[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / Transforms / Utils / SimplifyIndVar.cpp
blob08c48b02e591d6f711fa9c4c82f1b74d4a26b803
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
29 using namespace llvm;
31 #define DEBUG_TYPE "indvars"
33 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
34 STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
35 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
36 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
37 STATISTIC(
38 NumSimplifiedSDiv,
39 "Number of IV signed division operations converted to unsigned division");
40 STATISTIC(
41 NumSimplifiedSRem,
42 "Number of IV signed remainder operations converted to unsigned remainder");
43 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
45 namespace {
46 /// This is a utility for simplifying induction variables
47 /// based on ScalarEvolution. It is the primary instrument of the
48 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
49 /// other loop passes that preserve SCEV.
50 class SimplifyIndvar {
51 Loop *L;
52 LoopInfo *LI;
53 ScalarEvolution *SE;
54 DominatorTree *DT;
55 const TargetTransformInfo *TTI;
56 SCEVExpander &Rewriter;
57 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
59 bool Changed = false;
61 public:
62 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
63 LoopInfo *LI, const TargetTransformInfo *TTI,
64 SCEVExpander &Rewriter,
65 SmallVectorImpl<WeakTrackingVH> &Dead)
66 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
67 DeadInsts(Dead) {
68 assert(LI && "IV simplification requires LoopInfo");
71 bool hasChanged() const { return Changed; }
73 /// Iteratively perform simplification on a worklist of users of the
74 /// specified induction variable. This is the top-level driver that applies
75 /// all simplifications to users of an IV.
76 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
78 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
80 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
81 bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
82 bool replaceFloatIVWithIntegerIV(Instruction *UseInst);
84 bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
85 bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
86 bool eliminateTrunc(TruncInst *TI);
87 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
88 bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand);
89 void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand);
90 void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand,
91 bool IsSigned);
92 void replaceRemWithNumerator(BinaryOperator *Rem);
93 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
94 void replaceSRemWithURem(BinaryOperator *Rem);
95 bool eliminateSDiv(BinaryOperator *SDiv);
96 bool strengthenOverflowingOperation(BinaryOperator *OBO,
97 Instruction *IVOperand);
98 bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand);
102 /// Find a point in code which dominates all given instructions. We can safely
103 /// assume that, whatever fact we can prove at the found point, this fact is
104 /// also true for each of the given instructions.
105 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
106 DominatorTree &DT) {
107 Instruction *CommonDom = nullptr;
108 for (auto *Insn : Instructions)
109 if (!CommonDom || DT.dominates(Insn, CommonDom))
110 CommonDom = Insn;
111 else if (!DT.dominates(CommonDom, Insn))
112 // If there is no dominance relation, use common dominator.
113 CommonDom =
114 DT.findNearestCommonDominator(CommonDom->getParent(),
115 Insn->getParent())->getTerminator();
116 assert(CommonDom && "Common dominator not found?");
117 return CommonDom;
120 /// Fold an IV operand into its use. This removes increments of an
121 /// aligned IV when used by a instruction that ignores the low bits.
123 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
125 /// Return the operand of IVOperand for this induction variable if IVOperand can
126 /// be folded (in case more folding opportunities have been exposed).
127 /// Otherwise return null.
128 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
129 Value *IVSrc = nullptr;
130 const unsigned OperIdx = 0;
131 const SCEV *FoldedExpr = nullptr;
132 bool MustDropExactFlag = false;
133 switch (UseInst->getOpcode()) {
134 default:
135 return nullptr;
136 case Instruction::UDiv:
137 case Instruction::LShr:
138 // We're only interested in the case where we know something about
139 // the numerator and have a constant denominator.
140 if (IVOperand != UseInst->getOperand(OperIdx) ||
141 !isa<ConstantInt>(UseInst->getOperand(1)))
142 return nullptr;
144 // Attempt to fold a binary operator with constant operand.
145 // e.g. ((I + 1) >> 2) => I >> 2
146 if (!isa<BinaryOperator>(IVOperand)
147 || !isa<ConstantInt>(IVOperand->getOperand(1)))
148 return nullptr;
150 IVSrc = IVOperand->getOperand(0);
151 // IVSrc must be the (SCEVable) IV, since the other operand is const.
152 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
154 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
155 if (UseInst->getOpcode() == Instruction::LShr) {
156 // Get a constant for the divisor. See createSCEV.
157 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
158 if (D->getValue().uge(BitWidth))
159 return nullptr;
161 D = ConstantInt::get(UseInst->getContext(),
162 APInt::getOneBitSet(BitWidth, D->getZExtValue()));
164 const auto *LHS = SE->getSCEV(IVSrc);
165 const auto *RHS = SE->getSCEV(D);
166 FoldedExpr = SE->getUDivExpr(LHS, RHS);
167 // We might have 'exact' flag set at this point which will no longer be
168 // correct after we make the replacement.
169 if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
170 MustDropExactFlag = true;
172 // We have something that might fold it's operand. Compare SCEVs.
173 if (!SE->isSCEVable(UseInst->getType()))
174 return nullptr;
176 // Bypass the operand if SCEV can prove it has no effect.
177 if (SE->getSCEV(UseInst) != FoldedExpr)
178 return nullptr;
180 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
181 << " -> " << *UseInst << '\n');
183 UseInst->setOperand(OperIdx, IVSrc);
184 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
186 if (MustDropExactFlag)
187 UseInst->dropPoisonGeneratingFlags();
189 ++NumElimOperand;
190 Changed = true;
191 if (IVOperand->use_empty())
192 DeadInsts.emplace_back(IVOperand);
193 return IVSrc;
196 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
197 Instruction *IVOperand) {
198 unsigned IVOperIdx = 0;
199 ICmpInst::Predicate Pred = ICmp->getPredicate();
200 if (IVOperand != ICmp->getOperand(0)) {
201 // Swapped
202 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
203 IVOperIdx = 1;
204 Pred = ICmpInst::getSwappedPredicate(Pred);
207 // Get the SCEVs for the ICmp operands (in the specific context of the
208 // current loop)
209 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
210 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
211 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
213 auto *PN = dyn_cast<PHINode>(IVOperand);
214 if (!PN)
215 return false;
217 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L, ICmp);
218 if (!LIP)
219 return false;
220 ICmpInst::Predicate InvariantPredicate = LIP->Pred;
221 const SCEV *InvariantLHS = LIP->LHS;
222 const SCEV *InvariantRHS = LIP->RHS;
224 // Rewrite the comparison to a loop invariant comparison if it can be done
225 // cheaply, where cheaply means "we don't need to emit any new
226 // instructions".
228 SmallDenseMap<const SCEV*, Value*> CheapExpansions;
229 CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
230 CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
232 // TODO: Support multiple entry loops? (We currently bail out of these in
233 // the IndVarSimplify pass)
234 if (auto *BB = L->getLoopPredecessor()) {
235 const int Idx = PN->getBasicBlockIndex(BB);
236 if (Idx >= 0) {
237 Value *Incoming = PN->getIncomingValue(Idx);
238 const SCEV *IncomingS = SE->getSCEV(Incoming);
239 CheapExpansions[IncomingS] = Incoming;
242 Value *NewLHS = CheapExpansions[InvariantLHS];
243 Value *NewRHS = CheapExpansions[InvariantRHS];
245 if (!NewLHS)
246 if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
247 NewLHS = ConstLHS->getValue();
248 if (!NewRHS)
249 if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
250 NewRHS = ConstRHS->getValue();
252 if (!NewLHS || !NewRHS)
253 // We could not find an existing value to replace either LHS or RHS.
254 // Generating new instructions has subtler tradeoffs, so avoid doing that
255 // for now.
256 return false;
258 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
259 ICmp->setPredicate(InvariantPredicate);
260 ICmp->setOperand(0, NewLHS);
261 ICmp->setOperand(1, NewRHS);
262 return true;
265 /// SimplifyIVUsers helper for eliminating useless
266 /// comparisons against an induction variable.
267 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp,
268 Instruction *IVOperand) {
269 unsigned IVOperIdx = 0;
270 ICmpInst::Predicate Pred = ICmp->getPredicate();
271 ICmpInst::Predicate OriginalPred = Pred;
272 if (IVOperand != ICmp->getOperand(0)) {
273 // Swapped
274 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
275 IVOperIdx = 1;
276 Pred = ICmpInst::getSwappedPredicate(Pred);
279 // Get the SCEVs for the ICmp operands (in the specific context of the
280 // current loop)
281 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
282 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
283 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
285 // If the condition is always true or always false in the given context,
286 // replace it with a constant value.
287 SmallVector<Instruction *, 4> Users;
288 for (auto *U : ICmp->users())
289 Users.push_back(cast<Instruction>(U));
290 const Instruction *CtxI = findCommonDominator(Users, *DT);
291 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
292 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
293 DeadInsts.emplace_back(ICmp);
294 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
295 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
296 // fallthrough to end of function
297 } else if (ICmpInst::isSigned(OriginalPred) &&
298 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
299 // If we were unable to make anything above, all we can is to canonicalize
300 // the comparison hoping that it will open the doors for other
301 // optimizations. If we find out that we compare two non-negative values,
302 // we turn the instruction's predicate to its unsigned version. Note that
303 // we cannot rely on Pred here unless we check if we have swapped it.
304 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
305 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
306 << '\n');
307 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
308 } else
309 return;
311 ++NumElimCmp;
312 Changed = true;
315 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
316 // Get the SCEVs for the ICmp operands.
317 auto *N = SE->getSCEV(SDiv->getOperand(0));
318 auto *D = SE->getSCEV(SDiv->getOperand(1));
320 // Simplify unnecessary loops away.
321 const Loop *L = LI->getLoopFor(SDiv->getParent());
322 N = SE->getSCEVAtScope(N, L);
323 D = SE->getSCEVAtScope(D, L);
325 // Replace sdiv by udiv if both of the operands are non-negative
326 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
327 auto *UDiv = BinaryOperator::Create(
328 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
329 SDiv->getName() + ".udiv", SDiv);
330 UDiv->setIsExact(SDiv->isExact());
331 SDiv->replaceAllUsesWith(UDiv);
332 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
333 ++NumSimplifiedSDiv;
334 Changed = true;
335 DeadInsts.push_back(SDiv);
336 return true;
339 return false;
342 // i %s n -> i %u n if i >= 0 and n >= 0
343 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
344 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
345 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
346 Rem->getName() + ".urem", Rem);
347 Rem->replaceAllUsesWith(URem);
348 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
349 ++NumSimplifiedSRem;
350 Changed = true;
351 DeadInsts.emplace_back(Rem);
354 // i % n --> i if i is in [0,n).
355 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
356 Rem->replaceAllUsesWith(Rem->getOperand(0));
357 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
358 ++NumElimRem;
359 Changed = true;
360 DeadInsts.emplace_back(Rem);
363 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
364 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
365 auto *T = Rem->getType();
366 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
367 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
368 SelectInst *Sel =
369 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
370 Rem->replaceAllUsesWith(Sel);
371 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
372 ++NumElimRem;
373 Changed = true;
374 DeadInsts.emplace_back(Rem);
377 /// SimplifyIVUsers helper for eliminating useless remainder operations
378 /// operating on an induction variable or replacing srem by urem.
379 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem,
380 Instruction *IVOperand,
381 bool IsSigned) {
382 auto *NValue = Rem->getOperand(0);
383 auto *DValue = Rem->getOperand(1);
384 // We're only interested in the case where we know something about
385 // the numerator, unless it is a srem, because we want to replace srem by urem
386 // in general.
387 bool UsedAsNumerator = IVOperand == NValue;
388 if (!UsedAsNumerator && !IsSigned)
389 return;
391 const SCEV *N = SE->getSCEV(NValue);
393 // Simplify unnecessary loops away.
394 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
395 N = SE->getSCEVAtScope(N, ICmpLoop);
397 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
399 // Do not proceed if the Numerator may be negative
400 if (!IsNumeratorNonNegative)
401 return;
403 const SCEV *D = SE->getSCEV(DValue);
404 D = SE->getSCEVAtScope(D, ICmpLoop);
406 if (UsedAsNumerator) {
407 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
408 if (SE->isKnownPredicate(LT, N, D)) {
409 replaceRemWithNumerator(Rem);
410 return;
413 auto *T = Rem->getType();
414 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
415 if (SE->isKnownPredicate(LT, NLessOne, D)) {
416 replaceRemWithNumeratorOrZero(Rem);
417 return;
421 // Try to replace SRem with URem, if both N and D are known non-negative.
422 // Since we had already check N, we only need to check D now
423 if (!IsSigned || !SE->isKnownNonNegative(D))
424 return;
426 replaceSRemWithURem(Rem);
429 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
430 const SCEV *LHS = SE->getSCEV(WO->getLHS());
431 const SCEV *RHS = SE->getSCEV(WO->getRHS());
432 if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
433 return false;
435 // Proved no overflow, nuke the overflow check and, if possible, the overflow
436 // intrinsic as well.
438 BinaryOperator *NewResult = BinaryOperator::Create(
439 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
441 if (WO->isSigned())
442 NewResult->setHasNoSignedWrap(true);
443 else
444 NewResult->setHasNoUnsignedWrap(true);
446 SmallVector<ExtractValueInst *, 4> ToDelete;
448 for (auto *U : WO->users()) {
449 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
450 if (EVI->getIndices()[0] == 1)
451 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
452 else {
453 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
454 EVI->replaceAllUsesWith(NewResult);
456 ToDelete.push_back(EVI);
460 for (auto *EVI : ToDelete)
461 EVI->eraseFromParent();
463 if (WO->use_empty())
464 WO->eraseFromParent();
466 Changed = true;
467 return true;
470 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
471 const SCEV *LHS = SE->getSCEV(SI->getLHS());
472 const SCEV *RHS = SE->getSCEV(SI->getRHS());
473 if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
474 return false;
476 BinaryOperator *BO = BinaryOperator::Create(
477 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
478 if (SI->isSigned())
479 BO->setHasNoSignedWrap();
480 else
481 BO->setHasNoUnsignedWrap();
483 SI->replaceAllUsesWith(BO);
484 DeadInsts.emplace_back(SI);
485 Changed = true;
486 return true;
489 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
490 // It is always legal to replace
491 // icmp <pred> i32 trunc(iv), n
492 // with
493 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
494 // Or with
495 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
496 // Or with either of these if pred is an equality predicate.
498 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
499 // every comparison which uses trunc, it means that we can replace each of
500 // them with comparison of iv against sext/zext(n). We no longer need trunc
501 // after that.
503 // TODO: Should we do this if we can widen *some* comparisons, but not all
504 // of them? Sometimes it is enough to enable other optimizations, but the
505 // trunc instruction will stay in the loop.
506 Value *IV = TI->getOperand(0);
507 Type *IVTy = IV->getType();
508 const SCEV *IVSCEV = SE->getSCEV(IV);
509 const SCEV *TISCEV = SE->getSCEV(TI);
511 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
512 // get rid of trunc
513 bool DoesSExtCollapse = false;
514 bool DoesZExtCollapse = false;
515 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
516 DoesSExtCollapse = true;
517 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
518 DoesZExtCollapse = true;
520 // If neither sext nor zext does collapse, it is not profitable to do any
521 // transform. Bail.
522 if (!DoesSExtCollapse && !DoesZExtCollapse)
523 return false;
525 // Collect users of the trunc that look like comparisons against invariants.
526 // Bail if we find something different.
527 SmallVector<ICmpInst *, 4> ICmpUsers;
528 for (auto *U : TI->users()) {
529 // We don't care about users in unreachable blocks.
530 if (isa<Instruction>(U) &&
531 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
532 continue;
533 ICmpInst *ICI = dyn_cast<ICmpInst>(U);
534 if (!ICI) return false;
535 assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
536 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
537 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
538 return false;
539 // If we cannot get rid of trunc, bail.
540 if (ICI->isSigned() && !DoesSExtCollapse)
541 return false;
542 if (ICI->isUnsigned() && !DoesZExtCollapse)
543 return false;
544 // For equality, either signed or unsigned works.
545 ICmpUsers.push_back(ICI);
548 auto CanUseZExt = [&](ICmpInst *ICI) {
549 // Unsigned comparison can be widened as unsigned.
550 if (ICI->isUnsigned())
551 return true;
552 // Is it profitable to do zext?
553 if (!DoesZExtCollapse)
554 return false;
555 // For equality, we can safely zext both parts.
556 if (ICI->isEquality())
557 return true;
558 // Otherwise we can only use zext when comparing two non-negative or two
559 // negative values. But in practice, we will never pass DoesZExtCollapse
560 // check for a negative value, because zext(trunc(x)) is non-negative. So
561 // it only make sense to check for non-negativity here.
562 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
563 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
564 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
566 // Replace all comparisons against trunc with comparisons against IV.
567 for (auto *ICI : ICmpUsers) {
568 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
569 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
570 Instruction *Ext = nullptr;
571 // For signed/unsigned predicate, replace the old comparison with comparison
572 // of immediate IV against sext/zext of the invariant argument. If we can
573 // use either sext or zext (i.e. we are dealing with equality predicate),
574 // then prefer zext as a more canonical form.
575 // TODO: If we see a signed comparison which can be turned into unsigned,
576 // we can do it here for canonicalization purposes.
577 ICmpInst::Predicate Pred = ICI->getPredicate();
578 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
579 if (CanUseZExt(ICI)) {
580 assert(DoesZExtCollapse && "Unprofitable zext?");
581 Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
582 Pred = ICmpInst::getUnsignedPredicate(Pred);
583 } else {
584 assert(DoesSExtCollapse && "Unprofitable sext?");
585 Ext = new SExtInst(Op1, IVTy, "sext", ICI);
586 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
588 bool Changed;
589 L->makeLoopInvariant(Ext, Changed);
590 (void)Changed;
591 ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
592 ICI->replaceAllUsesWith(NewICI);
593 DeadInsts.emplace_back(ICI);
596 // Trunc no longer needed.
597 TI->replaceAllUsesWith(PoisonValue::get(TI->getType()));
598 DeadInsts.emplace_back(TI);
599 return true;
602 /// Eliminate an operation that consumes a simple IV and has no observable
603 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
604 /// but UseInst may not be.
605 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
606 Instruction *IVOperand) {
607 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
608 eliminateIVComparison(ICmp, IVOperand);
609 return true;
611 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
612 bool IsSRem = Bin->getOpcode() == Instruction::SRem;
613 if (IsSRem || Bin->getOpcode() == Instruction::URem) {
614 simplifyIVRemainder(Bin, IVOperand, IsSRem);
615 return true;
618 if (Bin->getOpcode() == Instruction::SDiv)
619 return eliminateSDiv(Bin);
622 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
623 if (eliminateOverflowIntrinsic(WO))
624 return true;
626 if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
627 if (eliminateSaturatingIntrinsic(SI))
628 return true;
630 if (auto *TI = dyn_cast<TruncInst>(UseInst))
631 if (eliminateTrunc(TI))
632 return true;
634 if (eliminateIdentitySCEV(UseInst, IVOperand))
635 return true;
637 return false;
640 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
641 if (auto *BB = L->getLoopPreheader())
642 return BB->getTerminator();
644 return Hint;
647 /// Replace the UseInst with a loop invariant expression if it is safe.
648 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
649 if (!SE->isSCEVable(I->getType()))
650 return false;
652 // Get the symbolic expression for this instruction.
653 const SCEV *S = SE->getSCEV(I);
655 if (!SE->isLoopInvariant(S, L))
656 return false;
658 // Do not generate something ridiculous even if S is loop invariant.
659 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
660 return false;
662 auto *IP = GetLoopInvariantInsertPosition(L, I);
664 if (!Rewriter.isSafeToExpandAt(S, IP)) {
665 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
666 << " with non-speculable loop invariant: " << *S << '\n');
667 return false;
670 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
672 I->replaceAllUsesWith(Invariant);
673 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
674 << " with loop invariant: " << *S << '\n');
675 ++NumFoldedUser;
676 Changed = true;
677 DeadInsts.emplace_back(I);
678 return true;
681 /// Eliminate redundant type cast between integer and float.
682 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
683 if (UseInst->getOpcode() != CastInst::SIToFP &&
684 UseInst->getOpcode() != CastInst::UIToFP)
685 return false;
687 Instruction *IVOperand = cast<Instruction>(UseInst->getOperand(0));
688 // Get the symbolic expression for this instruction.
689 const SCEV *IV = SE->getSCEV(IVOperand);
690 unsigned MaskBits;
691 if (UseInst->getOpcode() == CastInst::SIToFP)
692 MaskBits = SE->getSignedRange(IV).getMinSignedBits();
693 else
694 MaskBits = SE->getUnsignedRange(IV).getActiveBits();
695 unsigned DestNumSigBits = UseInst->getType()->getFPMantissaWidth();
696 if (MaskBits <= DestNumSigBits) {
697 for (User *U : UseInst->users()) {
698 // Match for fptosi/fptoui of sitofp and with same type.
699 auto *CI = dyn_cast<CastInst>(U);
700 if (!CI)
701 continue;
703 CastInst::CastOps Opcode = CI->getOpcode();
704 if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI)
705 continue;
707 Value *Conv = nullptr;
708 if (IVOperand->getType() != CI->getType()) {
709 IRBuilder<> Builder(CI);
710 StringRef Name = IVOperand->getName();
711 // To match InstCombine logic, we only need sext if both fptosi and
712 // sitofp are used. If one of them is unsigned, then we can use zext.
713 if (SE->getTypeSizeInBits(IVOperand->getType()) >
714 SE->getTypeSizeInBits(CI->getType())) {
715 Conv = Builder.CreateTrunc(IVOperand, CI->getType(), Name + ".trunc");
716 } else if (Opcode == CastInst::FPToUI ||
717 UseInst->getOpcode() == CastInst::UIToFP) {
718 Conv = Builder.CreateZExt(IVOperand, CI->getType(), Name + ".zext");
719 } else {
720 Conv = Builder.CreateSExt(IVOperand, CI->getType(), Name + ".sext");
722 } else
723 Conv = IVOperand;
725 CI->replaceAllUsesWith(Conv);
726 DeadInsts.push_back(CI);
727 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI
728 << " with: " << *Conv << '\n');
730 ++NumFoldedUser;
731 Changed = true;
735 return Changed;
738 /// Eliminate any operation that SCEV can prove is an identity function.
739 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
740 Instruction *IVOperand) {
741 if (!SE->isSCEVable(UseInst->getType()) ||
742 (UseInst->getType() != IVOperand->getType()) ||
743 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
744 return false;
746 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
747 // dominator tree, even if X is an operand to Y. For instance, in
749 // %iv = phi i32 {0,+,1}
750 // br %cond, label %left, label %merge
752 // left:
753 // %X = add i32 %iv, 0
754 // br label %merge
756 // merge:
757 // %M = phi (%X, %iv)
759 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
760 // %M.replaceAllUsesWith(%X) would be incorrect.
762 if (isa<PHINode>(UseInst))
763 // If UseInst is not a PHI node then we know that IVOperand dominates
764 // UseInst directly from the legality of SSA.
765 if (!DT || !DT->dominates(IVOperand, UseInst))
766 return false;
768 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
769 return false;
771 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
773 UseInst->replaceAllUsesWith(IVOperand);
774 ++NumElimIdentity;
775 Changed = true;
776 DeadInsts.emplace_back(UseInst);
777 return true;
780 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
781 /// unsigned-overflow. Returns true if anything changed, false otherwise.
782 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
783 Instruction *IVOperand) {
784 auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp(
785 cast<OverflowingBinaryOperator>(BO));
787 if (!Flags)
788 return false;
790 BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) ==
791 SCEV::FlagNUW);
792 BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) ==
793 SCEV::FlagNSW);
795 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
796 // flags on addrecs while performing zero/sign extensions. We could call
797 // forgetValue() here to make sure those flags also propagate to any other
798 // SCEV expressions based on the addrec. However, this can have pathological
799 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
800 return true;
803 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
804 /// information from the IV's range. Returns true if anything changed, false
805 /// otherwise.
806 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
807 Instruction *IVOperand) {
808 using namespace llvm::PatternMatch;
810 if (BO->getOpcode() == Instruction::Shl) {
811 bool Changed = false;
812 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
813 for (auto *U : BO->users()) {
814 const APInt *C;
815 if (match(U,
816 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
817 match(U,
818 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
819 BinaryOperator *Shr = cast<BinaryOperator>(U);
820 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
821 Shr->setIsExact(true);
822 Changed = true;
826 return Changed;
829 return false;
832 /// Add all uses of Def to the current IV's worklist.
833 static void pushIVUsers(
834 Instruction *Def, Loop *L,
835 SmallPtrSet<Instruction*,16> &Simplified,
836 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
838 for (User *U : Def->users()) {
839 Instruction *UI = cast<Instruction>(U);
841 // Avoid infinite or exponential worklist processing.
842 // Also ensure unique worklist users.
843 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
844 // self edges first.
845 if (UI == Def)
846 continue;
848 // Only change the current Loop, do not change the other parts (e.g. other
849 // Loops).
850 if (!L->contains(UI))
851 continue;
853 // Do not push the same instruction more than once.
854 if (!Simplified.insert(UI).second)
855 continue;
857 SimpleIVUsers.push_back(std::make_pair(UI, Def));
861 /// Return true if this instruction generates a simple SCEV
862 /// expression in terms of that IV.
864 /// This is similar to IVUsers' isInteresting() but processes each instruction
865 /// non-recursively when the operand is already known to be a simpleIVUser.
867 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
868 if (!SE->isSCEVable(I->getType()))
869 return false;
871 // Get the symbolic expression for this instruction.
872 const SCEV *S = SE->getSCEV(I);
874 // Only consider affine recurrences.
875 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
876 if (AR && AR->getLoop() == L)
877 return true;
879 return false;
882 /// Iteratively perform simplification on a worklist of users
883 /// of the specified induction variable. Each successive simplification may push
884 /// more users which may themselves be candidates for simplification.
886 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
887 /// instructions in-place during analysis. Rather than rewriting induction
888 /// variables bottom-up from their users, it transforms a chain of IVUsers
889 /// top-down, updating the IR only when it encounters a clear optimization
890 /// opportunity.
892 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
894 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
895 if (!SE->isSCEVable(CurrIV->getType()))
896 return;
898 // Instructions processed by SimplifyIndvar for CurrIV.
899 SmallPtrSet<Instruction*,16> Simplified;
901 // Use-def pairs if IV users waiting to be processed for CurrIV.
902 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
904 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
905 // called multiple times for the same LoopPhi. This is the proper thing to
906 // do for loop header phis that use each other.
907 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
909 while (!SimpleIVUsers.empty()) {
910 std::pair<Instruction*, Instruction*> UseOper =
911 SimpleIVUsers.pop_back_val();
912 Instruction *UseInst = UseOper.first;
914 // If a user of the IndVar is trivially dead, we prefer just to mark it dead
915 // rather than try to do some complex analysis or transformation (such as
916 // widening) basing on it.
917 // TODO: Propagate TLI and pass it here to handle more cases.
918 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
919 DeadInsts.emplace_back(UseInst);
920 continue;
923 // Bypass back edges to avoid extra work.
924 if (UseInst == CurrIV) continue;
926 // Try to replace UseInst with a loop invariant before any other
927 // simplifications.
928 if (replaceIVUserWithLoopInvariant(UseInst))
929 continue;
931 Instruction *IVOperand = UseOper.second;
932 for (unsigned N = 0; IVOperand; ++N) {
933 assert(N <= Simplified.size() && "runaway iteration");
934 (void) N;
936 Value *NewOper = foldIVUser(UseInst, IVOperand);
937 if (!NewOper)
938 break; // done folding
939 IVOperand = dyn_cast<Instruction>(NewOper);
941 if (!IVOperand)
942 continue;
944 if (eliminateIVUser(UseInst, IVOperand)) {
945 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
946 continue;
949 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
950 if ((isa<OverflowingBinaryOperator>(BO) &&
951 strengthenOverflowingOperation(BO, IVOperand)) ||
952 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
953 // re-queue uses of the now modified binary operator and fall
954 // through to the checks that remain.
955 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
959 // Try to use integer induction for FPToSI of float induction directly.
960 if (replaceFloatIVWithIntegerIV(UseInst)) {
961 // Re-queue the potentially new direct uses of IVOperand.
962 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
963 continue;
966 CastInst *Cast = dyn_cast<CastInst>(UseInst);
967 if (V && Cast) {
968 V->visitCast(Cast);
969 continue;
971 if (isSimpleIVUser(UseInst, L, SE)) {
972 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
977 namespace llvm {
979 void IVVisitor::anchor() { }
981 /// Simplify instructions that use this induction variable
982 /// by using ScalarEvolution to analyze the IV's recurrence.
983 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
984 LoopInfo *LI, const TargetTransformInfo *TTI,
985 SmallVectorImpl<WeakTrackingVH> &Dead,
986 SCEVExpander &Rewriter, IVVisitor *V) {
987 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
988 Rewriter, Dead);
989 SIV.simplifyUsers(CurrIV, V);
990 return SIV.hasChanged();
993 /// Simplify users of induction variables within this
994 /// loop. This does not actually change or add IVs.
995 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
996 LoopInfo *LI, const TargetTransformInfo *TTI,
997 SmallVectorImpl<WeakTrackingVH> &Dead) {
998 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
999 #ifndef NDEBUG
1000 Rewriter.setDebugType(DEBUG_TYPE);
1001 #endif
1002 bool Changed = false;
1003 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1004 Changed |=
1005 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
1007 return Changed;
1010 } // namespace llvm
1012 namespace {
1013 //===----------------------------------------------------------------------===//
1014 // Widen Induction Variables - Extend the width of an IV to cover its
1015 // widest uses.
1016 //===----------------------------------------------------------------------===//
1018 class WidenIV {
1019 // Parameters
1020 PHINode *OrigPhi;
1021 Type *WideType;
1023 // Context
1024 LoopInfo *LI;
1025 Loop *L;
1026 ScalarEvolution *SE;
1027 DominatorTree *DT;
1029 // Does the module have any calls to the llvm.experimental.guard intrinsic
1030 // at all? If not we can avoid scanning instructions looking for guards.
1031 bool HasGuards;
1033 bool UsePostIncrementRanges;
1035 // Statistics
1036 unsigned NumElimExt = 0;
1037 unsigned NumWidened = 0;
1039 // Result
1040 PHINode *WidePhi = nullptr;
1041 Instruction *WideInc = nullptr;
1042 const SCEV *WideIncExpr = nullptr;
1043 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
1045 SmallPtrSet<Instruction *,16> Widened;
1047 enum class ExtendKind { Zero, Sign, Unknown };
1049 // A map tracking the kind of extension used to widen each narrow IV
1050 // and narrow IV user.
1051 // Key: pointer to a narrow IV or IV user.
1052 // Value: the kind of extension used to widen this Instruction.
1053 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1055 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1057 // A map with control-dependent ranges for post increment IV uses. The key is
1058 // a pair of IV def and a use of this def denoting the context. The value is
1059 // a ConstantRange representing possible values of the def at the given
1060 // context.
1061 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1063 Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
1064 Instruction *UseI) {
1065 DefUserPair Key(Def, UseI);
1066 auto It = PostIncRangeInfos.find(Key);
1067 return It == PostIncRangeInfos.end()
1068 ? Optional<ConstantRange>(None)
1069 : Optional<ConstantRange>(It->second);
1072 void calculatePostIncRanges(PHINode *OrigPhi);
1073 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1075 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1076 DefUserPair Key(Def, UseI);
1077 auto It = PostIncRangeInfos.find(Key);
1078 if (It == PostIncRangeInfos.end())
1079 PostIncRangeInfos.insert({Key, R});
1080 else
1081 It->second = R.intersectWith(It->second);
1084 public:
1085 /// Record a link in the Narrow IV def-use chain along with the WideIV that
1086 /// computes the same value as the Narrow IV def. This avoids caching Use*
1087 /// pointers.
1088 struct NarrowIVDefUse {
1089 Instruction *NarrowDef = nullptr;
1090 Instruction *NarrowUse = nullptr;
1091 Instruction *WideDef = nullptr;
1093 // True if the narrow def is never negative. Tracking this information lets
1094 // us use a sign extension instead of a zero extension or vice versa, when
1095 // profitable and legal.
1096 bool NeverNegative = false;
1098 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1099 bool NeverNegative)
1100 : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1101 NeverNegative(NeverNegative) {}
1104 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1105 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1106 bool HasGuards, bool UsePostIncrementRanges = true);
1108 PHINode *createWideIV(SCEVExpander &Rewriter);
1110 unsigned getNumElimExt() { return NumElimExt; };
1111 unsigned getNumWidened() { return NumWidened; };
1113 protected:
1114 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1115 Instruction *Use);
1117 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1118 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1119 const SCEVAddRecExpr *WideAR);
1120 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1122 ExtendKind getExtendKind(Instruction *I);
1124 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1126 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1128 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1130 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1131 unsigned OpCode) const;
1133 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1135 bool widenLoopCompare(NarrowIVDefUse DU);
1136 bool widenWithVariantUse(NarrowIVDefUse DU);
1138 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1140 private:
1141 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1143 } // namespace
1145 /// Determine the insertion point for this user. By default, insert immediately
1146 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1147 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1148 /// common dominator for the incoming blocks. A nullptr can be returned if no
1149 /// viable location is found: it may happen if User is a PHI and Def only comes
1150 /// to this PHI from unreachable blocks.
1151 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1152 DominatorTree *DT, LoopInfo *LI) {
1153 PHINode *PHI = dyn_cast<PHINode>(User);
1154 if (!PHI)
1155 return User;
1157 Instruction *InsertPt = nullptr;
1158 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1159 if (PHI->getIncomingValue(i) != Def)
1160 continue;
1162 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1164 if (!DT->isReachableFromEntry(InsertBB))
1165 continue;
1167 if (!InsertPt) {
1168 InsertPt = InsertBB->getTerminator();
1169 continue;
1171 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1172 InsertPt = InsertBB->getTerminator();
1175 // If we have skipped all inputs, it means that Def only comes to Phi from
1176 // unreachable blocks.
1177 if (!InsertPt)
1178 return nullptr;
1180 auto *DefI = dyn_cast<Instruction>(Def);
1181 if (!DefI)
1182 return InsertPt;
1184 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1186 auto *L = LI->getLoopFor(DefI->getParent());
1187 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1189 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1190 if (LI->getLoopFor(DTN->getBlock()) == L)
1191 return DTN->getBlock()->getTerminator();
1193 llvm_unreachable("DefI dominates InsertPt!");
1196 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1197 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1198 bool HasGuards, bool UsePostIncrementRanges)
1199 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1200 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1201 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1202 DeadInsts(DI) {
1203 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1204 ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero;
1207 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1208 bool IsSigned, Instruction *Use) {
1209 // Set the debug location and conservative insertion point.
1210 IRBuilder<> Builder(Use);
1211 // Hoist the insertion point into loop preheaders as far as possible.
1212 for (const Loop *L = LI->getLoopFor(Use->getParent());
1213 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1214 L = L->getParentLoop())
1215 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1217 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1218 Builder.CreateZExt(NarrowOper, WideType);
1221 /// Instantiate a wide operation to replace a narrow operation. This only needs
1222 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1223 /// 0 for any operation we decide not to clone.
1224 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1225 const SCEVAddRecExpr *WideAR) {
1226 unsigned Opcode = DU.NarrowUse->getOpcode();
1227 switch (Opcode) {
1228 default:
1229 return nullptr;
1230 case Instruction::Add:
1231 case Instruction::Mul:
1232 case Instruction::UDiv:
1233 case Instruction::Sub:
1234 return cloneArithmeticIVUser(DU, WideAR);
1236 case Instruction::And:
1237 case Instruction::Or:
1238 case Instruction::Xor:
1239 case Instruction::Shl:
1240 case Instruction::LShr:
1241 case Instruction::AShr:
1242 return cloneBitwiseIVUser(DU);
1246 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1247 Instruction *NarrowUse = DU.NarrowUse;
1248 Instruction *NarrowDef = DU.NarrowDef;
1249 Instruction *WideDef = DU.WideDef;
1251 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1253 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1254 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1255 // invariant and will be folded or hoisted. If it actually comes from a
1256 // widened IV, it should be removed during a future call to widenIVUse.
1257 bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign;
1258 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1259 ? WideDef
1260 : createExtendInst(NarrowUse->getOperand(0), WideType,
1261 IsSigned, NarrowUse);
1262 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1263 ? WideDef
1264 : createExtendInst(NarrowUse->getOperand(1), WideType,
1265 IsSigned, NarrowUse);
1267 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1268 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1269 NarrowBO->getName());
1270 IRBuilder<> Builder(NarrowUse);
1271 Builder.Insert(WideBO);
1272 WideBO->copyIRFlags(NarrowBO);
1273 return WideBO;
1276 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1277 const SCEVAddRecExpr *WideAR) {
1278 Instruction *NarrowUse = DU.NarrowUse;
1279 Instruction *NarrowDef = DU.NarrowDef;
1280 Instruction *WideDef = DU.WideDef;
1282 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1284 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1286 // We're trying to find X such that
1288 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1290 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1291 // and check using SCEV if any of them are correct.
1293 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1294 // correct solution to X.
1295 auto GuessNonIVOperand = [&](bool SignExt) {
1296 const SCEV *WideLHS;
1297 const SCEV *WideRHS;
1299 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1300 if (SignExt)
1301 return SE->getSignExtendExpr(S, Ty);
1302 return SE->getZeroExtendExpr(S, Ty);
1305 if (IVOpIdx == 0) {
1306 WideLHS = SE->getSCEV(WideDef);
1307 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1308 WideRHS = GetExtend(NarrowRHS, WideType);
1309 } else {
1310 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1311 WideLHS = GetExtend(NarrowLHS, WideType);
1312 WideRHS = SE->getSCEV(WideDef);
1315 // WideUse is "WideDef `op.wide` X" as described in the comment.
1316 const SCEV *WideUse =
1317 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1319 return WideUse == WideAR;
1322 bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign;
1323 if (!GuessNonIVOperand(SignExtend)) {
1324 SignExtend = !SignExtend;
1325 if (!GuessNonIVOperand(SignExtend))
1326 return nullptr;
1329 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1330 ? WideDef
1331 : createExtendInst(NarrowUse->getOperand(0), WideType,
1332 SignExtend, NarrowUse);
1333 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1334 ? WideDef
1335 : createExtendInst(NarrowUse->getOperand(1), WideType,
1336 SignExtend, NarrowUse);
1338 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1339 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1340 NarrowBO->getName());
1342 IRBuilder<> Builder(NarrowUse);
1343 Builder.Insert(WideBO);
1344 WideBO->copyIRFlags(NarrowBO);
1345 return WideBO;
1348 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1349 auto It = ExtendKindMap.find(I);
1350 assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1351 return It->second;
1354 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1355 unsigned OpCode) const {
1356 switch (OpCode) {
1357 case Instruction::Add:
1358 return SE->getAddExpr(LHS, RHS);
1359 case Instruction::Sub:
1360 return SE->getMinusSCEV(LHS, RHS);
1361 case Instruction::Mul:
1362 return SE->getMulExpr(LHS, RHS);
1363 case Instruction::UDiv:
1364 return SE->getUDivExpr(LHS, RHS);
1365 default:
1366 llvm_unreachable("Unsupported opcode.");
1370 /// No-wrap operations can transfer sign extension of their result to their
1371 /// operands. Generate the SCEV value for the widened operation without
1372 /// actually modifying the IR yet. If the expression after extending the
1373 /// operands is an AddRec for this loop, return the AddRec and the kind of
1374 /// extension used.
1375 WidenIV::WidenedRecTy
1376 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1377 // Handle the common case of add<nsw/nuw>
1378 const unsigned OpCode = DU.NarrowUse->getOpcode();
1379 // Only Add/Sub/Mul instructions supported yet.
1380 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1381 OpCode != Instruction::Mul)
1382 return {nullptr, ExtendKind::Unknown};
1384 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1385 // if extending the other will lead to a recurrence.
1386 const unsigned ExtendOperIdx =
1387 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1388 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1390 const SCEV *ExtendOperExpr = nullptr;
1391 const OverflowingBinaryOperator *OBO =
1392 cast<OverflowingBinaryOperator>(DU.NarrowUse);
1393 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1394 if (ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap())
1395 ExtendOperExpr = SE->getSignExtendExpr(
1396 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1397 else if (ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap())
1398 ExtendOperExpr = SE->getZeroExtendExpr(
1399 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1400 else
1401 return {nullptr, ExtendKind::Unknown};
1403 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1404 // flags. This instruction may be guarded by control flow that the no-wrap
1405 // behavior depends on. Non-control-equivalent instructions can be mapped to
1406 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1407 // semantics to those operations.
1408 const SCEV *lhs = SE->getSCEV(DU.WideDef);
1409 const SCEV *rhs = ExtendOperExpr;
1411 // Let's swap operands to the initial order for the case of non-commutative
1412 // operations, like SUB. See PR21014.
1413 if (ExtendOperIdx == 0)
1414 std::swap(lhs, rhs);
1415 const SCEVAddRecExpr *AddRec =
1416 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1418 if (!AddRec || AddRec->getLoop() != L)
1419 return {nullptr, ExtendKind::Unknown};
1421 return {AddRec, ExtKind};
1424 /// Is this instruction potentially interesting for further simplification after
1425 /// widening it's type? In other words, can the extend be safely hoisted out of
1426 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1427 /// so, return the extended recurrence and the kind of extension used. Otherwise
1428 /// return {nullptr, ExtendKind::Unknown}.
1429 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1430 if (!DU.NarrowUse->getType()->isIntegerTy())
1431 return {nullptr, ExtendKind::Unknown};
1433 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1434 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1435 SE->getTypeSizeInBits(WideType)) {
1436 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1437 // index. So don't follow this use.
1438 return {nullptr, ExtendKind::Unknown};
1441 const SCEV *WideExpr;
1442 ExtendKind ExtKind;
1443 if (DU.NeverNegative) {
1444 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1445 if (isa<SCEVAddRecExpr>(WideExpr))
1446 ExtKind = ExtendKind::Sign;
1447 else {
1448 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1449 ExtKind = ExtendKind::Zero;
1451 } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) {
1452 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1453 ExtKind = ExtendKind::Sign;
1454 } else {
1455 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1456 ExtKind = ExtendKind::Zero;
1458 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1459 if (!AddRec || AddRec->getLoop() != L)
1460 return {nullptr, ExtendKind::Unknown};
1461 return {AddRec, ExtKind};
1464 /// This IV user cannot be widened. Replace this use of the original narrow IV
1465 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1466 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1467 LoopInfo *LI) {
1468 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1469 if (!InsertPt)
1470 return;
1471 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1472 << *DU.NarrowUse << "\n");
1473 IRBuilder<> Builder(InsertPt);
1474 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1475 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1478 /// If the narrow use is a compare instruction, then widen the compare
1479 // (and possibly the other operand). The extend operation is hoisted into the
1480 // loop preheader as far as possible.
1481 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1482 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1483 if (!Cmp)
1484 return false;
1486 // We can legally widen the comparison in the following two cases:
1488 // - The signedness of the IV extension and comparison match
1490 // - The narrow IV is always positive (and thus its sign extension is equal
1491 // to its zero extension). For instance, let's say we're zero extending
1492 // %narrow for the following use
1494 // icmp slt i32 %narrow, %val ... (A)
1496 // and %narrow is always positive. Then
1498 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1499 // == icmp slt i32 zext(%narrow), sext(%val)
1500 bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1501 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1502 return false;
1504 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1505 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1506 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1507 assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1509 // Widen the compare instruction.
1510 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1511 if (!InsertPt)
1512 return false;
1513 IRBuilder<> Builder(InsertPt);
1514 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1516 // Widen the other operand of the compare, if necessary.
1517 if (CastWidth < IVWidth) {
1518 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1519 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1521 return true;
1524 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1525 // will not work when:
1526 // 1) SCEV traces back to an instruction inside the loop that SCEV can not
1527 // expand, eg. add %indvar, (load %addr)
1528 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1529 // While SCEV fails to avoid trunc, we can still try to use instruction
1530 // combining approach to prove trunc is not required. This can be further
1531 // extended with other instruction combining checks, but for now we handle the
1532 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1534 // Src:
1535 // %c = sub nsw %b, %indvar
1536 // %d = sext %c to i64
1537 // Dst:
1538 // %indvar.ext1 = sext %indvar to i64
1539 // %m = sext %b to i64
1540 // %d = sub nsw i64 %m, %indvar.ext1
1541 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1542 // trunc is required regardless of how %b is generated. This pattern is common
1543 // when calculating address in 64 bit architecture
1544 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1545 Instruction *NarrowUse = DU.NarrowUse;
1546 Instruction *NarrowDef = DU.NarrowDef;
1547 Instruction *WideDef = DU.WideDef;
1549 // Handle the common case of add<nsw/nuw>
1550 const unsigned OpCode = NarrowUse->getOpcode();
1551 // Only Add/Sub/Mul instructions are supported.
1552 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1553 OpCode != Instruction::Mul)
1554 return false;
1556 // The operand that is not defined by NarrowDef of DU. Let's call it the
1557 // other operand.
1558 assert((NarrowUse->getOperand(0) == NarrowDef ||
1559 NarrowUse->getOperand(1) == NarrowDef) &&
1560 "bad DU");
1562 const OverflowingBinaryOperator *OBO =
1563 cast<OverflowingBinaryOperator>(NarrowUse);
1564 ExtendKind ExtKind = getExtendKind(NarrowDef);
1565 bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap();
1566 bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap();
1567 auto AnotherOpExtKind = ExtKind;
1569 // Check that all uses are either:
1570 // - narrow def (in case of we are widening the IV increment);
1571 // - single-input LCSSA Phis;
1572 // - comparison of the chosen type;
1573 // - extend of the chosen type (raison d'etre).
1574 SmallVector<Instruction *, 4> ExtUsers;
1575 SmallVector<PHINode *, 4> LCSSAPhiUsers;
1576 SmallVector<ICmpInst *, 4> ICmpUsers;
1577 for (Use &U : NarrowUse->uses()) {
1578 Instruction *User = cast<Instruction>(U.getUser());
1579 if (User == NarrowDef)
1580 continue;
1581 if (!L->contains(User)) {
1582 auto *LCSSAPhi = cast<PHINode>(User);
1583 // Make sure there is only 1 input, so that we don't have to split
1584 // critical edges.
1585 if (LCSSAPhi->getNumOperands() != 1)
1586 return false;
1587 LCSSAPhiUsers.push_back(LCSSAPhi);
1588 continue;
1590 if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1591 auto Pred = ICmp->getPredicate();
1592 // We have 3 types of predicates: signed, unsigned and equality
1593 // predicates. For equality, it's legal to widen icmp for either sign and
1594 // zero extend. For sign extend, we can also do so for signed predicates,
1595 // likeweise for zero extend we can widen icmp for unsigned predicates.
1596 if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred))
1597 return false;
1598 if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred))
1599 return false;
1600 ICmpUsers.push_back(ICmp);
1601 continue;
1603 if (ExtKind == ExtendKind::Sign)
1604 User = dyn_cast<SExtInst>(User);
1605 else
1606 User = dyn_cast<ZExtInst>(User);
1607 if (!User || User->getType() != WideType)
1608 return false;
1609 ExtUsers.push_back(User);
1611 if (ExtUsers.empty()) {
1612 DeadInsts.emplace_back(NarrowUse);
1613 return true;
1616 // We'll prove some facts that should be true in the context of ext users. If
1617 // there is no users, we are done now. If there are some, pick their common
1618 // dominator as context.
1619 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1621 if (!CanSignExtend && !CanZeroExtend) {
1622 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1623 // will most likely not see it. Let's try to prove it.
1624 if (OpCode != Instruction::Add)
1625 return false;
1626 if (ExtKind != ExtendKind::Zero)
1627 return false;
1628 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1629 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1630 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1631 if (NarrowUse->getOperand(0) != NarrowDef)
1632 return false;
1633 if (!SE->isKnownNegative(RHS))
1634 return false;
1635 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1636 SE->getNegativeSCEV(RHS), CtxI);
1637 if (!ProvedSubNUW)
1638 return false;
1639 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1640 // neg(zext(neg(op))), which is basically sext(op).
1641 AnotherOpExtKind = ExtendKind::Sign;
1644 // Verifying that Defining operand is an AddRec
1645 const SCEV *Op1 = SE->getSCEV(WideDef);
1646 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1647 if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1648 return false;
1650 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1652 // Generating a widening use instruction.
1653 Value *LHS =
1654 (NarrowUse->getOperand(0) == NarrowDef)
1655 ? WideDef
1656 : createExtendInst(NarrowUse->getOperand(0), WideType,
1657 AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1658 Value *RHS =
1659 (NarrowUse->getOperand(1) == NarrowDef)
1660 ? WideDef
1661 : createExtendInst(NarrowUse->getOperand(1), WideType,
1662 AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1664 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1665 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1666 NarrowBO->getName());
1667 IRBuilder<> Builder(NarrowUse);
1668 Builder.Insert(WideBO);
1669 WideBO->copyIRFlags(NarrowBO);
1670 ExtendKindMap[NarrowUse] = ExtKind;
1672 for (Instruction *User : ExtUsers) {
1673 assert(User->getType() == WideType && "Checked before!");
1674 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1675 << *WideBO << "\n");
1676 ++NumElimExt;
1677 User->replaceAllUsesWith(WideBO);
1678 DeadInsts.emplace_back(User);
1681 for (PHINode *User : LCSSAPhiUsers) {
1682 assert(User->getNumOperands() == 1 && "Checked before!");
1683 Builder.SetInsertPoint(User);
1684 auto *WidePN =
1685 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1686 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1687 assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1688 "Not a LCSSA Phi?");
1689 WidePN->addIncoming(WideBO, LoopExitingBlock);
1690 Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
1691 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1692 User->replaceAllUsesWith(TruncPN);
1693 DeadInsts.emplace_back(User);
1696 for (ICmpInst *User : ICmpUsers) {
1697 Builder.SetInsertPoint(User);
1698 auto ExtendedOp = [&](Value * V)->Value * {
1699 if (V == NarrowUse)
1700 return WideBO;
1701 if (ExtKind == ExtendKind::Zero)
1702 return Builder.CreateZExt(V, WideBO->getType());
1703 else
1704 return Builder.CreateSExt(V, WideBO->getType());
1706 auto Pred = User->getPredicate();
1707 auto *LHS = ExtendedOp(User->getOperand(0));
1708 auto *RHS = ExtendedOp(User->getOperand(1));
1709 auto *WideCmp =
1710 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1711 User->replaceAllUsesWith(WideCmp);
1712 DeadInsts.emplace_back(User);
1715 return true;
1718 /// Determine whether an individual user of the narrow IV can be widened. If so,
1719 /// return the wide clone of the user.
1720 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1721 assert(ExtendKindMap.count(DU.NarrowDef) &&
1722 "Should already know the kind of extension used to widen NarrowDef");
1724 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1725 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1726 if (LI->getLoopFor(UsePhi->getParent()) != L) {
1727 // For LCSSA phis, sink the truncate outside the loop.
1728 // After SimplifyCFG most loop exit targets have a single predecessor.
1729 // Otherwise fall back to a truncate within the loop.
1730 if (UsePhi->getNumOperands() != 1)
1731 truncateIVUse(DU, DT, LI);
1732 else {
1733 // Widening the PHI requires us to insert a trunc. The logical place
1734 // for this trunc is in the same BB as the PHI. This is not possible if
1735 // the BB is terminated by a catchswitch.
1736 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1737 return nullptr;
1739 PHINode *WidePhi =
1740 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1741 UsePhi);
1742 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1743 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1744 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1745 UsePhi->replaceAllUsesWith(Trunc);
1746 DeadInsts.emplace_back(UsePhi);
1747 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1748 << *WidePhi << "\n");
1750 return nullptr;
1754 // This narrow use can be widened by a sext if it's non-negative or its narrow
1755 // def was widended by a sext. Same for zext.
1756 auto canWidenBySExt = [&]() {
1757 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1759 auto canWidenByZExt = [&]() {
1760 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero;
1763 // Our raison d'etre! Eliminate sign and zero extension.
1764 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1765 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1766 Value *NewDef = DU.WideDef;
1767 if (DU.NarrowUse->getType() != WideType) {
1768 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1769 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1770 if (CastWidth < IVWidth) {
1771 // The cast isn't as wide as the IV, so insert a Trunc.
1772 IRBuilder<> Builder(DU.NarrowUse);
1773 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1775 else {
1776 // A wider extend was hidden behind a narrower one. This may induce
1777 // another round of IV widening in which the intermediate IV becomes
1778 // dead. It should be very rare.
1779 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1780 << " not wide enough to subsume " << *DU.NarrowUse
1781 << "\n");
1782 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1783 NewDef = DU.NarrowUse;
1786 if (NewDef != DU.NarrowUse) {
1787 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1788 << " replaced by " << *DU.WideDef << "\n");
1789 ++NumElimExt;
1790 DU.NarrowUse->replaceAllUsesWith(NewDef);
1791 DeadInsts.emplace_back(DU.NarrowUse);
1793 // Now that the extend is gone, we want to expose it's uses for potential
1794 // further simplification. We don't need to directly inform SimplifyIVUsers
1795 // of the new users, because their parent IV will be processed later as a
1796 // new loop phi. If we preserved IVUsers analysis, we would also want to
1797 // push the uses of WideDef here.
1799 // No further widening is needed. The deceased [sz]ext had done it for us.
1800 return nullptr;
1803 // Does this user itself evaluate to a recurrence after widening?
1804 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1805 if (!WideAddRec.first)
1806 WideAddRec = getWideRecurrence(DU);
1808 assert((WideAddRec.first == nullptr) ==
1809 (WideAddRec.second == ExtendKind::Unknown));
1810 if (!WideAddRec.first) {
1811 // If use is a loop condition, try to promote the condition instead of
1812 // truncating the IV first.
1813 if (widenLoopCompare(DU))
1814 return nullptr;
1816 // We are here about to generate a truncate instruction that may hurt
1817 // performance because the scalar evolution expression computed earlier
1818 // in WideAddRec.first does not indicate a polynomial induction expression.
1819 // In that case, look at the operands of the use instruction to determine
1820 // if we can still widen the use instead of truncating its operand.
1821 if (widenWithVariantUse(DU))
1822 return nullptr;
1824 // This user does not evaluate to a recurrence after widening, so don't
1825 // follow it. Instead insert a Trunc to kill off the original use,
1826 // eventually isolating the original narrow IV so it can be removed.
1827 truncateIVUse(DU, DT, LI);
1828 return nullptr;
1831 // Reuse the IV increment that SCEVExpander created as long as it dominates
1832 // NarrowUse.
1833 Instruction *WideUse = nullptr;
1834 if (WideAddRec.first == WideIncExpr &&
1835 Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1836 WideUse = WideInc;
1837 else {
1838 WideUse = cloneIVUser(DU, WideAddRec.first);
1839 if (!WideUse)
1840 return nullptr;
1842 // Evaluation of WideAddRec ensured that the narrow expression could be
1843 // extended outside the loop without overflow. This suggests that the wide use
1844 // evaluates to the same expression as the extended narrow use, but doesn't
1845 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1846 // where it fails, we simply throw away the newly created wide use.
1847 if (WideAddRec.first != SE->getSCEV(WideUse)) {
1848 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1849 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1850 << "\n");
1851 DeadInsts.emplace_back(WideUse);
1852 return nullptr;
1855 // if we reached this point then we are going to replace
1856 // DU.NarrowUse with WideUse. Reattach DbgValue then.
1857 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1859 ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1860 // Returning WideUse pushes it on the worklist.
1861 return WideUse;
1864 /// Add eligible users of NarrowDef to NarrowIVUsers.
1865 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1866 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1867 bool NonNegativeDef =
1868 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1869 SE->getZero(NarrowSCEV->getType()));
1870 for (User *U : NarrowDef->users()) {
1871 Instruction *NarrowUser = cast<Instruction>(U);
1873 // Handle data flow merges and bizarre phi cycles.
1874 if (!Widened.insert(NarrowUser).second)
1875 continue;
1877 bool NonNegativeUse = false;
1878 if (!NonNegativeDef) {
1879 // We might have a control-dependent range information for this context.
1880 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1881 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1884 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1885 NonNegativeDef || NonNegativeUse);
1889 /// Process a single induction variable. First use the SCEVExpander to create a
1890 /// wide induction variable that evaluates to the same recurrence as the
1891 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1892 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1893 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1895 /// It would be simpler to delete uses as they are processed, but we must avoid
1896 /// invalidating SCEV expressions.
1897 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1898 // Is this phi an induction variable?
1899 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1900 if (!AddRec)
1901 return nullptr;
1903 // Widen the induction variable expression.
1904 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign
1905 ? SE->getSignExtendExpr(AddRec, WideType)
1906 : SE->getZeroExtendExpr(AddRec, WideType);
1908 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1909 "Expect the new IV expression to preserve its type");
1911 // Can the IV be extended outside the loop without overflow?
1912 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1913 if (!AddRec || AddRec->getLoop() != L)
1914 return nullptr;
1916 // An AddRec must have loop-invariant operands. Since this AddRec is
1917 // materialized by a loop header phi, the expression cannot have any post-loop
1918 // operands, so they must dominate the loop header.
1919 assert(
1920 SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1921 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1922 "Loop header phi recurrence inputs do not dominate the loop");
1924 // Iterate over IV uses (including transitive ones) looking for IV increments
1925 // of the form 'add nsw %iv, <const>'. For each increment and each use of
1926 // the increment calculate control-dependent range information basing on
1927 // dominating conditions inside of the loop (e.g. a range check inside of the
1928 // loop). Calculated ranges are stored in PostIncRangeInfos map.
1930 // Control-dependent range information is later used to prove that a narrow
1931 // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1932 // this on demand because when pushNarrowIVUsers needs this information some
1933 // of the dominating conditions might be already widened.
1934 if (UsePostIncrementRanges)
1935 calculatePostIncRanges(OrigPhi);
1937 // The rewriter provides a value for the desired IV expression. This may
1938 // either find an existing phi or materialize a new one. Either way, we
1939 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1940 // of the phi-SCC dominates the loop entry.
1941 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1942 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1943 // If the wide phi is not a phi node, for example a cast node, like bitcast,
1944 // inttoptr, ptrtoint, just skip for now.
1945 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1946 // if the cast node is an inserted instruction without any user, we should
1947 // remove it to make sure the pass don't touch the function as we can not
1948 // wide the phi.
1949 if (ExpandInst->hasNUses(0) &&
1950 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1951 DeadInsts.emplace_back(ExpandInst);
1952 return nullptr;
1955 // Remembering the WideIV increment generated by SCEVExpander allows
1956 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1957 // employ a general reuse mechanism because the call above is the only call to
1958 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1959 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1960 WideInc =
1961 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1962 WideIncExpr = SE->getSCEV(WideInc);
1963 // Propagate the debug location associated with the original loop increment
1964 // to the new (widened) increment.
1965 auto *OrigInc =
1966 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1967 WideInc->setDebugLoc(OrigInc->getDebugLoc());
1970 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1971 ++NumWidened;
1973 // Traverse the def-use chain using a worklist starting at the original IV.
1974 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1976 Widened.insert(OrigPhi);
1977 pushNarrowIVUsers(OrigPhi, WidePhi);
1979 while (!NarrowIVUsers.empty()) {
1980 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1982 // Process a def-use edge. This may replace the use, so don't hold a
1983 // use_iterator across it.
1984 Instruction *WideUse = widenIVUse(DU, Rewriter);
1986 // Follow all def-use edges from the previous narrow use.
1987 if (WideUse)
1988 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1990 // widenIVUse may have removed the def-use edge.
1991 if (DU.NarrowDef->use_empty())
1992 DeadInsts.emplace_back(DU.NarrowDef);
1995 // Attach any debug information to the new PHI.
1996 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
1998 return WidePhi;
2001 /// Calculates control-dependent range for the given def at the given context
2002 /// by looking at dominating conditions inside of the loop
2003 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
2004 Instruction *NarrowUser) {
2005 using namespace llvm::PatternMatch;
2007 Value *NarrowDefLHS;
2008 const APInt *NarrowDefRHS;
2009 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
2010 m_APInt(NarrowDefRHS))) ||
2011 !NarrowDefRHS->isNonNegative())
2012 return;
2014 auto UpdateRangeFromCondition = [&] (Value *Condition,
2015 bool TrueDest) {
2016 CmpInst::Predicate Pred;
2017 Value *CmpRHS;
2018 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
2019 m_Value(CmpRHS))))
2020 return;
2022 CmpInst::Predicate P =
2023 TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
2025 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
2026 auto CmpConstrainedLHSRange =
2027 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
2028 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
2029 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
2031 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
2034 auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
2035 if (!HasGuards)
2036 return;
2038 for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
2039 Ctx->getParent()->rend())) {
2040 Value *C = nullptr;
2041 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
2042 UpdateRangeFromCondition(C, /*TrueDest=*/true);
2046 UpdateRangeFromGuards(NarrowUser);
2048 BasicBlock *NarrowUserBB = NarrowUser->getParent();
2049 // If NarrowUserBB is statically unreachable asking dominator queries may
2050 // yield surprising results. (e.g. the block may not have a dom tree node)
2051 if (!DT->isReachableFromEntry(NarrowUserBB))
2052 return;
2054 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2055 L->contains(DTB->getBlock());
2056 DTB = DTB->getIDom()) {
2057 auto *BB = DTB->getBlock();
2058 auto *TI = BB->getTerminator();
2059 UpdateRangeFromGuards(TI);
2061 auto *BI = dyn_cast<BranchInst>(TI);
2062 if (!BI || !BI->isConditional())
2063 continue;
2065 auto *TrueSuccessor = BI->getSuccessor(0);
2066 auto *FalseSuccessor = BI->getSuccessor(1);
2068 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2069 return BBE.isSingleEdge() &&
2070 DT->dominates(BBE, NarrowUser->getParent());
2073 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2074 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2076 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2077 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2081 /// Calculates PostIncRangeInfos map for the given IV
2082 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2083 SmallPtrSet<Instruction *, 16> Visited;
2084 SmallVector<Instruction *, 6> Worklist;
2085 Worklist.push_back(OrigPhi);
2086 Visited.insert(OrigPhi);
2088 while (!Worklist.empty()) {
2089 Instruction *NarrowDef = Worklist.pop_back_val();
2091 for (Use &U : NarrowDef->uses()) {
2092 auto *NarrowUser = cast<Instruction>(U.getUser());
2094 // Don't go looking outside the current loop.
2095 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2096 if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2097 continue;
2099 if (!Visited.insert(NarrowUser).second)
2100 continue;
2102 Worklist.push_back(NarrowUser);
2104 calculatePostIncRange(NarrowDef, NarrowUser);
2109 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2110 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2111 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2112 unsigned &NumElimExt, unsigned &NumWidened,
2113 bool HasGuards, bool UsePostIncrementRanges) {
2114 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2115 PHINode *WidePHI = Widener.createWideIV(Rewriter);
2116 NumElimExt = Widener.getNumElimExt();
2117 NumWidened = Widener.getNumWidened();
2118 return WidePHI;