1 // RUN: %clang_cc1 -fsyntax-only -verify %s
2 // RUN: %clang_cc1 -fsyntax-only -verify -std=c++98 %s
3 // RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
6 template <class T
> struct X
{};
8 template <> struct X
<char>
13 template <class T
> struct X2
{};
22 void a(char *a
, char *b
) {X2
<char*>::f();}
24 namespace WonkyAccess
{
34 struct Y
<U
*> : X
<U
> { };
37 struct Y
<float*> : X
<float> { };
39 int f(Y
<int*> y
, Y
<float*> y2
) {
44 namespace rdar9169404
{
45 template<typename T
, T N
> struct X
{ };
46 template<bool C
> struct X
<bool, C
> {
50 X
<bool, -1>::type value
;
51 #if __cplusplus >= 201103L
52 // expected-error@-2 {{non-type template argument evaluates to -1, which cannot be narrowed to type 'bool'}}
56 namespace rdar39524996
{
57 template <typename T
, typename U
>
58 struct enable_if_not_same
63 struct enable_if_not_same
<T
, T
>;
67 // Assertion triggered on trying to set twice the same partial specialization
68 // enable_if_not_same<int, int>
70 Wrapper(const Wrapper
<U
>& other
,
71 typename enable_if_not_same
<U
, T
>::type
* = 0) {}
73 explicit Wrapper(int i
) {}
78 // It is important that the struct has implicit copy and move constructors.
82 Container(const Container
<U
>& other
) : x(static_cast<T
>(other
.x
)) {}
84 // Implicit constructors are member-wise, so the field triggers instantiation
85 // of T constructors and we instantiate all of them for overloading purposes.
89 void takesWrapperInContainer(const Container
< Wrapper
<int> >& c
);
91 // Type mismatch triggers initialization with conversion which requires
92 // implicit constructors to be instantiated.
94 takesWrapperInContainer(c
);
98 namespace InstantiationDependent
{
99 template<typename
> using ignore
= void; // expected-warning 0-1{{extension}}
100 template<typename T
, typename
= void> struct A
{
101 static const bool specialized
= false;
103 template<typename T
> struct Hide
{ typedef void type
; };
104 template<typename T
> struct A
<T
, Hide
<ignore
<typename
T::type
> >::type
> {
105 static const bool specialized
= true;
109 struct Y
{ typedef int type
; };
110 _Static_assert(!A
<X
>::specialized
, "");
111 _Static_assert(A
<Y
>::specialized
, "");
114 namespace IgnorePartialSubstitution
{
115 template <typename
... T
> struct tuple
{}; // expected-warning 0-1{{extension}}
116 template <typename
> struct IsTuple
{
117 enum { value
= false };
119 template <typename
... Us
> struct IsTuple
<tuple
<Us
...> > { // expected-warning 0-1{{extension}}
120 enum { value
= true };
123 template <bool...> using ignore
= void; // expected-warning 0-2{{extension}}
124 template <class... Pred
> ignore
<Pred::value
...> helper(); // expected-warning 0-1{{extension}}
126 using S
= IsTuple
<tuple
<int> >; // expected-warning 0-1{{extension}}
128 // This used to pick the primary template, because we got confused and
129 // thought that template parameter 0 was the current partially-substituted
130 // pack (from `helper`) during the deduction for the partial specialization.
131 void f() { helper
<S
>(); }
133 _Static_assert(S::value
, "");
137 template <bool B
= false> class ClassTemplate
{
139 template <typename T
, typename
= void> class Nested
{};
142 template <typename DerivedType
> class Base
{};
145 template <typename T
>
146 class ClassTemplate
<>::Nested
<T
> : public Base
<ClassTemplate
<>::Nested
<T
> > {};
149 // This should instantiate the body of Nested with the template arguments
150 // from the Partial Specialization. This would previously get confused and
151 // get the template arguments from the primary template instead.
152 ClassTemplate
<>::Nested
<int> instantiation
;