1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the NumericLiteralParser, CharLiteralParser, and
10 // StringLiteralParser interfaces.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Lex/LiteralSupport.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/LangOptions.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/Lexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/Token.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/ConvertUTF.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Unicode.h"
38 using namespace clang
;
40 static unsigned getCharWidth(tok::TokenKind kind
, const TargetInfo
&Target
) {
42 default: llvm_unreachable("Unknown token type!");
43 case tok::char_constant
:
44 case tok::string_literal
:
45 case tok::utf8_char_constant
:
46 case tok::utf8_string_literal
:
47 return Target
.getCharWidth();
48 case tok::wide_char_constant
:
49 case tok::wide_string_literal
:
50 return Target
.getWCharWidth();
51 case tok::utf16_char_constant
:
52 case tok::utf16_string_literal
:
53 return Target
.getChar16Width();
54 case tok::utf32_char_constant
:
55 case tok::utf32_string_literal
:
56 return Target
.getChar32Width();
60 static unsigned getEncodingPrefixLen(tok::TokenKind kind
) {
63 llvm_unreachable("Unknown token type!");
64 case tok::char_constant
:
65 case tok::string_literal
:
67 case tok::utf8_char_constant
:
68 case tok::utf8_string_literal
:
70 case tok::wide_char_constant
:
71 case tok::wide_string_literal
:
72 case tok::utf16_char_constant
:
73 case tok::utf16_string_literal
:
74 case tok::utf32_char_constant
:
75 case tok::utf32_string_literal
:
80 static CharSourceRange
MakeCharSourceRange(const LangOptions
&Features
,
83 const char *TokRangeBegin
,
84 const char *TokRangeEnd
) {
85 SourceLocation Begin
=
86 Lexer::AdvanceToTokenCharacter(TokLoc
, TokRangeBegin
- TokBegin
,
87 TokLoc
.getManager(), Features
);
89 Lexer::AdvanceToTokenCharacter(Begin
, TokRangeEnd
- TokRangeBegin
,
90 TokLoc
.getManager(), Features
);
91 return CharSourceRange::getCharRange(Begin
, End
);
94 /// Produce a diagnostic highlighting some portion of a literal.
96 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
97 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
98 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
99 static DiagnosticBuilder
Diag(DiagnosticsEngine
*Diags
,
100 const LangOptions
&Features
, FullSourceLoc TokLoc
,
101 const char *TokBegin
, const char *TokRangeBegin
,
102 const char *TokRangeEnd
, unsigned DiagID
) {
103 SourceLocation Begin
=
104 Lexer::AdvanceToTokenCharacter(TokLoc
, TokRangeBegin
- TokBegin
,
105 TokLoc
.getManager(), Features
);
106 return Diags
->Report(Begin
, DiagID
) <<
107 MakeCharSourceRange(Features
, TokLoc
, TokBegin
, TokRangeBegin
, TokRangeEnd
);
110 static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape
) {
128 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
129 /// either a character or a string literal.
130 static unsigned ProcessCharEscape(const char *ThisTokBegin
,
131 const char *&ThisTokBuf
,
132 const char *ThisTokEnd
, bool &HadError
,
133 FullSourceLoc Loc
, unsigned CharWidth
,
134 DiagnosticsEngine
*Diags
,
135 const LangOptions
&Features
,
136 StringLiteralEvalMethod EvalMethod
) {
137 const char *EscapeBegin
= ThisTokBuf
;
138 bool Delimited
= false;
139 bool EndDelimiterFound
= false;
141 // Skip the '\' char.
144 // We know that this character can't be off the end of the buffer, because
145 // that would have been \", which would not have been the end of string.
146 unsigned ResultChar
= *ThisTokBuf
++;
147 char Escape
= ResultChar
;
148 switch (ResultChar
) {
149 // These map to themselves.
150 case '\\': case '\'': case '"': case '?': break;
152 // These have fixed mappings.
154 // TODO: K&R: the meaning of '\\a' is different in traditional C
162 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
163 diag::ext_nonstandard_escape
) << "e";
168 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
169 diag::ext_nonstandard_escape
) << "E";
187 case 'x': { // Hex escape.
189 if (ThisTokBuf
!= ThisTokEnd
&& *ThisTokBuf
== '{') {
192 if (*ThisTokBuf
== '}') {
195 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
196 diag::err_delimited_escape_empty
);
198 } else if (ThisTokBuf
== ThisTokEnd
|| !isHexDigit(*ThisTokBuf
)) {
200 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
201 diag::err_hex_escape_no_digits
) << "x";
205 // Hex escapes are a maximal series of hex digits.
206 bool Overflow
= false;
207 for (; ThisTokBuf
!= ThisTokEnd
; ++ThisTokBuf
) {
208 if (Delimited
&& *ThisTokBuf
== '}') {
210 EndDelimiterFound
= true;
213 int CharVal
= llvm::hexDigitValue(*ThisTokBuf
);
215 // Non delimited hex escape sequences stop at the first non-hex digit.
220 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
221 diag::err_delimited_escape_invalid
)
222 << StringRef(ThisTokBuf
, 1);
225 // About to shift out a digit?
226 if (ResultChar
& 0xF0000000)
229 ResultChar
|= CharVal
;
231 // See if any bits will be truncated when evaluated as a character.
232 if (CharWidth
!= 32 && (ResultChar
>> CharWidth
) != 0) {
234 ResultChar
&= ~0U >> (32-CharWidth
);
237 // Check for overflow.
238 if (!HadError
&& Overflow
) { // Too many digits to fit in
241 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
242 diag::err_escape_too_large
)
247 case '0': case '1': case '2': case '3':
248 case '4': case '5': case '6': case '7': {
253 // Octal escapes are a series of octal digits with maximum length 3.
254 // "\0123" is a two digit sequence equal to "\012" "3".
255 unsigned NumDigits
= 0;
258 ResultChar
|= *ThisTokBuf
++ - '0';
260 } while (ThisTokBuf
!= ThisTokEnd
&& NumDigits
< 3 &&
261 ThisTokBuf
[0] >= '0' && ThisTokBuf
[0] <= '7');
263 // Check for overflow. Reject '\777', but not L'\777'.
264 if (CharWidth
!= 32 && (ResultChar
>> CharWidth
) != 0) {
266 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
267 diag::err_escape_too_large
) << 1;
268 ResultChar
&= ~0U >> (32-CharWidth
);
273 bool Overflow
= false;
274 if (ThisTokBuf
== ThisTokEnd
|| *ThisTokBuf
!= '{') {
277 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
278 diag::err_delimited_escape_missing_brace
)
286 if (*ThisTokBuf
== '}') {
289 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
290 diag::err_delimited_escape_empty
);
293 while (ThisTokBuf
!= ThisTokEnd
) {
294 if (*ThisTokBuf
== '}') {
295 EndDelimiterFound
= true;
299 if (*ThisTokBuf
< '0' || *ThisTokBuf
> '7') {
302 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
303 diag::err_delimited_escape_invalid
)
304 << StringRef(ThisTokBuf
, 1);
308 // Check if one of the top three bits is set before shifting them out.
309 if (ResultChar
& 0xE0000000)
313 ResultChar
|= *ThisTokBuf
++ - '0';
315 // Check for overflow. Reject '\777', but not L'\777'.
317 (Overflow
|| (CharWidth
!= 32 && (ResultChar
>> CharWidth
) != 0))) {
320 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
321 diag::err_escape_too_large
)
323 ResultChar
&= ~0U >> (32 - CharWidth
);
327 // Otherwise, these are not valid escapes.
328 case '(': case '{': case '[': case '%':
329 // GCC accepts these as extensions. We warn about them as such though.
331 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
332 diag::ext_nonstandard_escape
)
333 << std::string(1, ResultChar
);
339 if (isPrintable(ResultChar
))
340 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
341 diag::ext_unknown_escape
)
342 << std::string(1, ResultChar
);
344 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
345 diag::ext_unknown_escape
)
346 << "x" + llvm::utohexstr(ResultChar
);
350 if (Delimited
&& Diags
) {
351 if (!EndDelimiterFound
)
352 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
355 else if (!HadError
) {
356 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
357 Features
.CPlusPlus23
? diag::warn_cxx23_delimited_escape_sequence
358 : diag::ext_delimited_escape_sequence
)
359 << /*delimited*/ 0 << (Features
.CPlusPlus
? 1 : 0);
363 if (EvalMethod
== StringLiteralEvalMethod::Unevaluated
&&
364 !IsEscapeValidInUnevaluatedStringLiteral(Escape
)) {
365 Diag(Diags
, Features
, Loc
, ThisTokBegin
, EscapeBegin
, ThisTokBuf
,
366 diag::err_unevaluated_string_invalid_escape_sequence
)
367 << StringRef(EscapeBegin
, ThisTokBuf
- EscapeBegin
);
374 static void appendCodePoint(unsigned Codepoint
,
375 llvm::SmallVectorImpl
<char> &Str
) {
377 char *ResultPtr
= ResultBuf
;
378 if (llvm::ConvertCodePointToUTF8(Codepoint
, ResultPtr
))
379 Str
.append(ResultBuf
, ResultPtr
);
382 void clang::expandUCNs(SmallVectorImpl
<char> &Buf
, StringRef Input
) {
383 for (StringRef::iterator I
= Input
.begin(), E
= Input
.end(); I
!= E
; ++I
) {
393 assert(Kind
== 'u' || Kind
== 'U' || Kind
== 'N');
394 uint32_t CodePoint
= 0;
396 if (Kind
== 'u' && *I
== '{') {
397 for (++I
; *I
!= '}'; ++I
) {
398 unsigned Value
= llvm::hexDigitValue(*I
);
399 assert(Value
!= -1U);
403 appendCodePoint(CodePoint
, Buf
);
410 auto Delim
= std::find(I
, Input
.end(), '}');
411 assert(Delim
!= Input
.end());
412 StringRef
Name(I
, std::distance(I
, Delim
));
413 std::optional
<llvm::sys::unicode::LooseMatchingResult
> Res
=
414 llvm::sys::unicode::nameToCodepointLooseMatching(Name
);
415 assert(Res
&& "could not find a codepoint that was previously found");
416 CodePoint
= Res
->CodePoint
;
417 assert(CodePoint
!= 0xFFFFFFFF);
418 appendCodePoint(CodePoint
, Buf
);
423 unsigned NumHexDigits
;
429 assert(I
+ NumHexDigits
<= E
);
431 for (; NumHexDigits
!= 0; ++I
, --NumHexDigits
) {
432 unsigned Value
= llvm::hexDigitValue(*I
);
433 assert(Value
!= -1U);
439 appendCodePoint(CodePoint
, Buf
);
444 bool clang::isFunctionLocalStringLiteralMacro(tok::TokenKind K
,
445 const LangOptions
&LO
) {
446 return LO
.MicrosoftExt
&&
447 (K
== tok::kw___FUNCTION__
|| K
== tok::kw_L__FUNCTION__
||
448 K
== tok::kw___FUNCSIG__
|| K
== tok::kw_L__FUNCSIG__
||
449 K
== tok::kw___FUNCDNAME__
);
452 bool clang::tokenIsLikeStringLiteral(const Token
&Tok
, const LangOptions
&LO
) {
453 return tok::isStringLiteral(Tok
.getKind()) ||
454 isFunctionLocalStringLiteralMacro(Tok
.getKind(), LO
);
457 static bool ProcessNumericUCNEscape(const char *ThisTokBegin
,
458 const char *&ThisTokBuf
,
459 const char *ThisTokEnd
, uint32_t &UcnVal
,
460 unsigned short &UcnLen
, bool &Delimited
,
461 FullSourceLoc Loc
, DiagnosticsEngine
*Diags
,
462 const LangOptions
&Features
,
463 bool in_char_string_literal
= false) {
464 const char *UcnBegin
= ThisTokBuf
;
465 bool HasError
= false;
466 bool EndDelimiterFound
= false;
468 // Skip the '\u' char's.
471 if (UcnBegin
[1] == 'u' && in_char_string_literal
&&
472 ThisTokBuf
!= ThisTokEnd
&& *ThisTokBuf
== '{') {
475 } else if (ThisTokBuf
== ThisTokEnd
|| !isHexDigit(*ThisTokBuf
)) {
477 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
478 diag::err_hex_escape_no_digits
)
479 << StringRef(&ThisTokBuf
[-1], 1);
482 UcnLen
= (ThisTokBuf
[-1] == 'u' ? 4 : 8);
484 bool Overflow
= false;
485 unsigned short Count
= 0;
486 for (; ThisTokBuf
!= ThisTokEnd
&& (Delimited
|| Count
!= UcnLen
);
488 if (Delimited
&& *ThisTokBuf
== '}') {
490 EndDelimiterFound
= true;
493 int CharVal
= llvm::hexDigitValue(*ThisTokBuf
);
499 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
500 diag::err_delimited_escape_invalid
)
501 << StringRef(ThisTokBuf
, 1);
506 if (UcnVal
& 0xF0000000) {
517 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
518 diag::err_escape_too_large
)
523 if (Delimited
&& !EndDelimiterFound
) {
525 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
532 // If we didn't consume the proper number of digits, there is a problem.
533 if (Count
== 0 || (!Delimited
&& Count
!= UcnLen
)) {
535 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
536 Delimited
? diag::err_delimited_escape_empty
537 : diag::err_ucn_escape_incomplete
);
543 static void DiagnoseInvalidUnicodeCharacterName(
544 DiagnosticsEngine
*Diags
, const LangOptions
&Features
, FullSourceLoc Loc
,
545 const char *TokBegin
, const char *TokRangeBegin
, const char *TokRangeEnd
,
546 llvm::StringRef Name
) {
548 Diag(Diags
, Features
, Loc
, TokBegin
, TokRangeBegin
, TokRangeEnd
,
549 diag::err_invalid_ucn_name
)
552 namespace u
= llvm::sys::unicode
;
554 std::optional
<u::LooseMatchingResult
> Res
=
555 u::nameToCodepointLooseMatching(Name
);
557 Diag(Diags
, Features
, Loc
, TokBegin
, TokRangeBegin
, TokRangeEnd
,
558 diag::note_invalid_ucn_name_loose_matching
)
559 << FixItHint::CreateReplacement(
560 MakeCharSourceRange(Features
, Loc
, TokBegin
, TokRangeBegin
,
566 unsigned Distance
= 0;
567 SmallVector
<u::MatchForCodepointName
> Matches
=
568 u::nearestMatchesForCodepointName(Name
, 5);
569 assert(!Matches
.empty() && "No unicode characters found");
571 for (const auto &Match
: Matches
) {
573 Distance
= Match
.Distance
;
574 if (std::max(Distance
, Match
.Distance
) -
575 std::min(Distance
, Match
.Distance
) >
578 Distance
= Match
.Distance
;
581 llvm::UTF32 V
= Match
.Value
;
583 llvm::convertUTF32ToUTF8String(llvm::ArrayRef
<llvm::UTF32
>(&V
, 1), Str
);
585 assert(Converted
&& "Found a match wich is not a unicode character");
587 Diag(Diags
, Features
, Loc
, TokBegin
, TokRangeBegin
, TokRangeEnd
,
588 diag::note_invalid_ucn_name_candidate
)
589 << Match
.Name
<< llvm::utohexstr(Match
.Value
)
590 << Str
// FIXME: Fix the rendering of non printable characters
591 << FixItHint::CreateReplacement(
592 MakeCharSourceRange(Features
, Loc
, TokBegin
, TokRangeBegin
,
598 static bool ProcessNamedUCNEscape(const char *ThisTokBegin
,
599 const char *&ThisTokBuf
,
600 const char *ThisTokEnd
, uint32_t &UcnVal
,
601 unsigned short &UcnLen
, FullSourceLoc Loc
,
602 DiagnosticsEngine
*Diags
,
603 const LangOptions
&Features
) {
604 const char *UcnBegin
= ThisTokBuf
;
605 assert(UcnBegin
[0] == '\\' && UcnBegin
[1] == 'N');
607 if (ThisTokBuf
== ThisTokEnd
|| *ThisTokBuf
!= '{') {
609 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
610 diag::err_delimited_escape_missing_brace
)
611 << StringRef(&ThisTokBuf
[-1], 1);
616 const char *ClosingBrace
= std::find_if(ThisTokBuf
, ThisTokEnd
, [](char C
) {
617 return C
== '}' || isVerticalWhitespace(C
);
619 bool Incomplete
= ClosingBrace
== ThisTokEnd
;
620 bool Empty
= ClosingBrace
== ThisTokBuf
;
621 if (Incomplete
|| Empty
) {
623 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
624 Incomplete
? diag::err_ucn_escape_incomplete
625 : diag::err_delimited_escape_empty
)
626 << StringRef(&UcnBegin
[1], 1);
628 ThisTokBuf
= ClosingBrace
== ThisTokEnd
? ClosingBrace
: ClosingBrace
+ 1;
631 StringRef
Name(ThisTokBuf
, ClosingBrace
- ThisTokBuf
);
632 ThisTokBuf
= ClosingBrace
+ 1;
633 std::optional
<char32_t
> Res
= llvm::sys::unicode::nameToCodepointStrict(Name
);
636 DiagnoseInvalidUnicodeCharacterName(Diags
, Features
, Loc
, ThisTokBegin
,
637 &UcnBegin
[3], ClosingBrace
, Name
);
641 UcnLen
= UcnVal
> 0xFFFF ? 8 : 4;
645 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
646 /// return the UTF32.
647 static bool ProcessUCNEscape(const char *ThisTokBegin
, const char *&ThisTokBuf
,
648 const char *ThisTokEnd
, uint32_t &UcnVal
,
649 unsigned short &UcnLen
, FullSourceLoc Loc
,
650 DiagnosticsEngine
*Diags
,
651 const LangOptions
&Features
,
652 bool in_char_string_literal
= false) {
655 const char *UcnBegin
= ThisTokBuf
;
656 bool IsDelimitedEscapeSequence
= false;
657 bool IsNamedEscapeSequence
= false;
658 if (ThisTokBuf
[1] == 'N') {
659 IsNamedEscapeSequence
= true;
660 HasError
= !ProcessNamedUCNEscape(ThisTokBegin
, ThisTokBuf
, ThisTokEnd
,
661 UcnVal
, UcnLen
, Loc
, Diags
, Features
);
664 !ProcessNumericUCNEscape(ThisTokBegin
, ThisTokBuf
, ThisTokEnd
, UcnVal
,
665 UcnLen
, IsDelimitedEscapeSequence
, Loc
, Diags
,
666 Features
, in_char_string_literal
);
671 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
672 if ((0xD800 <= UcnVal
&& UcnVal
<= 0xDFFF) || // surrogate codepoints
673 UcnVal
> 0x10FFFF) { // maximum legal UTF32 value
675 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
676 diag::err_ucn_escape_invalid
);
680 // C23 and C++11 allow UCNs that refer to control characters
681 // and basic source characters inside character and string literals
683 // $, @, ` are allowed in all language modes
684 (UcnVal
!= 0x24 && UcnVal
!= 0x40 && UcnVal
!= 0x60)) {
686 (!(Features
.CPlusPlus11
|| Features
.C23
) || !in_char_string_literal
);
688 char BasicSCSChar
= UcnVal
;
689 if (UcnVal
>= 0x20 && UcnVal
< 0x7f)
690 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
691 IsError
? diag::err_ucn_escape_basic_scs
693 ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs
694 : diag::warn_c23_compat_literal_ucn_escape_basic_scs
)
695 << StringRef(&BasicSCSChar
, 1);
697 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
698 IsError
? diag::err_ucn_control_character
700 ? diag::warn_cxx98_compat_literal_ucn_control_character
701 : diag::warn_c23_compat_literal_ucn_control_character
);
707 if (!Features
.CPlusPlus
&& !Features
.C99
&& Diags
)
708 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
709 diag::warn_ucn_not_valid_in_c89_literal
);
711 if ((IsDelimitedEscapeSequence
|| IsNamedEscapeSequence
) && Diags
)
712 Diag(Diags
, Features
, Loc
, ThisTokBegin
, UcnBegin
, ThisTokBuf
,
713 Features
.CPlusPlus23
? diag::warn_cxx23_delimited_escape_sequence
714 : diag::ext_delimited_escape_sequence
)
715 << (IsNamedEscapeSequence
? 1 : 0) << (Features
.CPlusPlus
? 1 : 0);
720 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
721 /// which this UCN will occupy.
722 static int MeasureUCNEscape(const char *ThisTokBegin
, const char *&ThisTokBuf
,
723 const char *ThisTokEnd
, unsigned CharByteWidth
,
724 const LangOptions
&Features
, bool &HadError
) {
725 // UTF-32: 4 bytes per escape.
726 if (CharByteWidth
== 4)
730 unsigned short UcnLen
= 0;
733 if (!ProcessUCNEscape(ThisTokBegin
, ThisTokBuf
, ThisTokEnd
, UcnVal
,
734 UcnLen
, Loc
, nullptr, Features
, true)) {
739 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
740 if (CharByteWidth
== 2)
741 return UcnVal
<= 0xFFFF ? 2 : 4;
748 if (UcnVal
< 0x10000)
753 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
754 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
755 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
756 /// we will likely rework our support for UCN's.
757 static void EncodeUCNEscape(const char *ThisTokBegin
, const char *&ThisTokBuf
,
758 const char *ThisTokEnd
,
759 char *&ResultBuf
, bool &HadError
,
760 FullSourceLoc Loc
, unsigned CharByteWidth
,
761 DiagnosticsEngine
*Diags
,
762 const LangOptions
&Features
) {
763 typedef uint32_t UTF32
;
765 unsigned short UcnLen
= 0;
766 if (!ProcessUCNEscape(ThisTokBegin
, ThisTokBuf
, ThisTokEnd
, UcnVal
, UcnLen
,
767 Loc
, Diags
, Features
, true)) {
772 assert((CharByteWidth
== 1 || CharByteWidth
== 2 || CharByteWidth
== 4) &&
773 "only character widths of 1, 2, or 4 bytes supported");
776 assert((UcnLen
== 4 || UcnLen
== 8) && "only ucn length of 4 or 8 supported");
778 if (CharByteWidth
== 4) {
779 // FIXME: Make the type of the result buffer correct instead of
780 // using reinterpret_cast.
781 llvm::UTF32
*ResultPtr
= reinterpret_cast<llvm::UTF32
*>(ResultBuf
);
787 if (CharByteWidth
== 2) {
788 // FIXME: Make the type of the result buffer correct instead of
789 // using reinterpret_cast.
790 llvm::UTF16
*ResultPtr
= reinterpret_cast<llvm::UTF16
*>(ResultBuf
);
792 if (UcnVal
<= (UTF32
)0xFFFF) {
800 *ResultPtr
= 0xD800 + (UcnVal
>> 10);
801 *(ResultPtr
+1) = 0xDC00 + (UcnVal
& 0x3FF);
806 assert(CharByteWidth
== 1 && "UTF-8 encoding is only for 1 byte characters");
808 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
809 // The conversion below was inspired by:
810 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
811 // First, we determine how many bytes the result will require.
812 typedef uint8_t UTF8
;
814 unsigned short bytesToWrite
= 0;
815 if (UcnVal
< (UTF32
)0x80)
817 else if (UcnVal
< (UTF32
)0x800)
819 else if (UcnVal
< (UTF32
)0x10000)
824 const unsigned byteMask
= 0xBF;
825 const unsigned byteMark
= 0x80;
827 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
828 // into the first byte, depending on how many bytes follow.
829 static const UTF8 firstByteMark
[5] = {
830 0x00, 0x00, 0xC0, 0xE0, 0xF0
832 // Finally, we write the bytes into ResultBuf.
833 ResultBuf
+= bytesToWrite
;
834 switch (bytesToWrite
) { // note: everything falls through.
836 *--ResultBuf
= (UTF8
)((UcnVal
| byteMark
) & byteMask
); UcnVal
>>= 6;
839 *--ResultBuf
= (UTF8
)((UcnVal
| byteMark
) & byteMask
); UcnVal
>>= 6;
842 *--ResultBuf
= (UTF8
)((UcnVal
| byteMark
) & byteMask
); UcnVal
>>= 6;
845 *--ResultBuf
= (UTF8
) (UcnVal
| firstByteMark
[bytesToWrite
]);
847 // Update the buffer.
848 ResultBuf
+= bytesToWrite
;
851 /// integer-constant: [C99 6.4.4.1]
852 /// decimal-constant integer-suffix
853 /// octal-constant integer-suffix
854 /// hexadecimal-constant integer-suffix
855 /// binary-literal integer-suffix [GNU, C++1y]
856 /// user-defined-integer-literal: [C++11 lex.ext]
857 /// decimal-literal ud-suffix
858 /// octal-literal ud-suffix
859 /// hexadecimal-literal ud-suffix
860 /// binary-literal ud-suffix [GNU, C++1y]
861 /// decimal-constant:
863 /// decimal-constant digit
866 /// octal-constant octal-digit
867 /// hexadecimal-constant:
868 /// hexadecimal-prefix hexadecimal-digit
869 /// hexadecimal-constant hexadecimal-digit
870 /// hexadecimal-prefix: one of
875 /// binary-literal binary-digit
877 /// unsigned-suffix [long-suffix]
878 /// unsigned-suffix [long-long-suffix]
879 /// long-suffix [unsigned-suffix]
880 /// long-long-suffix [unsigned-sufix]
882 /// 1 2 3 4 5 6 7 8 9
885 /// hexadecimal-digit:
886 /// 0 1 2 3 4 5 6 7 8 9
892 /// unsigned-suffix: one of
894 /// long-suffix: one of
896 /// long-long-suffix: one of
899 /// floating-constant: [C99 6.4.4.2]
900 /// TODO: add rules...
902 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling
,
903 SourceLocation TokLoc
,
904 const SourceManager
&SM
,
905 const LangOptions
&LangOpts
,
906 const TargetInfo
&Target
,
907 DiagnosticsEngine
&Diags
)
908 : SM(SM
), LangOpts(LangOpts
), Diags(Diags
),
909 ThisTokBegin(TokSpelling
.begin()), ThisTokEnd(TokSpelling
.end()) {
911 s
= DigitsBegin
= ThisTokBegin
;
912 saw_exponent
= false;
914 saw_ud_suffix
= false;
915 saw_fixed_point_suffix
= false;
925 MicrosoftInteger
= 0;
931 // This routine assumes that the range begin/end matches the regex for integer
932 // and FP constants (specifically, the 'pp-number' regex), and assumes that
933 // the byte at "*end" is both valid and not part of the regex. Because of
934 // this, it doesn't have to check for 'overscan' in various places.
935 // Note: For HLSL, the end token is allowed to be '.' which would be in the
936 // 'pp-number' regex. This is required to support vector swizzles on numeric
937 // constants (i.e. 1.xx or 1.5f.rrr).
938 if (isPreprocessingNumberBody(*ThisTokEnd
) &&
939 !(LangOpts
.HLSL
&& *ThisTokEnd
== '.')) {
940 Diags
.Report(TokLoc
, diag::err_lexing_numeric
);
945 if (*s
== '0') { // parse radix
946 ParseNumberStartingWithZero(TokLoc
);
949 } else { // the first digit is non-zero
952 if (s
== ThisTokEnd
) {
955 ParseDecimalOrOctalCommon(TokLoc
);
962 checkSeparator(TokLoc
, s
, CSK_AfterDigits
);
964 // Initial scan to lookahead for fixed point suffix.
965 if (LangOpts
.FixedPoint
) {
966 for (const char *c
= s
; c
!= ThisTokEnd
; ++c
) {
967 if (*c
== 'r' || *c
== 'k' || *c
== 'R' || *c
== 'K') {
968 saw_fixed_point_suffix
= true;
974 // Parse the suffix. At this point we can classify whether we have an FP or
976 bool isFixedPointConstant
= isFixedPointLiteral();
977 bool isFPConstant
= isFloatingLiteral();
978 bool HasSize
= false;
979 bool DoubleUnderscore
= false;
981 // Loop over all of the characters of the suffix. If we see something bad,
982 // we break out of the loop.
983 for (; s
!= ThisTokEnd
; ++s
) {
987 if (!LangOpts
.FixedPoint
)
989 if (isFract
|| isAccum
) break;
990 if (!(saw_period
|| saw_exponent
)) break;
995 if (!LangOpts
.FixedPoint
)
997 if (isFract
|| isAccum
) break;
998 if (!(saw_period
|| saw_exponent
)) break;
1001 case 'h': // FP Suffix for "half".
1003 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
1004 if (!(LangOpts
.Half
|| LangOpts
.FixedPoint
))
1006 if (isIntegerLiteral()) break; // Error for integer constant.
1011 continue; // Success.
1012 case 'f': // FP Suffix for "float"
1014 if (!isFPConstant
) break; // Error for integer constant.
1019 // CUDA host and device may have different _Float16 support, therefore
1020 // allows f16 literals to avoid false alarm.
1021 // When we compile for OpenMP target offloading on NVPTX, f16 suffix
1022 // should also be supported.
1023 // ToDo: more precise check for CUDA.
1024 // TODO: AMDGPU might also support it in the future.
1025 if ((Target
.hasFloat16Type() || LangOpts
.CUDA
||
1026 (LangOpts
.OpenMPIsTargetDevice
&& Target
.getTriple().isNVPTX())) &&
1027 s
+ 2 < ThisTokEnd
&& s
[1] == '1' && s
[2] == '6') {
1028 s
+= 2; // success, eat up 2 characters.
1034 continue; // Success.
1035 case 'q': // FP Suffix for "__float128"
1037 if (!isFPConstant
) break; // Error for integer constant.
1042 continue; // Success.
1045 if (isFPConstant
) break; // Error for floating constant.
1046 if (isUnsigned
) break; // Cannot be repeated.
1048 continue; // Success.
1055 // Check for long long. The L's need to be adjacent and the same case.
1057 assert(s
+ 1 < ThisTokEnd
&& "didn't maximally munch?");
1058 if (isFPConstant
) break; // long long invalid for floats.
1060 ++s
; // Eat both of them.
1064 continue; // Success.
1068 break; // Invalid for floats.
1076 if (LangOpts
.MicrosoftExt
&& !isFPConstant
) {
1077 // Allow i8, i16, i32, and i64. First, look ahead and check if
1078 // suffixes are Microsoft integers and not the imaginary unit.
1082 case '8': // i8 suffix
1087 if (s
[2] == '6') { // i16 suffix
1093 if (s
[2] == '2') { // i32 suffix
1099 if (s
[2] == '4') { // i64 suffix
1111 MicrosoftInteger
= Bits
;
1113 assert(s
<= ThisTokEnd
&& "didn't maximally munch?");
1120 if (isImaginary
) break; // Cannot be repeated.
1122 continue; // Success.
1125 break; // Invalid for floats
1128 // There is currently no way to reach this with DoubleUnderscore set.
1129 // If new double underscope literals are added handle it here as above.
1130 assert(!DoubleUnderscore
&& "unhandled double underscore case");
1131 if (LangOpts
.CPlusPlus
&& s
+ 2 < ThisTokEnd
&&
1132 s
[1] == '_') { // s + 2 < ThisTokEnd to ensure some character exists
1134 DoubleUnderscore
= true;
1135 s
+= 2; // Skip both '_'
1136 if (s
+ 1 < ThisTokEnd
&&
1137 (*s
== 'u' || *s
== 'U')) { // Ensure some character after 'u'/'U'
1141 if (s
+ 1 < ThisTokEnd
&&
1142 ((*s
== 'w' && *(++s
) == 'b') || (*s
== 'W' && *(++s
) == 'B'))) {
1152 break; // Invalid for floats.
1154 break; // Invalid if we already have a size for the literal.
1156 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
1157 // explicitly do not support the suffix in C++ as an extension because a
1158 // library-based UDL that resolves to a library type may be more
1159 // appropriate there. The same rules apply for __wb/__WB.
1160 if ((!LangOpts
.CPlusPlus
|| DoubleUnderscore
) && s
+ 1 < ThisTokEnd
&&
1161 ((s
[0] == 'w' && s
[1] == 'b') || (s
[0] == 'W' && s
[1] == 'B'))) {
1164 ++s
; // Skip both characters (2nd char skipped on continue).
1165 continue; // Success.
1168 // If we reached here, there was an error or a ud-suffix.
1172 // "i", "if", and "il" are user-defined suffixes in C++1y.
1173 if (s
!= ThisTokEnd
|| isImaginary
) {
1174 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
1175 expandUCNs(UDSuffixBuf
, StringRef(SuffixBegin
, ThisTokEnd
- SuffixBegin
));
1176 if (isValidUDSuffix(LangOpts
, UDSuffixBuf
)) {
1178 // Any suffix pieces we might have parsed are actually part of the
1187 isImaginary
= false;
1189 MicrosoftInteger
= 0;
1190 saw_fixed_point_suffix
= false;
1195 saw_ud_suffix
= true;
1199 if (s
!= ThisTokEnd
) {
1200 // Report an error if there are any.
1201 Diags
.Report(Lexer::AdvanceToTokenCharacter(
1202 TokLoc
, SuffixBegin
- ThisTokBegin
, SM
, LangOpts
),
1203 diag::err_invalid_suffix_constant
)
1204 << StringRef(SuffixBegin
, ThisTokEnd
- SuffixBegin
)
1205 << (isFixedPointConstant
? 2 : isFPConstant
);
1210 if (!hadError
&& saw_fixed_point_suffix
) {
1211 assert(isFract
|| isAccum
);
1215 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal
1216 /// numbers. It issues an error for illegal digits, and handles floating point
1217 /// parsing. If it detects a floating point number, the radix is set to 10.
1218 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc
){
1219 assert((radix
== 8 || radix
== 10) && "Unexpected radix");
1221 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
1222 // the code is using an incorrect base.
1223 if (isHexDigit(*s
) && *s
!= 'e' && *s
!= 'E' &&
1224 !isValidUDSuffix(LangOpts
, StringRef(s
, ThisTokEnd
- s
))) {
1226 Lexer::AdvanceToTokenCharacter(TokLoc
, s
- ThisTokBegin
, SM
, LangOpts
),
1227 diag::err_invalid_digit
)
1228 << StringRef(s
, 1) << (radix
== 8 ? 1 : 0);
1234 checkSeparator(TokLoc
, s
, CSK_AfterDigits
);
1238 checkSeparator(TokLoc
, s
, CSK_BeforeDigits
);
1239 s
= SkipDigits(s
); // Skip suffix.
1241 if (*s
== 'e' || *s
== 'E') { // exponent
1242 checkSeparator(TokLoc
, s
, CSK_AfterDigits
);
1243 const char *Exponent
= s
;
1246 saw_exponent
= true;
1247 if (s
!= ThisTokEnd
&& (*s
== '+' || *s
== '-')) s
++; // sign
1248 const char *first_non_digit
= SkipDigits(s
);
1249 if (containsDigits(s
, first_non_digit
)) {
1250 checkSeparator(TokLoc
, s
, CSK_BeforeDigits
);
1251 s
= first_non_digit
;
1254 Diags
.Report(Lexer::AdvanceToTokenCharacter(
1255 TokLoc
, Exponent
- ThisTokBegin
, SM
, LangOpts
),
1256 diag::err_exponent_has_no_digits
);
1264 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1265 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
1266 /// treat it as an invalid suffix.
1267 bool NumericLiteralParser::isValidUDSuffix(const LangOptions
&LangOpts
,
1269 if (!LangOpts
.CPlusPlus11
|| Suffix
.empty())
1272 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1273 // Suffixes starting with '__' (double underscore) are for use by
1274 // the implementation.
1275 if (Suffix
.starts_with("_") && !Suffix
.starts_with("__"))
1278 // In C++11, there are no library suffixes.
1279 if (!LangOpts
.CPlusPlus14
)
1282 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1283 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1284 // In C++2a "d" and "y" are used in the library.
1285 return llvm::StringSwitch
<bool>(Suffix
)
1286 .Cases("h", "min", "s", true)
1287 .Cases("ms", "us", "ns", true)
1288 .Cases("il", "i", "if", true)
1289 .Cases("d", "y", LangOpts
.CPlusPlus20
)
1293 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc
,
1295 CheckSeparatorKind IsAfterDigits
) {
1296 if (IsAfterDigits
== CSK_AfterDigits
) {
1297 if (Pos
== ThisTokBegin
)
1300 } else if (Pos
== ThisTokEnd
)
1303 if (isDigitSeparator(*Pos
)) {
1304 Diags
.Report(Lexer::AdvanceToTokenCharacter(TokLoc
, Pos
- ThisTokBegin
, SM
,
1306 diag::err_digit_separator_not_between_digits
)
1312 /// ParseNumberStartingWithZero - This method is called when the first character
1313 /// of the number is found to be a zero. This means it is either an octal
1314 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1315 /// a floating point number (01239.123e4). Eat the prefix, determining the
1317 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc
) {
1318 assert(s
[0] == '0' && "Invalid method call");
1323 // Handle a hex number like 0x1234.
1324 if ((c1
== 'x' || c1
== 'X') && (isHexDigit(s
[1]) || s
[1] == '.')) {
1326 assert(s
< ThisTokEnd
&& "didn't maximally munch?");
1329 s
= SkipHexDigits(s
);
1330 bool HasSignificandDigits
= containsDigits(DigitsBegin
, s
);
1331 if (s
== ThisTokEnd
) {
1333 } else if (*s
== '.') {
1336 const char *floatDigitsBegin
= s
;
1337 s
= SkipHexDigits(s
);
1338 if (containsDigits(floatDigitsBegin
, s
))
1339 HasSignificandDigits
= true;
1340 if (HasSignificandDigits
)
1341 checkSeparator(TokLoc
, floatDigitsBegin
, CSK_BeforeDigits
);
1344 if (!HasSignificandDigits
) {
1345 Diags
.Report(Lexer::AdvanceToTokenCharacter(TokLoc
, s
- ThisTokBegin
, SM
,
1347 diag::err_hex_constant_requires
)
1348 << LangOpts
.CPlusPlus
<< 1;
1353 // A binary exponent can appear with or with a '.'. If dotted, the
1354 // binary exponent is required.
1355 if (*s
== 'p' || *s
== 'P') {
1356 checkSeparator(TokLoc
, s
, CSK_AfterDigits
);
1357 const char *Exponent
= s
;
1359 saw_exponent
= true;
1360 if (s
!= ThisTokEnd
&& (*s
== '+' || *s
== '-')) s
++; // sign
1361 const char *first_non_digit
= SkipDigits(s
);
1362 if (!containsDigits(s
, first_non_digit
)) {
1364 Diags
.Report(Lexer::AdvanceToTokenCharacter(
1365 TokLoc
, Exponent
- ThisTokBegin
, SM
, LangOpts
),
1366 diag::err_exponent_has_no_digits
);
1371 checkSeparator(TokLoc
, s
, CSK_BeforeDigits
);
1372 s
= first_non_digit
;
1374 if (!LangOpts
.HexFloats
)
1375 Diags
.Report(TokLoc
, LangOpts
.CPlusPlus
1376 ? diag::ext_hex_literal_invalid
1377 : diag::ext_hex_constant_invalid
);
1378 else if (LangOpts
.CPlusPlus17
)
1379 Diags
.Report(TokLoc
, diag::warn_cxx17_hex_literal
);
1380 } else if (saw_period
) {
1381 Diags
.Report(Lexer::AdvanceToTokenCharacter(TokLoc
, s
- ThisTokBegin
, SM
,
1383 diag::err_hex_constant_requires
)
1384 << LangOpts
.CPlusPlus
<< 0;
1390 // Handle simple binary numbers 0b01010
1391 if ((c1
== 'b' || c1
== 'B') && (s
[1] == '0' || s
[1] == '1')) {
1392 // 0b101010 is a C++14 and C23 extension.
1394 if (LangOpts
.CPlusPlus14
)
1395 DiagId
= diag::warn_cxx11_compat_binary_literal
;
1396 else if (LangOpts
.C23
)
1397 DiagId
= diag::warn_c23_compat_binary_literal
;
1398 else if (LangOpts
.CPlusPlus
)
1399 DiagId
= diag::ext_binary_literal_cxx14
;
1401 DiagId
= diag::ext_binary_literal
;
1402 Diags
.Report(TokLoc
, DiagId
);
1404 assert(s
< ThisTokEnd
&& "didn't maximally munch?");
1407 s
= SkipBinaryDigits(s
);
1408 if (s
== ThisTokEnd
) {
1410 } else if (isHexDigit(*s
) &&
1411 !isValidUDSuffix(LangOpts
, StringRef(s
, ThisTokEnd
- s
))) {
1412 Diags
.Report(Lexer::AdvanceToTokenCharacter(TokLoc
, s
- ThisTokBegin
, SM
,
1414 diag::err_invalid_digit
)
1415 << StringRef(s
, 1) << 2;
1418 // Other suffixes will be diagnosed by the caller.
1422 // For now, the radix is set to 8. If we discover that we have a
1423 // floating point constant, the radix will change to 10. Octal floating
1424 // point constants are not permitted (only decimal and hexadecimal).
1426 const char *PossibleNewDigitStart
= s
;
1427 s
= SkipOctalDigits(s
);
1428 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1429 // as the start of the digits. So if skipping octal digits does not skip
1430 // anything, we leave the digit start where it was.
1431 if (s
!= PossibleNewDigitStart
)
1432 DigitsBegin
= PossibleNewDigitStart
;
1434 if (s
== ThisTokEnd
)
1435 return; // Done, simple octal number like 01234
1437 // If we have some other non-octal digit that *is* a decimal digit, see if
1438 // this is part of a floating point number like 094.123 or 09e1.
1440 const char *EndDecimal
= SkipDigits(s
);
1441 if (EndDecimal
[0] == '.' || EndDecimal
[0] == 'e' || EndDecimal
[0] == 'E') {
1447 ParseDecimalOrOctalCommon(TokLoc
);
1450 static bool alwaysFitsInto64Bits(unsigned Radix
, unsigned NumDigits
) {
1453 return NumDigits
<= 64;
1455 return NumDigits
<= 64 / 3; // Digits are groups of 3 bits.
1457 return NumDigits
<= 19; // floor(log10(2^64))
1459 return NumDigits
<= 64 / 4; // Digits are groups of 4 bits.
1461 llvm_unreachable("impossible Radix");
1465 /// GetIntegerValue - Convert this numeric literal value to an APInt that
1466 /// matches Val's input width. If there is an overflow, set Val to the low bits
1467 /// of the result and return true. Otherwise, return false.
1468 bool NumericLiteralParser::GetIntegerValue(llvm::APInt
&Val
) {
1469 // Fast path: Compute a conservative bound on the maximum number of
1470 // bits per digit in this radix. If we can't possibly overflow a
1471 // uint64 based on that bound then do the simple conversion to
1472 // integer. This avoids the expensive overflow checking below, and
1473 // handles the common cases that matter (small decimal integers and
1474 // hex/octal values which don't overflow).
1475 const unsigned NumDigits
= SuffixBegin
- DigitsBegin
;
1476 if (alwaysFitsInto64Bits(radix
, NumDigits
)) {
1478 for (const char *Ptr
= DigitsBegin
; Ptr
!= SuffixBegin
; ++Ptr
)
1479 if (!isDigitSeparator(*Ptr
))
1480 N
= N
* radix
+ llvm::hexDigitValue(*Ptr
);
1482 // This will truncate the value to Val's input width. Simply check
1483 // for overflow by comparing.
1485 return Val
.getZExtValue() != N
;
1489 const char *Ptr
= DigitsBegin
;
1491 llvm::APInt
RadixVal(Val
.getBitWidth(), radix
);
1492 llvm::APInt
CharVal(Val
.getBitWidth(), 0);
1493 llvm::APInt OldVal
= Val
;
1495 bool OverflowOccurred
= false;
1496 while (Ptr
< SuffixBegin
) {
1497 if (isDigitSeparator(*Ptr
)) {
1502 unsigned C
= llvm::hexDigitValue(*Ptr
++);
1504 // If this letter is out of bound for this radix, reject it.
1505 assert(C
< radix
&& "NumericLiteralParser ctor should have rejected this");
1509 // Add the digit to the value in the appropriate radix. If adding in digits
1510 // made the value smaller, then this overflowed.
1513 // Multiply by radix, did overflow occur on the multiply?
1515 OverflowOccurred
|= Val
.udiv(RadixVal
) != OldVal
;
1517 // Add value, did overflow occur on the value?
1518 // (a + b) ult b <=> overflow
1520 OverflowOccurred
|= Val
.ult(CharVal
);
1522 return OverflowOccurred
;
1525 llvm::APFloat::opStatus
1526 NumericLiteralParser::GetFloatValue(llvm::APFloat
&Result
,
1527 llvm::RoundingMode RM
) {
1528 using llvm::APFloat
;
1530 unsigned n
= std::min(SuffixBegin
- ThisTokBegin
, ThisTokEnd
- ThisTokBegin
);
1532 llvm::SmallString
<16> Buffer
;
1533 StringRef
Str(ThisTokBegin
, n
);
1534 if (Str
.contains('\'')) {
1536 std::remove_copy_if(Str
.begin(), Str
.end(), std::back_inserter(Buffer
),
1541 auto StatusOrErr
= Result
.convertFromString(Str
, RM
);
1542 assert(StatusOrErr
&& "Invalid floating point representation");
1543 return !errorToBool(StatusOrErr
.takeError()) ? *StatusOrErr
1544 : APFloat::opInvalidOp
;
1547 static inline bool IsExponentPart(char c
, bool isHex
) {
1549 return c
== 'p' || c
== 'P';
1550 return c
== 'e' || c
== 'E';
1553 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt
&StoreVal
, unsigned Scale
) {
1554 assert(radix
== 16 || radix
== 10);
1556 // Find how many digits are needed to store the whole literal.
1557 unsigned NumDigits
= SuffixBegin
- DigitsBegin
;
1558 if (saw_period
) --NumDigits
;
1560 // Initial scan of the exponent if it exists
1561 bool ExpOverflowOccurred
= false;
1562 bool NegativeExponent
= false;
1563 const char *ExponentBegin
;
1564 uint64_t Exponent
= 0;
1565 int64_t BaseShift
= 0;
1567 const char *Ptr
= DigitsBegin
;
1569 while (!IsExponentPart(*Ptr
, radix
== 16))
1571 ExponentBegin
= Ptr
;
1573 NegativeExponent
= *Ptr
== '-';
1574 if (NegativeExponent
) ++Ptr
;
1576 unsigned NumExpDigits
= SuffixBegin
- Ptr
;
1577 if (alwaysFitsInto64Bits(radix
, NumExpDigits
)) {
1578 llvm::StringRef
ExpStr(Ptr
, NumExpDigits
);
1579 llvm::APInt
ExpInt(/*numBits=*/64, ExpStr
, /*radix=*/10);
1580 Exponent
= ExpInt
.getZExtValue();
1582 ExpOverflowOccurred
= true;
1585 if (NegativeExponent
) BaseShift
-= Exponent
;
1586 else BaseShift
+= Exponent
;
1589 // Number of bits needed for decimal literal is
1590 // ceil(NumDigits * log2(10)) Integral part
1591 // + Scale Fractional part
1592 // + ceil(Exponent * log2(10)) Exponent
1593 // --------------------------------------------------
1594 // ceil((NumDigits + Exponent) * log2(10)) + Scale
1596 // But for simplicity in handling integers, we can round up log2(10) to 4,
1598 // 4 * (NumDigits + Exponent) + Scale
1600 // Number of digits needed for hexadecimal literal is
1601 // 4 * NumDigits Integral part
1602 // + Scale Fractional part
1603 // + Exponent Exponent
1604 // --------------------------------------------------
1605 // (4 * NumDigits) + Scale + Exponent
1606 uint64_t NumBitsNeeded
;
1608 NumBitsNeeded
= 4 * (NumDigits
+ Exponent
) + Scale
;
1610 NumBitsNeeded
= 4 * NumDigits
+ Exponent
+ Scale
;
1612 if (NumBitsNeeded
> std::numeric_limits
<unsigned>::max())
1613 ExpOverflowOccurred
= true;
1614 llvm::APInt
Val(static_cast<unsigned>(NumBitsNeeded
), 0, /*isSigned=*/false);
1616 bool FoundDecimal
= false;
1618 int64_t FractBaseShift
= 0;
1619 const char *End
= saw_exponent
? ExponentBegin
: SuffixBegin
;
1620 for (const char *Ptr
= DigitsBegin
; Ptr
< End
; ++Ptr
) {
1622 FoundDecimal
= true;
1626 // Normal reading of an integer
1627 unsigned C
= llvm::hexDigitValue(*Ptr
);
1628 assert(C
< radix
&& "NumericLiteralParser ctor should have rejected this");
1634 // Keep track of how much we will need to adjust this value by from the
1635 // number of digits past the radix point.
1639 // For a radix of 16, we will be multiplying by 2 instead of 16.
1640 if (radix
== 16) FractBaseShift
*= 4;
1641 BaseShift
+= FractBaseShift
;
1645 uint64_t Base
= (radix
== 16) ? 2 : 10;
1646 if (BaseShift
> 0) {
1647 for (int64_t i
= 0; i
< BaseShift
; ++i
) {
1650 } else if (BaseShift
< 0) {
1651 for (int64_t i
= BaseShift
; i
< 0 && !Val
.isZero(); ++i
)
1652 Val
= Val
.udiv(Base
);
1655 bool IntOverflowOccurred
= false;
1656 auto MaxVal
= llvm::APInt::getMaxValue(StoreVal
.getBitWidth());
1657 if (Val
.getBitWidth() > StoreVal
.getBitWidth()) {
1658 IntOverflowOccurred
|= Val
.ugt(MaxVal
.zext(Val
.getBitWidth()));
1659 StoreVal
= Val
.trunc(StoreVal
.getBitWidth());
1660 } else if (Val
.getBitWidth() < StoreVal
.getBitWidth()) {
1661 IntOverflowOccurred
|= Val
.zext(MaxVal
.getBitWidth()).ugt(MaxVal
);
1662 StoreVal
= Val
.zext(StoreVal
.getBitWidth());
1667 return IntOverflowOccurred
|| ExpOverflowOccurred
;
1671 /// user-defined-character-literal: [C++11 lex.ext]
1672 /// character-literal ud-suffix
1675 /// character-literal: [C++11 lex.ccon]
1676 /// ' c-char-sequence '
1677 /// u' c-char-sequence '
1678 /// U' c-char-sequence '
1679 /// L' c-char-sequence '
1680 /// u8' c-char-sequence ' [C++1z lex.ccon]
1681 /// c-char-sequence:
1683 /// c-char-sequence c-char
1685 /// any member of the source character set except the single-quote ',
1686 /// backslash \, or new-line character
1688 /// universal-character-name
1689 /// escape-sequence:
1690 /// simple-escape-sequence
1691 /// octal-escape-sequence
1692 /// hexadecimal-escape-sequence
1693 /// simple-escape-sequence:
1694 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1695 /// octal-escape-sequence:
1697 /// \ octal-digit octal-digit
1698 /// \ octal-digit octal-digit octal-digit
1699 /// hexadecimal-escape-sequence:
1700 /// \x hexadecimal-digit
1701 /// hexadecimal-escape-sequence hexadecimal-digit
1702 /// universal-character-name: [C++11 lex.charset]
1704 /// \U hex-quad hex-quad
1706 /// hex-digit hex-digit hex-digit hex-digit
1709 CharLiteralParser::CharLiteralParser(const char *begin
, const char *end
,
1710 SourceLocation Loc
, Preprocessor
&PP
,
1711 tok::TokenKind kind
) {
1712 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1717 const char *TokBegin
= begin
;
1719 // Skip over wide character determinant.
1720 if (Kind
!= tok::char_constant
)
1722 if (Kind
== tok::utf8_char_constant
)
1725 // Skip over the entry quote.
1726 if (begin
[0] != '\'') {
1727 PP
.Diag(Loc
, diag::err_lexing_char
);
1734 // Remove an optional ud-suffix.
1735 if (end
[-1] != '\'') {
1736 const char *UDSuffixEnd
= end
;
1739 } while (end
[-1] != '\'');
1740 // FIXME: Don't bother with this if !tok.hasUCN().
1741 expandUCNs(UDSuffixBuf
, StringRef(end
, UDSuffixEnd
- end
));
1742 UDSuffixOffset
= end
- TokBegin
;
1745 // Trim the ending quote.
1746 assert(end
!= begin
&& "Invalid token lexed");
1749 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1751 // FIXME: This extensively assumes that 'char' is 8-bits.
1752 assert(PP
.getTargetInfo().getCharWidth() == 8 &&
1753 "Assumes char is 8 bits");
1754 assert(PP
.getTargetInfo().getIntWidth() <= 64 &&
1755 (PP
.getTargetInfo().getIntWidth() & 7) == 0 &&
1756 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1757 assert(PP
.getTargetInfo().getWCharWidth() <= 64 &&
1758 "Assumes sizeof(wchar) on target is <= 64");
1760 SmallVector
<uint32_t, 4> codepoint_buffer
;
1761 codepoint_buffer
.resize(end
- begin
);
1762 uint32_t *buffer_begin
= &codepoint_buffer
.front();
1763 uint32_t *buffer_end
= buffer_begin
+ codepoint_buffer
.size();
1765 // Unicode escapes representing characters that cannot be correctly
1766 // represented in a single code unit are disallowed in character literals
1767 // by this implementation.
1768 uint32_t largest_character_for_kind
;
1769 if (tok::wide_char_constant
== Kind
) {
1770 largest_character_for_kind
=
1771 0xFFFFFFFFu
>> (32-PP
.getTargetInfo().getWCharWidth());
1772 } else if (tok::utf8_char_constant
== Kind
) {
1773 largest_character_for_kind
= 0x7F;
1774 } else if (tok::utf16_char_constant
== Kind
) {
1775 largest_character_for_kind
= 0xFFFF;
1776 } else if (tok::utf32_char_constant
== Kind
) {
1777 largest_character_for_kind
= 0x10FFFF;
1779 largest_character_for_kind
= 0x7Fu
;
1782 while (begin
!= end
) {
1783 // Is this a span of non-escape characters?
1784 if (begin
[0] != '\\') {
1785 char const *start
= begin
;
1788 } while (begin
!= end
&& *begin
!= '\\');
1790 char const *tmp_in_start
= start
;
1791 uint32_t *tmp_out_start
= buffer_begin
;
1792 llvm::ConversionResult res
=
1793 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8
const **>(&start
),
1794 reinterpret_cast<llvm::UTF8
const *>(begin
),
1795 &buffer_begin
, buffer_end
, llvm::strictConversion
);
1796 if (res
!= llvm::conversionOK
) {
1797 // If we see bad encoding for unprefixed character literals, warn and
1798 // simply copy the byte values, for compatibility with gcc and
1799 // older versions of clang.
1800 bool NoErrorOnBadEncoding
= isOrdinary();
1801 unsigned Msg
= diag::err_bad_character_encoding
;
1802 if (NoErrorOnBadEncoding
)
1803 Msg
= diag::warn_bad_character_encoding
;
1805 if (NoErrorOnBadEncoding
) {
1806 start
= tmp_in_start
;
1807 buffer_begin
= tmp_out_start
;
1808 for (; start
!= begin
; ++start
, ++buffer_begin
)
1809 *buffer_begin
= static_cast<uint8_t>(*start
);
1814 for (; tmp_out_start
< buffer_begin
; ++tmp_out_start
) {
1815 if (*tmp_out_start
> largest_character_for_kind
) {
1817 PP
.Diag(Loc
, diag::err_character_too_large
);
1824 // Is this a Universal Character Name escape?
1825 if (begin
[1] == 'u' || begin
[1] == 'U' || begin
[1] == 'N') {
1826 unsigned short UcnLen
= 0;
1827 if (!ProcessUCNEscape(TokBegin
, begin
, end
, *buffer_begin
, UcnLen
,
1828 FullSourceLoc(Loc
, PP
.getSourceManager()),
1829 &PP
.getDiagnostics(), PP
.getLangOpts(), true)) {
1831 } else if (*buffer_begin
> largest_character_for_kind
) {
1833 PP
.Diag(Loc
, diag::err_character_too_large
);
1839 unsigned CharWidth
= getCharWidth(Kind
, PP
.getTargetInfo());
1841 ProcessCharEscape(TokBegin
, begin
, end
, HadError
,
1842 FullSourceLoc(Loc
, PP
.getSourceManager()), CharWidth
,
1843 &PP
.getDiagnostics(), PP
.getLangOpts(),
1844 StringLiteralEvalMethod::Evaluated
);
1845 *buffer_begin
++ = result
;
1848 unsigned NumCharsSoFar
= buffer_begin
- &codepoint_buffer
.front();
1850 if (NumCharsSoFar
> 1) {
1851 if (isOrdinary() && NumCharsSoFar
== 4)
1852 PP
.Diag(Loc
, diag::warn_four_char_character_literal
);
1853 else if (isOrdinary())
1854 PP
.Diag(Loc
, diag::warn_multichar_character_literal
);
1856 PP
.Diag(Loc
, diag::err_multichar_character_literal
) << (isWide() ? 0 : 1);
1861 IsMultiChar
= false;
1864 llvm::APInt
LitVal(PP
.getTargetInfo().getIntWidth(), 0);
1866 // Narrow character literals act as though their value is concatenated
1867 // in this implementation, but warn on overflow.
1868 bool multi_char_too_long
= false;
1869 if (isOrdinary() && isMultiChar()) {
1871 for (size_t i
= 0; i
< NumCharsSoFar
; ++i
) {
1872 // check for enough leading zeros to shift into
1873 multi_char_too_long
|= (LitVal
.countl_zero() < 8);
1875 LitVal
= LitVal
+ (codepoint_buffer
[i
] & 0xFF);
1877 } else if (NumCharsSoFar
> 0) {
1878 // otherwise just take the last character
1879 LitVal
= buffer_begin
[-1];
1882 if (!HadError
&& multi_char_too_long
) {
1883 PP
.Diag(Loc
, diag::warn_char_constant_too_large
);
1886 // Transfer the value from APInt to uint64_t
1887 Value
= LitVal
.getZExtValue();
1889 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1890 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1891 // character constants are not sign extended in the this implementation:
1892 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1893 if (isOrdinary() && NumCharsSoFar
== 1 && (Value
& 128) &&
1894 PP
.getLangOpts().CharIsSigned
)
1895 Value
= (signed char)Value
;
1899 /// string-literal: [C++0x lex.string]
1900 /// encoding-prefix " [s-char-sequence] "
1901 /// encoding-prefix R raw-string
1902 /// encoding-prefix:
1907 /// s-char-sequence:
1909 /// s-char-sequence s-char
1911 /// any member of the source character set except the double-quote ",
1912 /// backslash \, or new-line character
1914 /// universal-character-name
1916 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1917 /// r-char-sequence:
1919 /// r-char-sequence r-char
1921 /// any member of the source character set, except a right parenthesis )
1922 /// followed by the initial d-char-sequence (which may be empty)
1923 /// followed by a double quote ".
1924 /// d-char-sequence:
1926 /// d-char-sequence d-char
1928 /// any member of the basic source character set except:
1929 /// space, the left parenthesis (, the right parenthesis ),
1930 /// the backslash \, and the control characters representing horizontal
1931 /// tab, vertical tab, form feed, and newline.
1932 /// escape-sequence: [C++0x lex.ccon]
1933 /// simple-escape-sequence
1934 /// octal-escape-sequence
1935 /// hexadecimal-escape-sequence
1936 /// simple-escape-sequence:
1937 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1938 /// octal-escape-sequence:
1940 /// \ octal-digit octal-digit
1941 /// \ octal-digit octal-digit octal-digit
1942 /// hexadecimal-escape-sequence:
1943 /// \x hexadecimal-digit
1944 /// hexadecimal-escape-sequence hexadecimal-digit
1945 /// universal-character-name:
1947 /// \U hex-quad hex-quad
1949 /// hex-digit hex-digit hex-digit hex-digit
1952 StringLiteralParser::StringLiteralParser(ArrayRef
<Token
> StringToks
,
1954 StringLiteralEvalMethod EvalMethod
)
1955 : SM(PP
.getSourceManager()), Features(PP
.getLangOpts()),
1956 Target(PP
.getTargetInfo()), Diags(&PP
.getDiagnostics()),
1957 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown
),
1958 ResultPtr(ResultBuf
.data()), EvalMethod(EvalMethod
), hadError(false),
1963 void StringLiteralParser::init(ArrayRef
<Token
> StringToks
){
1964 // The literal token may have come from an invalid source location (e.g. due
1965 // to a PCH error), in which case the token length will be 0.
1966 if (StringToks
.empty() || StringToks
[0].getLength() < 2)
1967 return DiagnoseLexingError(SourceLocation());
1969 // Scan all of the string portions, remember the max individual token length,
1970 // computing a bound on the concatenated string length, and see whether any
1971 // piece is a wide-string. If any of the string portions is a wide-string
1972 // literal, the result is a wide-string literal [C99 6.4.5p4].
1973 assert(!StringToks
.empty() && "expected at least one token");
1974 MaxTokenLength
= StringToks
[0].getLength();
1975 assert(StringToks
[0].getLength() >= 2 && "literal token is invalid!");
1976 SizeBound
= StringToks
[0].getLength() - 2; // -2 for "".
1979 // Determines the kind of string from the prefix
1980 Kind
= tok::string_literal
;
1982 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1983 for (const Token
&Tok
: StringToks
) {
1984 if (Tok
.getLength() < 2)
1985 return DiagnoseLexingError(Tok
.getLocation());
1987 // The string could be shorter than this if it needs cleaning, but this is a
1988 // reasonable bound, which is all we need.
1989 assert(Tok
.getLength() >= 2 && "literal token is invalid!");
1990 SizeBound
+= Tok
.getLength() - 2; // -2 for "".
1992 // Remember maximum string piece length.
1993 if (Tok
.getLength() > MaxTokenLength
)
1994 MaxTokenLength
= Tok
.getLength();
1996 // Remember if we see any wide or utf-8/16/32 strings.
1997 // Also check for illegal concatenations.
1998 if (isUnevaluated() && Tok
.getKind() != tok::string_literal
) {
2000 SourceLocation PrefixEndLoc
= Lexer::AdvanceToTokenCharacter(
2001 Tok
.getLocation(), getEncodingPrefixLen(Tok
.getKind()), SM
,
2003 CharSourceRange Range
=
2004 CharSourceRange::getCharRange({Tok
.getLocation(), PrefixEndLoc
});
2005 StringRef
Prefix(SM
.getCharacterData(Tok
.getLocation()),
2006 getEncodingPrefixLen(Tok
.getKind()));
2007 Diags
->Report(Tok
.getLocation(),
2008 Features
.CPlusPlus26
2009 ? diag::err_unevaluated_string_prefix
2010 : diag::warn_unevaluated_string_prefix
)
2011 << Prefix
<< Features
.CPlusPlus
<< FixItHint::CreateRemoval(Range
);
2013 if (Features
.CPlusPlus26
)
2015 } else if (Tok
.isNot(Kind
) && Tok
.isNot(tok::string_literal
)) {
2017 Kind
= Tok
.getKind();
2020 Diags
->Report(Tok
.getLocation(), diag::err_unsupported_string_concat
);
2026 // Include space for the null terminator.
2029 // TODO: K&R warning: "traditional C rejects string constant concatenation"
2031 // Get the width in bytes of char/wchar_t/char16_t/char32_t
2032 CharByteWidth
= getCharWidth(Kind
, Target
);
2033 assert((CharByteWidth
& 7) == 0 && "Assumes character size is byte multiple");
2036 // The output buffer size needs to be large enough to hold wide characters.
2037 // This is a worst-case assumption which basically corresponds to L"" "long".
2038 SizeBound
*= CharByteWidth
;
2040 // Size the temporary buffer to hold the result string data.
2041 ResultBuf
.resize(SizeBound
);
2043 // Likewise, but for each string piece.
2044 SmallString
<512> TokenBuf
;
2045 TokenBuf
.resize(MaxTokenLength
);
2047 // Loop over all the strings, getting their spelling, and expanding them to
2048 // wide strings as appropriate.
2049 ResultPtr
= &ResultBuf
[0]; // Next byte to fill in.
2053 SourceLocation UDSuffixTokLoc
;
2055 for (unsigned i
= 0, e
= StringToks
.size(); i
!= e
; ++i
) {
2056 const char *ThisTokBuf
= &TokenBuf
[0];
2057 // Get the spelling of the token, which eliminates trigraphs, etc. We know
2058 // that ThisTokBuf points to a buffer that is big enough for the whole token
2059 // and 'spelled' tokens can only shrink.
2060 bool StringInvalid
= false;
2061 unsigned ThisTokLen
=
2062 Lexer::getSpelling(StringToks
[i
], ThisTokBuf
, SM
, Features
,
2065 return DiagnoseLexingError(StringToks
[i
].getLocation());
2067 const char *ThisTokBegin
= ThisTokBuf
;
2068 const char *ThisTokEnd
= ThisTokBuf
+ThisTokLen
;
2070 // Remove an optional ud-suffix.
2071 if (ThisTokEnd
[-1] != '"') {
2072 const char *UDSuffixEnd
= ThisTokEnd
;
2075 } while (ThisTokEnd
[-1] != '"');
2077 StringRef
UDSuffix(ThisTokEnd
, UDSuffixEnd
- ThisTokEnd
);
2079 if (UDSuffixBuf
.empty()) {
2080 if (StringToks
[i
].hasUCN())
2081 expandUCNs(UDSuffixBuf
, UDSuffix
);
2083 UDSuffixBuf
.assign(UDSuffix
);
2085 UDSuffixOffset
= ThisTokEnd
- ThisTokBuf
;
2086 UDSuffixTokLoc
= StringToks
[i
].getLocation();
2088 SmallString
<32> ExpandedUDSuffix
;
2089 if (StringToks
[i
].hasUCN()) {
2090 expandUCNs(ExpandedUDSuffix
, UDSuffix
);
2091 UDSuffix
= ExpandedUDSuffix
;
2094 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
2095 // result of a concatenation involving at least one user-defined-string-
2096 // literal, all the participating user-defined-string-literals shall
2097 // have the same ud-suffix.
2098 bool UnevaluatedStringHasUDL
= isUnevaluated() && !UDSuffix
.empty();
2099 if (UDSuffixBuf
!= UDSuffix
|| UnevaluatedStringHasUDL
) {
2101 SourceLocation TokLoc
= StringToks
[i
].getLocation();
2102 if (UnevaluatedStringHasUDL
) {
2103 Diags
->Report(TokLoc
, diag::err_unevaluated_string_udl
)
2104 << SourceRange(TokLoc
, TokLoc
);
2106 Diags
->Report(TokLoc
, diag::err_string_concat_mixed_suffix
)
2107 << UDSuffixBuf
<< UDSuffix
2108 << SourceRange(UDSuffixTokLoc
, UDSuffixTokLoc
);
2116 // Strip the end quote.
2119 // TODO: Input character set mapping support.
2121 // Skip marker for wide or unicode strings.
2122 if (ThisTokBuf
[0] == 'L' || ThisTokBuf
[0] == 'u' || ThisTokBuf
[0] == 'U') {
2124 // Skip 8 of u8 marker for utf8 strings.
2125 if (ThisTokBuf
[0] == '8')
2129 // Check for raw string
2130 if (ThisTokBuf
[0] == 'R') {
2131 if (ThisTokBuf
[1] != '"') {
2132 // The file may have come from PCH and then changed after loading the
2133 // PCH; Fail gracefully.
2134 return DiagnoseLexingError(StringToks
[i
].getLocation());
2136 ThisTokBuf
+= 2; // skip R"
2138 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
2140 constexpr unsigned MaxRawStrDelimLen
= 16;
2142 const char *Prefix
= ThisTokBuf
;
2143 while (static_cast<unsigned>(ThisTokBuf
- Prefix
) < MaxRawStrDelimLen
&&
2144 ThisTokBuf
[0] != '(')
2146 if (ThisTokBuf
[0] != '(')
2147 return DiagnoseLexingError(StringToks
[i
].getLocation());
2148 ++ThisTokBuf
; // skip '('
2150 // Remove same number of characters from the end
2151 ThisTokEnd
-= ThisTokBuf
- Prefix
;
2152 if (ThisTokEnd
< ThisTokBuf
)
2153 return DiagnoseLexingError(StringToks
[i
].getLocation());
2155 // C++14 [lex.string]p4: A source-file new-line in a raw string literal
2156 // results in a new-line in the resulting execution string-literal.
2157 StringRef
RemainingTokenSpan(ThisTokBuf
, ThisTokEnd
- ThisTokBuf
);
2158 while (!RemainingTokenSpan
.empty()) {
2159 // Split the string literal on \r\n boundaries.
2160 size_t CRLFPos
= RemainingTokenSpan
.find("\r\n");
2161 StringRef BeforeCRLF
= RemainingTokenSpan
.substr(0, CRLFPos
);
2162 StringRef AfterCRLF
= RemainingTokenSpan
.substr(CRLFPos
);
2164 // Copy everything before the \r\n sequence into the string literal.
2165 if (CopyStringFragment(StringToks
[i
], ThisTokBegin
, BeforeCRLF
))
2168 // Point into the \n inside the \r\n sequence and operate on the
2169 // remaining portion of the literal.
2170 RemainingTokenSpan
= AfterCRLF
.substr(1);
2173 if (ThisTokBuf
[0] != '"') {
2174 // The file may have come from PCH and then changed after loading the
2175 // PCH; Fail gracefully.
2176 return DiagnoseLexingError(StringToks
[i
].getLocation());
2178 ++ThisTokBuf
; // skip "
2180 // Check if this is a pascal string
2181 if (!isUnevaluated() && Features
.PascalStrings
&&
2182 ThisTokBuf
+ 1 != ThisTokEnd
&& ThisTokBuf
[0] == '\\' &&
2183 ThisTokBuf
[1] == 'p') {
2185 // If the \p sequence is found in the first token, we have a pascal string
2186 // Otherwise, if we already have a pascal string, ignore the first \p
2194 while (ThisTokBuf
!= ThisTokEnd
) {
2195 // Is this a span of non-escape characters?
2196 if (ThisTokBuf
[0] != '\\') {
2197 const char *InStart
= ThisTokBuf
;
2200 } while (ThisTokBuf
!= ThisTokEnd
&& ThisTokBuf
[0] != '\\');
2202 // Copy the character span over.
2203 if (CopyStringFragment(StringToks
[i
], ThisTokBegin
,
2204 StringRef(InStart
, ThisTokBuf
- InStart
)))
2208 // Is this a Universal Character Name escape?
2209 if (ThisTokBuf
[1] == 'u' || ThisTokBuf
[1] == 'U' ||
2210 ThisTokBuf
[1] == 'N') {
2211 EncodeUCNEscape(ThisTokBegin
, ThisTokBuf
, ThisTokEnd
,
2212 ResultPtr
, hadError
,
2213 FullSourceLoc(StringToks
[i
].getLocation(), SM
),
2214 CharByteWidth
, Diags
, Features
);
2217 // Otherwise, this is a non-UCN escape character. Process it.
2218 unsigned ResultChar
=
2219 ProcessCharEscape(ThisTokBegin
, ThisTokBuf
, ThisTokEnd
, hadError
,
2220 FullSourceLoc(StringToks
[i
].getLocation(), SM
),
2221 CharByteWidth
* 8, Diags
, Features
, EvalMethod
);
2223 if (CharByteWidth
== 4) {
2224 // FIXME: Make the type of the result buffer correct instead of
2225 // using reinterpret_cast.
2226 llvm::UTF32
*ResultWidePtr
= reinterpret_cast<llvm::UTF32
*>(ResultPtr
);
2227 *ResultWidePtr
= ResultChar
;
2229 } else if (CharByteWidth
== 2) {
2230 // FIXME: Make the type of the result buffer correct instead of
2231 // using reinterpret_cast.
2232 llvm::UTF16
*ResultWidePtr
= reinterpret_cast<llvm::UTF16
*>(ResultPtr
);
2233 *ResultWidePtr
= ResultChar
& 0xFFFF;
2236 assert(CharByteWidth
== 1 && "Unexpected char width");
2237 *ResultPtr
++ = ResultChar
& 0xFF;
2243 assert((!Pascal
|| !isUnevaluated()) &&
2244 "Pascal string in unevaluated context");
2246 if (CharByteWidth
== 4) {
2247 // FIXME: Make the type of the result buffer correct instead of
2248 // using reinterpret_cast.
2249 llvm::UTF32
*ResultWidePtr
= reinterpret_cast<llvm::UTF32
*>(ResultBuf
.data());
2250 ResultWidePtr
[0] = GetNumStringChars() - 1;
2251 } else if (CharByteWidth
== 2) {
2252 // FIXME: Make the type of the result buffer correct instead of
2253 // using reinterpret_cast.
2254 llvm::UTF16
*ResultWidePtr
= reinterpret_cast<llvm::UTF16
*>(ResultBuf
.data());
2255 ResultWidePtr
[0] = GetNumStringChars() - 1;
2257 assert(CharByteWidth
== 1 && "Unexpected char width");
2258 ResultBuf
[0] = GetNumStringChars() - 1;
2261 // Verify that pascal strings aren't too large.
2262 if (GetStringLength() > 256) {
2264 Diags
->Report(StringToks
.front().getLocation(),
2265 diag::err_pascal_string_too_long
)
2266 << SourceRange(StringToks
.front().getLocation(),
2267 StringToks
.back().getLocation());
2272 // Complain if this string literal has too many characters.
2273 unsigned MaxChars
= Features
.CPlusPlus
? 65536 : Features
.C99
? 4095 : 509;
2275 if (GetNumStringChars() > MaxChars
)
2276 Diags
->Report(StringToks
.front().getLocation(),
2277 diag::ext_string_too_long
)
2278 << GetNumStringChars() << MaxChars
2279 << (Features
.CPlusPlus
? 2 : Features
.C99
? 1 : 0)
2280 << SourceRange(StringToks
.front().getLocation(),
2281 StringToks
.back().getLocation());
2285 static const char *resyncUTF8(const char *Err
, const char *End
) {
2288 End
= Err
+ std::min
<unsigned>(llvm::getNumBytesForUTF8(*Err
), End
-Err
);
2289 while (++Err
!= End
&& (*Err
& 0xC0) == 0x80)
2294 /// This function copies from Fragment, which is a sequence of bytes
2295 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
2296 /// Performs widening for multi-byte characters.
2297 bool StringLiteralParser::CopyStringFragment(const Token
&Tok
,
2298 const char *TokBegin
,
2299 StringRef Fragment
) {
2300 const llvm::UTF8
*ErrorPtrTmp
;
2301 if (ConvertUTF8toWide(CharByteWidth
, Fragment
, ResultPtr
, ErrorPtrTmp
))
2304 // If we see bad encoding for unprefixed string literals, warn and
2305 // simply copy the byte values, for compatibility with gcc and older
2306 // versions of clang.
2307 bool NoErrorOnBadEncoding
= isOrdinary();
2308 if (NoErrorOnBadEncoding
) {
2309 memcpy(ResultPtr
, Fragment
.data(), Fragment
.size());
2310 ResultPtr
+= Fragment
.size();
2314 const char *ErrorPtr
= reinterpret_cast<const char *>(ErrorPtrTmp
);
2316 FullSourceLoc
SourceLoc(Tok
.getLocation(), SM
);
2317 const DiagnosticBuilder
&Builder
=
2318 Diag(Diags
, Features
, SourceLoc
, TokBegin
,
2319 ErrorPtr
, resyncUTF8(ErrorPtr
, Fragment
.end()),
2320 NoErrorOnBadEncoding
? diag::warn_bad_string_encoding
2321 : diag::err_bad_string_encoding
);
2323 const char *NextStart
= resyncUTF8(ErrorPtr
, Fragment
.end());
2324 StringRef
NextFragment(NextStart
, Fragment
.end()-NextStart
);
2326 // Decode into a dummy buffer.
2327 SmallString
<512> Dummy
;
2328 Dummy
.reserve(Fragment
.size() * CharByteWidth
);
2329 char *Ptr
= Dummy
.data();
2331 while (!ConvertUTF8toWide(CharByteWidth
, NextFragment
, Ptr
, ErrorPtrTmp
)) {
2332 const char *ErrorPtr
= reinterpret_cast<const char *>(ErrorPtrTmp
);
2333 NextStart
= resyncUTF8(ErrorPtr
, Fragment
.end());
2334 Builder
<< MakeCharSourceRange(Features
, SourceLoc
, TokBegin
,
2335 ErrorPtr
, NextStart
);
2336 NextFragment
= StringRef(NextStart
, Fragment
.end()-NextStart
);
2339 return !NoErrorOnBadEncoding
;
2342 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc
) {
2345 Diags
->Report(Loc
, diag::err_lexing_string
);
2348 /// getOffsetOfStringByte - This function returns the offset of the
2349 /// specified byte of the string data represented by Token. This handles
2350 /// advancing over escape sequences in the string.
2351 unsigned StringLiteralParser::getOffsetOfStringByte(const Token
&Tok
,
2352 unsigned ByteNo
) const {
2353 // Get the spelling of the token.
2354 SmallString
<32> SpellingBuffer
;
2355 SpellingBuffer
.resize(Tok
.getLength());
2357 bool StringInvalid
= false;
2358 const char *SpellingPtr
= &SpellingBuffer
[0];
2359 unsigned TokLen
= Lexer::getSpelling(Tok
, SpellingPtr
, SM
, Features
,
2364 const char *SpellingStart
= SpellingPtr
;
2365 const char *SpellingEnd
= SpellingPtr
+TokLen
;
2367 // Handle UTF-8 strings just like narrow strings.
2368 if (SpellingPtr
[0] == 'u' && SpellingPtr
[1] == '8')
2371 assert(SpellingPtr
[0] != 'L' && SpellingPtr
[0] != 'u' &&
2372 SpellingPtr
[0] != 'U' && "Doesn't handle wide or utf strings yet");
2374 // For raw string literals, this is easy.
2375 if (SpellingPtr
[0] == 'R') {
2376 assert(SpellingPtr
[1] == '"' && "Should be a raw string literal!");
2379 while (*SpellingPtr
!= '(') {
2381 assert(SpellingPtr
< SpellingEnd
&& "Missing ( for raw string literal");
2385 return SpellingPtr
- SpellingStart
+ ByteNo
;
2388 // Skip over the leading quote
2389 assert(SpellingPtr
[0] == '"' && "Should be a string literal!");
2392 // Skip over bytes until we find the offset we're looking for.
2394 assert(SpellingPtr
< SpellingEnd
&& "Didn't find byte offset!");
2396 // Step over non-escapes simply.
2397 if (*SpellingPtr
!= '\\') {
2403 // Otherwise, this is an escape character. Advance over it.
2404 bool HadError
= false;
2405 if (SpellingPtr
[1] == 'u' || SpellingPtr
[1] == 'U' ||
2406 SpellingPtr
[1] == 'N') {
2407 const char *EscapePtr
= SpellingPtr
;
2408 unsigned Len
= MeasureUCNEscape(SpellingStart
, SpellingPtr
, SpellingEnd
,
2409 1, Features
, HadError
);
2411 // ByteNo is somewhere within the escape sequence.
2412 SpellingPtr
= EscapePtr
;
2417 ProcessCharEscape(SpellingStart
, SpellingPtr
, SpellingEnd
, HadError
,
2418 FullSourceLoc(Tok
.getLocation(), SM
), CharByteWidth
* 8,
2419 Diags
, Features
, StringLiteralEvalMethod::Evaluated
);
2422 assert(!HadError
&& "This method isn't valid on erroneous strings");
2425 return SpellingPtr
-SpellingStart
;
2428 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2429 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
2430 /// treat it as an invalid suffix.
2431 bool StringLiteralParser::isValidUDSuffix(const LangOptions
&LangOpts
,
2433 return NumericLiteralParser::isValidUDSuffix(LangOpts
, Suffix
) ||