(...).
4193 void initialize(Attributor &A) override {
4194 AAKernelInfo::initialize(A);
4196 CallBase &CB = cast<CallBase>(getAssociatedValue());
4197 Function *Callee = getAssociatedFunction();
4199 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
4200 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4202 // Check for SPMD-mode assumptions.
4203 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) {
4204 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4205 indicateOptimisticFixpoint();
4208 // First weed out calls we do not care about, that is readonly/readnone
4209 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
4210 // parallel region or anything else we are looking for.
4211 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
4212 indicateOptimisticFixpoint();
4213 return;
4216 // Next we check if we know the callee. If it is a known OpenMP function
4217 // we will handle them explicitly in the switch below. If it is not, we
4218 // will use an AAKernelInfo object on the callee to gather information and
4219 // merge that into the current state. The latter happens in the updateImpl.
4220 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4221 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4222 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4223 // Unknown caller or declarations are not analyzable, we give up.
4224 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
4226 // Unknown callees might contain parallel regions, except if they have
4227 // an appropriate assumption attached.
4228 if (!(AssumptionAA.hasAssumption("omp_no_openmp") ||
4229 AssumptionAA.hasAssumption("omp_no_parallelism")))
4230 ReachedUnknownParallelRegions.insert(&CB);
4232 // If SPMDCompatibilityTracker is not fixed, we need to give up on the
4233 // idea we can run something unknown in SPMD-mode.
4234 if (!SPMDCompatibilityTracker.isAtFixpoint()) {
4235 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4236 SPMDCompatibilityTracker.insert(&CB);
4239 // We have updated the state for this unknown call properly, there won't
4240 // be any change so we indicate a fixpoint.
4241 indicateOptimisticFixpoint();
4243 // If the callee is known and can be used in IPO, we will update the state
4244 // based on the callee state in updateImpl.
4245 return;
4248 const unsigned int WrapperFunctionArgNo = 6;
4249 RuntimeFunction RF = It->getSecond();
4250 switch (RF) {
4251 // All the functions we know are compatible with SPMD mode.
4252 case OMPRTL___kmpc_is_spmd_exec_mode:
4253 case OMPRTL___kmpc_distribute_static_fini:
4254 case OMPRTL___kmpc_for_static_fini:
4255 case OMPRTL___kmpc_global_thread_num:
4256 case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4257 case OMPRTL___kmpc_get_hardware_num_blocks:
4258 case OMPRTL___kmpc_single:
4259 case OMPRTL___kmpc_end_single:
4260 case OMPRTL___kmpc_master:
4261 case OMPRTL___kmpc_end_master:
4262 case OMPRTL___kmpc_barrier:
4263 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2:
4264 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2:
4265 case OMPRTL___kmpc_nvptx_end_reduce_nowait:
4266 break;
4267 case OMPRTL___kmpc_distribute_static_init_4:
4268 case OMPRTL___kmpc_distribute_static_init_4u:
4269 case OMPRTL___kmpc_distribute_static_init_8:
4270 case OMPRTL___kmpc_distribute_static_init_8u:
4271 case OMPRTL___kmpc_for_static_init_4:
4272 case OMPRTL___kmpc_for_static_init_4u:
4273 case OMPRTL___kmpc_for_static_init_8:
4274 case OMPRTL___kmpc_for_static_init_8u: {
4275 // Check the schedule and allow static schedule in SPMD mode.
4276 unsigned ScheduleArgOpNo = 2;
4277 auto *ScheduleTypeCI =
4278 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
4279 unsigned ScheduleTypeVal =
4280 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
4281 switch (OMPScheduleType(ScheduleTypeVal)) {
4282 case OMPScheduleType::UnorderedStatic:
4283 case OMPScheduleType::UnorderedStaticChunked:
4284 case OMPScheduleType::OrderedDistribute:
4285 case OMPScheduleType::OrderedDistributeChunked:
4286 break;
4287 default:
4288 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4289 SPMDCompatibilityTracker.insert(&CB);
4290 break;
4292 } break;
4293 case OMPRTL___kmpc_target_init:
4294 KernelInitCB = &CB;
4295 break;
4296 case OMPRTL___kmpc_target_deinit:
4297 KernelDeinitCB = &CB;
4298 break;
4299 case OMPRTL___kmpc_parallel_51:
4300 if (auto *ParallelRegion = dyn_cast<Function>(
4301 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) {
4302 ReachedKnownParallelRegions.insert(ParallelRegion);
4303 break;
4305 // The condition above should usually get the parallel region function
4306 // pointer and record it. In the off chance it doesn't we assume the
4307 // worst.
4308 ReachedUnknownParallelRegions.insert(&CB);
4309 break;
4310 case OMPRTL___kmpc_omp_task:
4311 // We do not look into tasks right now, just give up.
4312 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4313 SPMDCompatibilityTracker.insert(&CB);
4314 ReachedUnknownParallelRegions.insert(&CB);
4315 break;
4316 case OMPRTL___kmpc_alloc_shared:
4317 case OMPRTL___kmpc_free_shared:
4318 // Return without setting a fixpoint, to be resolved in updateImpl.
4319 return;
4320 default:
4321 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
4322 // generally. However, they do not hide parallel regions.
4323 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4324 SPMDCompatibilityTracker.insert(&CB);
4325 break;
4327 // All other OpenMP runtime calls will not reach parallel regions so they
4328 // can be safely ignored for now. Since it is a known OpenMP runtime call we
4329 // have now modeled all effects and there is no need for any update.
4330 indicateOptimisticFixpoint();
4333 ChangeStatus updateImpl(Attributor &A) override {
4334 // TODO: Once we have call site specific value information we can provide
4335 // call site specific liveness information and then it makes
4336 // sense to specialize attributes for call sites arguments instead of
4337 // redirecting requests to the callee argument.
4338 Function *F = getAssociatedFunction();
4340 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4341 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
4343 // If F is not a runtime function, propagate the AAKernelInfo of the callee.
4344 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4345 const IRPosition &FnPos = IRPosition::function(*F);
4346 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
4347 if (getState() == FnAA.getState())
4348 return ChangeStatus::UNCHANGED;
4349 getState() = FnAA.getState();
4350 return ChangeStatus::CHANGED;
4353 // F is a runtime function that allocates or frees memory, check
4354 // AAHeapToStack and AAHeapToShared.
4355 KernelInfoState StateBefore = getState();
4356 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared ||
4357 It->getSecond() == OMPRTL___kmpc_free_shared) &&
4358 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
4360 CallBase &CB = cast<CallBase>(getAssociatedValue());
4362 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>(
4363 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4364 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>(
4365 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4367 RuntimeFunction RF = It->getSecond();
4369 switch (RF) {
4370 // If neither HeapToStack nor HeapToShared assume the call is removed,
4371 // assume SPMD incompatibility.
4372 case OMPRTL___kmpc_alloc_shared:
4373 if (!HeapToStackAA.isAssumedHeapToStack(CB) &&
4374 !HeapToSharedAA.isAssumedHeapToShared(CB))
4375 SPMDCompatibilityTracker.insert(&CB);
4376 break;
4377 case OMPRTL___kmpc_free_shared:
4378 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) &&
4379 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB))
4380 SPMDCompatibilityTracker.insert(&CB);
4381 break;
4382 default:
4383 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4384 SPMDCompatibilityTracker.insert(&CB);
4387 return StateBefore == getState() ? ChangeStatus::UNCHANGED
4388 : ChangeStatus::CHANGED;
4392 struct AAFoldRuntimeCall
4393 : public StateWrapper<BooleanState, AbstractAttribute> {
4394 using Base = StateWrapper<BooleanState, AbstractAttribute>;
4396 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
4398 /// Statistics are tracked as part of manifest for now.
4399 void trackStatistics() const override {}
4401 /// Create an abstract attribute biew for the position \p IRP.
4402 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
4403 Attributor &A);
4405 /// See AbstractAttribute::getName()
4406 const std::string getName() const override { return "AAFoldRuntimeCall"; }
4408 /// See AbstractAttribute::getIdAddr()
4409 const char *getIdAddr() const override { return &ID; }
4411 /// This function should return true if the type of the \p AA is
4412 /// AAFoldRuntimeCall
4413 static bool classof(const AbstractAttribute *AA) {
4414 return (AA->getIdAddr() == &ID);
4417 static const char ID;
4420 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
4421 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
4422 : AAFoldRuntimeCall(IRP, A) {}
4424 /// See AbstractAttribute::getAsStr()
4425 const std::string getAsStr() const override {
4426 if (!isValidState())
4427 return "<invalid>";
4429 std::string Str("simplified value: ");
4431 if (!SimplifiedValue)
4432 return Str + std::string("none");
4434 if (!SimplifiedValue.value())
4435 return Str + std::string("nullptr");
4437 if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.value()))
4438 return Str + std::to_string(CI->getSExtValue());
4440 return Str + std::string("unknown");
4443 void initialize(Attributor &A) override {
4444 if (DisableOpenMPOptFolding)
4445 indicatePessimisticFixpoint();
4447 Function *Callee = getAssociatedFunction();
4449 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4450 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4451 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
4452 "Expected a known OpenMP runtime function");
4454 RFKind = It->getSecond();
4456 CallBase &CB = cast<CallBase>(getAssociatedValue());
4457 A.registerSimplificationCallback(
4458 IRPosition::callsite_returned(CB),
4459 [&](const IRPosition &IRP, const AbstractAttribute *AA,
4460 bool &UsedAssumedInformation) -> Optional<Value *> {
4461 assert((isValidState() ||
4462 (SimplifiedValue && SimplifiedValue.value() == nullptr)) &&
4463 "Unexpected invalid state!");
4465 if (!isAtFixpoint()) {
4466 UsedAssumedInformation = true;
4467 if (AA)
4468 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
4470 return SimplifiedValue;
4474 ChangeStatus updateImpl(Attributor &A) override {
4475 ChangeStatus Changed = ChangeStatus::UNCHANGED;
4476 switch (RFKind) {
4477 case OMPRTL___kmpc_is_spmd_exec_mode:
4478 Changed |= foldIsSPMDExecMode(A);
4479 break;
4480 case OMPRTL___kmpc_is_generic_main_thread_id:
4481 Changed |= foldIsGenericMainThread(A);
4482 break;
4483 case OMPRTL___kmpc_parallel_level:
4484 Changed |= foldParallelLevel(A);
4485 break;
4486 case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4487 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
4488 break;
4489 case OMPRTL___kmpc_get_hardware_num_blocks:
4490 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
4491 break;
4492 default:
4493 llvm_unreachable("Unhandled OpenMP runtime function!");
4496 return Changed;
4499 ChangeStatus manifest(Attributor &A) override {
4500 ChangeStatus Changed = ChangeStatus::UNCHANGED;
4502 if (SimplifiedValue && *SimplifiedValue) {
4503 Instruction &I = *getCtxI();
4504 A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue);
4505 A.deleteAfterManifest(I);
4507 CallBase *CB = dyn_cast<CallBase>(&I);
4508 auto Remark = [&](OptimizationRemark OR) {
4509 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue))
4510 return OR << "Replacing OpenMP runtime call "
4511 << CB->getCalledFunction()->getName() << " with "
4512 << ore::NV("FoldedValue", C->getZExtValue()) << ".";
4513 return OR << "Replacing OpenMP runtime call "
4514 << CB->getCalledFunction()->getName() << ".";
4517 if (CB && EnableVerboseRemarks)
4518 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark);
4520 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with "
4521 << **SimplifiedValue << "\n");
4523 Changed = ChangeStatus::CHANGED;
4526 return Changed;
4529 ChangeStatus indicatePessimisticFixpoint() override {
4530 SimplifiedValue = nullptr;
4531 return AAFoldRuntimeCall::indicatePessimisticFixpoint();
4534 private:
4535 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
4536 ChangeStatus foldIsSPMDExecMode(Attributor &A) {
4537 Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4539 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4540 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4541 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4542 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4544 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4545 return indicatePessimisticFixpoint();
4547 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4548 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4549 DepClassTy::REQUIRED);
4551 if (!AA.isValidState()) {
4552 SimplifiedValue = nullptr;
4553 return indicatePessimisticFixpoint();
4556 if (AA.SPMDCompatibilityTracker.isAssumed()) {
4557 if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4558 ++KnownSPMDCount;
4559 else
4560 ++AssumedSPMDCount;
4561 } else {
4562 if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4563 ++KnownNonSPMDCount;
4564 else
4565 ++AssumedNonSPMDCount;
4569 if ((AssumedSPMDCount + KnownSPMDCount) &&
4570 (AssumedNonSPMDCount + KnownNonSPMDCount))
4571 return indicatePessimisticFixpoint();
4573 auto &Ctx = getAnchorValue().getContext();
4574 if (KnownSPMDCount || AssumedSPMDCount) {
4575 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4576 "Expected only SPMD kernels!");
4577 // All reaching kernels are in SPMD mode. Update all function calls to
4578 // __kmpc_is_spmd_exec_mode to 1.
4579 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4580 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
4581 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4582 "Expected only non-SPMD kernels!");
4583 // All reaching kernels are in non-SPMD mode. Update all function
4584 // calls to __kmpc_is_spmd_exec_mode to 0.
4585 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
4586 } else {
4587 // We have empty reaching kernels, therefore we cannot tell if the
4588 // associated call site can be folded. At this moment, SimplifiedValue
4589 // must be none.
4590 assert(!SimplifiedValue && "SimplifiedValue should be none");
4593 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4594 : ChangeStatus::CHANGED;
4597 /// Fold __kmpc_is_generic_main_thread_id into a constant if possible.
4598 ChangeStatus foldIsGenericMainThread(Attributor &A) {
4599 Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4601 CallBase &CB = cast<CallBase>(getAssociatedValue());
4602 Function *F = CB.getFunction();
4603 const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
4604 *this, IRPosition::function(*F), DepClassTy::REQUIRED);
4606 if (!ExecutionDomainAA.isValidState())
4607 return indicatePessimisticFixpoint();
4609 auto &Ctx = getAnchorValue().getContext();
4610 if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB))
4611 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4612 else
4613 return indicatePessimisticFixpoint();
4615 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4616 : ChangeStatus::CHANGED;
4619 /// Fold __kmpc_parallel_level into a constant if possible.
4620 ChangeStatus foldParallelLevel(Attributor &A) {
4621 Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4623 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4624 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4626 if (!CallerKernelInfoAA.ParallelLevels.isValidState())
4627 return indicatePessimisticFixpoint();
4629 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4630 return indicatePessimisticFixpoint();
4632 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) {
4633 assert(!SimplifiedValue &&
4634 "SimplifiedValue should keep none at this point");
4635 return ChangeStatus::UNCHANGED;
4638 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4639 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4640 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4641 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4642 DepClassTy::REQUIRED);
4643 if (!AA.SPMDCompatibilityTracker.isValidState())
4644 return indicatePessimisticFixpoint();
4646 if (AA.SPMDCompatibilityTracker.isAssumed()) {
4647 if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4648 ++KnownSPMDCount;
4649 else
4650 ++AssumedSPMDCount;
4651 } else {
4652 if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4653 ++KnownNonSPMDCount;
4654 else
4655 ++AssumedNonSPMDCount;
4659 if ((AssumedSPMDCount + KnownSPMDCount) &&
4660 (AssumedNonSPMDCount + KnownNonSPMDCount))
4661 return indicatePessimisticFixpoint();
4663 auto &Ctx = getAnchorValue().getContext();
4664 // If the caller can only be reached by SPMD kernel entries, the parallel
4665 // level is 1. Similarly, if the caller can only be reached by non-SPMD
4666 // kernel entries, it is 0.
4667 if (AssumedSPMDCount || KnownSPMDCount) {
4668 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4669 "Expected only SPMD kernels!");
4670 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
4671 } else {
4672 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4673 "Expected only non-SPMD kernels!");
4674 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0);
4676 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4677 : ChangeStatus::CHANGED;
4680 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) {
4681 // Specialize only if all the calls agree with the attribute constant value
4682 int32_t CurrentAttrValue = -1;
4683 Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4685 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4686 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4688 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4689 return indicatePessimisticFixpoint();
4691 // Iterate over the kernels that reach this function
4692 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4693 int32_t NextAttrVal = -1;
4694 if (K->hasFnAttribute(Attr))
4695 NextAttrVal =
4696 std::stoi(K->getFnAttribute(Attr).getValueAsString().str());
4698 if (NextAttrVal == -1 ||
4699 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal))
4700 return indicatePessimisticFixpoint();
4701 CurrentAttrValue = NextAttrVal;
4704 if (CurrentAttrValue != -1) {
4705 auto &Ctx = getAnchorValue().getContext();
4706 SimplifiedValue =
4707 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue);
4709 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4710 : ChangeStatus::CHANGED;
4713 /// An optional value the associated value is assumed to fold to. That is, we
4714 /// assume the associated value (which is a call) can be replaced by this
4715 /// simplified value.
4716 Optional<Value *> SimplifiedValue;
4718 /// The runtime function kind of the callee of the associated call site.
4719 RuntimeFunction RFKind;
4722 } // namespace
4724 /// Register folding callsite
4725 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) {
4726 auto &RFI = OMPInfoCache.RFIs[RF];
4727 RFI.foreachUse(SCC, [&](Use &U, Function &F) {
4728 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI);
4729 if (!CI)
4730 return false;
4731 A.getOrCreateAAFor<AAFoldRuntimeCall>(
4732 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr,
4733 DepClassTy::NONE, /* ForceUpdate */ false,
4734 /* UpdateAfterInit */ false);
4735 return false;
4739 void OpenMPOpt::registerAAs(bool IsModulePass) {
4740 if (SCC.empty())
4741 return;
4743 if (IsModulePass) {
4744 // Ensure we create the AAKernelInfo AAs first and without triggering an
4745 // update. This will make sure we register all value simplification
4746 // callbacks before any other AA has the chance to create an AAValueSimplify
4747 // or similar.
4748 auto CreateKernelInfoCB = [&](Use &, Function &Kernel) {
4749 A.getOrCreateAAFor<AAKernelInfo>(
4750 IRPosition::function(Kernel), /* QueryingAA */ nullptr,
4751 DepClassTy::NONE, /* ForceUpdate */ false,
4752 /* UpdateAfterInit */ false);
4753 return false;
4755 OMPInformationCache::RuntimeFunctionInfo &InitRFI =
4756 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
4757 InitRFI.foreachUse(SCC, CreateKernelInfoCB);
4759 registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id);
4760 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode);
4761 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level);
4762 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block);
4763 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks);
4766 // Create CallSite AA for all Getters.
4767 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
4768 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
4770 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
4772 auto CreateAA = [&](Use &U, Function &Caller) {
4773 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
4774 if (!CI)
4775 return false;
4777 auto &CB = cast<CallBase>(*CI);
4779 IRPosition CBPos = IRPosition::callsite_function(CB);
4780 A.getOrCreateAAFor<AAICVTracker>(CBPos);
4781 return false;
4784 GetterRFI.foreachUse(SCC, CreateAA);
4786 auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
4787 auto CreateAA = [&](Use &U, Function &F) {
4788 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F));
4789 return false;
4791 if (!DisableOpenMPOptDeglobalization)
4792 GlobalizationRFI.foreachUse(SCC, CreateAA);
4794 // Create an ExecutionDomain AA for every function and a HeapToStack AA for
4795 // every function if there is a device kernel.
4796 if (!isOpenMPDevice(M))
4797 return;
4799 for (auto *F : SCC) {
4800 if (F->isDeclaration())
4801 continue;
4803 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F));
4804 if (!DisableOpenMPOptDeglobalization)
4805 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F));
4807 for (auto &I : instructions(*F)) {
4808 if (auto *LI = dyn_cast<LoadInst>(&I)) {
4809 bool UsedAssumedInformation = false;
4810 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr,
4811 UsedAssumedInformation, AA::Interprocedural);
4812 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
4813 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI));
4819 const char AAICVTracker::ID = 0;
4820 const char AAKernelInfo::ID = 0;
4821 const char AAExecutionDomain::ID = 0;
4822 const char AAHeapToShared::ID = 0;
4823 const char AAFoldRuntimeCall::ID = 0;
4825 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
4826 Attributor &A) {
4827 AAICVTracker *AA = nullptr;
4828 switch (IRP.getPositionKind()) {
4829 case IRPosition::IRP_INVALID:
4830 case IRPosition::IRP_FLOAT:
4831 case IRPosition::IRP_ARGUMENT:
4832 case IRPosition::IRP_CALL_SITE_ARGUMENT:
4833 llvm_unreachable("ICVTracker can only be created for function position!");
4834 case IRPosition::IRP_RETURNED:
4835 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
4836 break;
4837 case IRPosition::IRP_CALL_SITE_RETURNED:
4838 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
4839 break;
4840 case IRPosition::IRP_CALL_SITE:
4841 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
4842 break;
4843 case IRPosition::IRP_FUNCTION:
4844 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
4845 break;
4848 return *AA;
4851 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
4852 Attributor &A) {
4853 AAExecutionDomainFunction *AA = nullptr;
4854 switch (IRP.getPositionKind()) {
4855 case IRPosition::IRP_INVALID:
4856 case IRPosition::IRP_FLOAT:
4857 case IRPosition::IRP_ARGUMENT:
4858 case IRPosition::IRP_CALL_SITE_ARGUMENT:
4859 case IRPosition::IRP_RETURNED:
4860 case IRPosition::IRP_CALL_SITE_RETURNED:
4861 case IRPosition::IRP_CALL_SITE:
4862 llvm_unreachable(
4863 "AAExecutionDomain can only be created for function position!");
4864 case IRPosition::IRP_FUNCTION:
4865 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
4866 break;
4869 return *AA;
4872 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP,
4873 Attributor &A) {
4874 AAHeapToSharedFunction *AA = nullptr;
4875 switch (IRP.getPositionKind()) {
4876 case IRPosition::IRP_INVALID:
4877 case IRPosition::IRP_FLOAT:
4878 case IRPosition::IRP_ARGUMENT:
4879 case IRPosition::IRP_CALL_SITE_ARGUMENT:
4880 case IRPosition::IRP_RETURNED:
4881 case IRPosition::IRP_CALL_SITE_RETURNED:
4882 case IRPosition::IRP_CALL_SITE:
4883 llvm_unreachable(
4884 "AAHeapToShared can only be created for function position!");
4885 case IRPosition::IRP_FUNCTION:
4886 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A);
4887 break;
4890 return *AA;
4893 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP,
4894 Attributor &A) {
4895 AAKernelInfo *AA = nullptr;
4896 switch (IRP.getPositionKind()) {
4897 case IRPosition::IRP_INVALID:
4898 case IRPosition::IRP_FLOAT:
4899 case IRPosition::IRP_ARGUMENT:
4900 case IRPosition::IRP_RETURNED:
4901 case IRPosition::IRP_CALL_SITE_RETURNED:
4902 case IRPosition::IRP_CALL_SITE_ARGUMENT:
4903 llvm_unreachable("KernelInfo can only be created for function position!");
4904 case IRPosition::IRP_CALL_SITE:
4905 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A);
4906 break;
4907 case IRPosition::IRP_FUNCTION:
4908 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A);
4909 break;
4912 return *AA;
4915 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP,
4916 Attributor &A) {
4917 AAFoldRuntimeCall *AA = nullptr;
4918 switch (IRP.getPositionKind()) {
4919 case IRPosition::IRP_INVALID:
4920 case IRPosition::IRP_FLOAT:
4921 case IRPosition::IRP_ARGUMENT:
4922 case IRPosition::IRP_RETURNED:
4923 case IRPosition::IRP_FUNCTION:
4924 case IRPosition::IRP_CALL_SITE:
4925 case IRPosition::IRP_CALL_SITE_ARGUMENT:
4926 llvm_unreachable("KernelInfo can only be created for call site position!");
4927 case IRPosition::IRP_CALL_SITE_RETURNED:
4928 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A);
4929 break;
4932 return *AA;
4935 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
4936 if (!containsOpenMP(M))
4937 return PreservedAnalyses::all();
4938 if (DisableOpenMPOptimizations)
4939 return PreservedAnalyses::all();
4941 FunctionAnalysisManager &FAM =
4942 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
4943 KernelSet Kernels = getDeviceKernels(M);
4945 if (PrintModuleBeforeOptimizations)
4946 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M);
4948 auto IsCalled = [&](Function &F) {
4949 if (Kernels.contains(&F))
4950 return true;
4951 for (const User *U : F.users())
4952 if (!isa<BlockAddress>(U))
4953 return true;
4954 return false;
4957 auto EmitRemark = [&](Function &F) {
4958 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4959 ORE.emit([&]() {
4960 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F);
4961 return ORA << "Could not internalize function. "
4962 << "Some optimizations may not be possible. [OMP140]";
4966 // Create internal copies of each function if this is a kernel Module. This
4967 // allows iterprocedural passes to see every call edge.
4968 DenseMap<Function *, Function *> InternalizedMap;
4969 if (isOpenMPDevice(M)) {
4970 SmallPtrSet<Function *, 16> InternalizeFns;
4971 for (Function &F : M)
4972 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) &&
4973 !DisableInternalization) {
4974 if (Attributor::isInternalizable(F)) {
4975 InternalizeFns.insert(&F);
4976 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) {
4977 EmitRemark(F);
4981 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap);
4984 // Look at every function in the Module unless it was internalized.
4985 SmallVector<Function *, 16> SCC;
4986 for (Function &F : M)
4987 if (!F.isDeclaration() && !InternalizedMap.lookup(&F))
4988 SCC.push_back(&F);
4990 if (SCC.empty())
4991 return PreservedAnalyses::all();
4993 AnalysisGetter AG(FAM);
4995 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
4996 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
4999 BumpPtrAllocator Allocator;
5000 CallGraphUpdater CGUpdater;
5002 SetVector<Function *> Functions(SCC.begin(), SCC.end());
5003 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels);
5005 unsigned MaxFixpointIterations =
5006 (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5008 AttributorConfig AC(CGUpdater);
5009 AC.DefaultInitializeLiveInternals = false;
5010 AC.RewriteSignatures = false;
5011 AC.MaxFixpointIterations = MaxFixpointIterations;
5012 AC.OREGetter = OREGetter;
5013 AC.PassName = DEBUG_TYPE;
5015 Attributor A(Functions, InfoCache, AC);
5017 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5018 bool Changed = OMPOpt.run(true);
5020 // Optionally inline device functions for potentially better performance.
5021 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M))
5022 for (Function &F : M)
5023 if (!F.isDeclaration() && !Kernels.contains(&F) &&
5024 !F.hasFnAttribute(Attribute::NoInline))
5025 F.addFnAttr(Attribute::AlwaysInline);
5027 if (PrintModuleAfterOptimizations)
5028 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M);
5030 if (Changed)
5031 return PreservedAnalyses::none();
5033 return PreservedAnalyses::all();
5036 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
5037 CGSCCAnalysisManager &AM,
5038 LazyCallGraph &CG,
5039 CGSCCUpdateResult &UR) {
5040 if (!containsOpenMP(*C.begin()->getFunction().getParent()))
5041 return PreservedAnalyses::all();
5042 if (DisableOpenMPOptimizations)
5043 return PreservedAnalyses::all();
5045 SmallVector<Function *, 16> SCC;
5046 // If there are kernels in the module, we have to run on all SCC's.
5047 for (LazyCallGraph::Node &N : C) {
5048 Function *Fn = &N.getFunction();
5049 SCC.push_back(Fn);
5052 if (SCC.empty())
5053 return PreservedAnalyses::all();
5055 Module &M = *C.begin()->getFunction().getParent();
5057 if (PrintModuleBeforeOptimizations)
5058 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M);
5060 KernelSet Kernels = getDeviceKernels(M);
5062 FunctionAnalysisManager &FAM =
5063 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
5065 AnalysisGetter AG(FAM);
5067 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5068 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5071 BumpPtrAllocator Allocator;
5072 CallGraphUpdater CGUpdater;
5073 CGUpdater.initialize(CG, C, AM, UR);
5075 SetVector<Function *> Functions(SCC.begin(), SCC.end());
5076 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
5077 /*CGSCC*/ Functions, Kernels);
5079 unsigned MaxFixpointIterations =
5080 (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5082 AttributorConfig AC(CGUpdater);
5083 AC.DefaultInitializeLiveInternals = false;
5084 AC.IsModulePass = false;
5085 AC.RewriteSignatures = false;
5086 AC.MaxFixpointIterations = MaxFixpointIterations;
5087 AC.OREGetter = OREGetter;
5088 AC.PassName = DEBUG_TYPE;
5090 Attributor A(Functions, InfoCache, AC);
5092 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5093 bool Changed = OMPOpt.run(false);
5095 if (PrintModuleAfterOptimizations)
5096 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5098 if (Changed)
5099 return PreservedAnalyses::none();
5101 return PreservedAnalyses::all();
5104 namespace {
5106 struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass {
5107 CallGraphUpdater CGUpdater;
5108 static char ID;
5110 OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) {
5111 initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
5114 void getAnalysisUsage(AnalysisUsage &AU) const override {
5115 CallGraphSCCPass::getAnalysisUsage(AU);
5118 bool runOnSCC(CallGraphSCC &CGSCC) override {
5119 if (!containsOpenMP(CGSCC.getCallGraph().getModule()))
5120 return false;
5121 if (DisableOpenMPOptimizations || skipSCC(CGSCC))
5122 return false;
5124 SmallVector<Function *, 16> SCC;
5125 // If there are kernels in the module, we have to run on all SCC's.
5126 for (CallGraphNode *CGN : CGSCC) {
5127 Function *Fn = CGN->getFunction();
5128 if (!Fn || Fn->isDeclaration())
5129 continue;
5130 SCC.push_back(Fn);
5133 if (SCC.empty())
5134 return false;
5136 Module &M = CGSCC.getCallGraph().getModule();
5137 KernelSet Kernels = getDeviceKernels(M);
5139 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
5140 CGUpdater.initialize(CG, CGSCC);
5142 // Maintain a map of functions to avoid rebuilding the ORE
5143 DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap;
5144 auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & {
5145 std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F];
5146 if (!ORE)
5147 ORE = std::make_unique<OptimizationRemarkEmitter>(F);
5148 return *ORE;
5151 AnalysisGetter AG;
5152 SetVector<Function *> Functions(SCC.begin(), SCC.end());
5153 BumpPtrAllocator Allocator;
5154 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG,
5155 Allocator,
5156 /*CGSCC*/ Functions, Kernels);
5158 unsigned MaxFixpointIterations =
5159 (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5161 AttributorConfig AC(CGUpdater);
5162 AC.DefaultInitializeLiveInternals = false;
5163 AC.IsModulePass = false;
5164 AC.RewriteSignatures = false;
5165 AC.MaxFixpointIterations = MaxFixpointIterations;
5166 AC.OREGetter = OREGetter;
5167 AC.PassName = DEBUG_TYPE;
5169 Attributor A(Functions, InfoCache, AC);
5171 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5172 bool Result = OMPOpt.run(false);
5174 if (PrintModuleAfterOptimizations)
5175 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5177 return Result;
5180 bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
5183 } // end anonymous namespace
5185 KernelSet llvm::omp::getDeviceKernels(Module &M) {
5186 // TODO: Create a more cross-platform way of determining device kernels.
5187 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
5188 KernelSet Kernels;
5190 if (!MD)
5191 return Kernels;
5193 for (auto *Op : MD->operands()) {
5194 if (Op->getNumOperands() < 2)
5195 continue;
5196 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
5197 if (!KindID || KindID->getString() != "kernel")
5198 continue;
5200 Function *KernelFn =
5201 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
5202 if (!KernelFn)
5203 continue;
5205 ++NumOpenMPTargetRegionKernels;
5207 Kernels.insert(KernelFn);
5210 return Kernels;
5213 bool llvm::omp::containsOpenMP(Module &M) {
5214 Metadata *MD = M.getModuleFlag("openmp");
5215 if (!MD)
5216 return false;
5218 return true;
5221 bool llvm::omp::isOpenMPDevice(Module &M) {
5222 Metadata *MD = M.getModuleFlag("openmp-device");
5223 if (!MD)
5224 return false;
5226 return true;
5229 char OpenMPOptCGSCCLegacyPass::ID = 0;
5231 INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
5232 "OpenMP specific optimizations", false, false)
5233 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
5234 INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
5235 "OpenMP specific optimizations", false, false)
5237 Pass *llvm::createOpenMPOptCGSCCLegacyPass() {
5238 return new OpenMPOptCGSCCLegacyPass();