[RISCV] Rename a lambda to have plural nouns to reflect that it contains a loop. NFC
[llvm-project.git] / llvm / examples / Kaleidoscope / Chapter7 / toy.cpp
blob68208c4f3394ab3f55da59fff63ccf2b89834242
1 #include "../include/KaleidoscopeJIT.h"
2 #include "llvm/ADT/APFloat.h"
3 #include "llvm/ADT/STLExtras.h"
4 #include "llvm/IR/BasicBlock.h"
5 #include "llvm/IR/Constants.h"
6 #include "llvm/IR/DerivedTypes.h"
7 #include "llvm/IR/Function.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/Instructions.h"
10 #include "llvm/IR/LLVMContext.h"
11 #include "llvm/IR/Module.h"
12 #include "llvm/IR/PassManager.h"
13 #include "llvm/IR/Type.h"
14 #include "llvm/IR/Verifier.h"
15 #include "llvm/Passes/PassBuilder.h"
16 #include "llvm/Passes/StandardInstrumentations.h"
17 #include "llvm/Support/TargetSelect.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Transforms/InstCombine/InstCombine.h"
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/Transforms/Scalar/GVN.h"
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
24 #include "llvm/Transforms/Utils.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cctype>
28 #include <cstdint>
29 #include <cstdio>
30 #include <cstdlib>
31 #include <map>
32 #include <memory>
33 #include <string>
34 #include <utility>
35 #include <vector>
37 using namespace llvm;
38 using namespace llvm::orc;
40 //===----------------------------------------------------------------------===//
41 // Lexer
42 //===----------------------------------------------------------------------===//
44 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
45 // of these for known things.
46 enum Token {
47 tok_eof = -1,
49 // commands
50 tok_def = -2,
51 tok_extern = -3,
53 // primary
54 tok_identifier = -4,
55 tok_number = -5,
57 // control
58 tok_if = -6,
59 tok_then = -7,
60 tok_else = -8,
61 tok_for = -9,
62 tok_in = -10,
64 // operators
65 tok_binary = -11,
66 tok_unary = -12,
68 // var definition
69 tok_var = -13
72 static std::string IdentifierStr; // Filled in if tok_identifier
73 static double NumVal; // Filled in if tok_number
75 /// gettok - Return the next token from standard input.
76 static int gettok() {
77 static int LastChar = ' ';
79 // Skip any whitespace.
80 while (isspace(LastChar))
81 LastChar = getchar();
83 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
84 IdentifierStr = LastChar;
85 while (isalnum((LastChar = getchar())))
86 IdentifierStr += LastChar;
88 if (IdentifierStr == "def")
89 return tok_def;
90 if (IdentifierStr == "extern")
91 return tok_extern;
92 if (IdentifierStr == "if")
93 return tok_if;
94 if (IdentifierStr == "then")
95 return tok_then;
96 if (IdentifierStr == "else")
97 return tok_else;
98 if (IdentifierStr == "for")
99 return tok_for;
100 if (IdentifierStr == "in")
101 return tok_in;
102 if (IdentifierStr == "binary")
103 return tok_binary;
104 if (IdentifierStr == "unary")
105 return tok_unary;
106 if (IdentifierStr == "var")
107 return tok_var;
108 return tok_identifier;
111 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
112 std::string NumStr;
113 do {
114 NumStr += LastChar;
115 LastChar = getchar();
116 } while (isdigit(LastChar) || LastChar == '.');
118 NumVal = strtod(NumStr.c_str(), nullptr);
119 return tok_number;
122 if (LastChar == '#') {
123 // Comment until end of line.
125 LastChar = getchar();
126 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
128 if (LastChar != EOF)
129 return gettok();
132 // Check for end of file. Don't eat the EOF.
133 if (LastChar == EOF)
134 return tok_eof;
136 // Otherwise, just return the character as its ascii value.
137 int ThisChar = LastChar;
138 LastChar = getchar();
139 return ThisChar;
142 //===----------------------------------------------------------------------===//
143 // Abstract Syntax Tree (aka Parse Tree)
144 //===----------------------------------------------------------------------===//
146 namespace {
148 /// ExprAST - Base class for all expression nodes.
149 class ExprAST {
150 public:
151 virtual ~ExprAST() = default;
153 virtual Value *codegen() = 0;
156 /// NumberExprAST - Expression class for numeric literals like "1.0".
157 class NumberExprAST : public ExprAST {
158 double Val;
160 public:
161 NumberExprAST(double Val) : Val(Val) {}
163 Value *codegen() override;
166 /// VariableExprAST - Expression class for referencing a variable, like "a".
167 class VariableExprAST : public ExprAST {
168 std::string Name;
170 public:
171 VariableExprAST(const std::string &Name) : Name(Name) {}
173 Value *codegen() override;
174 const std::string &getName() const { return Name; }
177 /// UnaryExprAST - Expression class for a unary operator.
178 class UnaryExprAST : public ExprAST {
179 char Opcode;
180 std::unique_ptr<ExprAST> Operand;
182 public:
183 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
184 : Opcode(Opcode), Operand(std::move(Operand)) {}
186 Value *codegen() override;
189 /// BinaryExprAST - Expression class for a binary operator.
190 class BinaryExprAST : public ExprAST {
191 char Op;
192 std::unique_ptr<ExprAST> LHS, RHS;
194 public:
195 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
196 std::unique_ptr<ExprAST> RHS)
197 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
199 Value *codegen() override;
202 /// CallExprAST - Expression class for function calls.
203 class CallExprAST : public ExprAST {
204 std::string Callee;
205 std::vector<std::unique_ptr<ExprAST>> Args;
207 public:
208 CallExprAST(const std::string &Callee,
209 std::vector<std::unique_ptr<ExprAST>> Args)
210 : Callee(Callee), Args(std::move(Args)) {}
212 Value *codegen() override;
215 /// IfExprAST - Expression class for if/then/else.
216 class IfExprAST : public ExprAST {
217 std::unique_ptr<ExprAST> Cond, Then, Else;
219 public:
220 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
221 std::unique_ptr<ExprAST> Else)
222 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
224 Value *codegen() override;
227 /// ForExprAST - Expression class for for/in.
228 class ForExprAST : public ExprAST {
229 std::string VarName;
230 std::unique_ptr<ExprAST> Start, End, Step, Body;
232 public:
233 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
234 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
235 std::unique_ptr<ExprAST> Body)
236 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
237 Step(std::move(Step)), Body(std::move(Body)) {}
239 Value *codegen() override;
242 /// VarExprAST - Expression class for var/in
243 class VarExprAST : public ExprAST {
244 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
245 std::unique_ptr<ExprAST> Body;
247 public:
248 VarExprAST(
249 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
250 std::unique_ptr<ExprAST> Body)
251 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
253 Value *codegen() override;
256 /// PrototypeAST - This class represents the "prototype" for a function,
257 /// which captures its name, and its argument names (thus implicitly the number
258 /// of arguments the function takes), as well as if it is an operator.
259 class PrototypeAST {
260 std::string Name;
261 std::vector<std::string> Args;
262 bool IsOperator;
263 unsigned Precedence; // Precedence if a binary op.
265 public:
266 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
267 bool IsOperator = false, unsigned Prec = 0)
268 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
269 Precedence(Prec) {}
271 Function *codegen();
272 const std::string &getName() const { return Name; }
274 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
275 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
277 char getOperatorName() const {
278 assert(isUnaryOp() || isBinaryOp());
279 return Name[Name.size() - 1];
282 unsigned getBinaryPrecedence() const { return Precedence; }
285 /// FunctionAST - This class represents a function definition itself.
286 class FunctionAST {
287 std::unique_ptr<PrototypeAST> Proto;
288 std::unique_ptr<ExprAST> Body;
290 public:
291 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
292 std::unique_ptr<ExprAST> Body)
293 : Proto(std::move(Proto)), Body(std::move(Body)) {}
295 Function *codegen();
298 } // end anonymous namespace
300 //===----------------------------------------------------------------------===//
301 // Parser
302 //===----------------------------------------------------------------------===//
304 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
305 /// token the parser is looking at. getNextToken reads another token from the
306 /// lexer and updates CurTok with its results.
307 static int CurTok;
308 static int getNextToken() { return CurTok = gettok(); }
310 /// BinopPrecedence - This holds the precedence for each binary operator that is
311 /// defined.
312 static std::map<char, int> BinopPrecedence;
314 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
315 static int GetTokPrecedence() {
316 if (!isascii(CurTok))
317 return -1;
319 // Make sure it's a declared binop.
320 int TokPrec = BinopPrecedence[CurTok];
321 if (TokPrec <= 0)
322 return -1;
323 return TokPrec;
326 /// LogError* - These are little helper functions for error handling.
327 std::unique_ptr<ExprAST> LogError(const char *Str) {
328 fprintf(stderr, "Error: %s\n", Str);
329 return nullptr;
332 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
333 LogError(Str);
334 return nullptr;
337 static std::unique_ptr<ExprAST> ParseExpression();
339 /// numberexpr ::= number
340 static std::unique_ptr<ExprAST> ParseNumberExpr() {
341 auto Result = std::make_unique<NumberExprAST>(NumVal);
342 getNextToken(); // consume the number
343 return std::move(Result);
346 /// parenexpr ::= '(' expression ')'
347 static std::unique_ptr<ExprAST> ParseParenExpr() {
348 getNextToken(); // eat (.
349 auto V = ParseExpression();
350 if (!V)
351 return nullptr;
353 if (CurTok != ')')
354 return LogError("expected ')'");
355 getNextToken(); // eat ).
356 return V;
359 /// identifierexpr
360 /// ::= identifier
361 /// ::= identifier '(' expression* ')'
362 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
363 std::string IdName = IdentifierStr;
365 getNextToken(); // eat identifier.
367 if (CurTok != '(') // Simple variable ref.
368 return std::make_unique<VariableExprAST>(IdName);
370 // Call.
371 getNextToken(); // eat (
372 std::vector<std::unique_ptr<ExprAST>> Args;
373 if (CurTok != ')') {
374 while (true) {
375 if (auto Arg = ParseExpression())
376 Args.push_back(std::move(Arg));
377 else
378 return nullptr;
380 if (CurTok == ')')
381 break;
383 if (CurTok != ',')
384 return LogError("Expected ')' or ',' in argument list");
385 getNextToken();
389 // Eat the ')'.
390 getNextToken();
392 return std::make_unique<CallExprAST>(IdName, std::move(Args));
395 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
396 static std::unique_ptr<ExprAST> ParseIfExpr() {
397 getNextToken(); // eat the if.
399 // condition.
400 auto Cond = ParseExpression();
401 if (!Cond)
402 return nullptr;
404 if (CurTok != tok_then)
405 return LogError("expected then");
406 getNextToken(); // eat the then
408 auto Then = ParseExpression();
409 if (!Then)
410 return nullptr;
412 if (CurTok != tok_else)
413 return LogError("expected else");
415 getNextToken();
417 auto Else = ParseExpression();
418 if (!Else)
419 return nullptr;
421 return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
422 std::move(Else));
425 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
426 static std::unique_ptr<ExprAST> ParseForExpr() {
427 getNextToken(); // eat the for.
429 if (CurTok != tok_identifier)
430 return LogError("expected identifier after for");
432 std::string IdName = IdentifierStr;
433 getNextToken(); // eat identifier.
435 if (CurTok != '=')
436 return LogError("expected '=' after for");
437 getNextToken(); // eat '='.
439 auto Start = ParseExpression();
440 if (!Start)
441 return nullptr;
442 if (CurTok != ',')
443 return LogError("expected ',' after for start value");
444 getNextToken();
446 auto End = ParseExpression();
447 if (!End)
448 return nullptr;
450 // The step value is optional.
451 std::unique_ptr<ExprAST> Step;
452 if (CurTok == ',') {
453 getNextToken();
454 Step = ParseExpression();
455 if (!Step)
456 return nullptr;
459 if (CurTok != tok_in)
460 return LogError("expected 'in' after for");
461 getNextToken(); // eat 'in'.
463 auto Body = ParseExpression();
464 if (!Body)
465 return nullptr;
467 return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
468 std::move(Step), std::move(Body));
471 /// varexpr ::= 'var' identifier ('=' expression)?
472 // (',' identifier ('=' expression)?)* 'in' expression
473 static std::unique_ptr<ExprAST> ParseVarExpr() {
474 getNextToken(); // eat the var.
476 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
478 // At least one variable name is required.
479 if (CurTok != tok_identifier)
480 return LogError("expected identifier after var");
482 while (true) {
483 std::string Name = IdentifierStr;
484 getNextToken(); // eat identifier.
486 // Read the optional initializer.
487 std::unique_ptr<ExprAST> Init = nullptr;
488 if (CurTok == '=') {
489 getNextToken(); // eat the '='.
491 Init = ParseExpression();
492 if (!Init)
493 return nullptr;
496 VarNames.push_back(std::make_pair(Name, std::move(Init)));
498 // End of var list, exit loop.
499 if (CurTok != ',')
500 break;
501 getNextToken(); // eat the ','.
503 if (CurTok != tok_identifier)
504 return LogError("expected identifier list after var");
507 // At this point, we have to have 'in'.
508 if (CurTok != tok_in)
509 return LogError("expected 'in' keyword after 'var'");
510 getNextToken(); // eat 'in'.
512 auto Body = ParseExpression();
513 if (!Body)
514 return nullptr;
516 return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
519 /// primary
520 /// ::= identifierexpr
521 /// ::= numberexpr
522 /// ::= parenexpr
523 /// ::= ifexpr
524 /// ::= forexpr
525 /// ::= varexpr
526 static std::unique_ptr<ExprAST> ParsePrimary() {
527 switch (CurTok) {
528 default:
529 return LogError("unknown token when expecting an expression");
530 case tok_identifier:
531 return ParseIdentifierExpr();
532 case tok_number:
533 return ParseNumberExpr();
534 case '(':
535 return ParseParenExpr();
536 case tok_if:
537 return ParseIfExpr();
538 case tok_for:
539 return ParseForExpr();
540 case tok_var:
541 return ParseVarExpr();
545 /// unary
546 /// ::= primary
547 /// ::= '!' unary
548 static std::unique_ptr<ExprAST> ParseUnary() {
549 // If the current token is not an operator, it must be a primary expr.
550 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
551 return ParsePrimary();
553 // If this is a unary operator, read it.
554 int Opc = CurTok;
555 getNextToken();
556 if (auto Operand = ParseUnary())
557 return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
558 return nullptr;
561 /// binoprhs
562 /// ::= ('+' unary)*
563 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
564 std::unique_ptr<ExprAST> LHS) {
565 // If this is a binop, find its precedence.
566 while (true) {
567 int TokPrec = GetTokPrecedence();
569 // If this is a binop that binds at least as tightly as the current binop,
570 // consume it, otherwise we are done.
571 if (TokPrec < ExprPrec)
572 return LHS;
574 // Okay, we know this is a binop.
575 int BinOp = CurTok;
576 getNextToken(); // eat binop
578 // Parse the unary expression after the binary operator.
579 auto RHS = ParseUnary();
580 if (!RHS)
581 return nullptr;
583 // If BinOp binds less tightly with RHS than the operator after RHS, let
584 // the pending operator take RHS as its LHS.
585 int NextPrec = GetTokPrecedence();
586 if (TokPrec < NextPrec) {
587 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
588 if (!RHS)
589 return nullptr;
592 // Merge LHS/RHS.
593 LHS =
594 std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
598 /// expression
599 /// ::= unary binoprhs
601 static std::unique_ptr<ExprAST> ParseExpression() {
602 auto LHS = ParseUnary();
603 if (!LHS)
604 return nullptr;
606 return ParseBinOpRHS(0, std::move(LHS));
609 /// prototype
610 /// ::= id '(' id* ')'
611 /// ::= binary LETTER number? (id, id)
612 /// ::= unary LETTER (id)
613 static std::unique_ptr<PrototypeAST> ParsePrototype() {
614 std::string FnName;
616 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
617 unsigned BinaryPrecedence = 30;
619 switch (CurTok) {
620 default:
621 return LogErrorP("Expected function name in prototype");
622 case tok_identifier:
623 FnName = IdentifierStr;
624 Kind = 0;
625 getNextToken();
626 break;
627 case tok_unary:
628 getNextToken();
629 if (!isascii(CurTok))
630 return LogErrorP("Expected unary operator");
631 FnName = "unary";
632 FnName += (char)CurTok;
633 Kind = 1;
634 getNextToken();
635 break;
636 case tok_binary:
637 getNextToken();
638 if (!isascii(CurTok))
639 return LogErrorP("Expected binary operator");
640 FnName = "binary";
641 FnName += (char)CurTok;
642 Kind = 2;
643 getNextToken();
645 // Read the precedence if present.
646 if (CurTok == tok_number) {
647 if (NumVal < 1 || NumVal > 100)
648 return LogErrorP("Invalid precedence: must be 1..100");
649 BinaryPrecedence = (unsigned)NumVal;
650 getNextToken();
652 break;
655 if (CurTok != '(')
656 return LogErrorP("Expected '(' in prototype");
658 std::vector<std::string> ArgNames;
659 while (getNextToken() == tok_identifier)
660 ArgNames.push_back(IdentifierStr);
661 if (CurTok != ')')
662 return LogErrorP("Expected ')' in prototype");
664 // success.
665 getNextToken(); // eat ')'.
667 // Verify right number of names for operator.
668 if (Kind && ArgNames.size() != Kind)
669 return LogErrorP("Invalid number of operands for operator");
671 return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
672 BinaryPrecedence);
675 /// definition ::= 'def' prototype expression
676 static std::unique_ptr<FunctionAST> ParseDefinition() {
677 getNextToken(); // eat def.
678 auto Proto = ParsePrototype();
679 if (!Proto)
680 return nullptr;
682 if (auto E = ParseExpression())
683 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
684 return nullptr;
687 /// toplevelexpr ::= expression
688 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
689 if (auto E = ParseExpression()) {
690 // Make an anonymous proto.
691 auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
692 std::vector<std::string>());
693 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
695 return nullptr;
698 /// external ::= 'extern' prototype
699 static std::unique_ptr<PrototypeAST> ParseExtern() {
700 getNextToken(); // eat extern.
701 return ParsePrototype();
704 //===----------------------------------------------------------------------===//
705 // Code Generation
706 //===----------------------------------------------------------------------===//
708 static std::unique_ptr<LLVMContext> TheContext;
709 static std::unique_ptr<Module> TheModule;
710 static std::unique_ptr<IRBuilder<>> Builder;
711 static std::map<std::string, AllocaInst *> NamedValues;
712 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
713 static std::unique_ptr<FunctionPassManager> TheFPM;
714 static std::unique_ptr<LoopAnalysisManager> TheLAM;
715 static std::unique_ptr<FunctionAnalysisManager> TheFAM;
716 static std::unique_ptr<CGSCCAnalysisManager> TheCGAM;
717 static std::unique_ptr<ModuleAnalysisManager> TheMAM;
718 static std::unique_ptr<PassInstrumentationCallbacks> ThePIC;
719 static std::unique_ptr<StandardInstrumentations> TheSI;
720 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
721 static ExitOnError ExitOnErr;
723 Value *LogErrorV(const char *Str) {
724 LogError(Str);
725 return nullptr;
728 Function *getFunction(std::string Name) {
729 // First, see if the function has already been added to the current module.
730 if (auto *F = TheModule->getFunction(Name))
731 return F;
733 // If not, check whether we can codegen the declaration from some existing
734 // prototype.
735 auto FI = FunctionProtos.find(Name);
736 if (FI != FunctionProtos.end())
737 return FI->second->codegen();
739 // If no existing prototype exists, return null.
740 return nullptr;
743 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
744 /// the function. This is used for mutable variables etc.
745 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
746 StringRef VarName) {
747 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
748 TheFunction->getEntryBlock().begin());
749 return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
752 Value *NumberExprAST::codegen() {
753 return ConstantFP::get(*TheContext, APFloat(Val));
756 Value *VariableExprAST::codegen() {
757 // Look this variable up in the function.
758 AllocaInst *A = NamedValues[Name];
759 if (!A)
760 return LogErrorV("Unknown variable name");
762 // Load the value.
763 return Builder->CreateLoad(A->getAllocatedType(), A, Name.c_str());
766 Value *UnaryExprAST::codegen() {
767 Value *OperandV = Operand->codegen();
768 if (!OperandV)
769 return nullptr;
771 Function *F = getFunction(std::string("unary") + Opcode);
772 if (!F)
773 return LogErrorV("Unknown unary operator");
775 return Builder->CreateCall(F, OperandV, "unop");
778 Value *BinaryExprAST::codegen() {
779 // Special case '=' because we don't want to emit the LHS as an expression.
780 if (Op == '=') {
781 // Assignment requires the LHS to be an identifier.
782 // This assume we're building without RTTI because LLVM builds that way by
783 // default. If you build LLVM with RTTI this can be changed to a
784 // dynamic_cast for automatic error checking.
785 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
786 if (!LHSE)
787 return LogErrorV("destination of '=' must be a variable");
788 // Codegen the RHS.
789 Value *Val = RHS->codegen();
790 if (!Val)
791 return nullptr;
793 // Look up the name.
794 Value *Variable = NamedValues[LHSE->getName()];
795 if (!Variable)
796 return LogErrorV("Unknown variable name");
798 Builder->CreateStore(Val, Variable);
799 return Val;
802 Value *L = LHS->codegen();
803 Value *R = RHS->codegen();
804 if (!L || !R)
805 return nullptr;
807 switch (Op) {
808 case '+':
809 return Builder->CreateFAdd(L, R, "addtmp");
810 case '-':
811 return Builder->CreateFSub(L, R, "subtmp");
812 case '*':
813 return Builder->CreateFMul(L, R, "multmp");
814 case '<':
815 L = Builder->CreateFCmpULT(L, R, "cmptmp");
816 // Convert bool 0/1 to double 0.0 or 1.0
817 return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
818 default:
819 break;
822 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
823 // a call to it.
824 Function *F = getFunction(std::string("binary") + Op);
825 assert(F && "binary operator not found!");
827 Value *Ops[] = {L, R};
828 return Builder->CreateCall(F, Ops, "binop");
831 Value *CallExprAST::codegen() {
832 // Look up the name in the global module table.
833 Function *CalleeF = getFunction(Callee);
834 if (!CalleeF)
835 return LogErrorV("Unknown function referenced");
837 // If argument mismatch error.
838 if (CalleeF->arg_size() != Args.size())
839 return LogErrorV("Incorrect # arguments passed");
841 std::vector<Value *> ArgsV;
842 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
843 ArgsV.push_back(Args[i]->codegen());
844 if (!ArgsV.back())
845 return nullptr;
848 return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
851 Value *IfExprAST::codegen() {
852 Value *CondV = Cond->codegen();
853 if (!CondV)
854 return nullptr;
856 // Convert condition to a bool by comparing non-equal to 0.0.
857 CondV = Builder->CreateFCmpONE(
858 CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
860 Function *TheFunction = Builder->GetInsertBlock()->getParent();
862 // Create blocks for the then and else cases. Insert the 'then' block at the
863 // end of the function.
864 BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
865 BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
866 BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
868 Builder->CreateCondBr(CondV, ThenBB, ElseBB);
870 // Emit then value.
871 Builder->SetInsertPoint(ThenBB);
873 Value *ThenV = Then->codegen();
874 if (!ThenV)
875 return nullptr;
877 Builder->CreateBr(MergeBB);
878 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
879 ThenBB = Builder->GetInsertBlock();
881 // Emit else block.
882 TheFunction->insert(TheFunction->end(), ElseBB);
883 Builder->SetInsertPoint(ElseBB);
885 Value *ElseV = Else->codegen();
886 if (!ElseV)
887 return nullptr;
889 Builder->CreateBr(MergeBB);
890 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
891 ElseBB = Builder->GetInsertBlock();
893 // Emit merge block.
894 TheFunction->insert(TheFunction->end(), MergeBB);
895 Builder->SetInsertPoint(MergeBB);
896 PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
898 PN->addIncoming(ThenV, ThenBB);
899 PN->addIncoming(ElseV, ElseBB);
900 return PN;
903 // Output for-loop as:
904 // var = alloca double
905 // ...
906 // start = startexpr
907 // store start -> var
908 // goto loop
909 // loop:
910 // ...
911 // bodyexpr
912 // ...
913 // loopend:
914 // step = stepexpr
915 // endcond = endexpr
917 // curvar = load var
918 // nextvar = curvar + step
919 // store nextvar -> var
920 // br endcond, loop, endloop
921 // outloop:
922 Value *ForExprAST::codegen() {
923 Function *TheFunction = Builder->GetInsertBlock()->getParent();
925 // Create an alloca for the variable in the entry block.
926 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
928 // Emit the start code first, without 'variable' in scope.
929 Value *StartVal = Start->codegen();
930 if (!StartVal)
931 return nullptr;
933 // Store the value into the alloca.
934 Builder->CreateStore(StartVal, Alloca);
936 // Make the new basic block for the loop header, inserting after current
937 // block.
938 BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
940 // Insert an explicit fall through from the current block to the LoopBB.
941 Builder->CreateBr(LoopBB);
943 // Start insertion in LoopBB.
944 Builder->SetInsertPoint(LoopBB);
946 // Within the loop, the variable is defined equal to the PHI node. If it
947 // shadows an existing variable, we have to restore it, so save it now.
948 AllocaInst *OldVal = NamedValues[VarName];
949 NamedValues[VarName] = Alloca;
951 // Emit the body of the loop. This, like any other expr, can change the
952 // current BB. Note that we ignore the value computed by the body, but don't
953 // allow an error.
954 if (!Body->codegen())
955 return nullptr;
957 // Emit the step value.
958 Value *StepVal = nullptr;
959 if (Step) {
960 StepVal = Step->codegen();
961 if (!StepVal)
962 return nullptr;
963 } else {
964 // If not specified, use 1.0.
965 StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
968 // Compute the end condition.
969 Value *EndCond = End->codegen();
970 if (!EndCond)
971 return nullptr;
973 // Reload, increment, and restore the alloca. This handles the case where
974 // the body of the loop mutates the variable.
975 Value *CurVar =
976 Builder->CreateLoad(Alloca->getAllocatedType(), Alloca, VarName.c_str());
977 Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
978 Builder->CreateStore(NextVar, Alloca);
980 // Convert condition to a bool by comparing non-equal to 0.0.
981 EndCond = Builder->CreateFCmpONE(
982 EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
984 // Create the "after loop" block and insert it.
985 BasicBlock *AfterBB =
986 BasicBlock::Create(*TheContext, "afterloop", TheFunction);
988 // Insert the conditional branch into the end of LoopEndBB.
989 Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
991 // Any new code will be inserted in AfterBB.
992 Builder->SetInsertPoint(AfterBB);
994 // Restore the unshadowed variable.
995 if (OldVal)
996 NamedValues[VarName] = OldVal;
997 else
998 NamedValues.erase(VarName);
1000 // for expr always returns 0.0.
1001 return Constant::getNullValue(Type::getDoubleTy(*TheContext));
1004 Value *VarExprAST::codegen() {
1005 std::vector<AllocaInst *> OldBindings;
1007 Function *TheFunction = Builder->GetInsertBlock()->getParent();
1009 // Register all variables and emit their initializer.
1010 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
1011 const std::string &VarName = VarNames[i].first;
1012 ExprAST *Init = VarNames[i].second.get();
1014 // Emit the initializer before adding the variable to scope, this prevents
1015 // the initializer from referencing the variable itself, and permits stuff
1016 // like this:
1017 // var a = 1 in
1018 // var a = a in ... # refers to outer 'a'.
1019 Value *InitVal;
1020 if (Init) {
1021 InitVal = Init->codegen();
1022 if (!InitVal)
1023 return nullptr;
1024 } else { // If not specified, use 0.0.
1025 InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
1028 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1029 Builder->CreateStore(InitVal, Alloca);
1031 // Remember the old variable binding so that we can restore the binding when
1032 // we unrecurse.
1033 OldBindings.push_back(NamedValues[VarName]);
1035 // Remember this binding.
1036 NamedValues[VarName] = Alloca;
1039 // Codegen the body, now that all vars are in scope.
1040 Value *BodyVal = Body->codegen();
1041 if (!BodyVal)
1042 return nullptr;
1044 // Pop all our variables from scope.
1045 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1046 NamedValues[VarNames[i].first] = OldBindings[i];
1048 // Return the body computation.
1049 return BodyVal;
1052 Function *PrototypeAST::codegen() {
1053 // Make the function type: double(double,double) etc.
1054 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
1055 FunctionType *FT =
1056 FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
1058 Function *F =
1059 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1061 // Set names for all arguments.
1062 unsigned Idx = 0;
1063 for (auto &Arg : F->args())
1064 Arg.setName(Args[Idx++]);
1066 return F;
1069 Function *FunctionAST::codegen() {
1070 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1071 // reference to it for use below.
1072 auto &P = *Proto;
1073 FunctionProtos[Proto->getName()] = std::move(Proto);
1074 Function *TheFunction = getFunction(P.getName());
1075 if (!TheFunction)
1076 return nullptr;
1078 // If this is an operator, install it.
1079 if (P.isBinaryOp())
1080 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1082 // Create a new basic block to start insertion into.
1083 BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
1084 Builder->SetInsertPoint(BB);
1086 // Record the function arguments in the NamedValues map.
1087 NamedValues.clear();
1088 for (auto &Arg : TheFunction->args()) {
1089 // Create an alloca for this variable.
1090 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1092 // Store the initial value into the alloca.
1093 Builder->CreateStore(&Arg, Alloca);
1095 // Add arguments to variable symbol table.
1096 NamedValues[std::string(Arg.getName())] = Alloca;
1099 if (Value *RetVal = Body->codegen()) {
1100 // Finish off the function.
1101 Builder->CreateRet(RetVal);
1103 // Validate the generated code, checking for consistency.
1104 verifyFunction(*TheFunction);
1106 // Run the optimizer on the function.
1107 TheFPM->run(*TheFunction, *TheFAM);
1109 return TheFunction;
1112 // Error reading body, remove function.
1113 TheFunction->eraseFromParent();
1115 if (P.isBinaryOp())
1116 BinopPrecedence.erase(P.getOperatorName());
1117 return nullptr;
1120 //===----------------------------------------------------------------------===//
1121 // Top-Level parsing and JIT Driver
1122 //===----------------------------------------------------------------------===//
1124 static void InitializeModuleAndManagers() {
1125 // Open a new context and module.
1126 TheContext = std::make_unique<LLVMContext>();
1127 TheModule = std::make_unique<Module>("KaleidoscopeJIT", *TheContext);
1128 TheModule->setDataLayout(TheJIT->getDataLayout());
1130 // Create a new builder for the module.
1131 Builder = std::make_unique<IRBuilder<>>(*TheContext);
1133 // Create new pass and analysis managers.
1134 TheFPM = std::make_unique<FunctionPassManager>();
1135 TheLAM = std::make_unique<LoopAnalysisManager>();
1136 TheFAM = std::make_unique<FunctionAnalysisManager>();
1137 TheCGAM = std::make_unique<CGSCCAnalysisManager>();
1138 TheMAM = std::make_unique<ModuleAnalysisManager>();
1139 ThePIC = std::make_unique<PassInstrumentationCallbacks>();
1140 TheSI = std::make_unique<StandardInstrumentations>(*TheContext,
1141 /*DebugLogging*/ true);
1142 TheSI->registerCallbacks(*ThePIC, TheMAM.get());
1144 // Add transform passes.
1145 // Do simple "peephole" optimizations and bit-twiddling optzns.
1146 TheFPM->addPass(InstCombinePass());
1147 // Reassociate expressions.
1148 TheFPM->addPass(ReassociatePass());
1149 // Eliminate Common SubExpressions.
1150 TheFPM->addPass(GVNPass());
1151 // Simplify the control flow graph (deleting unreachable blocks, etc).
1152 TheFPM->addPass(SimplifyCFGPass());
1154 // Register analysis passes used in these transform passes.
1155 PassBuilder PB;
1156 PB.registerModuleAnalyses(*TheMAM);
1157 PB.registerFunctionAnalyses(*TheFAM);
1158 PB.crossRegisterProxies(*TheLAM, *TheFAM, *TheCGAM, *TheMAM);
1161 static void HandleDefinition() {
1162 if (auto FnAST = ParseDefinition()) {
1163 if (auto *FnIR = FnAST->codegen()) {
1164 fprintf(stderr, "Read function definition:");
1165 FnIR->print(errs());
1166 fprintf(stderr, "\n");
1167 ExitOnErr(TheJIT->addModule(
1168 ThreadSafeModule(std::move(TheModule), std::move(TheContext))));
1169 InitializeModuleAndManagers();
1171 } else {
1172 // Skip token for error recovery.
1173 getNextToken();
1177 static void HandleExtern() {
1178 if (auto ProtoAST = ParseExtern()) {
1179 if (auto *FnIR = ProtoAST->codegen()) {
1180 fprintf(stderr, "Read extern: ");
1181 FnIR->print(errs());
1182 fprintf(stderr, "\n");
1183 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1185 } else {
1186 // Skip token for error recovery.
1187 getNextToken();
1191 static void HandleTopLevelExpression() {
1192 // Evaluate a top-level expression into an anonymous function.
1193 if (auto FnAST = ParseTopLevelExpr()) {
1194 if (FnAST->codegen()) {
1195 // Create a ResourceTracker to track JIT'd memory allocated to our
1196 // anonymous expression -- that way we can free it after executing.
1197 auto RT = TheJIT->getMainJITDylib().createResourceTracker();
1199 auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
1200 ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
1201 InitializeModuleAndManagers();
1203 // Search the JIT for the __anon_expr symbol.
1204 auto ExprSymbol = ExitOnErr(TheJIT->lookup("__anon_expr"));
1206 // Get the symbol's address and cast it to the right type (takes no
1207 // arguments, returns a double) so we can call it as a native function.
1208 double (*FP)() = ExprSymbol.getAddress().toPtr<double (*)()>();
1209 fprintf(stderr, "Evaluated to %f\n", FP());
1211 // Delete the anonymous expression module from the JIT.
1212 ExitOnErr(RT->remove());
1214 } else {
1215 // Skip token for error recovery.
1216 getNextToken();
1220 /// top ::= definition | external | expression | ';'
1221 static void MainLoop() {
1222 while (true) {
1223 fprintf(stderr, "ready> ");
1224 switch (CurTok) {
1225 case tok_eof:
1226 return;
1227 case ';': // ignore top-level semicolons.
1228 getNextToken();
1229 break;
1230 case tok_def:
1231 HandleDefinition();
1232 break;
1233 case tok_extern:
1234 HandleExtern();
1235 break;
1236 default:
1237 HandleTopLevelExpression();
1238 break;
1243 //===----------------------------------------------------------------------===//
1244 // "Library" functions that can be "extern'd" from user code.
1245 //===----------------------------------------------------------------------===//
1247 #ifdef _WIN32
1248 #define DLLEXPORT __declspec(dllexport)
1249 #else
1250 #define DLLEXPORT
1251 #endif
1253 /// putchard - putchar that takes a double and returns 0.
1254 extern "C" DLLEXPORT double putchard(double X) {
1255 fputc((char)X, stderr);
1256 return 0;
1259 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1260 extern "C" DLLEXPORT double printd(double X) {
1261 fprintf(stderr, "%f\n", X);
1262 return 0;
1265 //===----------------------------------------------------------------------===//
1266 // Main driver code.
1267 //===----------------------------------------------------------------------===//
1269 int main() {
1270 InitializeNativeTarget();
1271 InitializeNativeTargetAsmPrinter();
1272 InitializeNativeTargetAsmParser();
1274 // Install standard binary operators.
1275 // 1 is lowest precedence.
1276 BinopPrecedence['='] = 2;
1277 BinopPrecedence['<'] = 10;
1278 BinopPrecedence['+'] = 20;
1279 BinopPrecedence['-'] = 20;
1280 BinopPrecedence['*'] = 40; // highest.
1282 // Prime the first token.
1283 fprintf(stderr, "ready> ");
1284 getNextToken();
1286 TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
1288 InitializeModuleAndManagers();
1290 // Run the main "interpreter loop" now.
1291 MainLoop();
1293 return 0;