[TableGen] Fix validateOperandClass for non Phyical Reg (#118146)
[llvm-project.git] / clang / lib / Lex / LiteralSupport.cpp
blob225a6c2d15baaace06fa152f09097e4b173f49cc
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the NumericLiteralParser, CharLiteralParser, and
10 // StringLiteralParser interfaces.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Lex/LiteralSupport.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/LangOptions.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/Lexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/Token.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/ConvertUTF.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Unicode.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <cstring>
36 #include <string>
38 using namespace clang;
40 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
41 switch (kind) {
42 default: llvm_unreachable("Unknown token type!");
43 case tok::char_constant:
44 case tok::string_literal:
45 case tok::utf8_char_constant:
46 case tok::utf8_string_literal:
47 return Target.getCharWidth();
48 case tok::wide_char_constant:
49 case tok::wide_string_literal:
50 return Target.getWCharWidth();
51 case tok::utf16_char_constant:
52 case tok::utf16_string_literal:
53 return Target.getChar16Width();
54 case tok::utf32_char_constant:
55 case tok::utf32_string_literal:
56 return Target.getChar32Width();
60 static unsigned getEncodingPrefixLen(tok::TokenKind kind) {
61 switch (kind) {
62 default:
63 llvm_unreachable("Unknown token type!");
64 case tok::char_constant:
65 case tok::string_literal:
66 return 0;
67 case tok::utf8_char_constant:
68 case tok::utf8_string_literal:
69 return 2;
70 case tok::wide_char_constant:
71 case tok::wide_string_literal:
72 case tok::utf16_char_constant:
73 case tok::utf16_string_literal:
74 case tok::utf32_char_constant:
75 case tok::utf32_string_literal:
76 return 1;
80 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
81 FullSourceLoc TokLoc,
82 const char *TokBegin,
83 const char *TokRangeBegin,
84 const char *TokRangeEnd) {
85 SourceLocation Begin =
86 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
87 TokLoc.getManager(), Features);
88 SourceLocation End =
89 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
90 TokLoc.getManager(), Features);
91 return CharSourceRange::getCharRange(Begin, End);
94 /// Produce a diagnostic highlighting some portion of a literal.
95 ///
96 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
97 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
98 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
99 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
100 const LangOptions &Features, FullSourceLoc TokLoc,
101 const char *TokBegin, const char *TokRangeBegin,
102 const char *TokRangeEnd, unsigned DiagID) {
103 SourceLocation Begin =
104 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
105 TokLoc.getManager(), Features);
106 return Diags->Report(Begin, DiagID) <<
107 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
110 static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape) {
111 switch (Escape) {
112 case '\'':
113 case '"':
114 case '?':
115 case '\\':
116 case 'a':
117 case 'b':
118 case 'f':
119 case 'n':
120 case 'r':
121 case 't':
122 case 'v':
123 return true;
125 return false;
128 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
129 /// either a character or a string literal.
130 static unsigned ProcessCharEscape(const char *ThisTokBegin,
131 const char *&ThisTokBuf,
132 const char *ThisTokEnd, bool &HadError,
133 FullSourceLoc Loc, unsigned CharWidth,
134 DiagnosticsEngine *Diags,
135 const LangOptions &Features,
136 StringLiteralEvalMethod EvalMethod) {
137 const char *EscapeBegin = ThisTokBuf;
138 bool Delimited = false;
139 bool EndDelimiterFound = false;
141 // Skip the '\' char.
142 ++ThisTokBuf;
144 // We know that this character can't be off the end of the buffer, because
145 // that would have been \", which would not have been the end of string.
146 unsigned ResultChar = *ThisTokBuf++;
147 char Escape = ResultChar;
148 switch (ResultChar) {
149 // These map to themselves.
150 case '\\': case '\'': case '"': case '?': break;
152 // These have fixed mappings.
153 case 'a':
154 // TODO: K&R: the meaning of '\\a' is different in traditional C
155 ResultChar = 7;
156 break;
157 case 'b':
158 ResultChar = 8;
159 break;
160 case 'e':
161 if (Diags)
162 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
163 diag::ext_nonstandard_escape) << "e";
164 ResultChar = 27;
165 break;
166 case 'E':
167 if (Diags)
168 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
169 diag::ext_nonstandard_escape) << "E";
170 ResultChar = 27;
171 break;
172 case 'f':
173 ResultChar = 12;
174 break;
175 case 'n':
176 ResultChar = 10;
177 break;
178 case 'r':
179 ResultChar = 13;
180 break;
181 case 't':
182 ResultChar = 9;
183 break;
184 case 'v':
185 ResultChar = 11;
186 break;
187 case 'x': { // Hex escape.
188 ResultChar = 0;
189 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
190 Delimited = true;
191 ThisTokBuf++;
192 if (*ThisTokBuf == '}') {
193 HadError = true;
194 if (Diags)
195 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
196 diag::err_delimited_escape_empty);
198 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
199 if (Diags)
200 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
201 diag::err_hex_escape_no_digits) << "x";
202 return ResultChar;
205 // Hex escapes are a maximal series of hex digits.
206 bool Overflow = false;
207 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
208 if (Delimited && *ThisTokBuf == '}') {
209 ThisTokBuf++;
210 EndDelimiterFound = true;
211 break;
213 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
214 if (CharVal == -1) {
215 // Non delimited hex escape sequences stop at the first non-hex digit.
216 if (!Delimited)
217 break;
218 HadError = true;
219 if (Diags)
220 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
221 diag::err_delimited_escape_invalid)
222 << StringRef(ThisTokBuf, 1);
223 continue;
225 // About to shift out a digit?
226 if (ResultChar & 0xF0000000)
227 Overflow = true;
228 ResultChar <<= 4;
229 ResultChar |= CharVal;
231 // See if any bits will be truncated when evaluated as a character.
232 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
233 Overflow = true;
234 ResultChar &= ~0U >> (32-CharWidth);
237 // Check for overflow.
238 if (!HadError && Overflow) { // Too many digits to fit in
239 HadError = true;
240 if (Diags)
241 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
242 diag::err_escape_too_large)
243 << 0;
245 break;
247 case '0': case '1': case '2': case '3':
248 case '4': case '5': case '6': case '7': {
249 // Octal escapes.
250 --ThisTokBuf;
251 ResultChar = 0;
253 // Octal escapes are a series of octal digits with maximum length 3.
254 // "\0123" is a two digit sequence equal to "\012" "3".
255 unsigned NumDigits = 0;
256 do {
257 ResultChar <<= 3;
258 ResultChar |= *ThisTokBuf++ - '0';
259 ++NumDigits;
260 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
261 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
263 // Check for overflow. Reject '\777', but not L'\777'.
264 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
265 if (Diags)
266 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
267 diag::err_escape_too_large) << 1;
268 ResultChar &= ~0U >> (32-CharWidth);
270 break;
272 case 'o': {
273 bool Overflow = false;
274 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
275 HadError = true;
276 if (Diags)
277 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
278 diag::err_delimited_escape_missing_brace)
279 << "o";
281 break;
283 ResultChar = 0;
284 Delimited = true;
285 ++ThisTokBuf;
286 if (*ThisTokBuf == '}') {
287 HadError = true;
288 if (Diags)
289 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
290 diag::err_delimited_escape_empty);
293 while (ThisTokBuf != ThisTokEnd) {
294 if (*ThisTokBuf == '}') {
295 EndDelimiterFound = true;
296 ThisTokBuf++;
297 break;
299 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
300 HadError = true;
301 if (Diags)
302 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
303 diag::err_delimited_escape_invalid)
304 << StringRef(ThisTokBuf, 1);
305 ThisTokBuf++;
306 continue;
308 // Check if one of the top three bits is set before shifting them out.
309 if (ResultChar & 0xE0000000)
310 Overflow = true;
312 ResultChar <<= 3;
313 ResultChar |= *ThisTokBuf++ - '0';
315 // Check for overflow. Reject '\777', but not L'\777'.
316 if (!HadError &&
317 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
318 HadError = true;
319 if (Diags)
320 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
321 diag::err_escape_too_large)
322 << 1;
323 ResultChar &= ~0U >> (32 - CharWidth);
325 break;
327 // Otherwise, these are not valid escapes.
328 case '(': case '{': case '[': case '%':
329 // GCC accepts these as extensions. We warn about them as such though.
330 if (Diags)
331 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
332 diag::ext_nonstandard_escape)
333 << std::string(1, ResultChar);
334 break;
335 default:
336 if (!Diags)
337 break;
339 if (isPrintable(ResultChar))
340 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
341 diag::ext_unknown_escape)
342 << std::string(1, ResultChar);
343 else
344 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
345 diag::ext_unknown_escape)
346 << "x" + llvm::utohexstr(ResultChar);
347 break;
350 if (Delimited && Diags) {
351 if (!EndDelimiterFound)
352 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
353 diag::err_expected)
354 << tok::r_brace;
355 else if (!HadError) {
356 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
357 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence
358 : diag::ext_delimited_escape_sequence)
359 << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0);
363 if (EvalMethod == StringLiteralEvalMethod::Unevaluated &&
364 !IsEscapeValidInUnevaluatedStringLiteral(Escape)) {
365 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
366 diag::err_unevaluated_string_invalid_escape_sequence)
367 << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin);
368 HadError = true;
371 return ResultChar;
374 static void appendCodePoint(unsigned Codepoint,
375 llvm::SmallVectorImpl<char> &Str) {
376 char ResultBuf[4];
377 char *ResultPtr = ResultBuf;
378 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr))
379 Str.append(ResultBuf, ResultPtr);
382 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
383 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
384 if (*I != '\\') {
385 Buf.push_back(*I);
386 continue;
389 ++I;
390 char Kind = *I;
391 ++I;
393 assert(Kind == 'u' || Kind == 'U' || Kind == 'N');
394 uint32_t CodePoint = 0;
396 if (Kind == 'u' && *I == '{') {
397 for (++I; *I != '}'; ++I) {
398 unsigned Value = llvm::hexDigitValue(*I);
399 assert(Value != -1U);
400 CodePoint <<= 4;
401 CodePoint += Value;
403 appendCodePoint(CodePoint, Buf);
404 continue;
407 if (Kind == 'N') {
408 assert(*I == '{');
409 ++I;
410 auto Delim = std::find(I, Input.end(), '}');
411 assert(Delim != Input.end());
412 StringRef Name(I, std::distance(I, Delim));
413 std::optional<llvm::sys::unicode::LooseMatchingResult> Res =
414 llvm::sys::unicode::nameToCodepointLooseMatching(Name);
415 assert(Res && "could not find a codepoint that was previously found");
416 CodePoint = Res->CodePoint;
417 assert(CodePoint != 0xFFFFFFFF);
418 appendCodePoint(CodePoint, Buf);
419 I = Delim;
420 continue;
423 unsigned NumHexDigits;
424 if (Kind == 'u')
425 NumHexDigits = 4;
426 else
427 NumHexDigits = 8;
429 assert(I + NumHexDigits <= E);
431 for (; NumHexDigits != 0; ++I, --NumHexDigits) {
432 unsigned Value = llvm::hexDigitValue(*I);
433 assert(Value != -1U);
435 CodePoint <<= 4;
436 CodePoint += Value;
439 appendCodePoint(CodePoint, Buf);
440 --I;
444 bool clang::isFunctionLocalStringLiteralMacro(tok::TokenKind K,
445 const LangOptions &LO) {
446 return LO.MicrosoftExt &&
447 (K == tok::kw___FUNCTION__ || K == tok::kw_L__FUNCTION__ ||
448 K == tok::kw___FUNCSIG__ || K == tok::kw_L__FUNCSIG__ ||
449 K == tok::kw___FUNCDNAME__);
452 bool clang::tokenIsLikeStringLiteral(const Token &Tok, const LangOptions &LO) {
453 return tok::isStringLiteral(Tok.getKind()) ||
454 isFunctionLocalStringLiteralMacro(Tok.getKind(), LO);
457 static bool ProcessNumericUCNEscape(const char *ThisTokBegin,
458 const char *&ThisTokBuf,
459 const char *ThisTokEnd, uint32_t &UcnVal,
460 unsigned short &UcnLen, bool &Delimited,
461 FullSourceLoc Loc, DiagnosticsEngine *Diags,
462 const LangOptions &Features,
463 bool in_char_string_literal = false) {
464 const char *UcnBegin = ThisTokBuf;
465 bool HasError = false;
466 bool EndDelimiterFound = false;
468 // Skip the '\u' char's.
469 ThisTokBuf += 2;
470 Delimited = false;
471 if (UcnBegin[1] == 'u' && in_char_string_literal &&
472 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
473 Delimited = true;
474 ThisTokBuf++;
475 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
476 if (Diags)
477 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
478 diag::err_hex_escape_no_digits)
479 << StringRef(&ThisTokBuf[-1], 1);
480 return false;
482 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
484 bool Overflow = false;
485 unsigned short Count = 0;
486 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
487 ++ThisTokBuf) {
488 if (Delimited && *ThisTokBuf == '}') {
489 ++ThisTokBuf;
490 EndDelimiterFound = true;
491 break;
493 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
494 if (CharVal == -1) {
495 HasError = true;
496 if (!Delimited)
497 break;
498 if (Diags) {
499 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
500 diag::err_delimited_escape_invalid)
501 << StringRef(ThisTokBuf, 1);
503 Count++;
504 continue;
506 if (UcnVal & 0xF0000000) {
507 Overflow = true;
508 continue;
510 UcnVal <<= 4;
511 UcnVal |= CharVal;
512 Count++;
515 if (Overflow) {
516 if (Diags)
517 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
518 diag::err_escape_too_large)
519 << 0;
520 return false;
523 if (Delimited && !EndDelimiterFound) {
524 if (Diags) {
525 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
526 diag::err_expected)
527 << tok::r_brace;
529 return false;
532 // If we didn't consume the proper number of digits, there is a problem.
533 if (Count == 0 || (!Delimited && Count != UcnLen)) {
534 if (Diags)
535 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
536 Delimited ? diag::err_delimited_escape_empty
537 : diag::err_ucn_escape_incomplete);
538 return false;
540 return !HasError;
543 static void DiagnoseInvalidUnicodeCharacterName(
544 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc,
545 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd,
546 llvm::StringRef Name) {
548 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
549 diag::err_invalid_ucn_name)
550 << Name;
552 namespace u = llvm::sys::unicode;
554 std::optional<u::LooseMatchingResult> Res =
555 u::nameToCodepointLooseMatching(Name);
556 if (Res) {
557 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
558 diag::note_invalid_ucn_name_loose_matching)
559 << FixItHint::CreateReplacement(
560 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
561 TokRangeEnd),
562 Res->Name);
563 return;
566 unsigned Distance = 0;
567 SmallVector<u::MatchForCodepointName> Matches =
568 u::nearestMatchesForCodepointName(Name, 5);
569 assert(!Matches.empty() && "No unicode characters found");
571 for (const auto &Match : Matches) {
572 if (Distance == 0)
573 Distance = Match.Distance;
574 if (std::max(Distance, Match.Distance) -
575 std::min(Distance, Match.Distance) >
577 break;
578 Distance = Match.Distance;
580 std::string Str;
581 llvm::UTF32 V = Match.Value;
582 bool Converted =
583 llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str);
584 (void)Converted;
585 assert(Converted && "Found a match wich is not a unicode character");
587 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
588 diag::note_invalid_ucn_name_candidate)
589 << Match.Name << llvm::utohexstr(Match.Value)
590 << Str // FIXME: Fix the rendering of non printable characters
591 << FixItHint::CreateReplacement(
592 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
593 TokRangeEnd),
594 Match.Name);
598 static bool ProcessNamedUCNEscape(const char *ThisTokBegin,
599 const char *&ThisTokBuf,
600 const char *ThisTokEnd, uint32_t &UcnVal,
601 unsigned short &UcnLen, FullSourceLoc Loc,
602 DiagnosticsEngine *Diags,
603 const LangOptions &Features) {
604 const char *UcnBegin = ThisTokBuf;
605 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N');
606 ThisTokBuf += 2;
607 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
608 if (Diags) {
609 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
610 diag::err_delimited_escape_missing_brace)
611 << StringRef(&ThisTokBuf[-1], 1);
613 return false;
615 ThisTokBuf++;
616 const char *ClosingBrace = std::find_if(ThisTokBuf, ThisTokEnd, [](char C) {
617 return C == '}' || isVerticalWhitespace(C);
619 bool Incomplete = ClosingBrace == ThisTokEnd;
620 bool Empty = ClosingBrace == ThisTokBuf;
621 if (Incomplete || Empty) {
622 if (Diags) {
623 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
624 Incomplete ? diag::err_ucn_escape_incomplete
625 : diag::err_delimited_escape_empty)
626 << StringRef(&UcnBegin[1], 1);
628 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1;
629 return false;
631 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf);
632 ThisTokBuf = ClosingBrace + 1;
633 std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name);
634 if (!Res) {
635 if (Diags)
636 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin,
637 &UcnBegin[3], ClosingBrace, Name);
638 return false;
640 UcnVal = *Res;
641 UcnLen = UcnVal > 0xFFFF ? 8 : 4;
642 return true;
645 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
646 /// return the UTF32.
647 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
648 const char *ThisTokEnd, uint32_t &UcnVal,
649 unsigned short &UcnLen, FullSourceLoc Loc,
650 DiagnosticsEngine *Diags,
651 const LangOptions &Features,
652 bool in_char_string_literal = false) {
654 bool HasError;
655 const char *UcnBegin = ThisTokBuf;
656 bool IsDelimitedEscapeSequence = false;
657 bool IsNamedEscapeSequence = false;
658 if (ThisTokBuf[1] == 'N') {
659 IsNamedEscapeSequence = true;
660 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
661 UcnVal, UcnLen, Loc, Diags, Features);
662 } else {
663 HasError =
664 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
665 UcnLen, IsDelimitedEscapeSequence, Loc, Diags,
666 Features, in_char_string_literal);
668 if (HasError)
669 return false;
671 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
672 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
673 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
674 if (Diags)
675 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
676 diag::err_ucn_escape_invalid);
677 return false;
680 // C23 and C++11 allow UCNs that refer to control characters
681 // and basic source characters inside character and string literals
682 if (UcnVal < 0xa0 &&
683 // $, @, ` are allowed in all language modes
684 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {
685 bool IsError =
686 (!(Features.CPlusPlus11 || Features.C23) || !in_char_string_literal);
687 if (Diags) {
688 char BasicSCSChar = UcnVal;
689 if (UcnVal >= 0x20 && UcnVal < 0x7f)
690 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
691 IsError ? diag::err_ucn_escape_basic_scs
692 : Features.CPlusPlus
693 ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs
694 : diag::warn_c23_compat_literal_ucn_escape_basic_scs)
695 << StringRef(&BasicSCSChar, 1);
696 else
697 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
698 IsError ? diag::err_ucn_control_character
699 : Features.CPlusPlus
700 ? diag::warn_cxx98_compat_literal_ucn_control_character
701 : diag::warn_c23_compat_literal_ucn_control_character);
703 if (IsError)
704 return false;
707 if (!Features.CPlusPlus && !Features.C99 && Diags)
708 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
709 diag::warn_ucn_not_valid_in_c89_literal);
711 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags)
712 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
713 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence
714 : diag::ext_delimited_escape_sequence)
715 << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0);
717 return true;
720 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
721 /// which this UCN will occupy.
722 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
723 const char *ThisTokEnd, unsigned CharByteWidth,
724 const LangOptions &Features, bool &HadError) {
725 // UTF-32: 4 bytes per escape.
726 if (CharByteWidth == 4)
727 return 4;
729 uint32_t UcnVal = 0;
730 unsigned short UcnLen = 0;
731 FullSourceLoc Loc;
733 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
734 UcnLen, Loc, nullptr, Features, true)) {
735 HadError = true;
736 return 0;
739 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
740 if (CharByteWidth == 2)
741 return UcnVal <= 0xFFFF ? 2 : 4;
743 // UTF-8.
744 if (UcnVal < 0x80)
745 return 1;
746 if (UcnVal < 0x800)
747 return 2;
748 if (UcnVal < 0x10000)
749 return 3;
750 return 4;
753 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
754 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
755 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
756 /// we will likely rework our support for UCN's.
757 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
758 const char *ThisTokEnd,
759 char *&ResultBuf, bool &HadError,
760 FullSourceLoc Loc, unsigned CharByteWidth,
761 DiagnosticsEngine *Diags,
762 const LangOptions &Features) {
763 typedef uint32_t UTF32;
764 UTF32 UcnVal = 0;
765 unsigned short UcnLen = 0;
766 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
767 Loc, Diags, Features, true)) {
768 HadError = true;
769 return;
772 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
773 "only character widths of 1, 2, or 4 bytes supported");
775 (void)UcnLen;
776 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
778 if (CharByteWidth == 4) {
779 // FIXME: Make the type of the result buffer correct instead of
780 // using reinterpret_cast.
781 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
782 *ResultPtr = UcnVal;
783 ResultBuf += 4;
784 return;
787 if (CharByteWidth == 2) {
788 // FIXME: Make the type of the result buffer correct instead of
789 // using reinterpret_cast.
790 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
792 if (UcnVal <= (UTF32)0xFFFF) {
793 *ResultPtr = UcnVal;
794 ResultBuf += 2;
795 return;
798 // Convert to UTF16.
799 UcnVal -= 0x10000;
800 *ResultPtr = 0xD800 + (UcnVal >> 10);
801 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
802 ResultBuf += 4;
803 return;
806 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
808 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
809 // The conversion below was inspired by:
810 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
811 // First, we determine how many bytes the result will require.
812 typedef uint8_t UTF8;
814 unsigned short bytesToWrite = 0;
815 if (UcnVal < (UTF32)0x80)
816 bytesToWrite = 1;
817 else if (UcnVal < (UTF32)0x800)
818 bytesToWrite = 2;
819 else if (UcnVal < (UTF32)0x10000)
820 bytesToWrite = 3;
821 else
822 bytesToWrite = 4;
824 const unsigned byteMask = 0xBF;
825 const unsigned byteMark = 0x80;
827 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
828 // into the first byte, depending on how many bytes follow.
829 static const UTF8 firstByteMark[5] = {
830 0x00, 0x00, 0xC0, 0xE0, 0xF0
832 // Finally, we write the bytes into ResultBuf.
833 ResultBuf += bytesToWrite;
834 switch (bytesToWrite) { // note: everything falls through.
835 case 4:
836 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
837 [[fallthrough]];
838 case 3:
839 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
840 [[fallthrough]];
841 case 2:
842 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
843 [[fallthrough]];
844 case 1:
845 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
847 // Update the buffer.
848 ResultBuf += bytesToWrite;
851 /// integer-constant: [C99 6.4.4.1]
852 /// decimal-constant integer-suffix
853 /// octal-constant integer-suffix
854 /// hexadecimal-constant integer-suffix
855 /// binary-literal integer-suffix [GNU, C++1y]
856 /// user-defined-integer-literal: [C++11 lex.ext]
857 /// decimal-literal ud-suffix
858 /// octal-literal ud-suffix
859 /// hexadecimal-literal ud-suffix
860 /// binary-literal ud-suffix [GNU, C++1y]
861 /// decimal-constant:
862 /// nonzero-digit
863 /// decimal-constant digit
864 /// octal-constant:
865 /// 0
866 /// octal-constant octal-digit
867 /// hexadecimal-constant:
868 /// hexadecimal-prefix hexadecimal-digit
869 /// hexadecimal-constant hexadecimal-digit
870 /// hexadecimal-prefix: one of
871 /// 0x 0X
872 /// binary-literal:
873 /// 0b binary-digit
874 /// 0B binary-digit
875 /// binary-literal binary-digit
876 /// integer-suffix:
877 /// unsigned-suffix [long-suffix]
878 /// unsigned-suffix [long-long-suffix]
879 /// long-suffix [unsigned-suffix]
880 /// long-long-suffix [unsigned-sufix]
881 /// nonzero-digit:
882 /// 1 2 3 4 5 6 7 8 9
883 /// octal-digit:
884 /// 0 1 2 3 4 5 6 7
885 /// hexadecimal-digit:
886 /// 0 1 2 3 4 5 6 7 8 9
887 /// a b c d e f
888 /// A B C D E F
889 /// binary-digit:
890 /// 0
891 /// 1
892 /// unsigned-suffix: one of
893 /// u U
894 /// long-suffix: one of
895 /// l L
896 /// long-long-suffix: one of
897 /// ll LL
899 /// floating-constant: [C99 6.4.4.2]
900 /// TODO: add rules...
902 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
903 SourceLocation TokLoc,
904 const SourceManager &SM,
905 const LangOptions &LangOpts,
906 const TargetInfo &Target,
907 DiagnosticsEngine &Diags)
908 : SM(SM), LangOpts(LangOpts), Diags(Diags),
909 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
911 s = DigitsBegin = ThisTokBegin;
912 saw_exponent = false;
913 saw_period = false;
914 saw_ud_suffix = false;
915 saw_fixed_point_suffix = false;
916 isLong = false;
917 isUnsigned = false;
918 isLongLong = false;
919 isSizeT = false;
920 isHalf = false;
921 isFloat = false;
922 isImaginary = false;
923 isFloat16 = false;
924 isFloat128 = false;
925 MicrosoftInteger = 0;
926 isFract = false;
927 isAccum = false;
928 hadError = false;
929 isBitInt = false;
931 // This routine assumes that the range begin/end matches the regex for integer
932 // and FP constants (specifically, the 'pp-number' regex), and assumes that
933 // the byte at "*end" is both valid and not part of the regex. Because of
934 // this, it doesn't have to check for 'overscan' in various places.
935 // Note: For HLSL, the end token is allowed to be '.' which would be in the
936 // 'pp-number' regex. This is required to support vector swizzles on numeric
937 // constants (i.e. 1.xx or 1.5f.rrr).
938 if (isPreprocessingNumberBody(*ThisTokEnd) &&
939 !(LangOpts.HLSL && *ThisTokEnd == '.')) {
940 Diags.Report(TokLoc, diag::err_lexing_numeric);
941 hadError = true;
942 return;
945 if (*s == '0') { // parse radix
946 ParseNumberStartingWithZero(TokLoc);
947 if (hadError)
948 return;
949 } else { // the first digit is non-zero
950 radix = 10;
951 s = SkipDigits(s);
952 if (s == ThisTokEnd) {
953 // Done.
954 } else {
955 ParseDecimalOrOctalCommon(TokLoc);
956 if (hadError)
957 return;
961 SuffixBegin = s;
962 checkSeparator(TokLoc, s, CSK_AfterDigits);
964 // Initial scan to lookahead for fixed point suffix.
965 if (LangOpts.FixedPoint) {
966 for (const char *c = s; c != ThisTokEnd; ++c) {
967 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
968 saw_fixed_point_suffix = true;
969 break;
974 // Parse the suffix. At this point we can classify whether we have an FP or
975 // integer constant.
976 bool isFixedPointConstant = isFixedPointLiteral();
977 bool isFPConstant = isFloatingLiteral();
978 bool HasSize = false;
979 bool DoubleUnderscore = false;
981 // Loop over all of the characters of the suffix. If we see something bad,
982 // we break out of the loop.
983 for (; s != ThisTokEnd; ++s) {
984 switch (*s) {
985 case 'R':
986 case 'r':
987 if (!LangOpts.FixedPoint)
988 break;
989 if (isFract || isAccum) break;
990 if (!(saw_period || saw_exponent)) break;
991 isFract = true;
992 continue;
993 case 'K':
994 case 'k':
995 if (!LangOpts.FixedPoint)
996 break;
997 if (isFract || isAccum) break;
998 if (!(saw_period || saw_exponent)) break;
999 isAccum = true;
1000 continue;
1001 case 'h': // FP Suffix for "half".
1002 case 'H':
1003 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
1004 if (!(LangOpts.Half || LangOpts.FixedPoint))
1005 break;
1006 if (isIntegerLiteral()) break; // Error for integer constant.
1007 if (HasSize)
1008 break;
1009 HasSize = true;
1010 isHalf = true;
1011 continue; // Success.
1012 case 'f': // FP Suffix for "float"
1013 case 'F':
1014 if (!isFPConstant) break; // Error for integer constant.
1015 if (HasSize)
1016 break;
1017 HasSize = true;
1019 // CUDA host and device may have different _Float16 support, therefore
1020 // allows f16 literals to avoid false alarm.
1021 // When we compile for OpenMP target offloading on NVPTX, f16 suffix
1022 // should also be supported.
1023 // ToDo: more precise check for CUDA.
1024 // TODO: AMDGPU might also support it in the future.
1025 if ((Target.hasFloat16Type() || LangOpts.CUDA ||
1026 (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) &&
1027 s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') {
1028 s += 2; // success, eat up 2 characters.
1029 isFloat16 = true;
1030 continue;
1033 isFloat = true;
1034 continue; // Success.
1035 case 'q': // FP Suffix for "__float128"
1036 case 'Q':
1037 if (!isFPConstant) break; // Error for integer constant.
1038 if (HasSize)
1039 break;
1040 HasSize = true;
1041 isFloat128 = true;
1042 continue; // Success.
1043 case 'u':
1044 case 'U':
1045 if (isFPConstant) break; // Error for floating constant.
1046 if (isUnsigned) break; // Cannot be repeated.
1047 isUnsigned = true;
1048 continue; // Success.
1049 case 'l':
1050 case 'L':
1051 if (HasSize)
1052 break;
1053 HasSize = true;
1055 // Check for long long. The L's need to be adjacent and the same case.
1056 if (s[1] == s[0]) {
1057 assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
1058 if (isFPConstant) break; // long long invalid for floats.
1059 isLongLong = true;
1060 ++s; // Eat both of them.
1061 } else {
1062 isLong = true;
1064 continue; // Success.
1065 case 'z':
1066 case 'Z':
1067 if (isFPConstant)
1068 break; // Invalid for floats.
1069 if (HasSize)
1070 break;
1071 HasSize = true;
1072 isSizeT = true;
1073 continue;
1074 case 'i':
1075 case 'I':
1076 if (LangOpts.MicrosoftExt && !isFPConstant) {
1077 // Allow i8, i16, i32, and i64. First, look ahead and check if
1078 // suffixes are Microsoft integers and not the imaginary unit.
1079 uint8_t Bits = 0;
1080 size_t ToSkip = 0;
1081 switch (s[1]) {
1082 case '8': // i8 suffix
1083 Bits = 8;
1084 ToSkip = 2;
1085 break;
1086 case '1':
1087 if (s[2] == '6') { // i16 suffix
1088 Bits = 16;
1089 ToSkip = 3;
1091 break;
1092 case '3':
1093 if (s[2] == '2') { // i32 suffix
1094 Bits = 32;
1095 ToSkip = 3;
1097 break;
1098 case '6':
1099 if (s[2] == '4') { // i64 suffix
1100 Bits = 64;
1101 ToSkip = 3;
1103 break;
1104 default:
1105 break;
1107 if (Bits) {
1108 if (HasSize)
1109 break;
1110 HasSize = true;
1111 MicrosoftInteger = Bits;
1112 s += ToSkip;
1113 assert(s <= ThisTokEnd && "didn't maximally munch?");
1114 break;
1117 [[fallthrough]];
1118 case 'j':
1119 case 'J':
1120 if (isImaginary) break; // Cannot be repeated.
1121 isImaginary = true;
1122 continue; // Success.
1123 case '_':
1124 if (isFPConstant)
1125 break; // Invalid for floats
1126 if (HasSize)
1127 break;
1128 // There is currently no way to reach this with DoubleUnderscore set.
1129 // If new double underscope literals are added handle it here as above.
1130 assert(!DoubleUnderscore && "unhandled double underscore case");
1131 if (LangOpts.CPlusPlus && s + 2 < ThisTokEnd &&
1132 s[1] == '_') { // s + 2 < ThisTokEnd to ensure some character exists
1133 // after __
1134 DoubleUnderscore = true;
1135 s += 2; // Skip both '_'
1136 if (s + 1 < ThisTokEnd &&
1137 (*s == 'u' || *s == 'U')) { // Ensure some character after 'u'/'U'
1138 isUnsigned = true;
1139 ++s;
1141 if (s + 1 < ThisTokEnd &&
1142 ((*s == 'w' && *(++s) == 'b') || (*s == 'W' && *(++s) == 'B'))) {
1143 isBitInt = true;
1144 HasSize = true;
1145 continue;
1148 break;
1149 case 'w':
1150 case 'W':
1151 if (isFPConstant)
1152 break; // Invalid for floats.
1153 if (HasSize)
1154 break; // Invalid if we already have a size for the literal.
1156 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
1157 // explicitly do not support the suffix in C++ as an extension because a
1158 // library-based UDL that resolves to a library type may be more
1159 // appropriate there. The same rules apply for __wb/__WB.
1160 if ((!LangOpts.CPlusPlus || DoubleUnderscore) && s + 1 < ThisTokEnd &&
1161 ((s[0] == 'w' && s[1] == 'b') || (s[0] == 'W' && s[1] == 'B'))) {
1162 isBitInt = true;
1163 HasSize = true;
1164 ++s; // Skip both characters (2nd char skipped on continue).
1165 continue; // Success.
1168 // If we reached here, there was an error or a ud-suffix.
1169 break;
1172 // "i", "if", and "il" are user-defined suffixes in C++1y.
1173 if (s != ThisTokEnd || isImaginary) {
1174 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
1175 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
1176 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
1177 if (!isImaginary) {
1178 // Any suffix pieces we might have parsed are actually part of the
1179 // ud-suffix.
1180 isLong = false;
1181 isUnsigned = false;
1182 isLongLong = false;
1183 isSizeT = false;
1184 isFloat = false;
1185 isFloat16 = false;
1186 isHalf = false;
1187 isImaginary = false;
1188 isBitInt = false;
1189 MicrosoftInteger = 0;
1190 saw_fixed_point_suffix = false;
1191 isFract = false;
1192 isAccum = false;
1195 saw_ud_suffix = true;
1196 return;
1199 if (s != ThisTokEnd) {
1200 // Report an error if there are any.
1201 Diags.Report(Lexer::AdvanceToTokenCharacter(
1202 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
1203 diag::err_invalid_suffix_constant)
1204 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
1205 << (isFixedPointConstant ? 2 : isFPConstant);
1206 hadError = true;
1210 if (!hadError && saw_fixed_point_suffix) {
1211 assert(isFract || isAccum);
1215 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal
1216 /// numbers. It issues an error for illegal digits, and handles floating point
1217 /// parsing. If it detects a floating point number, the radix is set to 10.
1218 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
1219 assert((radix == 8 || radix == 10) && "Unexpected radix");
1221 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
1222 // the code is using an incorrect base.
1223 if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
1224 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1225 Diags.Report(
1226 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
1227 diag::err_invalid_digit)
1228 << StringRef(s, 1) << (radix == 8 ? 1 : 0);
1229 hadError = true;
1230 return;
1233 if (*s == '.') {
1234 checkSeparator(TokLoc, s, CSK_AfterDigits);
1235 s++;
1236 radix = 10;
1237 saw_period = true;
1238 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1239 s = SkipDigits(s); // Skip suffix.
1241 if (*s == 'e' || *s == 'E') { // exponent
1242 checkSeparator(TokLoc, s, CSK_AfterDigits);
1243 const char *Exponent = s;
1244 s++;
1245 radix = 10;
1246 saw_exponent = true;
1247 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1248 const char *first_non_digit = SkipDigits(s);
1249 if (containsDigits(s, first_non_digit)) {
1250 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1251 s = first_non_digit;
1252 } else {
1253 if (!hadError) {
1254 Diags.Report(Lexer::AdvanceToTokenCharacter(
1255 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1256 diag::err_exponent_has_no_digits);
1257 hadError = true;
1259 return;
1264 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1265 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
1266 /// treat it as an invalid suffix.
1267 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
1268 StringRef Suffix) {
1269 if (!LangOpts.CPlusPlus11 || Suffix.empty())
1270 return false;
1272 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1273 // Suffixes starting with '__' (double underscore) are for use by
1274 // the implementation.
1275 if (Suffix.starts_with("_") && !Suffix.starts_with("__"))
1276 return true;
1278 // In C++11, there are no library suffixes.
1279 if (!LangOpts.CPlusPlus14)
1280 return false;
1282 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1283 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1284 // In C++2a "d" and "y" are used in the library.
1285 return llvm::StringSwitch<bool>(Suffix)
1286 .Cases("h", "min", "s", true)
1287 .Cases("ms", "us", "ns", true)
1288 .Cases("il", "i", "if", true)
1289 .Cases("d", "y", LangOpts.CPlusPlus20)
1290 .Default(false);
1293 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1294 const char *Pos,
1295 CheckSeparatorKind IsAfterDigits) {
1296 if (IsAfterDigits == CSK_AfterDigits) {
1297 if (Pos == ThisTokBegin)
1298 return;
1299 --Pos;
1300 } else if (Pos == ThisTokEnd)
1301 return;
1303 if (isDigitSeparator(*Pos)) {
1304 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1305 LangOpts),
1306 diag::err_digit_separator_not_between_digits)
1307 << IsAfterDigits;
1308 hadError = true;
1312 /// ParseNumberStartingWithZero - This method is called when the first character
1313 /// of the number is found to be a zero. This means it is either an octal
1314 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1315 /// a floating point number (01239.123e4). Eat the prefix, determining the
1316 /// radix etc.
1317 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1318 assert(s[0] == '0' && "Invalid method call");
1319 s++;
1321 int c1 = s[0];
1323 // Handle a hex number like 0x1234.
1324 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1325 s++;
1326 assert(s < ThisTokEnd && "didn't maximally munch?");
1327 radix = 16;
1328 DigitsBegin = s;
1329 s = SkipHexDigits(s);
1330 bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1331 if (s == ThisTokEnd) {
1332 // Done.
1333 } else if (*s == '.') {
1334 s++;
1335 saw_period = true;
1336 const char *floatDigitsBegin = s;
1337 s = SkipHexDigits(s);
1338 if (containsDigits(floatDigitsBegin, s))
1339 HasSignificandDigits = true;
1340 if (HasSignificandDigits)
1341 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1344 if (!HasSignificandDigits) {
1345 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1346 LangOpts),
1347 diag::err_hex_constant_requires)
1348 << LangOpts.CPlusPlus << 1;
1349 hadError = true;
1350 return;
1353 // A binary exponent can appear with or with a '.'. If dotted, the
1354 // binary exponent is required.
1355 if (*s == 'p' || *s == 'P') {
1356 checkSeparator(TokLoc, s, CSK_AfterDigits);
1357 const char *Exponent = s;
1358 s++;
1359 saw_exponent = true;
1360 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1361 const char *first_non_digit = SkipDigits(s);
1362 if (!containsDigits(s, first_non_digit)) {
1363 if (!hadError) {
1364 Diags.Report(Lexer::AdvanceToTokenCharacter(
1365 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1366 diag::err_exponent_has_no_digits);
1367 hadError = true;
1369 return;
1371 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1372 s = first_non_digit;
1374 if (!LangOpts.HexFloats)
1375 Diags.Report(TokLoc, LangOpts.CPlusPlus
1376 ? diag::ext_hex_literal_invalid
1377 : diag::ext_hex_constant_invalid);
1378 else if (LangOpts.CPlusPlus17)
1379 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1380 } else if (saw_period) {
1381 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1382 LangOpts),
1383 diag::err_hex_constant_requires)
1384 << LangOpts.CPlusPlus << 0;
1385 hadError = true;
1387 return;
1390 // Handle simple binary numbers 0b01010
1391 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1392 // 0b101010 is a C++14 and C23 extension.
1393 unsigned DiagId;
1394 if (LangOpts.CPlusPlus14)
1395 DiagId = diag::warn_cxx11_compat_binary_literal;
1396 else if (LangOpts.C23)
1397 DiagId = diag::warn_c23_compat_binary_literal;
1398 else if (LangOpts.CPlusPlus)
1399 DiagId = diag::ext_binary_literal_cxx14;
1400 else
1401 DiagId = diag::ext_binary_literal;
1402 Diags.Report(TokLoc, DiagId);
1403 ++s;
1404 assert(s < ThisTokEnd && "didn't maximally munch?");
1405 radix = 2;
1406 DigitsBegin = s;
1407 s = SkipBinaryDigits(s);
1408 if (s == ThisTokEnd) {
1409 // Done.
1410 } else if (isHexDigit(*s) &&
1411 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1412 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1413 LangOpts),
1414 diag::err_invalid_digit)
1415 << StringRef(s, 1) << 2;
1416 hadError = true;
1418 // Other suffixes will be diagnosed by the caller.
1419 return;
1422 // For now, the radix is set to 8. If we discover that we have a
1423 // floating point constant, the radix will change to 10. Octal floating
1424 // point constants are not permitted (only decimal and hexadecimal).
1425 radix = 8;
1426 const char *PossibleNewDigitStart = s;
1427 s = SkipOctalDigits(s);
1428 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1429 // as the start of the digits. So if skipping octal digits does not skip
1430 // anything, we leave the digit start where it was.
1431 if (s != PossibleNewDigitStart)
1432 DigitsBegin = PossibleNewDigitStart;
1434 if (s == ThisTokEnd)
1435 return; // Done, simple octal number like 01234
1437 // If we have some other non-octal digit that *is* a decimal digit, see if
1438 // this is part of a floating point number like 094.123 or 09e1.
1439 if (isDigit(*s)) {
1440 const char *EndDecimal = SkipDigits(s);
1441 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1442 s = EndDecimal;
1443 radix = 10;
1447 ParseDecimalOrOctalCommon(TokLoc);
1450 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1451 switch (Radix) {
1452 case 2:
1453 return NumDigits <= 64;
1454 case 8:
1455 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1456 case 10:
1457 return NumDigits <= 19; // floor(log10(2^64))
1458 case 16:
1459 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1460 default:
1461 llvm_unreachable("impossible Radix");
1465 /// GetIntegerValue - Convert this numeric literal value to an APInt that
1466 /// matches Val's input width. If there is an overflow, set Val to the low bits
1467 /// of the result and return true. Otherwise, return false.
1468 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1469 // Fast path: Compute a conservative bound on the maximum number of
1470 // bits per digit in this radix. If we can't possibly overflow a
1471 // uint64 based on that bound then do the simple conversion to
1472 // integer. This avoids the expensive overflow checking below, and
1473 // handles the common cases that matter (small decimal integers and
1474 // hex/octal values which don't overflow).
1475 const unsigned NumDigits = SuffixBegin - DigitsBegin;
1476 if (alwaysFitsInto64Bits(radix, NumDigits)) {
1477 uint64_t N = 0;
1478 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1479 if (!isDigitSeparator(*Ptr))
1480 N = N * radix + llvm::hexDigitValue(*Ptr);
1482 // This will truncate the value to Val's input width. Simply check
1483 // for overflow by comparing.
1484 Val = N;
1485 return Val.getZExtValue() != N;
1488 Val = 0;
1489 const char *Ptr = DigitsBegin;
1491 llvm::APInt RadixVal(Val.getBitWidth(), radix);
1492 llvm::APInt CharVal(Val.getBitWidth(), 0);
1493 llvm::APInt OldVal = Val;
1495 bool OverflowOccurred = false;
1496 while (Ptr < SuffixBegin) {
1497 if (isDigitSeparator(*Ptr)) {
1498 ++Ptr;
1499 continue;
1502 unsigned C = llvm::hexDigitValue(*Ptr++);
1504 // If this letter is out of bound for this radix, reject it.
1505 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1507 CharVal = C;
1509 // Add the digit to the value in the appropriate radix. If adding in digits
1510 // made the value smaller, then this overflowed.
1511 OldVal = Val;
1513 // Multiply by radix, did overflow occur on the multiply?
1514 Val *= RadixVal;
1515 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1517 // Add value, did overflow occur on the value?
1518 // (a + b) ult b <=> overflow
1519 Val += CharVal;
1520 OverflowOccurred |= Val.ult(CharVal);
1522 return OverflowOccurred;
1525 llvm::APFloat::opStatus
1526 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result,
1527 llvm::RoundingMode RM) {
1528 using llvm::APFloat;
1530 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1532 llvm::SmallString<16> Buffer;
1533 StringRef Str(ThisTokBegin, n);
1534 if (Str.contains('\'')) {
1535 Buffer.reserve(n);
1536 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1537 &isDigitSeparator);
1538 Str = Buffer;
1541 auto StatusOrErr = Result.convertFromString(Str, RM);
1542 assert(StatusOrErr && "Invalid floating point representation");
1543 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1544 : APFloat::opInvalidOp;
1547 static inline bool IsExponentPart(char c, bool isHex) {
1548 if (isHex)
1549 return c == 'p' || c == 'P';
1550 return c == 'e' || c == 'E';
1553 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1554 assert(radix == 16 || radix == 10);
1556 // Find how many digits are needed to store the whole literal.
1557 unsigned NumDigits = SuffixBegin - DigitsBegin;
1558 if (saw_period) --NumDigits;
1560 // Initial scan of the exponent if it exists
1561 bool ExpOverflowOccurred = false;
1562 bool NegativeExponent = false;
1563 const char *ExponentBegin;
1564 uint64_t Exponent = 0;
1565 int64_t BaseShift = 0;
1566 if (saw_exponent) {
1567 const char *Ptr = DigitsBegin;
1569 while (!IsExponentPart(*Ptr, radix == 16))
1570 ++Ptr;
1571 ExponentBegin = Ptr;
1572 ++Ptr;
1573 NegativeExponent = *Ptr == '-';
1574 if (NegativeExponent) ++Ptr;
1576 unsigned NumExpDigits = SuffixBegin - Ptr;
1577 if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1578 llvm::StringRef ExpStr(Ptr, NumExpDigits);
1579 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1580 Exponent = ExpInt.getZExtValue();
1581 } else {
1582 ExpOverflowOccurred = true;
1585 if (NegativeExponent) BaseShift -= Exponent;
1586 else BaseShift += Exponent;
1589 // Number of bits needed for decimal literal is
1590 // ceil(NumDigits * log2(10)) Integral part
1591 // + Scale Fractional part
1592 // + ceil(Exponent * log2(10)) Exponent
1593 // --------------------------------------------------
1594 // ceil((NumDigits + Exponent) * log2(10)) + Scale
1596 // But for simplicity in handling integers, we can round up log2(10) to 4,
1597 // making:
1598 // 4 * (NumDigits + Exponent) + Scale
1600 // Number of digits needed for hexadecimal literal is
1601 // 4 * NumDigits Integral part
1602 // + Scale Fractional part
1603 // + Exponent Exponent
1604 // --------------------------------------------------
1605 // (4 * NumDigits) + Scale + Exponent
1606 uint64_t NumBitsNeeded;
1607 if (radix == 10)
1608 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1609 else
1610 NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1612 if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1613 ExpOverflowOccurred = true;
1614 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1616 bool FoundDecimal = false;
1618 int64_t FractBaseShift = 0;
1619 const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1620 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1621 if (*Ptr == '.') {
1622 FoundDecimal = true;
1623 continue;
1626 // Normal reading of an integer
1627 unsigned C = llvm::hexDigitValue(*Ptr);
1628 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1630 Val *= radix;
1631 Val += C;
1633 if (FoundDecimal)
1634 // Keep track of how much we will need to adjust this value by from the
1635 // number of digits past the radix point.
1636 --FractBaseShift;
1639 // For a radix of 16, we will be multiplying by 2 instead of 16.
1640 if (radix == 16) FractBaseShift *= 4;
1641 BaseShift += FractBaseShift;
1643 Val <<= Scale;
1645 uint64_t Base = (radix == 16) ? 2 : 10;
1646 if (BaseShift > 0) {
1647 for (int64_t i = 0; i < BaseShift; ++i) {
1648 Val *= Base;
1650 } else if (BaseShift < 0) {
1651 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1652 Val = Val.udiv(Base);
1655 bool IntOverflowOccurred = false;
1656 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1657 if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1658 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1659 StoreVal = Val.trunc(StoreVal.getBitWidth());
1660 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1661 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1662 StoreVal = Val.zext(StoreVal.getBitWidth());
1663 } else {
1664 StoreVal = Val;
1667 return IntOverflowOccurred || ExpOverflowOccurred;
1670 /// \verbatim
1671 /// user-defined-character-literal: [C++11 lex.ext]
1672 /// character-literal ud-suffix
1673 /// ud-suffix:
1674 /// identifier
1675 /// character-literal: [C++11 lex.ccon]
1676 /// ' c-char-sequence '
1677 /// u' c-char-sequence '
1678 /// U' c-char-sequence '
1679 /// L' c-char-sequence '
1680 /// u8' c-char-sequence ' [C++1z lex.ccon]
1681 /// c-char-sequence:
1682 /// c-char
1683 /// c-char-sequence c-char
1684 /// c-char:
1685 /// any member of the source character set except the single-quote ',
1686 /// backslash \, or new-line character
1687 /// escape-sequence
1688 /// universal-character-name
1689 /// escape-sequence:
1690 /// simple-escape-sequence
1691 /// octal-escape-sequence
1692 /// hexadecimal-escape-sequence
1693 /// simple-escape-sequence:
1694 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1695 /// octal-escape-sequence:
1696 /// \ octal-digit
1697 /// \ octal-digit octal-digit
1698 /// \ octal-digit octal-digit octal-digit
1699 /// hexadecimal-escape-sequence:
1700 /// \x hexadecimal-digit
1701 /// hexadecimal-escape-sequence hexadecimal-digit
1702 /// universal-character-name: [C++11 lex.charset]
1703 /// \u hex-quad
1704 /// \U hex-quad hex-quad
1705 /// hex-quad:
1706 /// hex-digit hex-digit hex-digit hex-digit
1707 /// \endverbatim
1709 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1710 SourceLocation Loc, Preprocessor &PP,
1711 tok::TokenKind kind) {
1712 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1713 HadError = false;
1715 Kind = kind;
1717 const char *TokBegin = begin;
1719 // Skip over wide character determinant.
1720 if (Kind != tok::char_constant)
1721 ++begin;
1722 if (Kind == tok::utf8_char_constant)
1723 ++begin;
1725 // Skip over the entry quote.
1726 if (begin[0] != '\'') {
1727 PP.Diag(Loc, diag::err_lexing_char);
1728 HadError = true;
1729 return;
1732 ++begin;
1734 // Remove an optional ud-suffix.
1735 if (end[-1] != '\'') {
1736 const char *UDSuffixEnd = end;
1737 do {
1738 --end;
1739 } while (end[-1] != '\'');
1740 // FIXME: Don't bother with this if !tok.hasUCN().
1741 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1742 UDSuffixOffset = end - TokBegin;
1745 // Trim the ending quote.
1746 assert(end != begin && "Invalid token lexed");
1747 --end;
1749 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1750 // up to 64-bits.
1751 // FIXME: This extensively assumes that 'char' is 8-bits.
1752 assert(PP.getTargetInfo().getCharWidth() == 8 &&
1753 "Assumes char is 8 bits");
1754 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1755 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1756 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1757 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1758 "Assumes sizeof(wchar) on target is <= 64");
1760 SmallVector<uint32_t, 4> codepoint_buffer;
1761 codepoint_buffer.resize(end - begin);
1762 uint32_t *buffer_begin = &codepoint_buffer.front();
1763 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1765 // Unicode escapes representing characters that cannot be correctly
1766 // represented in a single code unit are disallowed in character literals
1767 // by this implementation.
1768 uint32_t largest_character_for_kind;
1769 if (tok::wide_char_constant == Kind) {
1770 largest_character_for_kind =
1771 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1772 } else if (tok::utf8_char_constant == Kind) {
1773 largest_character_for_kind = 0x7F;
1774 } else if (tok::utf16_char_constant == Kind) {
1775 largest_character_for_kind = 0xFFFF;
1776 } else if (tok::utf32_char_constant == Kind) {
1777 largest_character_for_kind = 0x10FFFF;
1778 } else {
1779 largest_character_for_kind = 0x7Fu;
1782 while (begin != end) {
1783 // Is this a span of non-escape characters?
1784 if (begin[0] != '\\') {
1785 char const *start = begin;
1786 do {
1787 ++begin;
1788 } while (begin != end && *begin != '\\');
1790 char const *tmp_in_start = start;
1791 uint32_t *tmp_out_start = buffer_begin;
1792 llvm::ConversionResult res =
1793 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1794 reinterpret_cast<llvm::UTF8 const *>(begin),
1795 &buffer_begin, buffer_end, llvm::strictConversion);
1796 if (res != llvm::conversionOK) {
1797 // If we see bad encoding for unprefixed character literals, warn and
1798 // simply copy the byte values, for compatibility with gcc and
1799 // older versions of clang.
1800 bool NoErrorOnBadEncoding = isOrdinary();
1801 unsigned Msg = diag::err_bad_character_encoding;
1802 if (NoErrorOnBadEncoding)
1803 Msg = diag::warn_bad_character_encoding;
1804 PP.Diag(Loc, Msg);
1805 if (NoErrorOnBadEncoding) {
1806 start = tmp_in_start;
1807 buffer_begin = tmp_out_start;
1808 for (; start != begin; ++start, ++buffer_begin)
1809 *buffer_begin = static_cast<uint8_t>(*start);
1810 } else {
1811 HadError = true;
1813 } else {
1814 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1815 if (*tmp_out_start > largest_character_for_kind) {
1816 HadError = true;
1817 PP.Diag(Loc, diag::err_character_too_large);
1822 continue;
1824 // Is this a Universal Character Name escape?
1825 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') {
1826 unsigned short UcnLen = 0;
1827 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1828 FullSourceLoc(Loc, PP.getSourceManager()),
1829 &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1830 HadError = true;
1831 } else if (*buffer_begin > largest_character_for_kind) {
1832 HadError = true;
1833 PP.Diag(Loc, diag::err_character_too_large);
1836 ++buffer_begin;
1837 continue;
1839 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1840 uint64_t result =
1841 ProcessCharEscape(TokBegin, begin, end, HadError,
1842 FullSourceLoc(Loc, PP.getSourceManager()), CharWidth,
1843 &PP.getDiagnostics(), PP.getLangOpts(),
1844 StringLiteralEvalMethod::Evaluated);
1845 *buffer_begin++ = result;
1848 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1850 if (NumCharsSoFar > 1) {
1851 if (isOrdinary() && NumCharsSoFar == 4)
1852 PP.Diag(Loc, diag::warn_four_char_character_literal);
1853 else if (isOrdinary())
1854 PP.Diag(Loc, diag::warn_multichar_character_literal);
1855 else {
1856 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1857 HadError = true;
1859 IsMultiChar = true;
1860 } else {
1861 IsMultiChar = false;
1864 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1866 // Narrow character literals act as though their value is concatenated
1867 // in this implementation, but warn on overflow.
1868 bool multi_char_too_long = false;
1869 if (isOrdinary() && isMultiChar()) {
1870 LitVal = 0;
1871 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1872 // check for enough leading zeros to shift into
1873 multi_char_too_long |= (LitVal.countl_zero() < 8);
1874 LitVal <<= 8;
1875 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1877 } else if (NumCharsSoFar > 0) {
1878 // otherwise just take the last character
1879 LitVal = buffer_begin[-1];
1882 if (!HadError && multi_char_too_long) {
1883 PP.Diag(Loc, diag::warn_char_constant_too_large);
1886 // Transfer the value from APInt to uint64_t
1887 Value = LitVal.getZExtValue();
1889 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1890 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1891 // character constants are not sign extended in the this implementation:
1892 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1893 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) &&
1894 PP.getLangOpts().CharIsSigned)
1895 Value = (signed char)Value;
1898 /// \verbatim
1899 /// string-literal: [C++0x lex.string]
1900 /// encoding-prefix " [s-char-sequence] "
1901 /// encoding-prefix R raw-string
1902 /// encoding-prefix:
1903 /// u8
1904 /// u
1905 /// U
1906 /// L
1907 /// s-char-sequence:
1908 /// s-char
1909 /// s-char-sequence s-char
1910 /// s-char:
1911 /// any member of the source character set except the double-quote ",
1912 /// backslash \, or new-line character
1913 /// escape-sequence
1914 /// universal-character-name
1915 /// raw-string:
1916 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1917 /// r-char-sequence:
1918 /// r-char
1919 /// r-char-sequence r-char
1920 /// r-char:
1921 /// any member of the source character set, except a right parenthesis )
1922 /// followed by the initial d-char-sequence (which may be empty)
1923 /// followed by a double quote ".
1924 /// d-char-sequence:
1925 /// d-char
1926 /// d-char-sequence d-char
1927 /// d-char:
1928 /// any member of the basic source character set except:
1929 /// space, the left parenthesis (, the right parenthesis ),
1930 /// the backslash \, and the control characters representing horizontal
1931 /// tab, vertical tab, form feed, and newline.
1932 /// escape-sequence: [C++0x lex.ccon]
1933 /// simple-escape-sequence
1934 /// octal-escape-sequence
1935 /// hexadecimal-escape-sequence
1936 /// simple-escape-sequence:
1937 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1938 /// octal-escape-sequence:
1939 /// \ octal-digit
1940 /// \ octal-digit octal-digit
1941 /// \ octal-digit octal-digit octal-digit
1942 /// hexadecimal-escape-sequence:
1943 /// \x hexadecimal-digit
1944 /// hexadecimal-escape-sequence hexadecimal-digit
1945 /// universal-character-name:
1946 /// \u hex-quad
1947 /// \U hex-quad hex-quad
1948 /// hex-quad:
1949 /// hex-digit hex-digit hex-digit hex-digit
1950 /// \endverbatim
1952 StringLiteralParser::StringLiteralParser(ArrayRef<Token> StringToks,
1953 Preprocessor &PP,
1954 StringLiteralEvalMethod EvalMethod)
1955 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1956 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1957 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1958 ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false),
1959 Pascal(false) {
1960 init(StringToks);
1963 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1964 // The literal token may have come from an invalid source location (e.g. due
1965 // to a PCH error), in which case the token length will be 0.
1966 if (StringToks.empty() || StringToks[0].getLength() < 2)
1967 return DiagnoseLexingError(SourceLocation());
1969 // Scan all of the string portions, remember the max individual token length,
1970 // computing a bound on the concatenated string length, and see whether any
1971 // piece is a wide-string. If any of the string portions is a wide-string
1972 // literal, the result is a wide-string literal [C99 6.4.5p4].
1973 assert(!StringToks.empty() && "expected at least one token");
1974 MaxTokenLength = StringToks[0].getLength();
1975 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1976 SizeBound = StringToks[0].getLength() - 2; // -2 for "".
1977 hadError = false;
1979 // Determines the kind of string from the prefix
1980 Kind = tok::string_literal;
1982 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1983 for (const Token &Tok : StringToks) {
1984 if (Tok.getLength() < 2)
1985 return DiagnoseLexingError(Tok.getLocation());
1987 // The string could be shorter than this if it needs cleaning, but this is a
1988 // reasonable bound, which is all we need.
1989 assert(Tok.getLength() >= 2 && "literal token is invalid!");
1990 SizeBound += Tok.getLength() - 2; // -2 for "".
1992 // Remember maximum string piece length.
1993 if (Tok.getLength() > MaxTokenLength)
1994 MaxTokenLength = Tok.getLength();
1996 // Remember if we see any wide or utf-8/16/32 strings.
1997 // Also check for illegal concatenations.
1998 if (isUnevaluated() && Tok.getKind() != tok::string_literal) {
1999 if (Diags) {
2000 SourceLocation PrefixEndLoc = Lexer::AdvanceToTokenCharacter(
2001 Tok.getLocation(), getEncodingPrefixLen(Tok.getKind()), SM,
2002 Features);
2003 CharSourceRange Range =
2004 CharSourceRange::getCharRange({Tok.getLocation(), PrefixEndLoc});
2005 StringRef Prefix(SM.getCharacterData(Tok.getLocation()),
2006 getEncodingPrefixLen(Tok.getKind()));
2007 Diags->Report(Tok.getLocation(),
2008 Features.CPlusPlus26
2009 ? diag::err_unevaluated_string_prefix
2010 : diag::warn_unevaluated_string_prefix)
2011 << Prefix << Features.CPlusPlus << FixItHint::CreateRemoval(Range);
2013 if (Features.CPlusPlus26)
2014 hadError = true;
2015 } else if (Tok.isNot(Kind) && Tok.isNot(tok::string_literal)) {
2016 if (isOrdinary()) {
2017 Kind = Tok.getKind();
2018 } else {
2019 if (Diags)
2020 Diags->Report(Tok.getLocation(), diag::err_unsupported_string_concat);
2021 hadError = true;
2026 // Include space for the null terminator.
2027 ++SizeBound;
2029 // TODO: K&R warning: "traditional C rejects string constant concatenation"
2031 // Get the width in bytes of char/wchar_t/char16_t/char32_t
2032 CharByteWidth = getCharWidth(Kind, Target);
2033 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
2034 CharByteWidth /= 8;
2036 // The output buffer size needs to be large enough to hold wide characters.
2037 // This is a worst-case assumption which basically corresponds to L"" "long".
2038 SizeBound *= CharByteWidth;
2040 // Size the temporary buffer to hold the result string data.
2041 ResultBuf.resize(SizeBound);
2043 // Likewise, but for each string piece.
2044 SmallString<512> TokenBuf;
2045 TokenBuf.resize(MaxTokenLength);
2047 // Loop over all the strings, getting their spelling, and expanding them to
2048 // wide strings as appropriate.
2049 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
2051 Pascal = false;
2053 SourceLocation UDSuffixTokLoc;
2055 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
2056 const char *ThisTokBuf = &TokenBuf[0];
2057 // Get the spelling of the token, which eliminates trigraphs, etc. We know
2058 // that ThisTokBuf points to a buffer that is big enough for the whole token
2059 // and 'spelled' tokens can only shrink.
2060 bool StringInvalid = false;
2061 unsigned ThisTokLen =
2062 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
2063 &StringInvalid);
2064 if (StringInvalid)
2065 return DiagnoseLexingError(StringToks[i].getLocation());
2067 const char *ThisTokBegin = ThisTokBuf;
2068 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
2070 // Remove an optional ud-suffix.
2071 if (ThisTokEnd[-1] != '"') {
2072 const char *UDSuffixEnd = ThisTokEnd;
2073 do {
2074 --ThisTokEnd;
2075 } while (ThisTokEnd[-1] != '"');
2077 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
2079 if (UDSuffixBuf.empty()) {
2080 if (StringToks[i].hasUCN())
2081 expandUCNs(UDSuffixBuf, UDSuffix);
2082 else
2083 UDSuffixBuf.assign(UDSuffix);
2084 UDSuffixToken = i;
2085 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
2086 UDSuffixTokLoc = StringToks[i].getLocation();
2087 } else {
2088 SmallString<32> ExpandedUDSuffix;
2089 if (StringToks[i].hasUCN()) {
2090 expandUCNs(ExpandedUDSuffix, UDSuffix);
2091 UDSuffix = ExpandedUDSuffix;
2094 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
2095 // result of a concatenation involving at least one user-defined-string-
2096 // literal, all the participating user-defined-string-literals shall
2097 // have the same ud-suffix.
2098 bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty();
2099 if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) {
2100 if (Diags) {
2101 SourceLocation TokLoc = StringToks[i].getLocation();
2102 if (UnevaluatedStringHasUDL) {
2103 Diags->Report(TokLoc, diag::err_unevaluated_string_udl)
2104 << SourceRange(TokLoc, TokLoc);
2105 } else {
2106 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
2107 << UDSuffixBuf << UDSuffix
2108 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc);
2111 hadError = true;
2116 // Strip the end quote.
2117 --ThisTokEnd;
2119 // TODO: Input character set mapping support.
2121 // Skip marker for wide or unicode strings.
2122 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
2123 ++ThisTokBuf;
2124 // Skip 8 of u8 marker for utf8 strings.
2125 if (ThisTokBuf[0] == '8')
2126 ++ThisTokBuf;
2129 // Check for raw string
2130 if (ThisTokBuf[0] == 'R') {
2131 if (ThisTokBuf[1] != '"') {
2132 // The file may have come from PCH and then changed after loading the
2133 // PCH; Fail gracefully.
2134 return DiagnoseLexingError(StringToks[i].getLocation());
2136 ThisTokBuf += 2; // skip R"
2138 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
2139 // characters.
2140 constexpr unsigned MaxRawStrDelimLen = 16;
2142 const char *Prefix = ThisTokBuf;
2143 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
2144 ThisTokBuf[0] != '(')
2145 ++ThisTokBuf;
2146 if (ThisTokBuf[0] != '(')
2147 return DiagnoseLexingError(StringToks[i].getLocation());
2148 ++ThisTokBuf; // skip '('
2150 // Remove same number of characters from the end
2151 ThisTokEnd -= ThisTokBuf - Prefix;
2152 if (ThisTokEnd < ThisTokBuf)
2153 return DiagnoseLexingError(StringToks[i].getLocation());
2155 // C++14 [lex.string]p4: A source-file new-line in a raw string literal
2156 // results in a new-line in the resulting execution string-literal.
2157 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
2158 while (!RemainingTokenSpan.empty()) {
2159 // Split the string literal on \r\n boundaries.
2160 size_t CRLFPos = RemainingTokenSpan.find("\r\n");
2161 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
2162 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
2164 // Copy everything before the \r\n sequence into the string literal.
2165 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
2166 hadError = true;
2168 // Point into the \n inside the \r\n sequence and operate on the
2169 // remaining portion of the literal.
2170 RemainingTokenSpan = AfterCRLF.substr(1);
2172 } else {
2173 if (ThisTokBuf[0] != '"') {
2174 // The file may have come from PCH and then changed after loading the
2175 // PCH; Fail gracefully.
2176 return DiagnoseLexingError(StringToks[i].getLocation());
2178 ++ThisTokBuf; // skip "
2180 // Check if this is a pascal string
2181 if (!isUnevaluated() && Features.PascalStrings &&
2182 ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' &&
2183 ThisTokBuf[1] == 'p') {
2185 // If the \p sequence is found in the first token, we have a pascal string
2186 // Otherwise, if we already have a pascal string, ignore the first \p
2187 if (i == 0) {
2188 ++ThisTokBuf;
2189 Pascal = true;
2190 } else if (Pascal)
2191 ThisTokBuf += 2;
2194 while (ThisTokBuf != ThisTokEnd) {
2195 // Is this a span of non-escape characters?
2196 if (ThisTokBuf[0] != '\\') {
2197 const char *InStart = ThisTokBuf;
2198 do {
2199 ++ThisTokBuf;
2200 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
2202 // Copy the character span over.
2203 if (CopyStringFragment(StringToks[i], ThisTokBegin,
2204 StringRef(InStart, ThisTokBuf - InStart)))
2205 hadError = true;
2206 continue;
2208 // Is this a Universal Character Name escape?
2209 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' ||
2210 ThisTokBuf[1] == 'N') {
2211 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
2212 ResultPtr, hadError,
2213 FullSourceLoc(StringToks[i].getLocation(), SM),
2214 CharByteWidth, Diags, Features);
2215 continue;
2217 // Otherwise, this is a non-UCN escape character. Process it.
2218 unsigned ResultChar =
2219 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
2220 FullSourceLoc(StringToks[i].getLocation(), SM),
2221 CharByteWidth * 8, Diags, Features, EvalMethod);
2223 if (CharByteWidth == 4) {
2224 // FIXME: Make the type of the result buffer correct instead of
2225 // using reinterpret_cast.
2226 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
2227 *ResultWidePtr = ResultChar;
2228 ResultPtr += 4;
2229 } else if (CharByteWidth == 2) {
2230 // FIXME: Make the type of the result buffer correct instead of
2231 // using reinterpret_cast.
2232 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
2233 *ResultWidePtr = ResultChar & 0xFFFF;
2234 ResultPtr += 2;
2235 } else {
2236 assert(CharByteWidth == 1 && "Unexpected char width");
2237 *ResultPtr++ = ResultChar & 0xFF;
2243 assert((!Pascal || !isUnevaluated()) &&
2244 "Pascal string in unevaluated context");
2245 if (Pascal) {
2246 if (CharByteWidth == 4) {
2247 // FIXME: Make the type of the result buffer correct instead of
2248 // using reinterpret_cast.
2249 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
2250 ResultWidePtr[0] = GetNumStringChars() - 1;
2251 } else if (CharByteWidth == 2) {
2252 // FIXME: Make the type of the result buffer correct instead of
2253 // using reinterpret_cast.
2254 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
2255 ResultWidePtr[0] = GetNumStringChars() - 1;
2256 } else {
2257 assert(CharByteWidth == 1 && "Unexpected char width");
2258 ResultBuf[0] = GetNumStringChars() - 1;
2261 // Verify that pascal strings aren't too large.
2262 if (GetStringLength() > 256) {
2263 if (Diags)
2264 Diags->Report(StringToks.front().getLocation(),
2265 diag::err_pascal_string_too_long)
2266 << SourceRange(StringToks.front().getLocation(),
2267 StringToks.back().getLocation());
2268 hadError = true;
2269 return;
2271 } else if (Diags) {
2272 // Complain if this string literal has too many characters.
2273 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
2275 if (GetNumStringChars() > MaxChars)
2276 Diags->Report(StringToks.front().getLocation(),
2277 diag::ext_string_too_long)
2278 << GetNumStringChars() << MaxChars
2279 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
2280 << SourceRange(StringToks.front().getLocation(),
2281 StringToks.back().getLocation());
2285 static const char *resyncUTF8(const char *Err, const char *End) {
2286 if (Err == End)
2287 return End;
2288 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
2289 while (++Err != End && (*Err & 0xC0) == 0x80)
2291 return Err;
2294 /// This function copies from Fragment, which is a sequence of bytes
2295 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
2296 /// Performs widening for multi-byte characters.
2297 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
2298 const char *TokBegin,
2299 StringRef Fragment) {
2300 const llvm::UTF8 *ErrorPtrTmp;
2301 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
2302 return false;
2304 // If we see bad encoding for unprefixed string literals, warn and
2305 // simply copy the byte values, for compatibility with gcc and older
2306 // versions of clang.
2307 bool NoErrorOnBadEncoding = isOrdinary();
2308 if (NoErrorOnBadEncoding) {
2309 memcpy(ResultPtr, Fragment.data(), Fragment.size());
2310 ResultPtr += Fragment.size();
2313 if (Diags) {
2314 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2316 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2317 const DiagnosticBuilder &Builder =
2318 Diag(Diags, Features, SourceLoc, TokBegin,
2319 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2320 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2321 : diag::err_bad_string_encoding);
2323 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2324 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2326 // Decode into a dummy buffer.
2327 SmallString<512> Dummy;
2328 Dummy.reserve(Fragment.size() * CharByteWidth);
2329 char *Ptr = Dummy.data();
2331 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2332 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2333 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2334 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2335 ErrorPtr, NextStart);
2336 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2339 return !NoErrorOnBadEncoding;
2342 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2343 hadError = true;
2344 if (Diags)
2345 Diags->Report(Loc, diag::err_lexing_string);
2348 /// getOffsetOfStringByte - This function returns the offset of the
2349 /// specified byte of the string data represented by Token. This handles
2350 /// advancing over escape sequences in the string.
2351 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2352 unsigned ByteNo) const {
2353 // Get the spelling of the token.
2354 SmallString<32> SpellingBuffer;
2355 SpellingBuffer.resize(Tok.getLength());
2357 bool StringInvalid = false;
2358 const char *SpellingPtr = &SpellingBuffer[0];
2359 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2360 &StringInvalid);
2361 if (StringInvalid)
2362 return 0;
2364 const char *SpellingStart = SpellingPtr;
2365 const char *SpellingEnd = SpellingPtr+TokLen;
2367 // Handle UTF-8 strings just like narrow strings.
2368 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2369 SpellingPtr += 2;
2371 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
2372 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
2374 // For raw string literals, this is easy.
2375 if (SpellingPtr[0] == 'R') {
2376 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
2377 // Skip 'R"'.
2378 SpellingPtr += 2;
2379 while (*SpellingPtr != '(') {
2380 ++SpellingPtr;
2381 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
2383 // Skip '('.
2384 ++SpellingPtr;
2385 return SpellingPtr - SpellingStart + ByteNo;
2388 // Skip over the leading quote
2389 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
2390 ++SpellingPtr;
2392 // Skip over bytes until we find the offset we're looking for.
2393 while (ByteNo) {
2394 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
2396 // Step over non-escapes simply.
2397 if (*SpellingPtr != '\\') {
2398 ++SpellingPtr;
2399 --ByteNo;
2400 continue;
2403 // Otherwise, this is an escape character. Advance over it.
2404 bool HadError = false;
2405 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' ||
2406 SpellingPtr[1] == 'N') {
2407 const char *EscapePtr = SpellingPtr;
2408 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2409 1, Features, HadError);
2410 if (Len > ByteNo) {
2411 // ByteNo is somewhere within the escape sequence.
2412 SpellingPtr = EscapePtr;
2413 break;
2415 ByteNo -= Len;
2416 } else {
2417 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2418 FullSourceLoc(Tok.getLocation(), SM), CharByteWidth * 8,
2419 Diags, Features, StringLiteralEvalMethod::Evaluated);
2420 --ByteNo;
2422 assert(!HadError && "This method isn't valid on erroneous strings");
2425 return SpellingPtr-SpellingStart;
2428 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2429 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
2430 /// treat it as an invalid suffix.
2431 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2432 StringRef Suffix) {
2433 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2434 Suffix == "sv";