1 //===-- Memory utils --------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_SRC_STRING_MEMORY_UTILS_UTILS_H
10 #define LLVM_LIBC_SRC_STRING_MEMORY_UTILS_UTILS_H
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/CPP/cstddef.h"
14 #include "src/__support/CPP/type_traits.h"
15 #include "src/__support/endian_internal.h"
16 #include "src/__support/macros/attributes.h" // LIBC_INLINE
17 #include "src/__support/macros/config.h"
18 #include "src/__support/macros/properties/architectures.h"
20 #include <stddef.h> // size_t
21 #include <stdint.h> // intptr_t / uintptr_t / INT32_MAX / INT32_MIN
23 namespace LIBC_NAMESPACE_DECL
{
25 // Returns the number of bytes to substract from ptr to get to the previous
26 // multiple of alignment. If ptr is already aligned returns 0.
27 template <size_t alignment
>
28 LIBC_INLINE
uintptr_t distance_to_align_down(const void *ptr
) {
29 static_assert(cpp::has_single_bit(alignment
),
30 "alignment must be a power of 2");
31 return reinterpret_cast<uintptr_t>(ptr
) & (alignment
- 1U);
34 // Returns the number of bytes to add to ptr to get to the next multiple of
35 // alignment. If ptr is already aligned returns 0.
36 template <size_t alignment
>
37 LIBC_INLINE
uintptr_t distance_to_align_up(const void *ptr
) {
38 static_assert(cpp::has_single_bit(alignment
),
39 "alignment must be a power of 2");
40 // The logic is not straightforward and involves unsigned modulo arithmetic
41 // but the generated code is as fast as it can be.
42 return -reinterpret_cast<uintptr_t>(ptr
) & (alignment
- 1U);
45 // Returns the number of bytes to add to ptr to get to the next multiple of
46 // alignment. If ptr is already aligned returns alignment.
47 template <size_t alignment
>
48 LIBC_INLINE
uintptr_t distance_to_next_aligned(const void *ptr
) {
49 return alignment
- distance_to_align_down
<alignment
>(ptr
);
52 // Returns the same pointer but notifies the compiler that it is aligned.
53 template <size_t alignment
, typename T
> LIBC_INLINE T
*assume_aligned(T
*ptr
) {
54 return reinterpret_cast<T
*>(__builtin_assume_aligned(ptr
, alignment
));
57 // Returns true iff memory regions [p1, p1 + size] and [p2, p2 + size] are
59 LIBC_INLINE
bool is_disjoint(const void *p1
, const void *p2
, size_t size
) {
60 const ptrdiff_t sdiff
=
61 static_cast<const char *>(p1
) - static_cast<const char *>(p2
);
62 // We use bit_cast to make sure that we don't run into accidental integer
63 // promotion. Notably the unary minus operator goes through integer promotion
64 // at the expression level. We assume arithmetic to be two's complement (i.e.,
65 // bit_cast has the same behavior as a regular signed to unsigned cast).
66 static_assert(-1 == ~0, "not 2's complement");
67 const size_t udiff
= cpp::bit_cast
<size_t>(sdiff
);
68 // Integer promition would be caught here.
69 const size_t neg_udiff
= cpp::bit_cast
<size_t>(-sdiff
);
70 // This is expected to compile a conditional move.
71 return sdiff
>= 0 ? size
<= udiff
: size
<= neg_udiff
;
74 #if __has_builtin(__builtin_memcpy_inline)
75 #define LLVM_LIBC_HAS_BUILTIN_MEMCPY_INLINE
78 #if __has_builtin(__builtin_memset_inline)
79 #define LLVM_LIBC_HAS_BUILTIN_MEMSET_INLINE
82 // Performs a constant count copy.
83 template <size_t Size
>
84 LIBC_INLINE
void memcpy_inline(void *__restrict dst
,
85 const void *__restrict src
) {
86 #ifdef LLVM_LIBC_HAS_BUILTIN_MEMCPY_INLINE
87 __builtin_memcpy_inline(dst
, src
, Size
);
89 // In memory functions `memcpy_inline` is instantiated several times with
90 // different value of the Size parameter. This doesn't play well with GCC's
91 // Value Range Analysis that wrongly detects out of bounds accesses. We
92 // disable these warnings for the purpose of this function.
93 #pragma GCC diagnostic push
94 #pragma GCC diagnostic ignored "-Warray-bounds"
95 #pragma GCC diagnostic ignored "-Wstringop-overread"
96 #pragma GCC diagnostic ignored "-Wstringop-overflow"
97 for (size_t i
= 0; i
< Size
; ++i
)
98 static_cast<char *>(dst
)[i
] = static_cast<const char *>(src
)[i
];
99 #pragma GCC diagnostic pop
103 using Ptr
= cpp::byte
*; // Pointer to raw data.
104 using CPtr
= const cpp::byte
*; // Const pointer to raw data.
106 // This type makes sure that we don't accidentally promote an integral type to
107 // another one. It is only constructible from the exact T type.
108 template <typename T
> struct StrictIntegralType
{
109 static_assert(cpp::is_integral_v
<T
>);
111 // Can only be constructed from a T.
112 template <typename U
, cpp::enable_if_t
<cpp::is_same_v
<U
, T
>, bool> = 0>
113 LIBC_INLINE
StrictIntegralType(U value
) : value(value
) {}
115 // Allows using the type in an if statement.
116 LIBC_INLINE
explicit operator bool() const { return value
; }
118 // If type is unsigned (bcmp) we allow bitwise OR operations.
119 LIBC_INLINE StrictIntegralType
120 operator|(const StrictIntegralType
&Rhs
) const {
121 static_assert(!cpp::is_signed_v
<T
>);
122 return value
| Rhs
.value
;
125 // For interation with the C API we allow explicit conversion back to the
127 LIBC_INLINE
explicit operator int() const {
128 // bit_cast makes sure that T and int have the same size.
129 return cpp::bit_cast
<int>(value
);
132 // Helper to get the zero value.
133 LIBC_INLINE
static constexpr StrictIntegralType
zero() { return {T(0)}; }
134 LIBC_INLINE
static constexpr StrictIntegralType
nonzero() { return {T(1)}; }
140 using MemcmpReturnType
= StrictIntegralType
<int32_t>;
141 using BcmpReturnType
= StrictIntegralType
<uint32_t>;
143 // This implements the semantic of 'memcmp' returning a negative value when 'a'
144 // is less than 'b', '0' when 'a' equals 'b' and a positive number otherwise.
145 LIBC_INLINE MemcmpReturnType
cmp_uint32_t(uint32_t a
, uint32_t b
) {
146 // We perform the difference as an int64_t.
147 const int64_t diff
= static_cast<int64_t>(a
) - static_cast<int64_t>(b
);
148 // For the int64_t to int32_t conversion we want the following properties:
149 // - int32_t[31:31] == 1 iff diff < 0
150 // - int32_t[31:0] == 0 iff diff == 0
152 // We also observe that:
153 // - When diff < 0: diff[63:32] == 0xffffffff and diff[31:0] != 0
154 // - When diff > 0: diff[63:32] == 0 and diff[31:0] != 0
155 // - When diff == 0: diff[63:32] == 0 and diff[31:0] == 0
156 // - https://godbolt.org/z/8W7qWP6e5
157 // - This implies that we can only look at diff[32:32] for determining the
158 // sign bit for the returned int32_t.
160 // So, we do the following:
161 // - int32_t[31:31] = diff[32:32]
162 // - int32_t[30:0] = diff[31:0] == 0 ? 0 : non-0.
164 // And, we can achieve the above by the expression below. We could have also
165 // used (diff64 >> 1) | (diff64 & 0x1) but (diff64 & 0xFFFF) is faster than
166 // (diff64 & 0x1). https://godbolt.org/z/j3b569rW1
167 return static_cast<int32_t>((diff
>> 1) | (diff
& 0xFFFF));
170 // Returns a negative value if 'a' is less than 'b' and a positive value
171 // otherwise. This implements the semantic of 'memcmp' when we know that 'a' and
173 LIBC_INLINE MemcmpReturnType
cmp_neq_uint64_t(uint64_t a
, uint64_t b
) {
174 #if defined(LIBC_TARGET_ARCH_IS_X86)
175 // On x86, the best strategy would be to use 'INT32_MAX' and 'INT32_MIN' for
176 // positive and negative value respectively as they are one value apart:
177 // xor eax, eax <- free
178 // cmp rdi, rsi <- serializing
179 // adc eax, 2147483647 <- serializing
181 // Unfortunately we found instances of client code that negate the result of
182 // 'memcmp' to reverse ordering. Because signed integers are not symmetric
183 // (e.g., int8_t ∈ [-128, 127]) returning 'INT_MIN' would break such code as
184 // `-INT_MIN` is not representable as an int32_t.
186 // As a consequence, we use 5 and -5 which is still OK nice in terms of
188 // cmp rdi, rsi <- serializing
189 // mov ecx, -5 <- can be done in parallel
190 // mov eax, 5 <- can be done in parallel
191 // cmovb eax, ecx <- serializing
192 static constexpr int32_t POSITIVE
= 5;
193 static constexpr int32_t NEGATIVE
= -5;
195 // On RISC-V we simply use '1' and '-1' as it leads to branchless code.
196 // On ARMv8, both strategies lead to the same performance.
197 static constexpr int32_t POSITIVE
= 1;
198 static constexpr int32_t NEGATIVE
= -1;
200 static_assert(POSITIVE
> 0);
201 static_assert(NEGATIVE
< 0);
202 return a
< b
? NEGATIVE
: POSITIVE
;
205 // Loads bytes from memory (possibly unaligned) and materializes them as
207 template <typename T
> LIBC_INLINE T
load(CPtr ptr
) {
209 memcpy_inline
<sizeof(T
)>(&out
, ptr
);
213 // Stores a value of type T in memory (possibly unaligned).
214 template <typename T
> LIBC_INLINE
void store(Ptr ptr
, T value
) {
215 memcpy_inline
<sizeof(T
)>(ptr
, &value
);
218 // On architectures that do not allow for unaligned access we perform several
219 // aligned accesses and recombine them through shifts and logicals operations.
220 // For instance, if we know that the pointer is 2-byte aligned we can decompose
221 // a 64-bit operation into four 16-bit operations.
223 // Loads a 'ValueType' by decomposing it into several loads that are assumed to
225 // e.g. load_aligned<uint32_t, uint16_t, uint16_t>(ptr);
226 template <typename ValueType
, typename T
, typename
... TS
>
227 LIBC_INLINE ValueType
load_aligned(CPtr src
) {
228 static_assert(sizeof(ValueType
) >= (sizeof(T
) + ... + sizeof(TS
)));
229 const ValueType value
= load
<T
>(assume_aligned
<sizeof(T
)>(src
));
230 if constexpr (sizeof...(TS
) > 0) {
231 constexpr size_t SHIFT
= sizeof(T
) * 8;
232 const ValueType next
= load_aligned
<ValueType
, TS
...>(src
+ sizeof(T
));
233 if constexpr (Endian::IS_LITTLE
)
234 return value
| (next
<< SHIFT
);
235 else if constexpr (Endian::IS_BIG
)
236 return (value
<< SHIFT
) | next
;
238 static_assert(cpp::always_false
<T
>, "Invalid endianness");
244 // Alias for loading a 'uint32_t'.
245 template <typename T
, typename
... TS
>
246 LIBC_INLINE
auto load32_aligned(CPtr src
, size_t offset
) {
247 static_assert((sizeof(T
) + ... + sizeof(TS
)) == sizeof(uint32_t));
248 return load_aligned
<uint32_t, T
, TS
...>(src
+ offset
);
251 // Alias for loading a 'uint64_t'.
252 template <typename T
, typename
... TS
>
253 LIBC_INLINE
auto load64_aligned(CPtr src
, size_t offset
) {
254 static_assert((sizeof(T
) + ... + sizeof(TS
)) == sizeof(uint64_t));
255 return load_aligned
<uint64_t, T
, TS
...>(src
+ offset
);
258 // Stores a 'ValueType' by decomposing it into several stores that are assumed
260 // e.g. store_aligned<uint32_t, uint16_t, uint16_t>(value, ptr);
261 template <typename ValueType
, typename T
, typename
... TS
>
262 LIBC_INLINE
void store_aligned(ValueType value
, Ptr dst
) {
263 static_assert(sizeof(ValueType
) >= (sizeof(T
) + ... + sizeof(TS
)));
264 constexpr size_t SHIFT
= sizeof(T
) * 8;
265 if constexpr (Endian::IS_LITTLE
) {
266 store
<T
>(assume_aligned
<sizeof(T
)>(dst
), value
& ~T(0));
267 if constexpr (sizeof...(TS
) > 0)
268 store_aligned
<ValueType
, TS
...>(value
>> SHIFT
, dst
+ sizeof(T
));
269 } else if constexpr (Endian::IS_BIG
) {
270 constexpr size_t OFFSET
= (0 + ... + sizeof(TS
));
271 store
<T
>(assume_aligned
<sizeof(T
)>(dst
+ OFFSET
), value
& ~T(0));
272 if constexpr (sizeof...(TS
) > 0)
273 store_aligned
<ValueType
, TS
...>(value
>> SHIFT
, dst
);
275 static_assert(cpp::always_false
<T
>, "Invalid endianness");
279 // Alias for storing a 'uint32_t'.
280 template <typename T
, typename
... TS
>
281 LIBC_INLINE
void store32_aligned(uint32_t value
, Ptr dst
, size_t offset
) {
282 static_assert((sizeof(T
) + ... + sizeof(TS
)) == sizeof(uint32_t));
283 store_aligned
<uint32_t, T
, TS
...>(value
, dst
+ offset
);
286 // Alias for storing a 'uint64_t'.
287 template <typename T
, typename
... TS
>
288 LIBC_INLINE
void store64_aligned(uint64_t value
, Ptr dst
, size_t offset
) {
289 static_assert((sizeof(T
) + ... + sizeof(TS
)) == sizeof(uint64_t));
290 store_aligned
<uint64_t, T
, TS
...>(value
, dst
+ offset
);
293 // Advances the pointers p1 and p2 by offset bytes and decrease count by the
295 template <typename T1
, typename T2
>
296 LIBC_INLINE
void adjust(ptrdiff_t offset
, T1
*__restrict
&p1
,
297 T2
*__restrict
&p2
, size_t &count
) {
303 // Advances p1 and p2 so p1 gets aligned to the next SIZE bytes boundary
304 // and decrease count by the same amount.
305 // We make sure the compiler knows about the adjusted pointer alignment.
306 template <size_t SIZE
, typename T1
, typename T2
>
307 void align_p1_to_next_boundary(T1
*__restrict
&p1
, T2
*__restrict
&p2
,
309 adjust(distance_to_next_aligned
<SIZE
>(p1
), p1
, p2
, count
);
310 p1
= assume_aligned
<SIZE
>(p1
);
313 // Same as align_p1_to_next_boundary above but with a single pointer instead.
314 template <size_t SIZE
, typename T
>
315 LIBC_INLINE
void align_to_next_boundary(T
*&p1
, size_t &count
) {
317 align_p1_to_next_boundary
<SIZE
>(p1
, dummy
, count
);
320 // An enum class that discriminates between the first and second pointer.
321 enum class Arg
{ P1
, P2
, Dst
= P1
, Src
= P2
};
323 // Same as align_p1_to_next_boundary but allows for aligning p2 instead of p1.
324 // Precondition: &p1 != &p2
325 template <size_t SIZE
, Arg AlignOn
, typename T1
, typename T2
>
326 LIBC_INLINE
void align_to_next_boundary(T1
*__restrict
&p1
, T2
*__restrict
&p2
,
328 if constexpr (AlignOn
== Arg::P1
)
329 align_p1_to_next_boundary
<SIZE
>(p1
, p2
, count
);
330 else if constexpr (AlignOn
== Arg::P2
)
331 align_p1_to_next_boundary
<SIZE
>(p2
, p1
, count
); // swapping p1 and p2.
333 static_assert(cpp::always_false
<T1
>,
334 "AlignOn must be either Arg::P1 or Arg::P2");
337 template <size_t SIZE
> struct AlignHelper
{
338 LIBC_INLINE
AlignHelper(CPtr ptr
)
339 : offset(distance_to_next_aligned
<SIZE
>(ptr
)) {}
341 LIBC_INLINE
bool not_aligned() const { return offset
!= SIZE
; }
345 LIBC_INLINE
void prefetch_for_write(CPtr dst
) {
346 __builtin_prefetch(dst
, /*write*/ 1, /*max locality*/ 3);
349 LIBC_INLINE
void prefetch_to_local_cache(CPtr dst
) {
350 __builtin_prefetch(dst
, /*read*/ 0, /*max locality*/ 3);
353 } // namespace LIBC_NAMESPACE_DECL
355 #endif // LLVM_LIBC_SRC_STRING_MEMORY_UTILS_UTILS_H