1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 // Main internal TSan header file.
14 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
15 // function-scope locals)
16 // - All functions/classes/etc reside in namespace __tsan, except for those
17 // declared in tsan_interface.h.
18 // - Platform-specific files should be used instead of ifdefs (*).
19 // - No system headers included in header files (*).
20 // - Platform specific headres included only into platform-specific files (*).
22 // (*) Except when inlining is critical for performance.
23 //===----------------------------------------------------------------------===//
28 #include "sanitizer_common/sanitizer_allocator.h"
29 #include "sanitizer_common/sanitizer_allocator_internal.h"
30 #include "sanitizer_common/sanitizer_asm.h"
31 #include "sanitizer_common/sanitizer_common.h"
32 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
33 #include "sanitizer_common/sanitizer_libignore.h"
34 #include "sanitizer_common/sanitizer_suppressions.h"
35 #include "sanitizer_common/sanitizer_thread_registry.h"
36 #include "sanitizer_common/sanitizer_vector.h"
37 #include "tsan_defs.h"
38 #include "tsan_flags.h"
39 #include "tsan_ignoreset.h"
40 #include "tsan_ilist.h"
41 #include "tsan_mman.h"
42 #include "tsan_mutexset.h"
43 #include "tsan_platform.h"
44 #include "tsan_report.h"
45 #include "tsan_shadow.h"
46 #include "tsan_stack_trace.h"
47 #include "tsan_sync.h"
48 #include "tsan_trace.h"
49 #include "tsan_vector_clock.h"
51 #if SANITIZER_WORDSIZE != 64
52 # error "ThreadSanitizer is supported only on 64-bit platforms"
58 struct MapUnmapCallback
;
59 # if defined(__mips64) || defined(__aarch64__) || defined(__loongarch__) || \
60 defined(__powerpc__) || SANITIZER_RISCV64
63 static const uptr kSpaceBeg
= 0;
64 static const u64 kSpaceSize
= SANITIZER_MMAP_RANGE_SIZE
;
65 static const uptr kMetadataSize
= 0;
66 typedef __sanitizer::CompactSizeClassMap SizeClassMap
;
67 static const uptr kRegionSizeLog
= 20;
68 using AddressSpaceView
= LocalAddressSpaceView
;
69 typedef __tsan::MapUnmapCallback MapUnmapCallback
;
70 static const uptr kFlags
= 0;
72 typedef SizeClassAllocator32
<AP32
> PrimaryAllocator
;
74 struct AP64
{ // Allocator64 parameters. Deliberately using a short name.
75 # if defined(__s390x__)
76 typedef MappingS390x Mapping
;
78 typedef Mapping48AddressSpace Mapping
;
80 static const uptr kSpaceBeg
= Mapping::kHeapMemBeg
;
81 static const uptr kSpaceSize
= Mapping::kHeapMemEnd
- Mapping::kHeapMemBeg
;
82 static const uptr kMetadataSize
= 0;
83 typedef DefaultSizeClassMap SizeClassMap
;
84 typedef __tsan::MapUnmapCallback MapUnmapCallback
;
85 static const uptr kFlags
= 0;
86 using AddressSpaceView
= LocalAddressSpaceView
;
88 typedef SizeClassAllocator64
<AP64
> PrimaryAllocator
;
90 typedef CombinedAllocator
<PrimaryAllocator
> Allocator
;
91 typedef Allocator::AllocatorCache AllocatorCache
;
92 Allocator
*allocator();
95 struct ThreadSignalContext
;
100 bool in_blocking_func
;
101 uptr in_signal_handler
;
102 uptr
*shadow_stack_pos
;
105 // A Processor represents a physical thread, or a P for Go.
106 // It is used to store internal resources like allocate cache, and does not
107 // participate in race-detection logic (invisible to end user).
108 // In C++ it is tied to an OS thread just like ThreadState, however ideally
109 // it should be tied to a CPU (this way we will have fewer allocator caches).
110 // In Go it is tied to a P, so there are significantly fewer Processor's than
111 // ThreadState's (which are tied to Gs).
112 // A ThreadState must be wired with a Processor to handle events.
114 ThreadState
*thr
; // currently wired thread, or nullptr
116 AllocatorCache alloc_cache
;
117 InternalAllocatorCache internal_alloc_cache
;
119 DenseSlabAllocCache block_cache
;
120 DenseSlabAllocCache sync_cache
;
121 DDPhysicalThread
*dd_pt
;
125 // ScopedGlobalProcessor temporary setups a global processor for the current
126 // thread, if it does not have one. Intended for interceptors that can run
127 // at the very thread end, when we already destroyed the thread processor.
128 struct ScopedGlobalProcessor
{
129 ScopedGlobalProcessor();
130 ~ScopedGlobalProcessor();
139 struct alignas(SANITIZER_CACHE_LINE_SIZE
) TidSlot
{
142 atomic_uint32_t raw_epoch
;
144 Vector
<TidEpoch
> journal
;
147 Epoch
epoch() const {
148 return static_cast<Epoch
>(atomic_load(&raw_epoch
, memory_order_relaxed
));
151 void SetEpoch(Epoch v
) {
152 atomic_store(&raw_epoch
, static_cast<u32
>(v
), memory_order_relaxed
);
158 // This struct is stored in TLS.
159 struct alignas(SANITIZER_CACHE_LINE_SIZE
) ThreadState
{
160 FastState fast_state
;
163 int ignore_interceptors
;
165 uptr
*shadow_stack_pos
;
167 // Current position in tctx->trace.Back()->events (Event*).
168 atomic_uintptr_t trace_pos
;
169 // PC of the last memory access, used to compute PC deltas in the trace.
172 // Technically `current` should be a separate THREADLOCAL variable;
173 // but it is placed here in order to share cache line with previous fields.
174 ThreadState
* current
;
176 atomic_sint32_t pending_signals
;
180 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
181 // We do not distinguish beteween ignoring reads and writes
182 // for better performance.
183 int ignore_reads_and_writes
;
184 int suppress_reports
;
185 // Go does not support ignores.
187 IgnoreSet mop_ignore_set
;
188 IgnoreSet sync_ignore_set
;
191 uptr
*shadow_stack_end
;
193 Vector
<JmpBuf
> jmp_bufs
;
195 atomic_uintptr_t in_blocking_func
;
208 DDLogicalThread
*dd_lt
;
214 // Current wired Processor, or nullptr. Required to handle any events.
217 Processor
*proc() { return proc1
; }
222 atomic_uintptr_t in_signal_handler
;
223 atomic_uintptr_t signal_ctx
;
226 StackID last_sleep_stack_id
;
227 VectorClock last_sleep_clock
;
230 // Set in regions of runtime that must be signal-safe and fork-safe.
231 // If set, malloc must not be called.
234 const ReportDesc
*current_report
;
236 explicit ThreadState(Tid tid
);
240 #if SANITIZER_APPLE || SANITIZER_ANDROID
241 ThreadState
*cur_thread();
242 void set_cur_thread(ThreadState
*thr
);
243 void cur_thread_finalize();
244 inline ThreadState
*cur_thread_init() { return cur_thread(); }
246 __attribute__((tls_model("initial-exec")))
247 extern THREADLOCAL
char cur_thread_placeholder
[];
248 inline ThreadState
*cur_thread() {
249 return reinterpret_cast<ThreadState
*>(cur_thread_placeholder
)->current
;
251 inline ThreadState
*cur_thread_init() {
252 ThreadState
*thr
= reinterpret_cast<ThreadState
*>(cur_thread_placeholder
);
253 if (UNLIKELY(!thr
->current
))
257 inline void set_cur_thread(ThreadState
*thr
) {
258 reinterpret_cast<ThreadState
*>(cur_thread_placeholder
)->current
= thr
;
260 inline void cur_thread_finalize() { }
261 # endif // SANITIZER_APPLE || SANITIZER_ANDROID
262 #endif // SANITIZER_GO
264 class ThreadContext final
: public ThreadContextBase
{
266 explicit ThreadContext(Tid tid
);
269 StackID creation_stack_id
;
274 // Override superclass callbacks.
275 void OnDead() override
;
276 void OnJoined(void *arg
) override
;
277 void OnFinished() override
;
278 void OnStarted(void *arg
) override
;
279 void OnCreated(void *arg
) override
;
280 void OnReset() override
;
281 void OnDetached(void *arg
) override
;
286 bool operator==(const RacyStacks
&other
) const;
294 struct FiredSuppression
{
305 bool after_multithreaded_fork
;
312 atomic_uint64_t last_symbolize_time_ns
;
314 void *background_thread
;
315 atomic_uint32_t stop_background_thread
;
317 ThreadRegistry thread_registry
;
319 // This is used to prevent a very unlikely but very pathological behavior.
320 // Since memory access handling is not synchronized with DoReset,
321 // a thread running concurrently with DoReset can leave a bogus shadow value
322 // that will be later falsely detected as a race. For such false races
323 // RestoreStack will return false and we will not report it.
324 // However, consider that a thread leaves a whole lot of such bogus values
325 // and these values are later read by a whole lot of threads.
326 // This will cause massive amounts of ReportRace calls and lots of
327 // serialization. In very pathological cases the resulting slowdown
328 // can be >100x. This is very unlikely, but it was presumably observed
329 // in practice: https://github.com/google/sanitizers/issues/1552
330 // If this happens, previous access sid+epoch will be the same for all of
331 // these false races b/c if the thread will try to increment epoch, it will
332 // notice that DoReset has happened and will stop producing bogus shadow
333 // values. So, last_spurious_race is used to remember the last sid+epoch
334 // for which RestoreStack returned false. Then it is used to filter out
335 // races with the same sid+epoch very early and quickly.
336 // It is of course possible that multiple threads left multiple bogus shadow
337 // values and all of them are read by lots of threads at the same time.
338 // In such case last_spurious_race will only be able to deduplicate a few
339 // races from one thread, then few from another and so on. An alternative
340 // would be to hold an array of such sid+epoch, but we consider such scenario
341 // as even less likely.
342 // Note: this can lead to some rare false negatives as well:
343 // 1. When a legit access with the same sid+epoch participates in a race
344 // as the "previous" memory access, it will be wrongly filtered out.
345 // 2. When RestoreStack returns false for a legit memory access because it
346 // was already evicted from the thread trace, we will still remember it in
347 // last_spurious_race. Then if there is another racing memory access from
348 // the same thread that happened in the same epoch, but was stored in the
349 // next thread trace part (which is still preserved in the thread trace),
350 // we will also wrongly filter it out while RestoreStack would actually
351 // succeed for that second memory access.
352 RawShadow last_spurious_race
;
355 Vector
<RacyStacks
> racy_stacks
;
356 // Number of fired suppressions may be large enough.
357 Mutex fired_suppressions_mtx
;
358 InternalMmapVector
<FiredSuppression
> fired_suppressions
;
364 // The last slot index (kFreeSid) is used to denote freed memory.
365 TidSlot slots
[kThreadSlotCount
- 1];
367 // Protects global_epoch, slot_queue, trace_part_recycle.
369 uptr global_epoch
; // guarded by slot_mtx and by all slot mutexes
370 bool resetting
; // global reset is in progress
371 IList
<TidSlot
, &TidSlot::node
> slot_queue
SANITIZER_GUARDED_BY(slot_mtx
);
372 IList
<TraceHeader
, &TraceHeader::global
, TracePart
> trace_part_recycle
373 SANITIZER_GUARDED_BY(slot_mtx
);
374 uptr trace_part_total_allocated
SANITIZER_GUARDED_BY(slot_mtx
);
375 uptr trace_part_recycle_finished
SANITIZER_GUARDED_BY(slot_mtx
);
376 uptr trace_part_finished_excess
SANITIZER_GUARDED_BY(slot_mtx
);
378 uptr mapped_shadow_begin
;
379 uptr mapped_shadow_end
;
383 extern Context
*ctx
; // The one and the only global runtime context.
385 ALWAYS_INLINE Flags
*flags() {
389 struct ScopedIgnoreInterceptors
{
390 ScopedIgnoreInterceptors() {
392 cur_thread()->ignore_interceptors
++;
396 ~ScopedIgnoreInterceptors() {
398 cur_thread()->ignore_interceptors
--;
403 const char *GetObjectTypeFromTag(uptr tag
);
404 const char *GetReportHeaderFromTag(uptr tag
);
405 uptr
TagFromShadowStackFrame(uptr pc
);
407 class ScopedReportBase
{
409 void AddMemoryAccess(uptr addr
, uptr external_tag
, Shadow s
, Tid tid
,
410 StackTrace stack
, const MutexSet
*mset
);
411 void AddStack(StackTrace stack
, bool suppressable
= false);
412 void AddThread(const ThreadContext
*tctx
, bool suppressable
= false);
413 void AddThread(Tid tid
, bool suppressable
= false);
414 void AddUniqueTid(Tid unique_tid
);
415 int AddMutex(uptr addr
, StackID creation_stack_id
);
416 void AddLocation(uptr addr
, uptr size
);
417 void AddSleep(StackID stack_id
);
418 void SetCount(int count
);
419 void SetSigNum(int sig
);
421 const ReportDesc
*GetReport() const;
424 ScopedReportBase(ReportType typ
, uptr tag
);
429 // Symbolizer makes lots of intercepted calls. If we try to process them,
430 // at best it will cause deadlocks on internal mutexes.
431 ScopedIgnoreInterceptors ignore_interceptors_
;
433 ScopedReportBase(const ScopedReportBase
&) = delete;
434 void operator=(const ScopedReportBase
&) = delete;
437 class ScopedReport
: public ScopedReportBase
{
439 explicit ScopedReport(ReportType typ
, uptr tag
= kExternalTagNone
);
443 ScopedErrorReportLock lock_
;
446 bool ShouldReport(ThreadState
*thr
, ReportType typ
);
447 ThreadContext
*IsThreadStackOrTls(uptr addr
, bool *is_stack
);
449 // The stack could look like:
450 // <start> | <main> | <foo> | tag | <bar>
451 // This will extract the tag and keep:
452 // <start> | <main> | <foo> | <bar>
453 template<typename StackTraceTy
>
454 void ExtractTagFromStack(StackTraceTy
*stack
, uptr
*tag
= nullptr) {
455 if (stack
->size
< 2) return;
456 uptr possible_tag_pc
= stack
->trace
[stack
->size
- 2];
457 uptr possible_tag
= TagFromShadowStackFrame(possible_tag_pc
);
458 if (possible_tag
== kExternalTagNone
) return;
459 stack
->trace_buffer
[stack
->size
- 2] = stack
->trace_buffer
[stack
->size
- 1];
461 if (tag
) *tag
= possible_tag
;
464 template<typename StackTraceTy
>
465 void ObtainCurrentStack(ThreadState
*thr
, uptr toppc
, StackTraceTy
*stack
,
466 uptr
*tag
= nullptr) {
467 uptr size
= thr
->shadow_stack_pos
- thr
->shadow_stack
;
469 if (size
+ !!toppc
> kStackTraceMax
) {
470 start
= size
+ !!toppc
- kStackTraceMax
;
471 size
= kStackTraceMax
- !!toppc
;
473 stack
->Init(&thr
->shadow_stack
[start
], size
, toppc
);
474 ExtractTagFromStack(stack
, tag
);
477 #define GET_STACK_TRACE_FATAL(thr, pc) \
478 VarSizeStackTrace stack; \
479 ObtainCurrentStack(thr, pc, &stack); \
480 stack.ReverseOrder();
482 void MapShadow(uptr addr
, uptr size
);
483 void MapThreadTrace(uptr addr
, uptr size
, const char *name
);
484 void DontNeedShadowFor(uptr addr
, uptr size
);
485 void UnmapShadow(ThreadState
*thr
, uptr addr
, uptr size
);
486 void InitializeShadowMemory();
487 void DontDumpShadow(uptr addr
, uptr size
);
488 void InitializeInterceptors();
489 void InitializeLibIgnore();
490 void InitializeDynamicAnnotations();
492 void ForkBefore(ThreadState
*thr
, uptr pc
);
493 void ForkParentAfter(ThreadState
*thr
, uptr pc
);
494 void ForkChildAfter(ThreadState
*thr
, uptr pc
, bool start_thread
);
496 void ReportRace(ThreadState
*thr
, RawShadow
*shadow_mem
, Shadow cur
, Shadow old
,
498 bool OutputReport(ThreadState
*thr
, const ScopedReport
&srep
);
499 bool IsFiredSuppression(Context
*ctx
, ReportType type
, StackTrace trace
);
500 bool IsExpectedReport(uptr addr
, uptr size
);
502 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
503 # define DPrintf Printf
505 # define DPrintf(...)
508 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
509 # define DPrintf2 Printf
511 # define DPrintf2(...)
514 StackID
CurrentStackId(ThreadState
*thr
, uptr pc
);
515 ReportStack
*SymbolizeStackId(StackID stack_id
);
516 void PrintCurrentStack(ThreadState
*thr
, uptr pc
);
517 void PrintCurrentStack(uptr pc
, bool fast
); // may uses libunwind
518 MBlock
*JavaHeapBlock(uptr addr
, uptr
*start
);
520 void Initialize(ThreadState
*thr
);
521 void MaybeSpawnBackgroundThread();
522 int Finalize(ThreadState
*thr
);
524 void OnUserAlloc(ThreadState
*thr
, uptr pc
, uptr p
, uptr sz
, bool write
);
525 void OnUserFree(ThreadState
*thr
, uptr pc
, uptr p
, bool write
);
527 void MemoryAccess(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
,
529 void UnalignedMemoryAccess(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
,
531 // This creates 2 non-inlined specialized versions of MemoryAccessRange.
532 template <bool is_read
>
533 void MemoryAccessRangeT(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
);
536 void MemoryAccessRange(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
,
541 MemoryAccessRangeT
<false>(thr
, pc
, addr
, size
);
543 MemoryAccessRangeT
<true>(thr
, pc
, addr
, size
);
546 void ShadowSet(RawShadow
*p
, RawShadow
*end
, RawShadow v
);
547 void MemoryRangeFreed(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
);
548 void MemoryResetRange(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
);
549 void MemoryRangeImitateWrite(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
);
550 void MemoryRangeImitateWriteOrResetRange(ThreadState
*thr
, uptr pc
, uptr addr
,
553 void ThreadIgnoreBegin(ThreadState
*thr
, uptr pc
);
554 void ThreadIgnoreEnd(ThreadState
*thr
);
555 void ThreadIgnoreSyncBegin(ThreadState
*thr
, uptr pc
);
556 void ThreadIgnoreSyncEnd(ThreadState
*thr
);
558 Tid
ThreadCreate(ThreadState
*thr
, uptr pc
, uptr uid
, bool detached
);
559 void ThreadStart(ThreadState
*thr
, Tid tid
, tid_t os_id
,
560 ThreadType thread_type
);
561 void ThreadFinish(ThreadState
*thr
);
562 Tid
ThreadConsumeTid(ThreadState
*thr
, uptr pc
, uptr uid
);
563 void ThreadJoin(ThreadState
*thr
, uptr pc
, Tid tid
);
564 void ThreadDetach(ThreadState
*thr
, uptr pc
, Tid tid
);
565 void ThreadFinalize(ThreadState
*thr
);
566 void ThreadSetName(ThreadState
*thr
, const char *name
);
567 int ThreadCount(ThreadState
*thr
);
568 void ProcessPendingSignalsImpl(ThreadState
*thr
);
569 void ThreadNotJoined(ThreadState
*thr
, uptr pc
, Tid tid
, uptr uid
);
571 Processor
*ProcCreate();
572 void ProcDestroy(Processor
*proc
);
573 void ProcWire(Processor
*proc
, ThreadState
*thr
);
574 void ProcUnwire(Processor
*proc
, ThreadState
*thr
);
576 // Note: the parameter is called flagz, because flags is already taken
577 // by the global function that returns flags.
578 void MutexCreate(ThreadState
*thr
, uptr pc
, uptr addr
, u32 flagz
= 0);
579 void MutexDestroy(ThreadState
*thr
, uptr pc
, uptr addr
, u32 flagz
= 0);
580 void MutexPreLock(ThreadState
*thr
, uptr pc
, uptr addr
, u32 flagz
= 0);
581 void MutexPostLock(ThreadState
*thr
, uptr pc
, uptr addr
, u32 flagz
= 0,
583 int MutexUnlock(ThreadState
*thr
, uptr pc
, uptr addr
, u32 flagz
= 0);
584 void MutexPreReadLock(ThreadState
*thr
, uptr pc
, uptr addr
, u32 flagz
= 0);
585 void MutexPostReadLock(ThreadState
*thr
, uptr pc
, uptr addr
, u32 flagz
= 0);
586 void MutexReadUnlock(ThreadState
*thr
, uptr pc
, uptr addr
);
587 void MutexReadOrWriteUnlock(ThreadState
*thr
, uptr pc
, uptr addr
);
588 void MutexRepair(ThreadState
*thr
, uptr pc
, uptr addr
); // call on EOWNERDEAD
589 void MutexInvalidAccess(ThreadState
*thr
, uptr pc
, uptr addr
);
591 void Acquire(ThreadState
*thr
, uptr pc
, uptr addr
);
592 // AcquireGlobal synchronizes the current thread with all other threads.
593 // In terms of happens-before relation, it draws a HB edge from all threads
594 // (where they happen to execute right now) to the current thread. We use it to
595 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
596 // right before executing finalizers. This provides a coarse, but simple
597 // approximation of the actual required synchronization.
598 void AcquireGlobal(ThreadState
*thr
);
599 void Release(ThreadState
*thr
, uptr pc
, uptr addr
);
600 void ReleaseStoreAcquire(ThreadState
*thr
, uptr pc
, uptr addr
);
601 void ReleaseStore(ThreadState
*thr
, uptr pc
, uptr addr
);
602 void AfterSleep(ThreadState
*thr
, uptr pc
);
603 void IncrementEpoch(ThreadState
*thr
);
606 uptr ALWAYS_INLINE
HeapEnd() {
607 return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
611 void SlotAttachAndLock(ThreadState
*thr
) SANITIZER_ACQUIRE(thr
->slot
->mtx
);
612 void SlotDetach(ThreadState
*thr
);
613 void SlotLock(ThreadState
*thr
) SANITIZER_ACQUIRE(thr
->slot
->mtx
);
614 void SlotUnlock(ThreadState
*thr
) SANITIZER_RELEASE(thr
->slot
->mtx
);
615 void DoReset(ThreadState
*thr
, uptr epoch
);
616 void FlushShadowMemory();
618 ThreadState
*FiberCreate(ThreadState
*thr
, uptr pc
, unsigned flags
);
619 void FiberDestroy(ThreadState
*thr
, uptr pc
, ThreadState
*fiber
);
620 void FiberSwitch(ThreadState
*thr
, uptr pc
, ThreadState
*fiber
, unsigned flags
);
622 // These need to match __tsan_switch_to_fiber_* flags defined in
623 // tsan_interface.h. See documentation there as well.
624 enum FiberSwitchFlags
{
625 FiberSwitchFlagNoSync
= 1 << 0, // __tsan_switch_to_fiber_no_sync
631 SlotLocker(ThreadState
*thr
, bool recursive
= false)
632 : thr_(thr
), locked_(recursive
? thr
->slot_locked
: false) {
634 // We are in trouble if we are here with in_blocking_func set.
635 // If in_blocking_func is set, all signals will be delivered synchronously,
636 // which means we can't lock slots since the signal handler will try
637 // to lock it recursively and deadlock.
638 DCHECK(!atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
));
657 SlotUnlocker(ThreadState
*thr
) : thr_(thr
), locked_(thr
->slot_locked
) {
672 ALWAYS_INLINE
void ProcessPendingSignals(ThreadState
*thr
) {
673 if (UNLIKELY(atomic_load_relaxed(&thr
->pending_signals
)))
674 ProcessPendingSignalsImpl(thr
);
677 extern bool is_initialized
;
680 void LazyInitialize(ThreadState
*thr
) {
681 // If we can use .preinit_array, assume that __tsan_init
682 // called from .preinit_array initializes runtime before
683 // any instrumented code except when tsan is used as a
685 #if (!SANITIZER_CAN_USE_PREINIT_ARRAY || defined(SANITIZER_SHARED))
686 if (UNLIKELY(!is_initialized
))
691 void TraceResetForTesting();
692 void TraceSwitchPart(ThreadState
*thr
);
693 void TraceSwitchPartImpl(ThreadState
*thr
);
694 bool RestoreStack(EventType type
, Sid sid
, Epoch epoch
, uptr addr
, uptr size
,
695 AccessType typ
, Tid
*ptid
, VarSizeStackTrace
*pstk
,
696 MutexSet
*pmset
, uptr
*ptag
);
698 template <typename EventT
>
699 ALWAYS_INLINE WARN_UNUSED_RESULT
bool TraceAcquire(ThreadState
*thr
,
701 // TraceSwitchPart accesses shadow_stack, but it's called infrequently,
702 // so we check it here proactively.
703 DCHECK(thr
->shadow_stack
);
704 Event
*pos
= reinterpret_cast<Event
*>(atomic_load_relaxed(&thr
->trace_pos
));
706 // TraceSwitch acquires these mutexes,
707 // so we lock them here to detect deadlocks more reliably.
708 { Lock
lock(&ctx
->slot_mtx
); }
709 { Lock
lock(&thr
->tctx
->trace
.mtx
); }
710 TracePart
*current
= thr
->tctx
->trace
.parts
.Back();
712 DCHECK_GE(pos
, ¤t
->events
[0]);
713 DCHECK_LE(pos
, ¤t
->events
[TracePart::kSize
]);
715 DCHECK_EQ(pos
, nullptr);
718 // TracePart is allocated with mmap and is at least 4K aligned.
719 // So the following check is a faster way to check for part end.
720 // It may have false positives in the middle of the trace,
721 // they are filtered out in TraceSwitch.
722 if (UNLIKELY(((uptr
)(pos
+ 1) & TracePart::kAlignment
) == 0))
724 *ev
= reinterpret_cast<EventT
*>(pos
);
728 template <typename EventT
>
729 ALWAYS_INLINE
void TraceRelease(ThreadState
*thr
, EventT
*evp
) {
730 DCHECK_LE(evp
+ 1, &thr
->tctx
->trace
.parts
.Back()->events
[TracePart::kSize
]);
731 atomic_store_relaxed(&thr
->trace_pos
, (uptr
)(evp
+ 1));
734 template <typename EventT
>
735 void TraceEvent(ThreadState
*thr
, EventT ev
) {
737 if (!TraceAcquire(thr
, &evp
)) {
738 TraceSwitchPart(thr
);
739 UNUSED
bool res
= TraceAcquire(thr
, &evp
);
743 TraceRelease(thr
, evp
);
746 ALWAYS_INLINE WARN_UNUSED_RESULT
bool TryTraceFunc(ThreadState
*thr
,
748 if (!kCollectHistory
)
751 if (UNLIKELY(!TraceAcquire(thr
, &ev
)))
756 TraceRelease(thr
, ev
);
761 bool TryTraceMemoryAccess(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
,
764 bool TryTraceMemoryAccessRange(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
,
766 void TraceMemoryAccessRange(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
,
768 void TraceFunc(ThreadState
*thr
, uptr pc
= 0);
769 void TraceMutexLock(ThreadState
*thr
, EventType type
, uptr pc
, uptr addr
,
771 void TraceMutexUnlock(ThreadState
*thr
, uptr addr
);
772 void TraceTime(ThreadState
*thr
);
774 void TraceRestartFuncExit(ThreadState
*thr
);
775 void TraceRestartFuncEntry(ThreadState
*thr
, uptr pc
);
777 void GrowShadowStack(ThreadState
*thr
);
780 void FuncEntry(ThreadState
*thr
, uptr pc
) {
781 DPrintf2("#%d: FuncEntry %p\n", (int)thr
->fast_state
.sid(), (void *)pc
);
782 if (UNLIKELY(!TryTraceFunc(thr
, pc
)))
783 return TraceRestartFuncEntry(thr
, pc
);
784 DCHECK_GE(thr
->shadow_stack_pos
, thr
->shadow_stack
);
786 DCHECK_LT(thr
->shadow_stack_pos
, thr
->shadow_stack_end
);
788 if (thr
->shadow_stack_pos
== thr
->shadow_stack_end
)
789 GrowShadowStack(thr
);
791 thr
->shadow_stack_pos
[0] = pc
;
792 thr
->shadow_stack_pos
++;
796 void FuncExit(ThreadState
*thr
) {
797 DPrintf2("#%d: FuncExit\n", (int)thr
->fast_state
.sid());
798 if (UNLIKELY(!TryTraceFunc(thr
, 0)))
799 return TraceRestartFuncExit(thr
);
800 DCHECK_GT(thr
->shadow_stack_pos
, thr
->shadow_stack
);
802 DCHECK_LT(thr
->shadow_stack_pos
, thr
->shadow_stack_end
);
804 thr
->shadow_stack_pos
--;
808 extern void (*on_initialize
)(void);
809 extern int (*on_finalize
)(int);
811 } // namespace __tsan