3 """A shuffle vector fuzz tester.
5 This is a python program to fuzz test the LLVM shufflevector instruction. It
6 generates a function with a random sequnece of shufflevectors, maintaining the
7 element mapping accumulated across the function. It then generates a main
8 function which calls it with a different value in each element and checks that
9 the result matches the expected mapping.
11 Take the output IR printed to stdout, compile it to an executable using whatever
12 set of transforms you want to test, and run the program. If it crashes, it found
16 from __future__
import print_function
25 element_types
=['i8', 'i16', 'i32', 'i64', 'f32', 'f64']
26 parser
= argparse
.ArgumentParser(description
=__doc__
)
27 parser
.add_argument('-v', '--verbose', action
='store_true',
28 help='Show verbose output')
29 parser
.add_argument('--seed', default
=str(uuid
.uuid4()),
30 help='A string used to seed the RNG')
31 parser
.add_argument('--max-shuffle-height', type=int, default
=16,
32 help='Specify a fixed height of shuffle tree to test')
33 parser
.add_argument('--no-blends', dest
='blends', action
='store_false',
34 help='Include blends of two input vectors')
35 parser
.add_argument('--fixed-bit-width', type=int, choices
=[128, 256],
36 help='Specify a fixed bit width of vector to test')
37 parser
.add_argument('--fixed-element-type', choices
=element_types
,
38 help='Specify a fixed element type to test')
39 parser
.add_argument('--triple',
40 help='Specify a triple string to include in the IR')
41 args
= parser
.parse_args()
43 random
.seed(args
.seed
)
45 if args
.fixed_element_type
is not None:
46 element_types
=[args
.fixed_element_type
]
48 if args
.fixed_bit_width
is not None:
49 if args
.fixed_bit_width
== 128:
50 width_map
={'i64': 2, 'i32': 4, 'i16': 8, 'i8': 16, 'f64': 2, 'f32': 4}
51 (width
, element_type
) = random
.choice(
52 [(width_map
[t
], t
) for t
in element_types
])
53 elif args
.fixed_bit_width
== 256:
54 width_map
={'i64': 4, 'i32': 8, 'i16': 16, 'i8': 32, 'f64': 4, 'f32': 8}
55 (width
, element_type
) = random
.choice(
56 [(width_map
[t
], t
) for t
in element_types
])
58 sys
.exit(1) # Checked above by argument parsing.
60 width
= random
.choice([2, 4, 8, 16, 32, 64])
61 element_type
= random
.choice(element_types
)
64 'i8': 1 << 8, 'i16': 1 << 16, 'i32': 1 << 32, 'i64': 1 << 64,
65 'f32': 1 << 32, 'f64': 1 << 64}[element_type
]
67 shuffle_range
= (2 * width
) if args
.blends
else width
69 # Because undef (-1) saturates and is indistinguishable when testing the
70 # correctness of a shuffle, we want to bias our fuzz toward having a decent
71 # mixture of non-undef lanes in the end. With a deep shuffle tree, the
72 # probabilies aren't good so we need to bias things. The math here is that if
73 # we uniformly select between -1 and the other inputs, each element of the
74 # result will have the following probability of being undef:
76 # 1 - (shuffle_range/(shuffle_range+1))^max_shuffle_height
78 # More generally, for any probability P of selecting a defined element in
79 # a single shuffle, the end result is:
81 # 1 - P^max_shuffle_height
83 # The power of the shuffle height is the real problem, as we want:
85 # 1 - shuffle_range/(shuffle_range+1)
87 # So we bias the selection of undef at any given node based on the tree
88 # height. Below, let 'A' be 'len(shuffle_range)', 'C' be 'max_shuffle_height',
89 # and 'B' be the bias we use to compensate for
90 # C '((A+1)*A^(1/C))/(A*(A+1)^(1/C))':
92 # 1 - (B * A)/(A + 1)^C = 1 - A/(A + 1)
94 # So at each node we use:
97 # = 1 - ((A + 1) * A * A^(1/C))/(A * (A + 1) * (A + 1)^(1/C))
98 # = 1 - ((A + 1) * A^((C + 1)/C))/(A * (A + 1)^((C + 1)/C))
100 # This is the formula we use to select undef lanes in the shuffle.
101 A
= float(shuffle_range
)
102 C
= float(args
.max_shuffle_height
)
103 undef_prob
= 1.0 - (((A
+ 1.0) * pow(A
, (C
+ 1.0)/C
)) /
104 (A
* pow(A
+ 1.0, (C
+ 1.0)/C
)))
106 shuffle_tree
= [[[-1 if random
.random() <= undef_prob
107 else random
.choice(range(shuffle_range
))
108 for _
in itertools
.repeat(None, width
)]
109 for _
in itertools
.repeat(None, args
.max_shuffle_height
- i
)]
110 for i
in range(args
.max_shuffle_height
)]
113 # Print out the shuffle sequence in a compact form.
114 print(('Testing shuffle sequence "%s" (v%d%s):' %
115 (args
.seed
, width
, element_type
)), file=sys
.stderr
)
116 for i
, shuffles
in enumerate(shuffle_tree
):
117 print(' tree level %d:' % (i
,), file=sys
.stderr
)
118 for j
, s
in enumerate(shuffles
):
119 print(' shuffle %d: %s' % (j
, s
), file=sys
.stderr
)
120 print('', file=sys
.stderr
)
122 # Symbolically evaluate the shuffle tree.
123 inputs
= [[int(j
% element_modulus
)
124 for j
in range(i
* width
+ 1, (i
+ 1) * width
+ 1)]
125 for i
in range(args
.max_shuffle_height
+ 1)]
127 for shuffles
in shuffle_tree
:
128 results
= [[((results
[i
] if j
< width
else results
[i
+ 1])[j
% width
]
131 for i
, s
in enumerate(shuffles
)]
132 if len(results
) != 1:
133 print('ERROR: Bad results: %s' % (results
,), file=sys
.stderr
)
138 print('Which transforms:', file=sys
.stderr
)
139 print(' from: %s' % (inputs
,), file=sys
.stderr
)
140 print(' into: %s' % (result
,), file=sys
.stderr
)
141 print('', file=sys
.stderr
)
143 # The IR uses silly names for floating point types. We also need a same-size
145 integral_element_type
= element_type
146 if element_type
== 'f32':
147 integral_element_type
= 'i32'
148 element_type
= 'float'
149 elif element_type
== 'f64':
150 integral_element_type
= 'i64'
151 element_type
= 'double'
153 # Now we need to generate IR for the shuffle function.
154 subst
= {'N': width
, 'T': element_type
, 'IT': integral_element_type
}
156 define internal fastcc <%(N)d x %(T)s> @test(%(arguments)s) noinline nounwind {
157 entry:""" % dict(subst
,
159 ['<%(N)d x %(T)s> %%s.0.%(i)d' % dict(subst
, i
=i
)
160 for i
in range(args
.max_shuffle_height
+ 1)])))
162 for i
, shuffles
in enumerate(shuffle_tree
):
163 for j
, s
in enumerate(shuffles
):
165 %%s.%(next_i)d.%(j)d = shufflevector <%(N)d x %(T)s> %%s.%(i)d.%(j)d, <%(N)d x %(T)s> %%s.%(i)d.%(next_j)d, <%(N)d x i32> <%(S)s>
166 """.strip('\n') % dict(subst
, i
=i
, next_i
=i
+ 1, j
=j
, next_j
=j
+ 1,
167 S
=', '.join(['i32 ' + (str(si
) if si
!= -1 else 'undef')
171 ret <%(N)d x %(T)s> %%s.%(i)d.0
173 """ % dict(subst
, i
=len(shuffle_tree
)))
175 # Generate some string constants that we can use to report errors.
176 for i
, r
in enumerate(result
):
178 s
= ('FAIL(%(seed)s): lane %(lane)d, expected %(result)d, found %%d\n\\0A' %
179 {'seed': args
.seed
, 'lane': i
, 'result': r
})
180 s
+= ''.join(['\\00' for _
in itertools
.repeat(None, 128 - len(s
) + 2)])
182 @error.%(i)d = private unnamed_addr global [128 x i8] c"%(s)s"
183 """.strip() % {'i': i
, 's': s
})
185 # Define a wrapper function which is marked 'optnone' to prevent
186 # interprocedural optimizations from deleting the test.
188 define internal fastcc <%(N)d x %(T)s> @test_wrapper(%(arguments)s) optnone noinline {
189 %%result = call fastcc <%(N)d x %(T)s> @test(%(arguments)s)
190 ret <%(N)d x %(T)s> %%result
193 arguments
=', '.join(['<%(N)d x %(T)s> %%s.%(i)d' % dict(subst
, i
=i
)
194 for i
in range(args
.max_shuffle_height
+ 1)])))
196 # Finally, generate a main function which will trap if any lanes are mapped
197 # incorrectly (in an observable way).
201 ; Create a scratch space to print error messages.
202 %%str = alloca [128 x i8]
203 %%str.ptr = getelementptr inbounds [128 x i8], [128 x i8]* %%str, i32 0, i32 0
205 ; Build the input vector and call the test function.
206 %%v = call fastcc <%(N)d x %(T)s> @test_wrapper(%(inputs)s)
207 ; We need to cast this back to an integer type vector to easily check the
209 %%v.cast = bitcast <%(N)d x %(T)s> %%v to <%(N)d x %(IT)s>
213 [('<%(N)d x %(T)s> bitcast '
214 '(<%(N)d x %(IT)s> <%(input)s> to <%(N)d x %(T)s>)' %
215 dict(subst
, input=', '.join(['%(IT)s %(i)d' % dict(subst
, i
=i
)
217 for input in inputs
])))
219 # Test that each non-undef result lane contains the expected value.
220 for i
, r
in enumerate(result
):
224 ; Skip this lane, its value is undef.
225 br label %%test.%(next_i)d
226 """ % dict(subst
, i
=i
, next_i
=i
+ 1))
230 %%v.%(i)d = extractelement <%(N)d x %(IT)s> %%v.cast, i32 %(i)d
231 %%cmp.%(i)d = icmp ne %(IT)s %%v.%(i)d, %(r)d
232 br i1 %%cmp.%(i)d, label %%die.%(i)d, label %%test.%(next_i)d
235 ; Capture the actual value and print an error message.
236 %%tmp.%(i)d = zext %(IT)s %%v.%(i)d to i2048
237 %%bad.%(i)d = trunc i2048 %%tmp.%(i)d to i32
238 call i32 (i8*, i8*, ...) @sprintf(i8* %%str.ptr, i8* getelementptr inbounds ([128 x i8], [128 x i8]* @error.%(i)d, i32 0, i32 0), i32 %%bad.%(i)d)
239 %%length.%(i)d = call i32 @strlen(i8* %%str.ptr)
240 call i32 @write(i32 2, i8* %%str.ptr, i32 %%length.%(i)d)
241 call void @llvm.trap()
243 """ % dict(subst
, i
=i
, next_i
=i
+ 1, r
=r
))
250 declare i32 @strlen(i8*)
251 declare i32 @write(i32, i8*, i32)
252 declare i32 @sprintf(i8*, i8*, ...)
253 declare void @llvm.trap() noreturn nounwind
254 """ % (len(result
),))
256 if __name__
== '__main__':