1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/PriorityWorklist.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
32 #define DEBUG_TYPE "cgscc"
36 // Explicit template instantiations and specialization definitions for core
39 static cl::opt
<bool> AbortOnMaxDevirtIterationsReached(
40 "abort-on-max-devirt-iterations-reached",
41 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
44 AnalysisKey
ShouldNotRunFunctionPassesAnalysis::Key
;
46 // Explicit instantiations for the core proxy templates.
47 template class AllAnalysesOn
<LazyCallGraph::SCC
>;
48 template class AnalysisManager
<LazyCallGraph::SCC
, LazyCallGraph
&>;
49 template class PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
,
50 LazyCallGraph
&, CGSCCUpdateResult
&>;
51 template class InnerAnalysisManagerProxy
<CGSCCAnalysisManager
, Module
>;
52 template class OuterAnalysisManagerProxy
<ModuleAnalysisManager
,
53 LazyCallGraph::SCC
, LazyCallGraph
&>;
54 template class OuterAnalysisManagerProxy
<CGSCCAnalysisManager
, Function
>;
56 /// Explicitly specialize the pass manager run method to handle call graph
60 PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
, LazyCallGraph
&,
61 CGSCCUpdateResult
&>::run(LazyCallGraph::SCC
&InitialC
,
62 CGSCCAnalysisManager
&AM
,
63 LazyCallGraph
&G
, CGSCCUpdateResult
&UR
) {
64 // Request PassInstrumentation from analysis manager, will use it to run
65 // instrumenting callbacks for the passes later.
66 PassInstrumentation PI
=
67 AM
.getResult
<PassInstrumentationAnalysis
>(InitialC
, G
);
69 PreservedAnalyses PA
= PreservedAnalyses::all();
71 // The SCC may be refined while we are running passes over it, so set up
72 // a pointer that we can update.
73 LazyCallGraph::SCC
*C
= &InitialC
;
75 // Get Function analysis manager from its proxy.
76 FunctionAnalysisManager
&FAM
=
77 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
)->getManager();
79 for (auto &Pass
: Passes
) {
80 // Check the PassInstrumentation's BeforePass callbacks before running the
81 // pass, skip its execution completely if asked to (callback returns false).
82 if (!PI
.runBeforePass(*Pass
, *C
))
85 PreservedAnalyses PassPA
= Pass
->run(*C
, AM
, G
, UR
);
87 // Update the SCC if necessary.
88 C
= UR
.UpdatedC
? UR
.UpdatedC
: C
;
90 // If C is updated, also create a proxy and update FAM inside the result.
92 &AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, G
);
93 ResultFAMCP
->updateFAM(FAM
);
96 // Intersect the final preserved analyses to compute the aggregate
97 // preserved set for this pass manager.
100 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
101 // current SCC may simply need to be skipped if invalid.
102 if (UR
.InvalidatedSCCs
.count(C
)) {
103 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
104 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
108 // Check that we didn't miss any update scenario.
109 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
111 // Update the analysis manager as each pass runs and potentially
112 // invalidates analyses.
113 AM
.invalidate(*C
, PassPA
);
115 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
118 // Before we mark all of *this* SCC's analyses as preserved below, intersect
119 // this with the cross-SCC preserved analysis set. This is used to allow
120 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
122 UR
.CrossSCCPA
.intersect(PA
);
124 // Invalidation was handled after each pass in the above loop for the current
125 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
126 // preserved. We mark this with a set so that we don't need to inspect each
128 PA
.preserveSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
134 ModuleToPostOrderCGSCCPassAdaptor::run(Module
&M
, ModuleAnalysisManager
&AM
) {
135 // Setup the CGSCC analysis manager from its proxy.
136 CGSCCAnalysisManager
&CGAM
=
137 AM
.getResult
<CGSCCAnalysisManagerModuleProxy
>(M
).getManager();
139 // Get the call graph for this module.
140 LazyCallGraph
&CG
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
142 // Get Function analysis manager from its proxy.
143 FunctionAnalysisManager
&FAM
=
144 AM
.getCachedResult
<FunctionAnalysisManagerModuleProxy
>(M
)->getManager();
146 // We keep worklists to allow us to push more work onto the pass manager as
147 // the passes are run.
148 SmallPriorityWorklist
<LazyCallGraph::RefSCC
*, 1> RCWorklist
;
149 SmallPriorityWorklist
<LazyCallGraph::SCC
*, 1> CWorklist
;
151 // Keep sets for invalidated SCCs that should be skipped when
152 // iterating off the worklists.
153 SmallPtrSet
<LazyCallGraph::SCC
*, 4> InvalidSCCSet
;
155 SmallDenseSet
<std::pair
<LazyCallGraph::Node
*, LazyCallGraph::SCC
*>, 4>
156 InlinedInternalEdges
;
158 SmallVector
<Function
*, 4> DeadFunctions
;
160 CGSCCUpdateResult UR
= {CWorklist
,
163 PreservedAnalyses::all(),
164 InlinedInternalEdges
,
168 // Request PassInstrumentation from analysis manager, will use it to run
169 // instrumenting callbacks for the passes later.
170 PassInstrumentation PI
= AM
.getResult
<PassInstrumentationAnalysis
>(M
);
172 PreservedAnalyses PA
= PreservedAnalyses::all();
174 for (LazyCallGraph::RefSCC
&RC
:
175 llvm::make_early_inc_range(CG
.postorder_ref_sccs())) {
176 assert(RCWorklist
.empty() &&
177 "Should always start with an empty RefSCC worklist");
178 // The postorder_ref_sccs range we are walking is lazily constructed, so
179 // we only push the first one onto the worklist. The worklist allows us
180 // to capture *new* RefSCCs created during transformations.
182 // We really want to form RefSCCs lazily because that makes them cheaper
183 // to update as the program is simplified and allows us to have greater
184 // cache locality as forming a RefSCC touches all the parts of all the
185 // functions within that RefSCC.
187 // We also eagerly increment the iterator to the next position because
188 // the CGSCC passes below may delete the current RefSCC.
189 RCWorklist
.insert(&RC
);
192 LazyCallGraph::RefSCC
*RC
= RCWorklist
.pop_back_val();
193 assert(CWorklist
.empty() &&
194 "Should always start with an empty SCC worklist");
196 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
199 // The top of the worklist may *also* be the same SCC we just ran over
200 // (and invalidated for). Keep track of that last SCC we processed due
201 // to SCC update to avoid redundant processing when an SCC is both just
202 // updated itself and at the top of the worklist.
203 LazyCallGraph::SCC
*LastUpdatedC
= nullptr;
205 // Push the initial SCCs in reverse post-order as we'll pop off the
206 // back and so see this in post-order.
207 for (LazyCallGraph::SCC
&C
: llvm::reverse(*RC
))
208 CWorklist
.insert(&C
);
211 LazyCallGraph::SCC
*C
= CWorklist
.pop_back_val();
212 // Due to call graph mutations, we may have invalid SCCs or SCCs from
213 // other RefSCCs in the worklist. The invalid ones are dead and the
214 // other RefSCCs should be queued above, so we just need to skip both
216 if (InvalidSCCSet
.count(C
)) {
217 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
220 if (LastUpdatedC
== C
) {
221 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C
<< "\n");
224 // We used to also check if the current SCC is part of the current
225 // RefSCC and bail if it wasn't, since it should be in RCWorklist.
226 // However, this can cause compile time explosions in some cases on
227 // modules with a huge RefSCC. If a non-trivial amount of SCCs in the
228 // huge RefSCC can become their own child RefSCC, we create one child
229 // RefSCC, bail on the current RefSCC, visit the child RefSCC, revisit
230 // the huge RefSCC, and repeat. By visiting all SCCs in the original
231 // RefSCC we create all the child RefSCCs in one pass of the RefSCC,
232 // rather one pass of the RefSCC creating one child RefSCC at a time.
234 // Ensure we can proxy analysis updates from the CGSCC analysis manager
235 // into the Function analysis manager by getting a proxy here.
236 // This also needs to update the FunctionAnalysisManager, as this may be
237 // the first time we see this SCC.
238 CGAM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, CG
).updateFAM(
241 // Each time we visit a new SCC pulled off the worklist,
242 // a transformation of a child SCC may have also modified this parent
243 // and invalidated analyses. So we invalidate using the update record's
244 // cross-SCC preserved set. This preserved set is intersected by any
245 // CGSCC pass that handles invalidation (primarily pass managers) prior
246 // to marking its SCC as preserved. That lets us track everything that
247 // might need invalidation across SCCs without excessive invalidations
250 // This essentially allows SCC passes to freely invalidate analyses
251 // of any ancestor SCC. If this becomes detrimental to successfully
252 // caching analyses, we could force each SCC pass to manually
253 // invalidate the analyses for any SCCs other than themselves which
254 // are mutated. However, that seems to lose the robustness of the
255 // pass-manager driven invalidation scheme.
256 CGAM
.invalidate(*C
, UR
.CrossSCCPA
);
259 // Check that we didn't miss any update scenario.
260 assert(!InvalidSCCSet
.count(C
) && "Processing an invalid SCC!");
261 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
263 LastUpdatedC
= UR
.UpdatedC
;
264 UR
.UpdatedC
= nullptr;
266 // Check the PassInstrumentation's BeforePass callbacks before
267 // running the pass, skip its execution completely if asked to
268 // (callback returns false).
269 if (!PI
.runBeforePass
<LazyCallGraph::SCC
>(*Pass
, *C
))
272 PreservedAnalyses PassPA
= Pass
->run(*C
, CGAM
, CG
, UR
);
274 // Update the SCC and RefSCC if necessary.
275 C
= UR
.UpdatedC
? UR
.UpdatedC
: C
;
278 // If we're updating the SCC, also update the FAM inside the proxy's
280 CGAM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, CG
).updateFAM(
284 // Intersect with the cross-SCC preserved set to capture any
285 // cross-SCC invalidation.
286 UR
.CrossSCCPA
.intersect(PassPA
);
287 // Intersect the preserved set so that invalidation of module
288 // analyses will eventually occur when the module pass completes.
289 PA
.intersect(PassPA
);
291 // If the CGSCC pass wasn't able to provide a valid updated SCC,
292 // the current SCC may simply need to be skipped if invalid.
293 if (UR
.InvalidatedSCCs
.count(C
)) {
294 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
295 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
299 // Check that we didn't miss any update scenario.
300 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
302 // We handle invalidating the CGSCC analysis manager's information
303 // for the (potentially updated) SCC here. Note that any other SCCs
304 // whose structure has changed should have been invalidated by
305 // whatever was updating the call graph. This SCC gets invalidated
306 // late as it contains the nodes that were actively being
308 CGAM
.invalidate(*C
, PassPA
);
310 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
312 // The pass may have restructured the call graph and refined the
313 // current SCC and/or RefSCC. We need to update our current SCC and
314 // RefSCC pointers to follow these. Also, when the current SCC is
315 // refined, re-run the SCC pass over the newly refined SCC in order
316 // to observe the most precise SCC model available. This inherently
317 // cannot cycle excessively as it only happens when we split SCCs
318 // apart, at most converging on a DAG of single nodes.
319 // FIXME: If we ever start having RefSCC passes, we'll want to
320 // iterate there too.
323 << "Re-running SCC passes after a refinement of the "
325 << *UR
.UpdatedC
<< "\n");
327 // Note that both `C` and `RC` may at this point refer to deleted,
328 // invalid SCC and RefSCCs respectively. But we will short circuit
329 // the processing when we check them in the loop above.
330 } while (UR
.UpdatedC
);
331 } while (!CWorklist
.empty());
333 // We only need to keep internal inlined edge information within
334 // a RefSCC, clear it to save on space and let the next time we visit
335 // any of these functions have a fresh start.
336 InlinedInternalEdges
.clear();
337 } while (!RCWorklist
.empty());
340 CG
.removeDeadFunctions(DeadFunctions
);
341 for (Function
*DeadF
: DeadFunctions
)
342 DeadF
->eraseFromParent();
344 #if defined(EXPENSIVE_CHECKS)
345 // Verify that the call graph is still valid.
349 // By definition we preserve the call garph, all SCC analyses, and the
350 // analysis proxies by handling them above and in any nested pass managers.
351 PA
.preserveSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
352 PA
.preserve
<LazyCallGraphAnalysis
>();
353 PA
.preserve
<CGSCCAnalysisManagerModuleProxy
>();
354 PA
.preserve
<FunctionAnalysisManagerModuleProxy
>();
358 PreservedAnalyses
DevirtSCCRepeatedPass::run(LazyCallGraph::SCC
&InitialC
,
359 CGSCCAnalysisManager
&AM
,
361 CGSCCUpdateResult
&UR
) {
362 PreservedAnalyses PA
= PreservedAnalyses::all();
363 PassInstrumentation PI
=
364 AM
.getResult
<PassInstrumentationAnalysis
>(InitialC
, CG
);
366 // The SCC may be refined while we are running passes over it, so set up
367 // a pointer that we can update.
368 LazyCallGraph::SCC
*C
= &InitialC
;
370 // Struct to track the counts of direct and indirect calls in each function
377 // Put value handles on all of the indirect calls and return the number of
378 // direct calls for each function in the SCC.
379 auto ScanSCC
= [](LazyCallGraph::SCC
&C
,
380 SmallMapVector
<Value
*, WeakTrackingVH
, 16> &CallHandles
) {
381 assert(CallHandles
.empty() && "Must start with a clear set of handles.");
383 SmallDenseMap
<Function
*, CallCount
> CallCounts
;
384 CallCount CountLocal
= {0, 0};
385 for (LazyCallGraph::Node
&N
: C
) {
387 CallCounts
.insert(std::make_pair(&N
.getFunction(), CountLocal
))
389 for (Instruction
&I
: instructions(N
.getFunction()))
390 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
391 if (CB
->getCalledFunction()) {
395 CallHandles
.insert({CB
, WeakTrackingVH(CB
)});
403 UR
.IndirectVHs
.clear();
404 // Populate the initial call handles and get the initial call counts.
405 auto CallCounts
= ScanSCC(*C
, UR
.IndirectVHs
);
407 for (int Iteration
= 0;; ++Iteration
) {
408 if (!PI
.runBeforePass
<LazyCallGraph::SCC
>(*Pass
, *C
))
411 PreservedAnalyses PassPA
= Pass
->run(*C
, AM
, CG
, UR
);
413 PA
.intersect(PassPA
);
415 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
416 // current SCC may simply need to be skipped if invalid.
417 if (UR
.InvalidatedSCCs
.count(C
)) {
418 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
419 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
423 // Update the analysis manager with each run and intersect the total set
424 // of preserved analyses so we're ready to iterate.
425 AM
.invalidate(*C
, PassPA
);
427 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
429 // If the SCC structure has changed, bail immediately and let the outer
430 // CGSCC layer handle any iteration to reflect the refined structure.
431 if (UR
.UpdatedC
&& UR
.UpdatedC
!= C
)
434 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
436 // Check whether any of the handles were devirtualized.
437 bool Devirt
= llvm::any_of(UR
.IndirectVHs
, [](auto &P
) -> bool {
439 if (CallBase
*CB
= dyn_cast
<CallBase
>(P
.second
)) {
440 if (CB
->getCalledFunction()) {
441 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB
<< "\n");
449 // Rescan to build up a new set of handles and count how many direct
450 // calls remain. If we decide to iterate, this also sets up the input to
451 // the next iteration.
452 UR
.IndirectVHs
.clear();
453 auto NewCallCounts
= ScanSCC(*C
, UR
.IndirectVHs
);
455 // If we haven't found an explicit devirtualization already see if we
456 // have decreased the number of indirect calls and increased the number
457 // of direct calls for any function in the SCC. This can be fooled by all
458 // manner of transformations such as DCE and other things, but seems to
459 // work well in practice.
461 // Iterate over the keys in NewCallCounts, if Function also exists in
462 // CallCounts, make the check below.
463 for (auto &Pair
: NewCallCounts
) {
464 auto &CallCountNew
= Pair
.second
;
465 auto CountIt
= CallCounts
.find(Pair
.first
);
466 if (CountIt
!= CallCounts
.end()) {
467 const auto &CallCountOld
= CountIt
->second
;
468 if (CallCountOld
.Indirect
> CallCountNew
.Indirect
&&
469 CallCountOld
.Direct
< CallCountNew
.Direct
) {
480 // Otherwise, if we've already hit our max, we're done.
481 if (Iteration
>= MaxIterations
) {
482 if (AbortOnMaxDevirtIterationsReached
)
483 report_fatal_error("Max devirtualization iterations reached");
485 dbgs() << "Found another devirtualization after hitting the max "
486 "number of repetitions ("
487 << MaxIterations
<< ") on SCC: " << *C
<< "\n");
492 dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
495 // Move over the new call counts in preparation for iterating.
496 CallCounts
= std::move(NewCallCounts
);
499 // Note that we don't add any preserved entries here unlike a more normal
500 // "pass manager" because we only handle invalidation *between* iterations,
501 // not after the last iteration.
505 PreservedAnalyses
CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC
&C
,
506 CGSCCAnalysisManager
&AM
,
508 CGSCCUpdateResult
&UR
) {
509 // Setup the function analysis manager from its proxy.
510 FunctionAnalysisManager
&FAM
=
511 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
513 SmallVector
<LazyCallGraph::Node
*, 4> Nodes
;
514 for (LazyCallGraph::Node
&N
: C
)
517 // The SCC may get split while we are optimizing functions due to deleting
518 // edges. If this happens, the current SCC can shift, so keep track of
519 // a pointer we can overwrite.
520 LazyCallGraph::SCC
*CurrentC
= &C
;
522 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C
<< "\n");
524 PreservedAnalyses PA
= PreservedAnalyses::all();
525 for (LazyCallGraph::Node
*N
: Nodes
) {
526 // Skip nodes from other SCCs. These may have been split out during
527 // processing. We'll eventually visit those SCCs and pick up the nodes
529 if (CG
.lookupSCC(*N
) != CurrentC
)
532 Function
&F
= N
->getFunction();
534 if (NoRerun
&& FAM
.getCachedResult
<ShouldNotRunFunctionPassesAnalysis
>(F
))
537 PassInstrumentation PI
= FAM
.getResult
<PassInstrumentationAnalysis
>(F
);
538 if (!PI
.runBeforePass
<Function
>(*Pass
, F
))
541 PreservedAnalyses PassPA
= Pass
->run(F
, FAM
);
543 // We know that the function pass couldn't have invalidated any other
544 // function's analyses (that's the contract of a function pass), so
545 // directly handle the function analysis manager's invalidation here.
546 FAM
.invalidate(F
, EagerlyInvalidate
? PreservedAnalyses::none() : PassPA
);
548 PI
.runAfterPass
<Function
>(*Pass
, F
, PassPA
);
550 // Then intersect the preserved set so that invalidation of module
551 // analyses will eventually occur when the module pass completes.
552 PA
.intersect(std::move(PassPA
));
554 // If the call graph hasn't been preserved, update it based on this
555 // function pass. This may also update the current SCC to point to
556 // a smaller, more refined SCC.
557 auto PAC
= PA
.getChecker
<LazyCallGraphAnalysis
>();
558 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Module
>>()) {
559 CurrentC
= &updateCGAndAnalysisManagerForFunctionPass(CG
, *CurrentC
, *N
,
561 assert(CG
.lookupSCC(*N
) == CurrentC
&&
562 "Current SCC not updated to the SCC containing the current node!");
566 // By definition we preserve the proxy. And we preserve all analyses on
567 // Functions. This precludes *any* invalidation of function analyses by the
568 // proxy, but that's OK because we've taken care to invalidate analyses in
569 // the function analysis manager incrementally above.
570 PA
.preserveSet
<AllAnalysesOn
<Function
>>();
571 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
573 // We've also ensured that we updated the call graph along the way.
574 PA
.preserve
<LazyCallGraphAnalysis
>();
579 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
580 Module
&M
, const PreservedAnalyses
&PA
,
581 ModuleAnalysisManager::Invalidator
&Inv
) {
582 // If literally everything is preserved, we're done.
583 if (PA
.areAllPreserved())
584 return false; // This is still a valid proxy.
586 // If this proxy or the call graph is going to be invalidated, we also need
587 // to clear all the keys coming from that analysis.
589 // We also directly invalidate the FAM's module proxy if necessary, and if
590 // that proxy isn't preserved we can't preserve this proxy either. We rely on
591 // it to handle module -> function analysis invalidation in the face of
592 // structural changes and so if it's unavailable we conservatively clear the
593 // entire SCC layer as well rather than trying to do invalidation ourselves.
594 auto PAC
= PA
.getChecker
<CGSCCAnalysisManagerModuleProxy
>();
595 if (!(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Module
>>()) ||
596 Inv
.invalidate
<LazyCallGraphAnalysis
>(M
, PA
) ||
597 Inv
.invalidate
<FunctionAnalysisManagerModuleProxy
>(M
, PA
)) {
600 // And the proxy itself should be marked as invalid so that we can observe
601 // the new call graph. This isn't strictly necessary because we cheat
602 // above, but is still useful.
606 // Directly check if the relevant set is preserved so we can short circuit
607 // invalidating SCCs below.
608 bool AreSCCAnalysesPreserved
=
609 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
611 // Ok, we have a graph, so we can propagate the invalidation down into it.
613 for (auto &RC
: G
->postorder_ref_sccs())
615 std::optional
<PreservedAnalyses
> InnerPA
;
617 // Check to see whether the preserved set needs to be adjusted based on
618 // module-level analysis invalidation triggering deferred invalidation
620 if (auto *OuterProxy
=
621 InnerAM
->getCachedResult
<ModuleAnalysisManagerCGSCCProxy
>(C
))
622 for (const auto &OuterInvalidationPair
:
623 OuterProxy
->getOuterInvalidations()) {
624 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
625 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
626 if (Inv
.invalidate(OuterAnalysisID
, M
, PA
)) {
629 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
630 InnerPA
->abandon(InnerAnalysisID
);
634 // Check if we needed a custom PA set. If so we'll need to run the inner
637 InnerAM
->invalidate(C
, *InnerPA
);
641 // Otherwise we only need to do invalidation if the original PA set didn't
642 // preserve all SCC analyses.
643 if (!AreSCCAnalysesPreserved
)
644 InnerAM
->invalidate(C
, PA
);
647 // Return false to indicate that this result is still a valid proxy.
652 CGSCCAnalysisManagerModuleProxy::Result
653 CGSCCAnalysisManagerModuleProxy::run(Module
&M
, ModuleAnalysisManager
&AM
) {
654 // Force the Function analysis manager to also be available so that it can
655 // be accessed in an SCC analysis and proxied onward to function passes.
656 // FIXME: It is pretty awkward to just drop the result here and assert that
657 // we can find it again later.
658 (void)AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
);
660 return Result(*InnerAM
, AM
.getResult
<LazyCallGraphAnalysis
>(M
));
663 AnalysisKey
FunctionAnalysisManagerCGSCCProxy::Key
;
665 FunctionAnalysisManagerCGSCCProxy::Result
666 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC
&C
,
667 CGSCCAnalysisManager
&AM
,
669 // Note: unconditionally getting checking that the proxy exists may get it at
670 // this point. There are cases when this is being run unnecessarily, but
671 // it is cheap and having the assertion in place is more valuable.
672 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerCGSCCProxy
>(C
, CG
);
673 Module
&M
= *C
.begin()->getFunction().getParent();
675 MAMProxy
.cachedResultExists
<FunctionAnalysisManagerModuleProxy
>(M
);
676 assert(ProxyExists
&&
677 "The CGSCC pass manager requires that the FAM module proxy is run "
678 "on the module prior to entering the CGSCC walk");
681 // We just return an empty result. The caller will use the updateFAM interface
682 // to correctly register the relevant FunctionAnalysisManager based on the
683 // context in which this proxy is run.
687 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
688 LazyCallGraph::SCC
&C
, const PreservedAnalyses
&PA
,
689 CGSCCAnalysisManager::Invalidator
&Inv
) {
690 // If literally everything is preserved, we're done.
691 if (PA
.areAllPreserved())
692 return false; // This is still a valid proxy.
694 // All updates to preserve valid results are done below, so we don't need to
695 // invalidate this proxy.
697 // Note that in order to preserve this proxy, a module pass must ensure that
698 // the FAM has been completely updated to handle the deletion of functions.
699 // Specifically, any FAM-cached results for those functions need to have been
700 // forcibly cleared. When preserved, this proxy will only invalidate results
701 // cached on functions *still in the module* at the end of the module pass.
702 auto PAC
= PA
.getChecker
<FunctionAnalysisManagerCGSCCProxy
>();
703 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>()) {
704 for (LazyCallGraph::Node
&N
: C
)
705 FAM
->invalidate(N
.getFunction(), PA
);
710 // Directly check if the relevant set is preserved.
711 bool AreFunctionAnalysesPreserved
=
712 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<Function
>>();
714 // Now walk all the functions to see if any inner analysis invalidation is
716 for (LazyCallGraph::Node
&N
: C
) {
717 Function
&F
= N
.getFunction();
718 std::optional
<PreservedAnalyses
> FunctionPA
;
720 // Check to see whether the preserved set needs to be pruned based on
721 // SCC-level analysis invalidation that triggers deferred invalidation
722 // registered with the outer analysis manager proxy for this function.
723 if (auto *OuterProxy
=
724 FAM
->getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
))
725 for (const auto &OuterInvalidationPair
:
726 OuterProxy
->getOuterInvalidations()) {
727 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
728 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
729 if (Inv
.invalidate(OuterAnalysisID
, C
, PA
)) {
732 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
733 FunctionPA
->abandon(InnerAnalysisID
);
737 // Check if we needed a custom PA set, and if so we'll need to run the
738 // inner invalidation.
740 FAM
->invalidate(F
, *FunctionPA
);
744 // Otherwise we only need to do invalidation if the original PA set didn't
745 // preserve all function analyses.
746 if (!AreFunctionAnalysesPreserved
)
747 FAM
->invalidate(F
, PA
);
750 // Return false to indicate that this result is still a valid proxy.
754 } // end namespace llvm
756 /// When a new SCC is created for the graph we first update the
757 /// FunctionAnalysisManager in the Proxy's result.
758 /// As there might be function analysis results cached for the functions now in
759 /// that SCC, two forms of updates are required.
761 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
762 /// created so that any subsequent invalidation events to the SCC are
763 /// propagated to the function analysis results cached for functions within it.
765 /// Second, if any of the functions within the SCC have analysis results with
766 /// outer analysis dependencies, then those dependencies would point to the
767 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
768 /// function analyses so that they don't retain stale handles.
769 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC
&C
,
771 CGSCCAnalysisManager
&AM
,
772 FunctionAnalysisManager
&FAM
) {
773 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, G
).updateFAM(FAM
);
775 // Now walk the functions in this SCC and invalidate any function analysis
776 // results that might have outer dependencies on an SCC analysis.
777 for (LazyCallGraph::Node
&N
: C
) {
778 Function
&F
= N
.getFunction();
781 FAM
.getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
);
783 // No outer analyses were queried, nothing to do.
786 // Forcibly abandon all the inner analyses with dependencies, but
787 // invalidate nothing else.
788 auto PA
= PreservedAnalyses::all();
789 for (const auto &OuterInvalidationPair
:
790 OuterProxy
->getOuterInvalidations()) {
791 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
792 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
793 PA
.abandon(InnerAnalysisID
);
796 // Now invalidate anything we found.
797 FAM
.invalidate(F
, PA
);
801 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
802 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
805 /// The range of new SCCs must be in postorder already. The SCC they were split
806 /// out of must be provided as \p C. The current node being mutated and
807 /// triggering updates must be passed as \p N.
809 /// This function returns the SCC containing \p N. This will be either \p C if
810 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
811 template <typename SCCRangeT
>
812 static LazyCallGraph::SCC
*
813 incorporateNewSCCRange(const SCCRangeT
&NewSCCRange
, LazyCallGraph
&G
,
814 LazyCallGraph::Node
&N
, LazyCallGraph::SCC
*C
,
815 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
) {
816 using SCC
= LazyCallGraph::SCC
;
818 if (NewSCCRange
.empty())
821 // Add the current SCC to the worklist as its shape has changed.
822 UR
.CWorklist
.insert(C
);
823 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
828 // Update the current SCC. Note that if we have new SCCs, this must actually
830 assert(C
!= &*NewSCCRange
.begin() &&
831 "Cannot insert new SCCs without changing current SCC!");
832 C
= &*NewSCCRange
.begin();
833 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
835 // If we had a cached FAM proxy originally, we will want to create more of
836 // them for each SCC that was split off.
837 FunctionAnalysisManager
*FAM
= nullptr;
839 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(*OldC
))
840 FAM
= &FAMProxy
->getManager();
842 // We need to propagate an invalidation call to all but the newly current SCC
843 // because the outer pass manager won't do that for us after splitting them.
844 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
845 // there are preserved analysis we can avoid invalidating them here for
847 // We know however that this will preserve any FAM proxy so go ahead and mark
849 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
850 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
851 AM
.invalidate(*OldC
, PA
);
853 // Ensure the now-current SCC's function analyses are updated.
855 updateNewSCCFunctionAnalyses(*C
, G
, AM
, *FAM
);
857 for (SCC
&NewC
: llvm::reverse(llvm::drop_begin(NewSCCRange
))) {
858 assert(C
!= &NewC
&& "No need to re-visit the current SCC!");
859 assert(OldC
!= &NewC
&& "Already handled the original SCC!");
860 UR
.CWorklist
.insert(&NewC
);
861 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC
<< "\n");
863 // Ensure new SCCs' function analyses are updated.
865 updateNewSCCFunctionAnalyses(NewC
, G
, AM
, *FAM
);
867 // Also propagate a normal invalidation to the new SCC as only the current
868 // will get one from the pass manager infrastructure.
869 AM
.invalidate(NewC
, PA
);
874 static LazyCallGraph::SCC
&updateCGAndAnalysisManagerForPass(
875 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
876 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
877 FunctionAnalysisManager
&FAM
, bool FunctionPass
) {
878 using Node
= LazyCallGraph::Node
;
879 using Edge
= LazyCallGraph::Edge
;
880 using SCC
= LazyCallGraph::SCC
;
881 using RefSCC
= LazyCallGraph::RefSCC
;
883 RefSCC
&InitialRC
= InitialC
.getOuterRefSCC();
885 RefSCC
*RC
= &InitialRC
;
886 Function
&F
= N
.getFunction();
888 // Walk the function body and build up the set of retained, promoted, and
890 SmallVector
<Constant
*, 16> Worklist
;
891 SmallPtrSet
<Constant
*, 16> Visited
;
892 SmallPtrSet
<Node
*, 16> RetainedEdges
;
893 SmallSetVector
<Node
*, 4> PromotedRefTargets
;
894 SmallSetVector
<Node
*, 4> DemotedCallTargets
;
895 SmallSetVector
<Node
*, 4> NewCallEdges
;
896 SmallSetVector
<Node
*, 4> NewRefEdges
;
898 // First walk the function and handle all called functions. We do this first
899 // because if there is a single call edge, whether there are ref edges is
901 for (Instruction
&I
: instructions(F
)) {
902 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
903 if (Function
*Callee
= CB
->getCalledFunction()) {
904 if (Visited
.insert(Callee
).second
&& !Callee
->isDeclaration()) {
905 Node
*CalleeN
= G
.lookup(*Callee
);
907 "Visited function should already have an associated node");
908 Edge
*E
= N
->lookup(*CalleeN
);
909 assert((E
|| !FunctionPass
) &&
910 "No function transformations should introduce *new* "
911 "call edges! Any new calls should be modeled as "
912 "promoted existing ref edges!");
913 bool Inserted
= RetainedEdges
.insert(CalleeN
).second
;
915 assert(Inserted
&& "We should never visit a function twice.");
917 NewCallEdges
.insert(CalleeN
);
918 else if (!E
->isCall())
919 PromotedRefTargets
.insert(CalleeN
);
922 // We can miss devirtualization if an indirect call is created then
923 // promoted before updateCGAndAnalysisManagerForPass runs.
924 auto *Entry
= UR
.IndirectVHs
.find(CB
);
925 if (Entry
== UR
.IndirectVHs
.end())
926 UR
.IndirectVHs
.insert({CB
, WeakTrackingVH(CB
)});
927 else if (!Entry
->second
)
928 Entry
->second
= WeakTrackingVH(CB
);
933 // Now walk all references.
934 for (Instruction
&I
: instructions(F
))
935 for (Value
*Op
: I
.operand_values())
936 if (auto *OpC
= dyn_cast
<Constant
>(Op
))
937 if (Visited
.insert(OpC
).second
)
938 Worklist
.push_back(OpC
);
940 auto VisitRef
= [&](Function
&Referee
) {
941 Node
*RefereeN
= G
.lookup(Referee
);
943 "Visited function should already have an associated node");
944 Edge
*E
= N
->lookup(*RefereeN
);
945 assert((E
|| !FunctionPass
) &&
946 "No function transformations should introduce *new* ref "
947 "edges! Any new ref edges would require IPO which "
948 "function passes aren't allowed to do!");
949 bool Inserted
= RetainedEdges
.insert(RefereeN
).second
;
951 assert(Inserted
&& "We should never visit a function twice.");
953 NewRefEdges
.insert(RefereeN
);
954 else if (E
->isCall())
955 DemotedCallTargets
.insert(RefereeN
);
957 LazyCallGraph::visitReferences(Worklist
, Visited
, VisitRef
);
959 // Handle new ref edges.
960 for (Node
*RefTarget
: NewRefEdges
) {
961 SCC
&TargetC
= *G
.lookupSCC(*RefTarget
);
962 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
964 // TODO: This only allows trivial edges to be added for now.
965 #ifdef EXPENSIVE_CHECKS
966 assert((RC
== &TargetRC
||
967 RC
->isAncestorOf(TargetRC
)) && "New ref edge is not trivial!");
969 RC
->insertTrivialRefEdge(N
, *RefTarget
);
972 // Handle new call edges.
973 for (Node
*CallTarget
: NewCallEdges
) {
974 SCC
&TargetC
= *G
.lookupSCC(*CallTarget
);
975 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
977 // TODO: This only allows trivial edges to be added for now.
978 #ifdef EXPENSIVE_CHECKS
979 assert((RC
== &TargetRC
||
980 RC
->isAncestorOf(TargetRC
)) && "New call edge is not trivial!");
982 // Add a trivial ref edge to be promoted later on alongside
983 // PromotedRefTargets.
984 RC
->insertTrivialRefEdge(N
, *CallTarget
);
987 // Include synthetic reference edges to known, defined lib functions.
988 for (auto *LibFn
: G
.getLibFunctions())
989 // While the list of lib functions doesn't have repeats, don't re-visit
990 // anything handled above.
991 if (!Visited
.count(LibFn
))
994 // First remove all of the edges that are no longer present in this function.
995 // The first step makes these edges uniformly ref edges and accumulates them
996 // into a separate data structure so removal doesn't invalidate anything.
997 SmallVector
<Node
*, 4> DeadTargets
;
999 if (RetainedEdges
.count(&E
.getNode()))
1002 SCC
&TargetC
= *G
.lookupSCC(E
.getNode());
1003 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1004 if (&TargetRC
== RC
&& E
.isCall()) {
1005 if (C
!= &TargetC
) {
1006 // For separate SCCs this is trivial.
1007 RC
->switchTrivialInternalEdgeToRef(N
, E
.getNode());
1009 // Now update the call graph.
1010 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, E
.getNode()),
1015 // Now that this is ready for actual removal, put it into our list.
1016 DeadTargets
.push_back(&E
.getNode());
1018 // Remove the easy cases quickly and actually pull them out of our list.
1019 llvm::erase_if(DeadTargets
, [&](Node
*TargetN
) {
1020 SCC
&TargetC
= *G
.lookupSCC(*TargetN
);
1021 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1023 // We can't trivially remove internal targets, so skip
1025 if (&TargetRC
== RC
)
1028 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N
<< "' to '"
1029 << *TargetN
<< "'\n");
1030 RC
->removeOutgoingEdge(N
, *TargetN
);
1034 // Next demote all the call edges that are now ref edges. This helps make
1035 // the SCCs small which should minimize the work below as we don't want to
1036 // form cycles that this would break.
1037 for (Node
*RefTarget
: DemotedCallTargets
) {
1038 SCC
&TargetC
= *G
.lookupSCC(*RefTarget
);
1039 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1041 // The easy case is when the target RefSCC is not this RefSCC. This is
1042 // only supported when the target RefSCC is a child of this RefSCC.
1043 if (&TargetRC
!= RC
) {
1044 #ifdef EXPENSIVE_CHECKS
1045 assert(RC
->isAncestorOf(TargetRC
) &&
1046 "Cannot potentially form RefSCC cycles here!");
1048 RC
->switchOutgoingEdgeToRef(N
, *RefTarget
);
1049 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1050 << "' to '" << *RefTarget
<< "'\n");
1054 // We are switching an internal call edge to a ref edge. This may split up
1056 if (C
!= &TargetC
) {
1057 // For separate SCCs this is trivial.
1058 RC
->switchTrivialInternalEdgeToRef(N
, *RefTarget
);
1062 // Now update the call graph.
1063 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, *RefTarget
), G
, N
,
1067 // We added a ref edge earlier for new call edges, promote those to call edges
1068 // alongside PromotedRefTargets.
1069 for (Node
*E
: NewCallEdges
)
1070 PromotedRefTargets
.insert(E
);
1072 // Now promote ref edges into call edges.
1073 for (Node
*CallTarget
: PromotedRefTargets
) {
1074 SCC
&TargetC
= *G
.lookupSCC(*CallTarget
);
1075 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1077 // The easy case is when the target RefSCC is not this RefSCC. This is
1078 // only supported when the target RefSCC is a child of this RefSCC.
1079 if (&TargetRC
!= RC
) {
1080 #ifdef EXPENSIVE_CHECKS
1081 assert(RC
->isAncestorOf(TargetRC
) &&
1082 "Cannot potentially form RefSCC cycles here!");
1084 RC
->switchOutgoingEdgeToCall(N
, *CallTarget
);
1085 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1086 << "' to '" << *CallTarget
<< "'\n");
1089 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1090 << N
<< "' to '" << *CallTarget
<< "'\n");
1092 // Otherwise we are switching an internal ref edge to a call edge. This
1093 // may merge away some SCCs, and we add those to the UpdateResult. We also
1094 // need to make sure to update the worklist in the event SCCs have moved
1095 // before the current one in the post-order sequence
1096 bool HasFunctionAnalysisProxy
= false;
1097 auto InitialSCCIndex
= RC
->find(*C
) - RC
->begin();
1098 bool FormedCycle
= RC
->switchInternalEdgeToCall(
1099 N
, *CallTarget
, [&](ArrayRef
<SCC
*> MergedSCCs
) {
1100 for (SCC
*MergedC
: MergedSCCs
) {
1101 assert(MergedC
!= &TargetC
&& "Cannot merge away the target SCC!");
1103 HasFunctionAnalysisProxy
|=
1104 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(
1105 *MergedC
) != nullptr;
1107 // Mark that this SCC will no longer be valid.
1108 UR
.InvalidatedSCCs
.insert(MergedC
);
1110 // FIXME: We should really do a 'clear' here to forcibly release
1111 // memory, but we don't have a good way of doing that and
1112 // preserving the function analyses.
1113 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
1114 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1115 AM
.invalidate(*MergedC
, PA
);
1119 // If we formed a cycle by creating this call, we need to update more data
1123 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
1125 // If one of the invalidated SCCs had a cached proxy to a function
1126 // analysis manager, we need to create a proxy in the new current SCC as
1127 // the invalidated SCCs had their functions moved.
1128 if (HasFunctionAnalysisProxy
)
1129 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, G
).updateFAM(FAM
);
1131 // Any analyses cached for this SCC are no longer precise as the shape
1132 // has changed by introducing this cycle. However, we have taken care to
1133 // update the proxies so it remains valide.
1134 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
1135 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1136 AM
.invalidate(*C
, PA
);
1138 auto NewSCCIndex
= RC
->find(*C
) - RC
->begin();
1139 // If we have actually moved an SCC to be topologically "below" the current
1140 // one due to merging, we will need to revisit the current SCC after
1141 // visiting those moved SCCs.
1143 // It is critical that we *do not* revisit the current SCC unless we
1144 // actually move SCCs in the process of merging because otherwise we may
1145 // form a cycle where an SCC is split apart, merged, split, merged and so
1147 if (InitialSCCIndex
< NewSCCIndex
) {
1148 // Put our current SCC back onto the worklist as we'll visit other SCCs
1149 // that are now definitively ordered prior to the current one in the
1150 // post-order sequence, and may end up observing more precise context to
1151 // optimize the current SCC.
1152 UR
.CWorklist
.insert(C
);
1153 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1155 // Enqueue in reverse order as we pop off the back of the worklist.
1156 for (SCC
&MovedC
: llvm::reverse(make_range(RC
->begin() + InitialSCCIndex
,
1157 RC
->begin() + NewSCCIndex
))) {
1158 UR
.CWorklist
.insert(&MovedC
);
1159 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1165 assert(!UR
.InvalidatedSCCs
.count(C
) && "Invalidated the current SCC!");
1166 assert(&C
->getOuterRefSCC() == RC
&& "Current SCC not in current RefSCC!");
1168 // Record the current SCC for higher layers of the CGSCC pass manager now that
1169 // all the updates have been applied.
1176 LazyCallGraph::SCC
&llvm::updateCGAndAnalysisManagerForFunctionPass(
1177 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
1178 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
1179 FunctionAnalysisManager
&FAM
) {
1180 return updateCGAndAnalysisManagerForPass(G
, InitialC
, N
, AM
, UR
, FAM
,
1181 /* FunctionPass */ true);
1183 LazyCallGraph::SCC
&llvm::updateCGAndAnalysisManagerForCGSCCPass(
1184 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
1185 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
1186 FunctionAnalysisManager
&FAM
) {
1187 return updateCGAndAnalysisManagerForPass(G
, InitialC
, N
, AM
, UR
, FAM
,
1188 /* FunctionPass */ false);