1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines routines for folding instructions into constants.
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MathExtras.h"
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
71 static Constant
*foldConstVectorToAPInt(APInt
&Result
, Type
*DestTy
,
72 Constant
*C
, Type
*SrcEltTy
,
74 const DataLayout
&DL
) {
75 // Now that we know that the input value is a vector of integers, just shift
76 // and insert them into our result.
77 unsigned BitShift
= DL
.getTypeSizeInBits(SrcEltTy
);
78 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
80 if (DL
.isLittleEndian())
81 Element
= C
->getAggregateElement(NumSrcElts
- i
- 1);
83 Element
= C
->getAggregateElement(i
);
85 if (isa_and_nonnull
<UndefValue
>(Element
)) {
90 auto *ElementCI
= dyn_cast_or_null
<ConstantInt
>(Element
);
92 return ConstantExpr::getBitCast(C
, DestTy
);
95 Result
|= ElementCI
->getValue().zext(Result
.getBitWidth());
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
104 Constant
*FoldBitCast(Constant
*C
, Type
*DestTy
, const DataLayout
&DL
) {
105 assert(CastInst::castIsValid(Instruction::BitCast
, C
, DestTy
) &&
106 "Invalid constantexpr bitcast!");
108 // Catch the obvious splat cases.
109 if (Constant
*Res
= ConstantFoldLoadFromUniformValue(C
, DestTy
, DL
))
112 if (auto *VTy
= dyn_cast
<VectorType
>(C
->getType())) {
113 // Handle a vector->scalar integer/fp cast.
114 if (isa
<IntegerType
>(DestTy
) || DestTy
->isFloatingPointTy()) {
115 unsigned NumSrcElts
= cast
<FixedVectorType
>(VTy
)->getNumElements();
116 Type
*SrcEltTy
= VTy
->getElementType();
118 // If the vector is a vector of floating point, convert it to vector of int
119 // to simplify things.
120 if (SrcEltTy
->isFloatingPointTy()) {
121 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
122 auto *SrcIVTy
= FixedVectorType::get(
123 IntegerType::get(C
->getContext(), FPWidth
), NumSrcElts
);
124 // Ask IR to do the conversion now that #elts line up.
125 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
128 APInt
Result(DL
.getTypeSizeInBits(DestTy
), 0);
129 if (Constant
*CE
= foldConstVectorToAPInt(Result
, DestTy
, C
,
130 SrcEltTy
, NumSrcElts
, DL
))
133 if (isa
<IntegerType
>(DestTy
))
134 return ConstantInt::get(DestTy
, Result
);
136 APFloat
FP(DestTy
->getFltSemantics(), Result
);
137 return ConstantFP::get(DestTy
->getContext(), FP
);
141 // The code below only handles casts to vectors currently.
142 auto *DestVTy
= dyn_cast
<VectorType
>(DestTy
);
144 return ConstantExpr::getBitCast(C
, DestTy
);
146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147 // vector so the code below can handle it uniformly.
148 if (!isa
<VectorType
>(C
->getType()) &&
149 (isa
<ConstantFP
>(C
) || isa
<ConstantInt
>(C
))) {
150 Constant
*Ops
= C
; // don't take the address of C!
151 return FoldBitCast(ConstantVector::get(Ops
), DestTy
, DL
);
154 // Some of what follows may extend to cover scalable vectors but the current
155 // implementation is fixed length specific.
156 if (!isa
<FixedVectorType
>(C
->getType()))
157 return ConstantExpr::getBitCast(C
, DestTy
);
159 // If this is a bitcast from constant vector -> vector, fold it.
160 if (!isa
<ConstantDataVector
>(C
) && !isa
<ConstantVector
>(C
) &&
161 !isa
<ConstantInt
>(C
) && !isa
<ConstantFP
>(C
))
162 return ConstantExpr::getBitCast(C
, DestTy
);
164 // If the element types match, IR can fold it.
165 unsigned NumDstElt
= cast
<FixedVectorType
>(DestVTy
)->getNumElements();
166 unsigned NumSrcElt
= cast
<FixedVectorType
>(C
->getType())->getNumElements();
167 if (NumDstElt
== NumSrcElt
)
168 return ConstantExpr::getBitCast(C
, DestTy
);
170 Type
*SrcEltTy
= cast
<VectorType
>(C
->getType())->getElementType();
171 Type
*DstEltTy
= DestVTy
->getElementType();
173 // Otherwise, we're changing the number of elements in a vector, which
174 // requires endianness information to do the right thing. For example,
175 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
176 // folds to (little endian):
177 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
178 // and to (big endian):
179 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
181 // First thing is first. We only want to think about integer here, so if
182 // we have something in FP form, recast it as integer.
183 if (DstEltTy
->isFloatingPointTy()) {
184 // Fold to an vector of integers with same size as our FP type.
185 unsigned FPWidth
= DstEltTy
->getPrimitiveSizeInBits();
186 auto *DestIVTy
= FixedVectorType::get(
187 IntegerType::get(C
->getContext(), FPWidth
), NumDstElt
);
188 // Recursively handle this integer conversion, if possible.
189 C
= FoldBitCast(C
, DestIVTy
, DL
);
191 // Finally, IR can handle this now that #elts line up.
192 return ConstantExpr::getBitCast(C
, DestTy
);
195 // Okay, we know the destination is integer, if the input is FP, convert
196 // it to integer first.
197 if (SrcEltTy
->isFloatingPointTy()) {
198 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
199 auto *SrcIVTy
= FixedVectorType::get(
200 IntegerType::get(C
->getContext(), FPWidth
), NumSrcElt
);
201 // Ask IR to do the conversion now that #elts line up.
202 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
203 assert((isa
<ConstantVector
>(C
) || // FIXME: Remove ConstantVector.
204 isa
<ConstantDataVector
>(C
) || isa
<ConstantInt
>(C
)) &&
205 "Constant folding cannot fail for plain fp->int bitcast!");
208 // Now we know that the input and output vectors are both integer vectors
209 // of the same size, and that their #elements is not the same. Do the
210 // conversion here, which depends on whether the input or output has
212 bool isLittleEndian
= DL
.isLittleEndian();
214 SmallVector
<Constant
*, 32> Result
;
215 if (NumDstElt
< NumSrcElt
) {
216 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
217 Constant
*Zero
= Constant::getNullValue(DstEltTy
);
218 unsigned Ratio
= NumSrcElt
/NumDstElt
;
219 unsigned SrcBitSize
= SrcEltTy
->getPrimitiveSizeInBits();
221 for (unsigned i
= 0; i
!= NumDstElt
; ++i
) {
222 // Build each element of the result.
223 Constant
*Elt
= Zero
;
224 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
*(Ratio
-1);
225 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
226 Constant
*Src
= C
->getAggregateElement(SrcElt
++);
227 if (isa_and_nonnull
<UndefValue
>(Src
))
228 Src
= Constant::getNullValue(
229 cast
<VectorType
>(C
->getType())->getElementType());
231 Src
= dyn_cast_or_null
<ConstantInt
>(Src
);
232 if (!Src
) // Reject constantexpr elements.
233 return ConstantExpr::getBitCast(C
, DestTy
);
235 // Zero extend the element to the right size.
236 Src
= ConstantFoldCastOperand(Instruction::ZExt
, Src
, Elt
->getType(),
238 assert(Src
&& "Constant folding cannot fail on plain integers");
240 // Shift it to the right place, depending on endianness.
241 Src
= ConstantFoldBinaryOpOperands(
242 Instruction::Shl
, Src
, ConstantInt::get(Src
->getType(), ShiftAmt
),
244 assert(Src
&& "Constant folding cannot fail on plain integers");
246 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
249 Elt
= ConstantFoldBinaryOpOperands(Instruction::Or
, Elt
, Src
, DL
);
250 assert(Elt
&& "Constant folding cannot fail on plain integers");
252 Result
.push_back(Elt
);
254 return ConstantVector::get(Result
);
257 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
258 unsigned Ratio
= NumDstElt
/NumSrcElt
;
259 unsigned DstBitSize
= DL
.getTypeSizeInBits(DstEltTy
);
261 // Loop over each source value, expanding into multiple results.
262 for (unsigned i
= 0; i
!= NumSrcElt
; ++i
) {
263 auto *Element
= C
->getAggregateElement(i
);
265 if (!Element
) // Reject constantexpr elements.
266 return ConstantExpr::getBitCast(C
, DestTy
);
268 if (isa
<UndefValue
>(Element
)) {
269 // Correctly Propagate undef values.
270 Result
.append(Ratio
, UndefValue::get(DstEltTy
));
274 auto *Src
= dyn_cast
<ConstantInt
>(Element
);
276 return ConstantExpr::getBitCast(C
, DestTy
);
278 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
*(Ratio
-1);
279 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
280 // Shift the piece of the value into the right place, depending on
282 APInt Elt
= Src
->getValue().lshr(ShiftAmt
);
283 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
285 // Truncate and remember this piece.
286 Result
.push_back(ConstantInt::get(DstEltTy
, Elt
.trunc(DstBitSize
)));
290 return ConstantVector::get(Result
);
293 } // end anonymous namespace
295 /// If this constant is a constant offset from a global, return the global and
296 /// the constant. Because of constantexprs, this function is recursive.
297 bool llvm::IsConstantOffsetFromGlobal(Constant
*C
, GlobalValue
*&GV
,
298 APInt
&Offset
, const DataLayout
&DL
,
299 DSOLocalEquivalent
**DSOEquiv
) {
303 // Trivial case, constant is the global.
304 if ((GV
= dyn_cast
<GlobalValue
>(C
))) {
305 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GV
->getType());
306 Offset
= APInt(BitWidth
, 0);
310 if (auto *FoundDSOEquiv
= dyn_cast
<DSOLocalEquivalent
>(C
)) {
312 *DSOEquiv
= FoundDSOEquiv
;
313 GV
= FoundDSOEquiv
->getGlobalValue();
314 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GV
->getType());
315 Offset
= APInt(BitWidth
, 0);
319 // Otherwise, if this isn't a constant expr, bail out.
320 auto *CE
= dyn_cast
<ConstantExpr
>(C
);
321 if (!CE
) return false;
323 // Look through ptr->int and ptr->ptr casts.
324 if (CE
->getOpcode() == Instruction::PtrToInt
||
325 CE
->getOpcode() == Instruction::BitCast
)
326 return IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, DL
,
329 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
330 auto *GEP
= dyn_cast
<GEPOperator
>(CE
);
334 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
335 APInt
TmpOffset(BitWidth
, 0);
337 // If the base isn't a global+constant, we aren't either.
338 if (!IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, TmpOffset
, DL
,
342 // Otherwise, add any offset that our operands provide.
343 if (!GEP
->accumulateConstantOffset(DL
, TmpOffset
))
350 Constant
*llvm::ConstantFoldLoadThroughBitcast(Constant
*C
, Type
*DestTy
,
351 const DataLayout
&DL
) {
353 Type
*SrcTy
= C
->getType();
357 TypeSize DestSize
= DL
.getTypeSizeInBits(DestTy
);
358 TypeSize SrcSize
= DL
.getTypeSizeInBits(SrcTy
);
359 if (!TypeSize::isKnownGE(SrcSize
, DestSize
))
362 // Catch the obvious splat cases (since all-zeros can coerce non-integral
363 // pointers legally).
364 if (Constant
*Res
= ConstantFoldLoadFromUniformValue(C
, DestTy
, DL
))
367 // If the type sizes are the same and a cast is legal, just directly
368 // cast the constant.
369 // But be careful not to coerce non-integral pointers illegally.
370 if (SrcSize
== DestSize
&&
371 DL
.isNonIntegralPointerType(SrcTy
->getScalarType()) ==
372 DL
.isNonIntegralPointerType(DestTy
->getScalarType())) {
373 Instruction::CastOps Cast
= Instruction::BitCast
;
374 // If we are going from a pointer to int or vice versa, we spell the cast
376 if (SrcTy
->isIntegerTy() && DestTy
->isPointerTy())
377 Cast
= Instruction::IntToPtr
;
378 else if (SrcTy
->isPointerTy() && DestTy
->isIntegerTy())
379 Cast
= Instruction::PtrToInt
;
381 if (CastInst::castIsValid(Cast
, C
, DestTy
))
382 return ConstantFoldCastOperand(Cast
, C
, DestTy
, DL
);
385 // If this isn't an aggregate type, there is nothing we can do to drill down
386 // and find a bitcastable constant.
387 if (!SrcTy
->isAggregateType() && !SrcTy
->isVectorTy())
390 // We're simulating a load through a pointer that was bitcast to point to
391 // a different type, so we can try to walk down through the initial
392 // elements of an aggregate to see if some part of the aggregate is
393 // castable to implement the "load" semantic model.
394 if (SrcTy
->isStructTy()) {
395 // Struct types might have leading zero-length elements like [0 x i32],
396 // which are certainly not what we are looking for, so skip them.
400 ElemC
= C
->getAggregateElement(Elem
++);
401 } while (ElemC
&& DL
.getTypeSizeInBits(ElemC
->getType()).isZero());
404 // For non-byte-sized vector elements, the first element is not
405 // necessarily located at the vector base address.
406 if (auto *VT
= dyn_cast
<VectorType
>(SrcTy
))
407 if (!DL
.typeSizeEqualsStoreSize(VT
->getElementType()))
410 C
= C
->getAggregateElement(0u);
419 /// Recursive helper to read bits out of global. C is the constant being copied
420 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
421 /// results into and BytesLeft is the number of bytes left in
422 /// the CurPtr buffer. DL is the DataLayout.
423 bool ReadDataFromGlobal(Constant
*C
, uint64_t ByteOffset
, unsigned char *CurPtr
,
424 unsigned BytesLeft
, const DataLayout
&DL
) {
425 assert(ByteOffset
<= DL
.getTypeAllocSize(C
->getType()) &&
426 "Out of range access");
428 // If this element is zero or undefined, we can just return since *CurPtr is
430 if (isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
))
433 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
434 if ((CI
->getBitWidth() & 7) != 0)
436 const APInt
&Val
= CI
->getValue();
437 unsigned IntBytes
= unsigned(CI
->getBitWidth()/8);
439 for (unsigned i
= 0; i
!= BytesLeft
&& ByteOffset
!= IntBytes
; ++i
) {
440 unsigned n
= ByteOffset
;
441 if (!DL
.isLittleEndian())
442 n
= IntBytes
- n
- 1;
443 CurPtr
[i
] = Val
.extractBits(8, n
* 8).getZExtValue();
449 if (auto *CFP
= dyn_cast
<ConstantFP
>(C
)) {
450 if (CFP
->getType()->isDoubleTy()) {
451 C
= FoldBitCast(C
, Type::getInt64Ty(C
->getContext()), DL
);
452 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
454 if (CFP
->getType()->isFloatTy()){
455 C
= FoldBitCast(C
, Type::getInt32Ty(C
->getContext()), DL
);
456 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
458 if (CFP
->getType()->isHalfTy()){
459 C
= FoldBitCast(C
, Type::getInt16Ty(C
->getContext()), DL
);
460 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
465 if (auto *CS
= dyn_cast
<ConstantStruct
>(C
)) {
466 const StructLayout
*SL
= DL
.getStructLayout(CS
->getType());
467 unsigned Index
= SL
->getElementContainingOffset(ByteOffset
);
468 uint64_t CurEltOffset
= SL
->getElementOffset(Index
);
469 ByteOffset
-= CurEltOffset
;
472 // If the element access is to the element itself and not to tail padding,
473 // read the bytes from the element.
474 uint64_t EltSize
= DL
.getTypeAllocSize(CS
->getOperand(Index
)->getType());
476 if (ByteOffset
< EltSize
&&
477 !ReadDataFromGlobal(CS
->getOperand(Index
), ByteOffset
, CurPtr
,
483 // Check to see if we read from the last struct element, if so we're done.
484 if (Index
== CS
->getType()->getNumElements())
487 // If we read all of the bytes we needed from this element we're done.
488 uint64_t NextEltOffset
= SL
->getElementOffset(Index
);
490 if (BytesLeft
<= NextEltOffset
- CurEltOffset
- ByteOffset
)
493 // Move to the next element of the struct.
494 CurPtr
+= NextEltOffset
- CurEltOffset
- ByteOffset
;
495 BytesLeft
-= NextEltOffset
- CurEltOffset
- ByteOffset
;
497 CurEltOffset
= NextEltOffset
;
502 if (isa
<ConstantArray
>(C
) || isa
<ConstantVector
>(C
) ||
503 isa
<ConstantDataSequential
>(C
)) {
504 uint64_t NumElts
, EltSize
;
506 if (auto *AT
= dyn_cast
<ArrayType
>(C
->getType())) {
507 NumElts
= AT
->getNumElements();
508 EltTy
= AT
->getElementType();
509 EltSize
= DL
.getTypeAllocSize(EltTy
);
511 NumElts
= cast
<FixedVectorType
>(C
->getType())->getNumElements();
512 EltTy
= cast
<FixedVectorType
>(C
->getType())->getElementType();
513 // TODO: For non-byte-sized vectors, current implementation assumes there is
514 // padding to the next byte boundary between elements.
515 if (!DL
.typeSizeEqualsStoreSize(EltTy
))
518 EltSize
= DL
.getTypeStoreSize(EltTy
);
520 uint64_t Index
= ByteOffset
/ EltSize
;
521 uint64_t Offset
= ByteOffset
- Index
* EltSize
;
523 for (; Index
!= NumElts
; ++Index
) {
524 if (!ReadDataFromGlobal(C
->getAggregateElement(Index
), Offset
, CurPtr
,
528 uint64_t BytesWritten
= EltSize
- Offset
;
529 assert(BytesWritten
<= EltSize
&& "Not indexing into this element?");
530 if (BytesWritten
>= BytesLeft
)
534 BytesLeft
-= BytesWritten
;
535 CurPtr
+= BytesWritten
;
540 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
541 if (CE
->getOpcode() == Instruction::IntToPtr
&&
542 CE
->getOperand(0)->getType() == DL
.getIntPtrType(CE
->getType())) {
543 return ReadDataFromGlobal(CE
->getOperand(0), ByteOffset
, CurPtr
,
548 // Otherwise, unknown initializer type.
552 Constant
*FoldReinterpretLoadFromConst(Constant
*C
, Type
*LoadTy
,
553 int64_t Offset
, const DataLayout
&DL
) {
554 // Bail out early. Not expect to load from scalable global variable.
555 if (isa
<ScalableVectorType
>(LoadTy
))
558 auto *IntType
= dyn_cast
<IntegerType
>(LoadTy
);
560 // If this isn't an integer load we can't fold it directly.
562 // If this is a non-integer load, we can try folding it as an int load and
563 // then bitcast the result. This can be useful for union cases. Note
564 // that address spaces don't matter here since we're not going to result in
565 // an actual new load.
566 if (!LoadTy
->isFloatingPointTy() && !LoadTy
->isPointerTy() &&
567 !LoadTy
->isVectorTy())
570 Type
*MapTy
= Type::getIntNTy(C
->getContext(),
571 DL
.getTypeSizeInBits(LoadTy
).getFixedValue());
572 if (Constant
*Res
= FoldReinterpretLoadFromConst(C
, MapTy
, Offset
, DL
)) {
573 if (Res
->isNullValue() && !LoadTy
->isX86_AMXTy())
574 // Materializing a zero can be done trivially without a bitcast
575 return Constant::getNullValue(LoadTy
);
576 Type
*CastTy
= LoadTy
->isPtrOrPtrVectorTy() ? DL
.getIntPtrType(LoadTy
) : LoadTy
;
577 Res
= FoldBitCast(Res
, CastTy
, DL
);
578 if (LoadTy
->isPtrOrPtrVectorTy()) {
579 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
580 if (Res
->isNullValue() && !LoadTy
->isX86_AMXTy())
581 return Constant::getNullValue(LoadTy
);
582 if (DL
.isNonIntegralPointerType(LoadTy
->getScalarType()))
583 // Be careful not to replace a load of an addrspace value with an inttoptr here
585 Res
= ConstantExpr::getIntToPtr(Res
, LoadTy
);
592 unsigned BytesLoaded
= (IntType
->getBitWidth() + 7) / 8;
593 if (BytesLoaded
> 32 || BytesLoaded
== 0)
596 // If we're not accessing anything in this constant, the result is undefined.
597 if (Offset
<= -1 * static_cast<int64_t>(BytesLoaded
))
598 return PoisonValue::get(IntType
);
600 // TODO: We should be able to support scalable types.
601 TypeSize InitializerSize
= DL
.getTypeAllocSize(C
->getType());
602 if (InitializerSize
.isScalable())
605 // If we're not accessing anything in this constant, the result is undefined.
606 if (Offset
>= (int64_t)InitializerSize
.getFixedValue())
607 return PoisonValue::get(IntType
);
609 unsigned char RawBytes
[32] = {0};
610 unsigned char *CurPtr
= RawBytes
;
611 unsigned BytesLeft
= BytesLoaded
;
613 // If we're loading off the beginning of the global, some bytes may be valid.
620 if (!ReadDataFromGlobal(C
, Offset
, CurPtr
, BytesLeft
, DL
))
623 APInt ResultVal
= APInt(IntType
->getBitWidth(), 0);
624 if (DL
.isLittleEndian()) {
625 ResultVal
= RawBytes
[BytesLoaded
- 1];
626 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
628 ResultVal
|= RawBytes
[BytesLoaded
- 1 - i
];
631 ResultVal
= RawBytes
[0];
632 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
634 ResultVal
|= RawBytes
[i
];
638 return ConstantInt::get(IntType
->getContext(), ResultVal
);
641 } // anonymous namespace
643 // If GV is a constant with an initializer read its representation starting
644 // at Offset and return it as a constant array of unsigned char. Otherwise
646 Constant
*llvm::ReadByteArrayFromGlobal(const GlobalVariable
*GV
,
648 if (!GV
->isConstant() || !GV
->hasDefinitiveInitializer())
651 const DataLayout
&DL
= GV
->getDataLayout();
652 Constant
*Init
= const_cast<Constant
*>(GV
->getInitializer());
653 TypeSize InitSize
= DL
.getTypeAllocSize(Init
->getType());
654 if (InitSize
< Offset
)
657 uint64_t NBytes
= InitSize
- Offset
;
658 if (NBytes
> UINT16_MAX
)
659 // Bail for large initializers in excess of 64K to avoid allocating
661 // Offset is assumed to be less than or equal than InitSize (this
662 // is enforced in ReadDataFromGlobal).
665 SmallVector
<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes
));
666 unsigned char *CurPtr
= RawBytes
.data();
668 if (!ReadDataFromGlobal(Init
, Offset
, CurPtr
, NBytes
, DL
))
671 return ConstantDataArray::get(GV
->getContext(), RawBytes
);
674 /// If this Offset points exactly to the start of an aggregate element, return
675 /// that element, otherwise return nullptr.
676 Constant
*getConstantAtOffset(Constant
*Base
, APInt Offset
,
677 const DataLayout
&DL
) {
681 if (!isa
<ConstantAggregate
>(Base
) && !isa
<ConstantDataSequential
>(Base
))
684 Type
*ElemTy
= Base
->getType();
685 SmallVector
<APInt
> Indices
= DL
.getGEPIndicesForOffset(ElemTy
, Offset
);
686 if (!Offset
.isZero() || !Indices
[0].isZero())
690 for (const APInt
&Index
: drop_begin(Indices
)) {
691 if (Index
.isNegative() || Index
.getActiveBits() >= 32)
694 C
= C
->getAggregateElement(Index
.getZExtValue());
702 Constant
*llvm::ConstantFoldLoadFromConst(Constant
*C
, Type
*Ty
,
704 const DataLayout
&DL
) {
705 if (Constant
*AtOffset
= getConstantAtOffset(C
, Offset
, DL
))
706 if (Constant
*Result
= ConstantFoldLoadThroughBitcast(AtOffset
, Ty
, DL
))
709 // Explicitly check for out-of-bounds access, so we return poison even if the
710 // constant is a uniform value.
711 TypeSize Size
= DL
.getTypeAllocSize(C
->getType());
712 if (!Size
.isScalable() && Offset
.sge(Size
.getFixedValue()))
713 return PoisonValue::get(Ty
);
715 // Try an offset-independent fold of a uniform value.
716 if (Constant
*Result
= ConstantFoldLoadFromUniformValue(C
, Ty
, DL
))
719 // Try hard to fold loads from bitcasted strange and non-type-safe things.
720 if (Offset
.getSignificantBits() <= 64)
721 if (Constant
*Result
=
722 FoldReinterpretLoadFromConst(C
, Ty
, Offset
.getSExtValue(), DL
))
728 Constant
*llvm::ConstantFoldLoadFromConst(Constant
*C
, Type
*Ty
,
729 const DataLayout
&DL
) {
730 return ConstantFoldLoadFromConst(C
, Ty
, APInt(64, 0), DL
);
733 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
, Type
*Ty
,
735 const DataLayout
&DL
) {
736 // We can only fold loads from constant globals with a definitive initializer.
737 // Check this upfront, to skip expensive offset calculations.
738 auto *GV
= dyn_cast
<GlobalVariable
>(getUnderlyingObject(C
));
739 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer())
742 C
= cast
<Constant
>(C
->stripAndAccumulateConstantOffsets(
743 DL
, Offset
, /* AllowNonInbounds */ true));
746 if (Constant
*Result
= ConstantFoldLoadFromConst(GV
->getInitializer(), Ty
,
750 // If this load comes from anywhere in a uniform constant global, the value
751 // is always the same, regardless of the loaded offset.
752 return ConstantFoldLoadFromUniformValue(GV
->getInitializer(), Ty
, DL
);
755 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
, Type
*Ty
,
756 const DataLayout
&DL
) {
757 APInt
Offset(DL
.getIndexTypeSizeInBits(C
->getType()), 0);
758 return ConstantFoldLoadFromConstPtr(C
, Ty
, std::move(Offset
), DL
);
761 Constant
*llvm::ConstantFoldLoadFromUniformValue(Constant
*C
, Type
*Ty
,
762 const DataLayout
&DL
) {
763 if (isa
<PoisonValue
>(C
))
764 return PoisonValue::get(Ty
);
765 if (isa
<UndefValue
>(C
))
766 return UndefValue::get(Ty
);
767 // If padding is needed when storing C to memory, then it isn't considered as
769 if (!DL
.typeSizeEqualsStoreSize(C
->getType()))
771 if (C
->isNullValue() && !Ty
->isX86_AMXTy())
772 return Constant::getNullValue(Ty
);
773 if (C
->isAllOnesValue() &&
774 (Ty
->isIntOrIntVectorTy() || Ty
->isFPOrFPVectorTy()))
775 return Constant::getAllOnesValue(Ty
);
781 /// One of Op0/Op1 is a constant expression.
782 /// Attempt to symbolically evaluate the result of a binary operator merging
783 /// these together. If target data info is available, it is provided as DL,
784 /// otherwise DL is null.
785 Constant
*SymbolicallyEvaluateBinop(unsigned Opc
, Constant
*Op0
, Constant
*Op1
,
786 const DataLayout
&DL
) {
789 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
790 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
793 if (Opc
== Instruction::And
) {
794 KnownBits Known0
= computeKnownBits(Op0
, DL
);
795 KnownBits Known1
= computeKnownBits(Op1
, DL
);
796 if ((Known1
.One
| Known0
.Zero
).isAllOnes()) {
797 // All the bits of Op0 that the 'and' could be masking are already zero.
800 if ((Known0
.One
| Known1
.Zero
).isAllOnes()) {
801 // All the bits of Op1 that the 'and' could be masking are already zero.
806 if (Known0
.isConstant())
807 return ConstantInt::get(Op0
->getType(), Known0
.getConstant());
810 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
811 // constant. This happens frequently when iterating over a global array.
812 if (Opc
== Instruction::Sub
) {
813 GlobalValue
*GV1
, *GV2
;
816 if (IsConstantOffsetFromGlobal(Op0
, GV1
, Offs1
, DL
))
817 if (IsConstantOffsetFromGlobal(Op1
, GV2
, Offs2
, DL
) && GV1
== GV2
) {
818 unsigned OpSize
= DL
.getTypeSizeInBits(Op0
->getType());
820 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
821 // PtrToInt may change the bitwidth so we have convert to the right size
823 return ConstantInt::get(Op0
->getType(), Offs1
.zextOrTrunc(OpSize
) -
824 Offs2
.zextOrTrunc(OpSize
));
831 /// If array indices are not pointer-sized integers, explicitly cast them so
832 /// that they aren't implicitly casted by the getelementptr.
833 Constant
*CastGEPIndices(Type
*SrcElemTy
, ArrayRef
<Constant
*> Ops
,
834 Type
*ResultTy
, GEPNoWrapFlags NW
,
835 std::optional
<ConstantRange
> InRange
,
836 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
) {
837 Type
*IntIdxTy
= DL
.getIndexType(ResultTy
);
838 Type
*IntIdxScalarTy
= IntIdxTy
->getScalarType();
841 SmallVector
<Constant
*, 32> NewIdxs
;
842 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
844 !isa
<StructType
>(GetElementPtrInst::getIndexedType(
845 SrcElemTy
, Ops
.slice(1, i
- 1)))) &&
846 Ops
[i
]->getType()->getScalarType() != IntIdxScalarTy
) {
849 Ops
[i
]->getType()->isVectorTy() ? IntIdxTy
: IntIdxScalarTy
;
850 Constant
*NewIdx
= ConstantFoldCastOperand(
851 CastInst::getCastOpcode(Ops
[i
], true, NewType
, true), Ops
[i
], NewType
,
855 NewIdxs
.push_back(NewIdx
);
857 NewIdxs
.push_back(Ops
[i
]);
864 ConstantExpr::getGetElementPtr(SrcElemTy
, Ops
[0], NewIdxs
, NW
, InRange
);
865 return ConstantFoldConstant(C
, DL
, TLI
);
868 /// If we can symbolically evaluate the GEP constant expression, do so.
869 Constant
*SymbolicallyEvaluateGEP(const GEPOperator
*GEP
,
870 ArrayRef
<Constant
*> Ops
,
871 const DataLayout
&DL
,
872 const TargetLibraryInfo
*TLI
) {
873 Type
*SrcElemTy
= GEP
->getSourceElementType();
874 Type
*ResTy
= GEP
->getType();
875 if (!SrcElemTy
->isSized() || isa
<ScalableVectorType
>(SrcElemTy
))
878 if (Constant
*C
= CastGEPIndices(SrcElemTy
, Ops
, ResTy
, GEP
->getNoWrapFlags(),
879 GEP
->getInRange(), DL
, TLI
))
882 Constant
*Ptr
= Ops
[0];
883 if (!Ptr
->getType()->isPointerTy())
886 Type
*IntIdxTy
= DL
.getIndexType(Ptr
->getType());
888 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
889 if (!isa
<ConstantInt
>(Ops
[i
]) || !Ops
[i
]->getType()->isIntegerTy())
892 unsigned BitWidth
= DL
.getTypeSizeInBits(IntIdxTy
);
893 APInt Offset
= APInt(
895 DL
.getIndexedOffsetInType(
896 SrcElemTy
, ArrayRef((Value
*const *)Ops
.data() + 1, Ops
.size() - 1)),
897 /*isSigned=*/true, /*implicitTrunc=*/true);
899 std::optional
<ConstantRange
> InRange
= GEP
->getInRange();
901 InRange
= InRange
->sextOrTrunc(BitWidth
);
903 // If this is a GEP of a GEP, fold it all into a single GEP.
904 GEPNoWrapFlags NW
= GEP
->getNoWrapFlags();
905 bool Overflow
= false;
906 while (auto *GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
907 NW
&= GEP
->getNoWrapFlags();
909 SmallVector
<Value
*, 4> NestedOps(llvm::drop_begin(GEP
->operands()));
911 // Do not try the incorporate the sub-GEP if some index is not a number.
912 bool AllConstantInt
= true;
913 for (Value
*NestedOp
: NestedOps
)
914 if (!isa
<ConstantInt
>(NestedOp
)) {
915 AllConstantInt
= false;
921 // TODO: Try to intersect two inrange attributes?
923 InRange
= GEP
->getInRange();
925 // Adjust inrange by offset until now.
926 InRange
= InRange
->sextOrTrunc(BitWidth
).subtract(Offset
);
929 Ptr
= cast
<Constant
>(GEP
->getOperand(0));
930 SrcElemTy
= GEP
->getSourceElementType();
931 Offset
= Offset
.sadd_ov(
932 APInt(BitWidth
, DL
.getIndexedOffsetInType(SrcElemTy
, NestedOps
),
933 /*isSigned=*/true, /*implicitTrunc=*/true),
937 // Preserving nusw (without inbounds) also requires that the offset
938 // additions did not overflow.
939 if (NW
.hasNoUnsignedSignedWrap() && !NW
.isInBounds() && Overflow
)
940 NW
= NW
.withoutNoUnsignedSignedWrap();
942 // If the base value for this address is a literal integer value, fold the
943 // getelementptr to the resulting integer value casted to the pointer type.
944 APInt
BasePtr(BitWidth
, 0);
945 if (auto *CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
946 if (CE
->getOpcode() == Instruction::IntToPtr
) {
947 if (auto *Base
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
948 BasePtr
= Base
->getValue().zextOrTrunc(BitWidth
);
952 auto *PTy
= cast
<PointerType
>(Ptr
->getType());
953 if ((Ptr
->isNullValue() || BasePtr
!= 0) &&
954 !DL
.isNonIntegralPointerType(PTy
)) {
955 Constant
*C
= ConstantInt::get(Ptr
->getContext(), Offset
+ BasePtr
);
956 return ConstantExpr::getIntToPtr(C
, ResTy
);
959 // Try to infer inbounds for GEPs of globals.
960 if (!NW
.isInBounds() && Offset
.isNonNegative()) {
961 bool CanBeNull
, CanBeFreed
;
962 uint64_t DerefBytes
=
963 Ptr
->getPointerDereferenceableBytes(DL
, CanBeNull
, CanBeFreed
);
964 if (DerefBytes
!= 0 && !CanBeNull
&& Offset
.sle(DerefBytes
))
965 NW
|= GEPNoWrapFlags::inBounds();
968 // nusw + nneg -> nuw
969 if (NW
.hasNoUnsignedSignedWrap() && Offset
.isNonNegative())
970 NW
|= GEPNoWrapFlags::noUnsignedWrap();
972 // Otherwise canonicalize this to a single ptradd.
973 LLVMContext
&Ctx
= Ptr
->getContext();
974 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx
), Ptr
,
975 ConstantInt::get(Ctx
, Offset
), NW
,
979 /// Attempt to constant fold an instruction with the
980 /// specified opcode and operands. If successful, the constant result is
981 /// returned, if not, null is returned. Note that this function can fail when
982 /// attempting to fold instructions like loads and stores, which have no
983 /// constant expression form.
984 Constant
*ConstantFoldInstOperandsImpl(const Value
*InstOrCE
, unsigned Opcode
,
985 ArrayRef
<Constant
*> Ops
,
986 const DataLayout
&DL
,
987 const TargetLibraryInfo
*TLI
,
988 bool AllowNonDeterministic
) {
989 Type
*DestTy
= InstOrCE
->getType();
991 if (Instruction::isUnaryOp(Opcode
))
992 return ConstantFoldUnaryOpOperand(Opcode
, Ops
[0], DL
);
994 if (Instruction::isBinaryOp(Opcode
)) {
998 case Instruction::FAdd
:
999 case Instruction::FSub
:
1000 case Instruction::FMul
:
1001 case Instruction::FDiv
:
1002 case Instruction::FRem
:
1003 // Handle floating point instructions separately to account for denormals
1004 // TODO: If a constant expression is being folded rather than an
1005 // instruction, denormals will not be flushed/treated as zero
1006 if (const auto *I
= dyn_cast
<Instruction
>(InstOrCE
)) {
1007 return ConstantFoldFPInstOperands(Opcode
, Ops
[0], Ops
[1], DL
, I
,
1008 AllowNonDeterministic
);
1011 return ConstantFoldBinaryOpOperands(Opcode
, Ops
[0], Ops
[1], DL
);
1014 if (Instruction::isCast(Opcode
))
1015 return ConstantFoldCastOperand(Opcode
, Ops
[0], DestTy
, DL
);
1017 if (auto *GEP
= dyn_cast
<GEPOperator
>(InstOrCE
)) {
1018 Type
*SrcElemTy
= GEP
->getSourceElementType();
1019 if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy
))
1022 if (Constant
*C
= SymbolicallyEvaluateGEP(GEP
, Ops
, DL
, TLI
))
1025 return ConstantExpr::getGetElementPtr(SrcElemTy
, Ops
[0], Ops
.slice(1),
1026 GEP
->getNoWrapFlags(),
1030 if (auto *CE
= dyn_cast
<ConstantExpr
>(InstOrCE
))
1031 return CE
->getWithOperands(Ops
);
1034 default: return nullptr;
1035 case Instruction::ICmp
:
1036 case Instruction::FCmp
: {
1037 auto *C
= cast
<CmpInst
>(InstOrCE
);
1038 return ConstantFoldCompareInstOperands(C
->getPredicate(), Ops
[0], Ops
[1],
1041 case Instruction::Freeze
:
1042 return isGuaranteedNotToBeUndefOrPoison(Ops
[0]) ? Ops
[0] : nullptr;
1043 case Instruction::Call
:
1044 if (auto *F
= dyn_cast
<Function
>(Ops
.back())) {
1045 const auto *Call
= cast
<CallBase
>(InstOrCE
);
1046 if (canConstantFoldCallTo(Call
, F
))
1047 return ConstantFoldCall(Call
, F
, Ops
.slice(0, Ops
.size() - 1), TLI
,
1048 AllowNonDeterministic
);
1051 case Instruction::Select
:
1052 return ConstantFoldSelectInstruction(Ops
[0], Ops
[1], Ops
[2]);
1053 case Instruction::ExtractElement
:
1054 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
1055 case Instruction::ExtractValue
:
1056 return ConstantFoldExtractValueInstruction(
1057 Ops
[0], cast
<ExtractValueInst
>(InstOrCE
)->getIndices());
1058 case Instruction::InsertElement
:
1059 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
1060 case Instruction::InsertValue
:
1061 return ConstantFoldInsertValueInstruction(
1062 Ops
[0], Ops
[1], cast
<InsertValueInst
>(InstOrCE
)->getIndices());
1063 case Instruction::ShuffleVector
:
1064 return ConstantExpr::getShuffleVector(
1065 Ops
[0], Ops
[1], cast
<ShuffleVectorInst
>(InstOrCE
)->getShuffleMask());
1066 case Instruction::Load
: {
1067 const auto *LI
= dyn_cast
<LoadInst
>(InstOrCE
);
1068 if (LI
->isVolatile())
1070 return ConstantFoldLoadFromConstPtr(Ops
[0], LI
->getType(), DL
);
1075 } // end anonymous namespace
1077 //===----------------------------------------------------------------------===//
1078 // Constant Folding public APIs
1079 //===----------------------------------------------------------------------===//
1084 ConstantFoldConstantImpl(const Constant
*C
, const DataLayout
&DL
,
1085 const TargetLibraryInfo
*TLI
,
1086 SmallDenseMap
<Constant
*, Constant
*> &FoldedOps
) {
1087 if (!isa
<ConstantVector
>(C
) && !isa
<ConstantExpr
>(C
))
1088 return const_cast<Constant
*>(C
);
1090 SmallVector
<Constant
*, 8> Ops
;
1091 for (const Use
&OldU
: C
->operands()) {
1092 Constant
*OldC
= cast
<Constant
>(&OldU
);
1093 Constant
*NewC
= OldC
;
1094 // Recursively fold the ConstantExpr's operands. If we have already folded
1095 // a ConstantExpr, we don't have to process it again.
1096 if (isa
<ConstantVector
>(OldC
) || isa
<ConstantExpr
>(OldC
)) {
1097 auto It
= FoldedOps
.find(OldC
);
1098 if (It
== FoldedOps
.end()) {
1099 NewC
= ConstantFoldConstantImpl(OldC
, DL
, TLI
, FoldedOps
);
1100 FoldedOps
.insert({OldC
, NewC
});
1105 Ops
.push_back(NewC
);
1108 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1109 if (Constant
*Res
= ConstantFoldInstOperandsImpl(
1110 CE
, CE
->getOpcode(), Ops
, DL
, TLI
, /*AllowNonDeterministic=*/true))
1112 return const_cast<Constant
*>(C
);
1115 assert(isa
<ConstantVector
>(C
));
1116 return ConstantVector::get(Ops
);
1119 } // end anonymous namespace
1121 Constant
*llvm::ConstantFoldInstruction(Instruction
*I
, const DataLayout
&DL
,
1122 const TargetLibraryInfo
*TLI
) {
1123 // Handle PHI nodes quickly here...
1124 if (auto *PN
= dyn_cast
<PHINode
>(I
)) {
1125 Constant
*CommonValue
= nullptr;
1127 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1128 for (Value
*Incoming
: PN
->incoming_values()) {
1129 // If the incoming value is undef then skip it. Note that while we could
1130 // skip the value if it is equal to the phi node itself we choose not to
1131 // because that would break the rule that constant folding only applies if
1132 // all operands are constants.
1133 if (isa
<UndefValue
>(Incoming
))
1135 // If the incoming value is not a constant, then give up.
1136 auto *C
= dyn_cast
<Constant
>(Incoming
);
1139 // Fold the PHI's operands.
1140 C
= ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
);
1141 // If the incoming value is a different constant to
1142 // the one we saw previously, then give up.
1143 if (CommonValue
&& C
!= CommonValue
)
1148 // If we reach here, all incoming values are the same constant or undef.
1149 return CommonValue
? CommonValue
: UndefValue::get(PN
->getType());
1152 // Scan the operand list, checking to see if they are all constants, if so,
1153 // hand off to ConstantFoldInstOperandsImpl.
1154 if (!all_of(I
->operands(), [](Use
&U
) { return isa
<Constant
>(U
); }))
1157 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1158 SmallVector
<Constant
*, 8> Ops
;
1159 for (const Use
&OpU
: I
->operands()) {
1160 auto *Op
= cast
<Constant
>(&OpU
);
1161 // Fold the Instruction's operands.
1162 Op
= ConstantFoldConstantImpl(Op
, DL
, TLI
, FoldedOps
);
1166 return ConstantFoldInstOperands(I
, Ops
, DL
, TLI
);
1169 Constant
*llvm::ConstantFoldConstant(const Constant
*C
, const DataLayout
&DL
,
1170 const TargetLibraryInfo
*TLI
) {
1171 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1172 return ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
);
1175 Constant
*llvm::ConstantFoldInstOperands(Instruction
*I
,
1176 ArrayRef
<Constant
*> Ops
,
1177 const DataLayout
&DL
,
1178 const TargetLibraryInfo
*TLI
,
1179 bool AllowNonDeterministic
) {
1180 return ConstantFoldInstOperandsImpl(I
, I
->getOpcode(), Ops
, DL
, TLI
,
1181 AllowNonDeterministic
);
1184 Constant
*llvm::ConstantFoldCompareInstOperands(
1185 unsigned IntPredicate
, Constant
*Ops0
, Constant
*Ops1
, const DataLayout
&DL
,
1186 const TargetLibraryInfo
*TLI
, const Instruction
*I
) {
1187 CmpInst::Predicate Predicate
= (CmpInst::Predicate
)IntPredicate
;
1188 // fold: icmp (inttoptr x), null -> icmp x, 0
1189 // fold: icmp null, (inttoptr x) -> icmp 0, x
1190 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1191 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1192 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1193 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1195 // FIXME: The following comment is out of data and the DataLayout is here now.
1196 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1197 // around to know if bit truncation is happening.
1198 if (auto *CE0
= dyn_cast
<ConstantExpr
>(Ops0
)) {
1199 if (Ops1
->isNullValue()) {
1200 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1201 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1202 // Convert the integer value to the right size to ensure we get the
1203 // proper extension or truncation.
1204 if (Constant
*C
= ConstantFoldIntegerCast(CE0
->getOperand(0), IntPtrTy
,
1205 /*IsSigned*/ false, DL
)) {
1206 Constant
*Null
= Constant::getNullValue(C
->getType());
1207 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1211 // Only do this transformation if the int is intptrty in size, otherwise
1212 // there is a truncation or extension that we aren't modeling.
1213 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1214 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1215 if (CE0
->getType() == IntPtrTy
) {
1216 Constant
*C
= CE0
->getOperand(0);
1217 Constant
*Null
= Constant::getNullValue(C
->getType());
1218 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1223 if (auto *CE1
= dyn_cast
<ConstantExpr
>(Ops1
)) {
1224 if (CE0
->getOpcode() == CE1
->getOpcode()) {
1225 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1226 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1228 // Convert the integer value to the right size to ensure we get the
1229 // proper extension or truncation.
1230 Constant
*C0
= ConstantFoldIntegerCast(CE0
->getOperand(0), IntPtrTy
,
1231 /*IsSigned*/ false, DL
);
1232 Constant
*C1
= ConstantFoldIntegerCast(CE1
->getOperand(0), IntPtrTy
,
1233 /*IsSigned*/ false, DL
);
1235 return ConstantFoldCompareInstOperands(Predicate
, C0
, C1
, DL
, TLI
);
1238 // Only do this transformation if the int is intptrty in size, otherwise
1239 // there is a truncation or extension that we aren't modeling.
1240 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1241 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1242 if (CE0
->getType() == IntPtrTy
&&
1243 CE0
->getOperand(0)->getType() == CE1
->getOperand(0)->getType()) {
1244 return ConstantFoldCompareInstOperands(
1245 Predicate
, CE0
->getOperand(0), CE1
->getOperand(0), DL
, TLI
);
1251 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1252 // offset1 pred offset2, for the case where the offset is inbounds. This
1253 // only works for equality and unsigned comparison, as inbounds permits
1254 // crossing the sign boundary. However, the offset comparison itself is
1256 if (Ops0
->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate
)) {
1257 unsigned IndexWidth
= DL
.getIndexTypeSizeInBits(Ops0
->getType());
1258 APInt
Offset0(IndexWidth
, 0);
1260 Ops0
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset0
);
1261 APInt
Offset1(IndexWidth
, 0);
1263 Ops1
->stripAndAccumulateInBoundsConstantOffsets(DL
, Offset1
);
1264 if (Stripped0
== Stripped1
)
1265 return ConstantInt::getBool(
1267 ICmpInst::compare(Offset0
, Offset1
,
1268 ICmpInst::getSignedPredicate(Predicate
)));
1270 } else if (isa
<ConstantExpr
>(Ops1
)) {
1271 // If RHS is a constant expression, but the left side isn't, swap the
1272 // operands and try again.
1273 Predicate
= ICmpInst::getSwappedPredicate(Predicate
);
1274 return ConstantFoldCompareInstOperands(Predicate
, Ops1
, Ops0
, DL
, TLI
);
1277 if (CmpInst::isFPPredicate(Predicate
)) {
1278 // Flush any denormal constant float input according to denormal handling
1280 Ops0
= FlushFPConstant(Ops0
, I
, /*IsOutput=*/false);
1283 Ops1
= FlushFPConstant(Ops1
, I
, /*IsOutput=*/false);
1288 return ConstantFoldCompareInstruction(Predicate
, Ops0
, Ops1
);
1291 Constant
*llvm::ConstantFoldUnaryOpOperand(unsigned Opcode
, Constant
*Op
,
1292 const DataLayout
&DL
) {
1293 assert(Instruction::isUnaryOp(Opcode
));
1295 return ConstantFoldUnaryInstruction(Opcode
, Op
);
1298 Constant
*llvm::ConstantFoldBinaryOpOperands(unsigned Opcode
, Constant
*LHS
,
1300 const DataLayout
&DL
) {
1301 assert(Instruction::isBinaryOp(Opcode
));
1302 if (isa
<ConstantExpr
>(LHS
) || isa
<ConstantExpr
>(RHS
))
1303 if (Constant
*C
= SymbolicallyEvaluateBinop(Opcode
, LHS
, RHS
, DL
))
1306 if (ConstantExpr::isDesirableBinOp(Opcode
))
1307 return ConstantExpr::get(Opcode
, LHS
, RHS
);
1308 return ConstantFoldBinaryInstruction(Opcode
, LHS
, RHS
);
1311 static ConstantFP
*flushDenormalConstant(Type
*Ty
, const APFloat
&APF
,
1312 DenormalMode::DenormalModeKind Mode
) {
1314 case DenormalMode::Dynamic
:
1316 case DenormalMode::IEEE
:
1317 return ConstantFP::get(Ty
->getContext(), APF
);
1318 case DenormalMode::PreserveSign
:
1319 return ConstantFP::get(
1321 APFloat::getZero(APF
.getSemantics(), APF
.isNegative()));
1322 case DenormalMode::PositiveZero
:
1323 return ConstantFP::get(Ty
->getContext(),
1324 APFloat::getZero(APF
.getSemantics(), false));
1329 llvm_unreachable("unknown denormal mode");
1332 /// Return the denormal mode that can be assumed when executing a floating point
1333 /// operation at \p CtxI.
1334 static DenormalMode
getInstrDenormalMode(const Instruction
*CtxI
, Type
*Ty
) {
1335 if (!CtxI
|| !CtxI
->getParent() || !CtxI
->getFunction())
1336 return DenormalMode::getDynamic();
1337 return CtxI
->getFunction()->getDenormalMode(Ty
->getFltSemantics());
1340 static ConstantFP
*flushDenormalConstantFP(ConstantFP
*CFP
,
1341 const Instruction
*Inst
,
1343 const APFloat
&APF
= CFP
->getValueAPF();
1344 if (!APF
.isDenormal())
1347 DenormalMode Mode
= getInstrDenormalMode(Inst
, CFP
->getType());
1348 return flushDenormalConstant(CFP
->getType(), APF
,
1349 IsOutput
? Mode
.Output
: Mode
.Input
);
1352 Constant
*llvm::FlushFPConstant(Constant
*Operand
, const Instruction
*Inst
,
1354 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(Operand
))
1355 return flushDenormalConstantFP(CFP
, Inst
, IsOutput
);
1357 if (isa
<ConstantAggregateZero
, UndefValue
, ConstantExpr
>(Operand
))
1360 Type
*Ty
= Operand
->getType();
1361 VectorType
*VecTy
= dyn_cast
<VectorType
>(Ty
);
1363 if (auto *Splat
= dyn_cast_or_null
<ConstantFP
>(Operand
->getSplatValue())) {
1364 ConstantFP
*Folded
= flushDenormalConstantFP(Splat
, Inst
, IsOutput
);
1367 return ConstantVector::getSplat(VecTy
->getElementCount(), Folded
);
1370 Ty
= VecTy
->getElementType();
1373 if (const auto *CV
= dyn_cast
<ConstantVector
>(Operand
)) {
1374 SmallVector
<Constant
*, 16> NewElts
;
1375 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
1376 Constant
*Element
= CV
->getAggregateElement(i
);
1377 if (isa
<UndefValue
>(Element
)) {
1378 NewElts
.push_back(Element
);
1382 ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(Element
);
1386 ConstantFP
*Folded
= flushDenormalConstantFP(CFP
, Inst
, IsOutput
);
1389 NewElts
.push_back(Folded
);
1392 return ConstantVector::get(NewElts
);
1395 if (const auto *CDV
= dyn_cast
<ConstantDataVector
>(Operand
)) {
1396 SmallVector
<Constant
*, 16> NewElts
;
1397 for (unsigned I
= 0, E
= CDV
->getNumElements(); I
< E
; ++I
) {
1398 const APFloat
&Elt
= CDV
->getElementAsAPFloat(I
);
1399 if (!Elt
.isDenormal()) {
1400 NewElts
.push_back(ConstantFP::get(Ty
, Elt
));
1402 DenormalMode Mode
= getInstrDenormalMode(Inst
, Ty
);
1403 ConstantFP
*Folded
=
1404 flushDenormalConstant(Ty
, Elt
, IsOutput
? Mode
.Output
: Mode
.Input
);
1407 NewElts
.push_back(Folded
);
1411 return ConstantVector::get(NewElts
);
1417 Constant
*llvm::ConstantFoldFPInstOperands(unsigned Opcode
, Constant
*LHS
,
1418 Constant
*RHS
, const DataLayout
&DL
,
1419 const Instruction
*I
,
1420 bool AllowNonDeterministic
) {
1421 if (Instruction::isBinaryOp(Opcode
)) {
1422 // Flush denormal inputs if needed.
1423 Constant
*Op0
= FlushFPConstant(LHS
, I
, /* IsOutput */ false);
1426 Constant
*Op1
= FlushFPConstant(RHS
, I
, /* IsOutput */ false);
1430 // If nsz or an algebraic FMF flag is set, the result of the FP operation
1431 // may change due to future optimization. Don't constant fold them if
1432 // non-deterministic results are not allowed.
1433 if (!AllowNonDeterministic
)
1434 if (auto *FP
= dyn_cast_or_null
<FPMathOperator
>(I
))
1435 if (FP
->hasNoSignedZeros() || FP
->hasAllowReassoc() ||
1436 FP
->hasAllowContract() || FP
->hasAllowReciprocal())
1439 // Calculate constant result.
1440 Constant
*C
= ConstantFoldBinaryOpOperands(Opcode
, Op0
, Op1
, DL
);
1444 // Flush denormal output if needed.
1445 C
= FlushFPConstant(C
, I
, /* IsOutput */ true);
1449 // The precise NaN value is non-deterministic.
1450 if (!AllowNonDeterministic
&& C
->isNaN())
1455 // If instruction lacks a parent/function and the denormal mode cannot be
1456 // determined, use the default (IEEE).
1457 return ConstantFoldBinaryOpOperands(Opcode
, LHS
, RHS
, DL
);
1460 Constant
*llvm::ConstantFoldCastOperand(unsigned Opcode
, Constant
*C
,
1461 Type
*DestTy
, const DataLayout
&DL
) {
1462 assert(Instruction::isCast(Opcode
));
1465 llvm_unreachable("Missing case");
1466 case Instruction::PtrToInt
:
1467 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1468 Constant
*FoldedValue
= nullptr;
1469 // If the input is a inttoptr, eliminate the pair. This requires knowing
1470 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1471 if (CE
->getOpcode() == Instruction::IntToPtr
) {
1472 // zext/trunc the inttoptr to pointer size.
1473 FoldedValue
= ConstantFoldIntegerCast(CE
->getOperand(0),
1474 DL
.getIntPtrType(CE
->getType()),
1475 /*IsSigned=*/false, DL
);
1476 } else if (auto *GEP
= dyn_cast
<GEPOperator
>(CE
)) {
1477 // If we have GEP, we can perform the following folds:
1478 // (ptrtoint (gep null, x)) -> x
1479 // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1480 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
1481 APInt
BaseOffset(BitWidth
, 0);
1482 auto *Base
= cast
<Constant
>(GEP
->stripAndAccumulateConstantOffsets(
1483 DL
, BaseOffset
, /*AllowNonInbounds=*/true));
1484 if (Base
->isNullValue()) {
1485 FoldedValue
= ConstantInt::get(CE
->getContext(), BaseOffset
);
1487 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1488 if (GEP
->getNumIndices() == 1 &&
1489 GEP
->getSourceElementType()->isIntegerTy(8)) {
1490 auto *Ptr
= cast
<Constant
>(GEP
->getPointerOperand());
1491 auto *Sub
= dyn_cast
<ConstantExpr
>(GEP
->getOperand(1));
1492 Type
*IntIdxTy
= DL
.getIndexType(Ptr
->getType());
1493 if (Sub
&& Sub
->getType() == IntIdxTy
&&
1494 Sub
->getOpcode() == Instruction::Sub
&&
1495 Sub
->getOperand(0)->isNullValue())
1496 FoldedValue
= ConstantExpr::getSub(
1497 ConstantExpr::getPtrToInt(Ptr
, IntIdxTy
), Sub
->getOperand(1));
1502 // Do a zext or trunc to get to the ptrtoint dest size.
1503 return ConstantFoldIntegerCast(FoldedValue
, DestTy
, /*IsSigned=*/false,
1508 case Instruction::IntToPtr
:
1509 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1510 // the int size is >= the ptr size and the address spaces are the same.
1511 // This requires knowing the width of a pointer, so it can't be done in
1512 // ConstantExpr::getCast.
1513 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1514 if (CE
->getOpcode() == Instruction::PtrToInt
) {
1515 Constant
*SrcPtr
= CE
->getOperand(0);
1516 unsigned SrcPtrSize
= DL
.getPointerTypeSizeInBits(SrcPtr
->getType());
1517 unsigned MidIntSize
= CE
->getType()->getScalarSizeInBits();
1519 if (MidIntSize
>= SrcPtrSize
) {
1520 unsigned SrcAS
= SrcPtr
->getType()->getPointerAddressSpace();
1521 if (SrcAS
== DestTy
->getPointerAddressSpace())
1522 return FoldBitCast(CE
->getOperand(0), DestTy
, DL
);
1527 case Instruction::Trunc
:
1528 case Instruction::ZExt
:
1529 case Instruction::SExt
:
1530 case Instruction::FPTrunc
:
1531 case Instruction::FPExt
:
1532 case Instruction::UIToFP
:
1533 case Instruction::SIToFP
:
1534 case Instruction::FPToUI
:
1535 case Instruction::FPToSI
:
1536 case Instruction::AddrSpaceCast
:
1538 case Instruction::BitCast
:
1539 return FoldBitCast(C
, DestTy
, DL
);
1542 if (ConstantExpr::isDesirableCastOp(Opcode
))
1543 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1544 return ConstantFoldCastInstruction(Opcode
, C
, DestTy
);
1547 Constant
*llvm::ConstantFoldIntegerCast(Constant
*C
, Type
*DestTy
,
1548 bool IsSigned
, const DataLayout
&DL
) {
1549 Type
*SrcTy
= C
->getType();
1550 if (SrcTy
== DestTy
)
1552 if (SrcTy
->getScalarSizeInBits() > DestTy
->getScalarSizeInBits())
1553 return ConstantFoldCastOperand(Instruction::Trunc
, C
, DestTy
, DL
);
1555 return ConstantFoldCastOperand(Instruction::SExt
, C
, DestTy
, DL
);
1556 return ConstantFoldCastOperand(Instruction::ZExt
, C
, DestTy
, DL
);
1559 //===----------------------------------------------------------------------===//
1560 // Constant Folding for Calls
1563 bool llvm::canConstantFoldCallTo(const CallBase
*Call
, const Function
*F
) {
1564 if (Call
->isNoBuiltin())
1566 if (Call
->getFunctionType() != F
->getFunctionType())
1568 switch (F
->getIntrinsicID()) {
1569 // Operations that do not operate floating-point numbers and do not depend on
1570 // FP environment can be folded even in strictfp functions.
1571 case Intrinsic::bswap
:
1572 case Intrinsic::ctpop
:
1573 case Intrinsic::ctlz
:
1574 case Intrinsic::cttz
:
1575 case Intrinsic::fshl
:
1576 case Intrinsic::fshr
:
1577 case Intrinsic::launder_invariant_group
:
1578 case Intrinsic::strip_invariant_group
:
1579 case Intrinsic::masked_load
:
1580 case Intrinsic::get_active_lane_mask
:
1581 case Intrinsic::abs
:
1582 case Intrinsic::smax
:
1583 case Intrinsic::smin
:
1584 case Intrinsic::umax
:
1585 case Intrinsic::umin
:
1586 case Intrinsic::scmp
:
1587 case Intrinsic::ucmp
:
1588 case Intrinsic::sadd_with_overflow
:
1589 case Intrinsic::uadd_with_overflow
:
1590 case Intrinsic::ssub_with_overflow
:
1591 case Intrinsic::usub_with_overflow
:
1592 case Intrinsic::smul_with_overflow
:
1593 case Intrinsic::umul_with_overflow
:
1594 case Intrinsic::sadd_sat
:
1595 case Intrinsic::uadd_sat
:
1596 case Intrinsic::ssub_sat
:
1597 case Intrinsic::usub_sat
:
1598 case Intrinsic::smul_fix
:
1599 case Intrinsic::smul_fix_sat
:
1600 case Intrinsic::bitreverse
:
1601 case Intrinsic::is_constant
:
1602 case Intrinsic::vector_reduce_add
:
1603 case Intrinsic::vector_reduce_mul
:
1604 case Intrinsic::vector_reduce_and
:
1605 case Intrinsic::vector_reduce_or
:
1606 case Intrinsic::vector_reduce_xor
:
1607 case Intrinsic::vector_reduce_smin
:
1608 case Intrinsic::vector_reduce_smax
:
1609 case Intrinsic::vector_reduce_umin
:
1610 case Intrinsic::vector_reduce_umax
:
1611 // Target intrinsics
1612 case Intrinsic::amdgcn_perm
:
1613 case Intrinsic::amdgcn_wave_reduce_umin
:
1614 case Intrinsic::amdgcn_wave_reduce_umax
:
1615 case Intrinsic::amdgcn_s_wqm
:
1616 case Intrinsic::amdgcn_s_quadmask
:
1617 case Intrinsic::amdgcn_s_bitreplicate
:
1618 case Intrinsic::arm_mve_vctp8
:
1619 case Intrinsic::arm_mve_vctp16
:
1620 case Intrinsic::arm_mve_vctp32
:
1621 case Intrinsic::arm_mve_vctp64
:
1622 case Intrinsic::aarch64_sve_convert_from_svbool
:
1623 // WebAssembly float semantics are always known
1624 case Intrinsic::wasm_trunc_signed
:
1625 case Intrinsic::wasm_trunc_unsigned
:
1628 // Floating point operations cannot be folded in strictfp functions in
1629 // general case. They can be folded if FP environment is known to compiler.
1630 case Intrinsic::minnum
:
1631 case Intrinsic::maxnum
:
1632 case Intrinsic::minimum
:
1633 case Intrinsic::maximum
:
1634 case Intrinsic::log
:
1635 case Intrinsic::log2
:
1636 case Intrinsic::log10
:
1637 case Intrinsic::exp
:
1638 case Intrinsic::exp2
:
1639 case Intrinsic::exp10
:
1640 case Intrinsic::sqrt
:
1641 case Intrinsic::sin
:
1642 case Intrinsic::cos
:
1643 case Intrinsic::sincos
:
1644 case Intrinsic::pow
:
1645 case Intrinsic::powi
:
1646 case Intrinsic::ldexp
:
1647 case Intrinsic::fma
:
1648 case Intrinsic::fmuladd
:
1649 case Intrinsic::frexp
:
1650 case Intrinsic::fptoui_sat
:
1651 case Intrinsic::fptosi_sat
:
1652 case Intrinsic::convert_from_fp16
:
1653 case Intrinsic::convert_to_fp16
:
1654 case Intrinsic::amdgcn_cos
:
1655 case Intrinsic::amdgcn_cubeid
:
1656 case Intrinsic::amdgcn_cubema
:
1657 case Intrinsic::amdgcn_cubesc
:
1658 case Intrinsic::amdgcn_cubetc
:
1659 case Intrinsic::amdgcn_fmul_legacy
:
1660 case Intrinsic::amdgcn_fma_legacy
:
1661 case Intrinsic::amdgcn_fract
:
1662 case Intrinsic::amdgcn_sin
:
1663 // The intrinsics below depend on rounding mode in MXCSR.
1664 case Intrinsic::x86_sse_cvtss2si
:
1665 case Intrinsic::x86_sse_cvtss2si64
:
1666 case Intrinsic::x86_sse_cvttss2si
:
1667 case Intrinsic::x86_sse_cvttss2si64
:
1668 case Intrinsic::x86_sse2_cvtsd2si
:
1669 case Intrinsic::x86_sse2_cvtsd2si64
:
1670 case Intrinsic::x86_sse2_cvttsd2si
:
1671 case Intrinsic::x86_sse2_cvttsd2si64
:
1672 case Intrinsic::x86_avx512_vcvtss2si32
:
1673 case Intrinsic::x86_avx512_vcvtss2si64
:
1674 case Intrinsic::x86_avx512_cvttss2si
:
1675 case Intrinsic::x86_avx512_cvttss2si64
:
1676 case Intrinsic::x86_avx512_vcvtsd2si32
:
1677 case Intrinsic::x86_avx512_vcvtsd2si64
:
1678 case Intrinsic::x86_avx512_cvttsd2si
:
1679 case Intrinsic::x86_avx512_cvttsd2si64
:
1680 case Intrinsic::x86_avx512_vcvtss2usi32
:
1681 case Intrinsic::x86_avx512_vcvtss2usi64
:
1682 case Intrinsic::x86_avx512_cvttss2usi
:
1683 case Intrinsic::x86_avx512_cvttss2usi64
:
1684 case Intrinsic::x86_avx512_vcvtsd2usi32
:
1685 case Intrinsic::x86_avx512_vcvtsd2usi64
:
1686 case Intrinsic::x86_avx512_cvttsd2usi
:
1687 case Intrinsic::x86_avx512_cvttsd2usi64
:
1688 return !Call
->isStrictFP();
1690 // Sign operations are actually bitwise operations, they do not raise
1691 // exceptions even for SNANs.
1692 case Intrinsic::fabs
:
1693 case Intrinsic::copysign
:
1694 case Intrinsic::is_fpclass
:
1695 // Non-constrained variants of rounding operations means default FP
1696 // environment, they can be folded in any case.
1697 case Intrinsic::ceil
:
1698 case Intrinsic::floor
:
1699 case Intrinsic::round
:
1700 case Intrinsic::roundeven
:
1701 case Intrinsic::trunc
:
1702 case Intrinsic::nearbyint
:
1703 case Intrinsic::rint
:
1704 case Intrinsic::canonicalize
:
1705 // Constrained intrinsics can be folded if FP environment is known
1707 case Intrinsic::experimental_constrained_fma
:
1708 case Intrinsic::experimental_constrained_fmuladd
:
1709 case Intrinsic::experimental_constrained_fadd
:
1710 case Intrinsic::experimental_constrained_fsub
:
1711 case Intrinsic::experimental_constrained_fmul
:
1712 case Intrinsic::experimental_constrained_fdiv
:
1713 case Intrinsic::experimental_constrained_frem
:
1714 case Intrinsic::experimental_constrained_ceil
:
1715 case Intrinsic::experimental_constrained_floor
:
1716 case Intrinsic::experimental_constrained_round
:
1717 case Intrinsic::experimental_constrained_roundeven
:
1718 case Intrinsic::experimental_constrained_trunc
:
1719 case Intrinsic::experimental_constrained_nearbyint
:
1720 case Intrinsic::experimental_constrained_rint
:
1721 case Intrinsic::experimental_constrained_fcmp
:
1722 case Intrinsic::experimental_constrained_fcmps
:
1726 case Intrinsic::not_intrinsic
: break;
1729 if (!F
->hasName() || Call
->isStrictFP())
1732 // In these cases, the check of the length is required. We don't want to
1733 // return true for a name like "cos\0blah" which strcmp would return equal to
1734 // "cos", but has length 8.
1735 StringRef Name
= F
->getName();
1740 return Name
== "acos" || Name
== "acosf" ||
1741 Name
== "asin" || Name
== "asinf" ||
1742 Name
== "atan" || Name
== "atanf" ||
1743 Name
== "atan2" || Name
== "atan2f";
1745 return Name
== "ceil" || Name
== "ceilf" ||
1746 Name
== "cos" || Name
== "cosf" ||
1747 Name
== "cosh" || Name
== "coshf";
1749 return Name
== "exp" || Name
== "expf" || Name
== "exp2" ||
1750 Name
== "exp2f" || Name
== "erf" || Name
== "erff";
1752 return Name
== "fabs" || Name
== "fabsf" ||
1753 Name
== "floor" || Name
== "floorf" ||
1754 Name
== "fmod" || Name
== "fmodf";
1756 return Name
== "ilogb" || Name
== "ilogbf";
1758 return Name
== "log" || Name
== "logf" || Name
== "logl" ||
1759 Name
== "log2" || Name
== "log2f" || Name
== "log10" ||
1760 Name
== "log10f" || Name
== "logb" || Name
== "logbf" ||
1761 Name
== "log1p" || Name
== "log1pf";
1763 return Name
== "nearbyint" || Name
== "nearbyintf";
1765 return Name
== "pow" || Name
== "powf";
1767 return Name
== "remainder" || Name
== "remainderf" ||
1768 Name
== "rint" || Name
== "rintf" ||
1769 Name
== "round" || Name
== "roundf";
1771 return Name
== "sin" || Name
== "sinf" ||
1772 Name
== "sinh" || Name
== "sinhf" ||
1773 Name
== "sqrt" || Name
== "sqrtf";
1775 return Name
== "tan" || Name
== "tanf" ||
1776 Name
== "tanh" || Name
== "tanhf" ||
1777 Name
== "trunc" || Name
== "truncf";
1779 // Check for various function names that get used for the math functions
1780 // when the header files are preprocessed with the macro
1781 // __FINITE_MATH_ONLY__ enabled.
1782 // The '12' here is the length of the shortest name that can match.
1783 // We need to check the size before looking at Name[1] and Name[2]
1784 // so we may as well check a limit that will eliminate mismatches.
1785 if (Name
.size() < 12 || Name
[1] != '_')
1791 return Name
== "__acos_finite" || Name
== "__acosf_finite" ||
1792 Name
== "__asin_finite" || Name
== "__asinf_finite" ||
1793 Name
== "__atan2_finite" || Name
== "__atan2f_finite";
1795 return Name
== "__cosh_finite" || Name
== "__coshf_finite";
1797 return Name
== "__exp_finite" || Name
== "__expf_finite" ||
1798 Name
== "__exp2_finite" || Name
== "__exp2f_finite";
1800 return Name
== "__log_finite" || Name
== "__logf_finite" ||
1801 Name
== "__log10_finite" || Name
== "__log10f_finite";
1803 return Name
== "__pow_finite" || Name
== "__powf_finite";
1805 return Name
== "__sinh_finite" || Name
== "__sinhf_finite";
1812 Constant
*GetConstantFoldFPValue(double V
, Type
*Ty
) {
1813 if (Ty
->isHalfTy() || Ty
->isFloatTy()) {
1816 APF
.convert(Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &unused
);
1817 return ConstantFP::get(Ty
->getContext(), APF
);
1819 if (Ty
->isDoubleTy())
1820 return ConstantFP::get(Ty
->getContext(), APFloat(V
));
1821 llvm_unreachable("Can only constant fold half/float/double");
1824 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1825 Constant
*GetConstantFoldFPValue128(float128 V
, Type
*Ty
) {
1826 if (Ty
->isFP128Ty())
1827 return ConstantFP::get(Ty
, V
);
1828 llvm_unreachable("Can only constant fold fp128");
1832 /// Clear the floating-point exception state.
1833 inline void llvm_fenv_clearexcept() {
1834 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1835 feclearexcept(FE_ALL_EXCEPT
);
1840 /// Test if a floating-point exception was raised.
1841 inline bool llvm_fenv_testexcept() {
1842 int errno_val
= errno
;
1843 if (errno_val
== ERANGE
|| errno_val
== EDOM
)
1845 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1846 if (fetestexcept(FE_ALL_EXCEPT
& ~FE_INEXACT
))
1852 Constant
*ConstantFoldFP(double (*NativeFP
)(double), const APFloat
&V
,
1854 llvm_fenv_clearexcept();
1855 double Result
= NativeFP(V
.convertToDouble());
1856 if (llvm_fenv_testexcept()) {
1857 llvm_fenv_clearexcept();
1861 return GetConstantFoldFPValue(Result
, Ty
);
1864 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1865 Constant
*ConstantFoldFP128(float128 (*NativeFP
)(float128
), const APFloat
&V
,
1867 llvm_fenv_clearexcept();
1868 float128 Result
= NativeFP(V
.convertToQuad());
1869 if (llvm_fenv_testexcept()) {
1870 llvm_fenv_clearexcept();
1874 return GetConstantFoldFPValue128(Result
, Ty
);
1878 Constant
*ConstantFoldBinaryFP(double (*NativeFP
)(double, double),
1879 const APFloat
&V
, const APFloat
&W
, Type
*Ty
) {
1880 llvm_fenv_clearexcept();
1881 double Result
= NativeFP(V
.convertToDouble(), W
.convertToDouble());
1882 if (llvm_fenv_testexcept()) {
1883 llvm_fenv_clearexcept();
1887 return GetConstantFoldFPValue(Result
, Ty
);
1890 Constant
*constantFoldVectorReduce(Intrinsic::ID IID
, Constant
*Op
) {
1891 FixedVectorType
*VT
= dyn_cast
<FixedVectorType
>(Op
->getType());
1895 // This isn't strictly necessary, but handle the special/common case of zero:
1896 // all integer reductions of a zero input produce zero.
1897 if (isa
<ConstantAggregateZero
>(Op
))
1898 return ConstantInt::get(VT
->getElementType(), 0);
1900 // This is the same as the underlying binops - poison propagates.
1901 if (isa
<PoisonValue
>(Op
) || Op
->containsPoisonElement())
1902 return PoisonValue::get(VT
->getElementType());
1904 // TODO: Handle undef.
1905 if (!isa
<ConstantVector
>(Op
) && !isa
<ConstantDataVector
>(Op
))
1908 auto *EltC
= dyn_cast
<ConstantInt
>(Op
->getAggregateElement(0U));
1912 APInt Acc
= EltC
->getValue();
1913 for (unsigned I
= 1, E
= VT
->getNumElements(); I
!= E
; I
++) {
1914 if (!(EltC
= dyn_cast
<ConstantInt
>(Op
->getAggregateElement(I
))))
1916 const APInt
&X
= EltC
->getValue();
1918 case Intrinsic::vector_reduce_add
:
1921 case Intrinsic::vector_reduce_mul
:
1924 case Intrinsic::vector_reduce_and
:
1927 case Intrinsic::vector_reduce_or
:
1930 case Intrinsic::vector_reduce_xor
:
1933 case Intrinsic::vector_reduce_smin
:
1934 Acc
= APIntOps::smin(Acc
, X
);
1936 case Intrinsic::vector_reduce_smax
:
1937 Acc
= APIntOps::smax(Acc
, X
);
1939 case Intrinsic::vector_reduce_umin
:
1940 Acc
= APIntOps::umin(Acc
, X
);
1942 case Intrinsic::vector_reduce_umax
:
1943 Acc
= APIntOps::umax(Acc
, X
);
1948 return ConstantInt::get(Op
->getContext(), Acc
);
1951 /// Attempt to fold an SSE floating point to integer conversion of a constant
1952 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1953 /// used (toward nearest, ties to even). This matches the behavior of the
1954 /// non-truncating SSE instructions in the default rounding mode. The desired
1955 /// integer type Ty is used to select how many bits are available for the
1956 /// result. Returns null if the conversion cannot be performed, otherwise
1957 /// returns the Constant value resulting from the conversion.
1958 Constant
*ConstantFoldSSEConvertToInt(const APFloat
&Val
, bool roundTowardZero
,
1959 Type
*Ty
, bool IsSigned
) {
1960 // All of these conversion intrinsics form an integer of at most 64bits.
1961 unsigned ResultWidth
= Ty
->getIntegerBitWidth();
1962 assert(ResultWidth
<= 64 &&
1963 "Can only constant fold conversions to 64 and 32 bit ints");
1966 bool isExact
= false;
1967 APFloat::roundingMode mode
= roundTowardZero
? APFloat::rmTowardZero
1968 : APFloat::rmNearestTiesToEven
;
1969 APFloat::opStatus status
=
1970 Val
.convertToInteger(MutableArrayRef(UIntVal
), ResultWidth
,
1971 IsSigned
, mode
, &isExact
);
1972 if (status
!= APFloat::opOK
&&
1973 (!roundTowardZero
|| status
!= APFloat::opInexact
))
1975 return ConstantInt::get(Ty
, UIntVal
, IsSigned
);
1978 double getValueAsDouble(ConstantFP
*Op
) {
1979 Type
*Ty
= Op
->getType();
1981 if (Ty
->isBFloatTy() || Ty
->isHalfTy() || Ty
->isFloatTy() || Ty
->isDoubleTy())
1982 return Op
->getValueAPF().convertToDouble();
1985 APFloat APF
= Op
->getValueAPF();
1986 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &unused
);
1987 return APF
.convertToDouble();
1990 static bool getConstIntOrUndef(Value
*Op
, const APInt
*&C
) {
1991 if (auto *CI
= dyn_cast
<ConstantInt
>(Op
)) {
1992 C
= &CI
->getValue();
1995 if (isa
<UndefValue
>(Op
)) {
2002 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
2005 /// \param CI Constrained intrinsic call.
2006 /// \param St Exception flags raised during constant evaluation.
2007 static bool mayFoldConstrained(ConstrainedFPIntrinsic
*CI
,
2008 APFloat::opStatus St
) {
2009 std::optional
<RoundingMode
> ORM
= CI
->getRoundingMode();
2010 std::optional
<fp::ExceptionBehavior
> EB
= CI
->getExceptionBehavior();
2012 // If the operation does not change exception status flags, it is safe
2014 if (St
== APFloat::opStatus::opOK
)
2017 // If evaluation raised FP exception, the result can depend on rounding
2018 // mode. If the latter is unknown, folding is not possible.
2019 if (ORM
&& *ORM
== RoundingMode::Dynamic
)
2022 // If FP exceptions are ignored, fold the call, even if such exception is
2024 if (EB
&& *EB
!= fp::ExceptionBehavior::ebStrict
)
2027 // Leave the calculation for runtime so that exception flags be correctly set
2032 /// Returns the rounding mode that should be used for constant evaluation.
2034 getEvaluationRoundingMode(const ConstrainedFPIntrinsic
*CI
) {
2035 std::optional
<RoundingMode
> ORM
= CI
->getRoundingMode();
2036 if (!ORM
|| *ORM
== RoundingMode::Dynamic
)
2037 // Even if the rounding mode is unknown, try evaluating the operation.
2038 // If it does not raise inexact exception, rounding was not applied,
2039 // so the result is exact and does not depend on rounding mode. Whether
2040 // other FP exceptions are raised, it does not depend on rounding mode.
2041 return RoundingMode::NearestTiesToEven
;
2045 /// Try to constant fold llvm.canonicalize for the given caller and value.
2046 static Constant
*constantFoldCanonicalize(const Type
*Ty
, const CallBase
*CI
,
2047 const APFloat
&Src
) {
2048 // Zero, positive and negative, is always OK to fold.
2050 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2051 return ConstantFP::get(
2053 APFloat::getZero(Src
.getSemantics(), Src
.isNegative()));
2056 if (!Ty
->isIEEELikeFPTy())
2059 // Zero is always canonical and the sign must be preserved.
2061 // Denorms and nans may have special encodings, but it should be OK to fold a
2062 // totally average number.
2063 if (Src
.isNormal() || Src
.isInfinity())
2064 return ConstantFP::get(CI
->getContext(), Src
);
2066 if (Src
.isDenormal() && CI
->getParent() && CI
->getFunction()) {
2067 DenormalMode DenormMode
=
2068 CI
->getFunction()->getDenormalMode(Src
.getSemantics());
2070 if (DenormMode
== DenormalMode::getIEEE())
2071 return ConstantFP::get(CI
->getContext(), Src
);
2073 if (DenormMode
.Input
== DenormalMode::Dynamic
)
2076 // If we know if either input or output is flushed, we can fold.
2077 if ((DenormMode
.Input
== DenormalMode::Dynamic
&&
2078 DenormMode
.Output
== DenormalMode::IEEE
) ||
2079 (DenormMode
.Input
== DenormalMode::IEEE
&&
2080 DenormMode
.Output
== DenormalMode::Dynamic
))
2084 (!Src
.isNegative() || DenormMode
.Input
== DenormalMode::PositiveZero
||
2085 (DenormMode
.Output
== DenormalMode::PositiveZero
&&
2086 DenormMode
.Input
== DenormalMode::IEEE
));
2088 return ConstantFP::get(CI
->getContext(),
2089 APFloat::getZero(Src
.getSemantics(), !IsPositive
));
2095 static Constant
*ConstantFoldScalarCall1(StringRef Name
,
2096 Intrinsic::ID IntrinsicID
,
2098 ArrayRef
<Constant
*> Operands
,
2099 const TargetLibraryInfo
*TLI
,
2100 const CallBase
*Call
) {
2101 assert(Operands
.size() == 1 && "Wrong number of operands.");
2103 if (IntrinsicID
== Intrinsic::is_constant
) {
2104 // We know we have a "Constant" argument. But we want to only
2105 // return true for manifest constants, not those that depend on
2106 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2107 if (Operands
[0]->isManifestConstant())
2108 return ConstantInt::getTrue(Ty
->getContext());
2112 if (isa
<PoisonValue
>(Operands
[0])) {
2113 // TODO: All of these operations should probably propagate poison.
2114 if (IntrinsicID
== Intrinsic::canonicalize
)
2115 return PoisonValue::get(Ty
);
2118 if (isa
<UndefValue
>(Operands
[0])) {
2119 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2120 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2121 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2122 if (IntrinsicID
== Intrinsic::cos
||
2123 IntrinsicID
== Intrinsic::ctpop
||
2124 IntrinsicID
== Intrinsic::fptoui_sat
||
2125 IntrinsicID
== Intrinsic::fptosi_sat
||
2126 IntrinsicID
== Intrinsic::canonicalize
)
2127 return Constant::getNullValue(Ty
);
2128 if (IntrinsicID
== Intrinsic::bswap
||
2129 IntrinsicID
== Intrinsic::bitreverse
||
2130 IntrinsicID
== Intrinsic::launder_invariant_group
||
2131 IntrinsicID
== Intrinsic::strip_invariant_group
)
2135 if (isa
<ConstantPointerNull
>(Operands
[0])) {
2136 // launder(null) == null == strip(null) iff in addrspace 0
2137 if (IntrinsicID
== Intrinsic::launder_invariant_group
||
2138 IntrinsicID
== Intrinsic::strip_invariant_group
) {
2139 // If instruction is not yet put in a basic block (e.g. when cloning
2140 // a function during inlining), Call's caller may not be available.
2141 // So check Call's BB first before querying Call->getCaller.
2142 const Function
*Caller
=
2143 Call
->getParent() ? Call
->getCaller() : nullptr;
2145 !NullPointerIsDefined(
2146 Caller
, Operands
[0]->getType()->getPointerAddressSpace())) {
2153 if (auto *Op
= dyn_cast
<ConstantFP
>(Operands
[0])) {
2154 if (IntrinsicID
== Intrinsic::convert_to_fp16
) {
2155 APFloat
Val(Op
->getValueAPF());
2158 Val
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &lost
);
2160 return ConstantInt::get(Ty
->getContext(), Val
.bitcastToAPInt());
2163 APFloat U
= Op
->getValueAPF();
2165 if (IntrinsicID
== Intrinsic::wasm_trunc_signed
||
2166 IntrinsicID
== Intrinsic::wasm_trunc_unsigned
) {
2167 bool Signed
= IntrinsicID
== Intrinsic::wasm_trunc_signed
;
2172 unsigned Width
= Ty
->getIntegerBitWidth();
2173 APSInt
Int(Width
, !Signed
);
2174 bool IsExact
= false;
2175 APFloat::opStatus Status
=
2176 U
.convertToInteger(Int
, APFloat::rmTowardZero
, &IsExact
);
2178 if (Status
== APFloat::opOK
|| Status
== APFloat::opInexact
)
2179 return ConstantInt::get(Ty
, Int
);
2184 if (IntrinsicID
== Intrinsic::fptoui_sat
||
2185 IntrinsicID
== Intrinsic::fptosi_sat
) {
2186 // convertToInteger() already has the desired saturation semantics.
2187 APSInt
Int(Ty
->getIntegerBitWidth(),
2188 IntrinsicID
== Intrinsic::fptoui_sat
);
2190 U
.convertToInteger(Int
, APFloat::rmTowardZero
, &IsExact
);
2191 return ConstantInt::get(Ty
, Int
);
2194 if (IntrinsicID
== Intrinsic::canonicalize
)
2195 return constantFoldCanonicalize(Ty
, Call
, U
);
2197 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2198 if (Ty
->isFP128Ty()) {
2199 if (IntrinsicID
== Intrinsic::log
) {
2200 float128 Result
= logf128(Op
->getValueAPF().convertToQuad());
2201 return GetConstantFoldFPValue128(Result
, Ty
);
2204 LibFunc Fp128Func
= NotLibFunc
;
2205 if (TLI
&& TLI
->getLibFunc(Name
, Fp128Func
) && TLI
->has(Fp128Func
) &&
2206 Fp128Func
== LibFunc_logl
)
2207 return ConstantFoldFP128(logf128
, Op
->getValueAPF(), Ty
);
2211 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy() &&
2215 // Use internal versions of these intrinsics.
2217 if (IntrinsicID
== Intrinsic::nearbyint
|| IntrinsicID
== Intrinsic::rint
) {
2218 U
.roundToIntegral(APFloat::rmNearestTiesToEven
);
2219 return ConstantFP::get(Ty
->getContext(), U
);
2222 if (IntrinsicID
== Intrinsic::round
) {
2223 U
.roundToIntegral(APFloat::rmNearestTiesToAway
);
2224 return ConstantFP::get(Ty
->getContext(), U
);
2227 if (IntrinsicID
== Intrinsic::roundeven
) {
2228 U
.roundToIntegral(APFloat::rmNearestTiesToEven
);
2229 return ConstantFP::get(Ty
->getContext(), U
);
2232 if (IntrinsicID
== Intrinsic::ceil
) {
2233 U
.roundToIntegral(APFloat::rmTowardPositive
);
2234 return ConstantFP::get(Ty
->getContext(), U
);
2237 if (IntrinsicID
== Intrinsic::floor
) {
2238 U
.roundToIntegral(APFloat::rmTowardNegative
);
2239 return ConstantFP::get(Ty
->getContext(), U
);
2242 if (IntrinsicID
== Intrinsic::trunc
) {
2243 U
.roundToIntegral(APFloat::rmTowardZero
);
2244 return ConstantFP::get(Ty
->getContext(), U
);
2247 if (IntrinsicID
== Intrinsic::fabs
) {
2249 return ConstantFP::get(Ty
->getContext(), U
);
2252 if (IntrinsicID
== Intrinsic::amdgcn_fract
) {
2253 // The v_fract instruction behaves like the OpenCL spec, which defines
2254 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2255 // there to prevent fract(-small) from returning 1.0. It returns the
2256 // largest positive floating-point number less than 1.0."
2258 FloorU
.roundToIntegral(APFloat::rmTowardNegative
);
2259 APFloat
FractU(U
- FloorU
);
2260 APFloat
AlmostOne(U
.getSemantics(), 1);
2261 AlmostOne
.next(/*nextDown*/ true);
2262 return ConstantFP::get(Ty
->getContext(), minimum(FractU
, AlmostOne
));
2265 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2266 // raise FP exceptions, unless the argument is signaling NaN.
2268 std::optional
<APFloat::roundingMode
> RM
;
2269 switch (IntrinsicID
) {
2272 case Intrinsic::experimental_constrained_nearbyint
:
2273 case Intrinsic::experimental_constrained_rint
: {
2274 auto CI
= cast
<ConstrainedFPIntrinsic
>(Call
);
2275 RM
= CI
->getRoundingMode();
2276 if (!RM
|| *RM
== RoundingMode::Dynamic
)
2280 case Intrinsic::experimental_constrained_round
:
2281 RM
= APFloat::rmNearestTiesToAway
;
2283 case Intrinsic::experimental_constrained_ceil
:
2284 RM
= APFloat::rmTowardPositive
;
2286 case Intrinsic::experimental_constrained_floor
:
2287 RM
= APFloat::rmTowardNegative
;
2289 case Intrinsic::experimental_constrained_trunc
:
2290 RM
= APFloat::rmTowardZero
;
2294 auto CI
= cast
<ConstrainedFPIntrinsic
>(Call
);
2296 APFloat::opStatus St
= U
.roundToIntegral(*RM
);
2297 if (IntrinsicID
== Intrinsic::experimental_constrained_rint
&&
2298 St
== APFloat::opInexact
) {
2299 std::optional
<fp::ExceptionBehavior
> EB
= CI
->getExceptionBehavior();
2300 if (EB
&& *EB
== fp::ebStrict
)
2303 } else if (U
.isSignaling()) {
2304 std::optional
<fp::ExceptionBehavior
> EB
= CI
->getExceptionBehavior();
2305 if (EB
&& *EB
!= fp::ebIgnore
)
2307 U
= APFloat::getQNaN(U
.getSemantics());
2309 return ConstantFP::get(Ty
->getContext(), U
);
2312 /// We only fold functions with finite arguments. Folding NaN and inf is
2313 /// likely to be aborted with an exception anyway, and some host libms
2314 /// have known errors raising exceptions.
2318 /// Currently APFloat versions of these functions do not exist, so we use
2319 /// the host native double versions. Float versions are not called
2320 /// directly but for all these it is true (float)(f((double)arg)) ==
2321 /// f(arg). Long double not supported yet.
2322 const APFloat
&APF
= Op
->getValueAPF();
2324 switch (IntrinsicID
) {
2326 case Intrinsic::log
:
2327 return ConstantFoldFP(log
, APF
, Ty
);
2328 case Intrinsic::log2
:
2329 // TODO: What about hosts that lack a C99 library?
2330 return ConstantFoldFP(log2
, APF
, Ty
);
2331 case Intrinsic::log10
:
2332 // TODO: What about hosts that lack a C99 library?
2333 return ConstantFoldFP(log10
, APF
, Ty
);
2334 case Intrinsic::exp
:
2335 return ConstantFoldFP(exp
, APF
, Ty
);
2336 case Intrinsic::exp2
:
2337 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2338 return ConstantFoldBinaryFP(pow
, APFloat(2.0), APF
, Ty
);
2339 case Intrinsic::exp10
:
2340 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2341 return ConstantFoldBinaryFP(pow
, APFloat(10.0), APF
, Ty
);
2342 case Intrinsic::sin
:
2343 return ConstantFoldFP(sin
, APF
, Ty
);
2344 case Intrinsic::cos
:
2345 return ConstantFoldFP(cos
, APF
, Ty
);
2346 case Intrinsic::sqrt
:
2347 return ConstantFoldFP(sqrt
, APF
, Ty
);
2348 case Intrinsic::amdgcn_cos
:
2349 case Intrinsic::amdgcn_sin
: {
2350 double V
= getValueAsDouble(Op
);
2351 if (V
< -256.0 || V
> 256.0)
2352 // The gfx8 and gfx9 architectures handle arguments outside the range
2353 // [-256, 256] differently. This should be a rare case so bail out
2354 // rather than trying to handle the difference.
2356 bool IsCos
= IntrinsicID
== Intrinsic::amdgcn_cos
;
2357 double V4
= V
* 4.0;
2358 if (V4
== floor(V4
)) {
2359 // Force exact results for quarter-integer inputs.
2360 const double SinVals
[4] = { 0.0, 1.0, 0.0, -1.0 };
2361 V
= SinVals
[((int)V4
+ (IsCos
? 1 : 0)) & 3];
2364 V
= cos(V
* 2.0 * numbers::pi
);
2366 V
= sin(V
* 2.0 * numbers::pi
);
2368 return GetConstantFoldFPValue(V
, Ty
);
2375 LibFunc Func
= NotLibFunc
;
2376 if (!TLI
->getLibFunc(Name
, Func
))
2384 case LibFunc_acos_finite
:
2385 case LibFunc_acosf_finite
:
2387 return ConstantFoldFP(acos
, APF
, Ty
);
2391 case LibFunc_asin_finite
:
2392 case LibFunc_asinf_finite
:
2394 return ConstantFoldFP(asin
, APF
, Ty
);
2399 return ConstantFoldFP(atan
, APF
, Ty
);
2403 if (TLI
->has(Func
)) {
2404 U
.roundToIntegral(APFloat::rmTowardPositive
);
2405 return ConstantFP::get(Ty
->getContext(), U
);
2411 return ConstantFoldFP(cos
, APF
, Ty
);
2415 case LibFunc_cosh_finite
:
2416 case LibFunc_coshf_finite
:
2418 return ConstantFoldFP(cosh
, APF
, Ty
);
2422 case LibFunc_exp_finite
:
2423 case LibFunc_expf_finite
:
2425 return ConstantFoldFP(exp
, APF
, Ty
);
2429 case LibFunc_exp2_finite
:
2430 case LibFunc_exp2f_finite
:
2432 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2433 return ConstantFoldBinaryFP(pow
, APFloat(2.0), APF
, Ty
);
2437 if (TLI
->has(Func
)) {
2439 return ConstantFP::get(Ty
->getContext(), U
);
2443 case LibFunc_floorf
:
2444 if (TLI
->has(Func
)) {
2445 U
.roundToIntegral(APFloat::rmTowardNegative
);
2446 return ConstantFP::get(Ty
->getContext(), U
);
2451 case LibFunc_log_finite
:
2452 case LibFunc_logf_finite
:
2453 if (!APF
.isNegative() && !APF
.isZero() && TLI
->has(Func
))
2454 return ConstantFoldFP(log
, APF
, Ty
);
2458 case LibFunc_log2_finite
:
2459 case LibFunc_log2f_finite
:
2460 if (!APF
.isNegative() && !APF
.isZero() && TLI
->has(Func
))
2461 // TODO: What about hosts that lack a C99 library?
2462 return ConstantFoldFP(log2
, APF
, Ty
);
2465 case LibFunc_log10f
:
2466 case LibFunc_log10_finite
:
2467 case LibFunc_log10f_finite
:
2468 if (!APF
.isNegative() && !APF
.isZero() && TLI
->has(Func
))
2469 // TODO: What about hosts that lack a C99 library?
2470 return ConstantFoldFP(log10
, APF
, Ty
);
2473 case LibFunc_ilogbf
:
2474 if (!APF
.isZero() && TLI
->has(Func
))
2475 return ConstantInt::get(Ty
, ilogb(APF
), true);
2479 if (!APF
.isZero() && TLI
->has(Func
))
2480 return ConstantFoldFP(logb
, APF
, Ty
);
2483 case LibFunc_log1pf
:
2484 // Implement optional behavior from C's Annex F for +/-0.0.
2486 return ConstantFP::get(Ty
->getContext(), U
);
2487 if (APF
> APFloat::getOne(APF
.getSemantics(), true) && TLI
->has(Func
))
2488 return ConstantFoldFP(log1p
, APF
, Ty
);
2495 return ConstantFoldFP(erf
, APF
, Ty
);
2497 case LibFunc_nearbyint
:
2498 case LibFunc_nearbyintf
:
2501 if (TLI
->has(Func
)) {
2502 U
.roundToIntegral(APFloat::rmNearestTiesToEven
);
2503 return ConstantFP::get(Ty
->getContext(), U
);
2507 case LibFunc_roundf
:
2508 if (TLI
->has(Func
)) {
2509 U
.roundToIntegral(APFloat::rmNearestTiesToAway
);
2510 return ConstantFP::get(Ty
->getContext(), U
);
2516 return ConstantFoldFP(sin
, APF
, Ty
);
2520 case LibFunc_sinh_finite
:
2521 case LibFunc_sinhf_finite
:
2523 return ConstantFoldFP(sinh
, APF
, Ty
);
2527 if (!APF
.isNegative() && TLI
->has(Func
))
2528 return ConstantFoldFP(sqrt
, APF
, Ty
);
2533 return ConstantFoldFP(tan
, APF
, Ty
);
2538 return ConstantFoldFP(tanh
, APF
, Ty
);
2541 case LibFunc_truncf
:
2542 if (TLI
->has(Func
)) {
2543 U
.roundToIntegral(APFloat::rmTowardZero
);
2544 return ConstantFP::get(Ty
->getContext(), U
);
2551 if (auto *Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
2552 switch (IntrinsicID
) {
2553 case Intrinsic::bswap
:
2554 return ConstantInt::get(Ty
->getContext(), Op
->getValue().byteSwap());
2555 case Intrinsic::ctpop
:
2556 return ConstantInt::get(Ty
, Op
->getValue().popcount());
2557 case Intrinsic::bitreverse
:
2558 return ConstantInt::get(Ty
->getContext(), Op
->getValue().reverseBits());
2559 case Intrinsic::convert_from_fp16
: {
2560 APFloat
Val(APFloat::IEEEhalf(), Op
->getValue());
2563 APFloat::opStatus status
= Val
.convert(
2564 Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &lost
);
2566 // Conversion is always precise.
2568 assert(status
!= APFloat::opInexact
&& !lost
&&
2569 "Precision lost during fp16 constfolding");
2571 return ConstantFP::get(Ty
->getContext(), Val
);
2574 case Intrinsic::amdgcn_s_wqm
: {
2575 uint64_t Val
= Op
->getZExtValue();
2576 Val
|= (Val
& 0x5555555555555555ULL
) << 1 |
2577 ((Val
>> 1) & 0x5555555555555555ULL
);
2578 Val
|= (Val
& 0x3333333333333333ULL
) << 2 |
2579 ((Val
>> 2) & 0x3333333333333333ULL
);
2580 return ConstantInt::get(Ty
, Val
);
2583 case Intrinsic::amdgcn_s_quadmask
: {
2584 uint64_t Val
= Op
->getZExtValue();
2585 uint64_t QuadMask
= 0;
2586 for (unsigned I
= 0; I
< Op
->getBitWidth() / 4; ++I
, Val
>>= 4) {
2590 QuadMask
|= (1ULL << I
);
2592 return ConstantInt::get(Ty
, QuadMask
);
2595 case Intrinsic::amdgcn_s_bitreplicate
: {
2596 uint64_t Val
= Op
->getZExtValue();
2597 Val
= (Val
& 0x000000000000FFFFULL
) | (Val
& 0x00000000FFFF0000ULL
) << 16;
2598 Val
= (Val
& 0x000000FF000000FFULL
) | (Val
& 0x0000FF000000FF00ULL
) << 8;
2599 Val
= (Val
& 0x000F000F000F000FULL
) | (Val
& 0x00F000F000F000F0ULL
) << 4;
2600 Val
= (Val
& 0x0303030303030303ULL
) | (Val
& 0x0C0C0C0C0C0C0C0CULL
) << 2;
2601 Val
= (Val
& 0x1111111111111111ULL
) | (Val
& 0x2222222222222222ULL
) << 1;
2602 Val
= Val
| Val
<< 1;
2603 return ConstantInt::get(Ty
, Val
);
2611 switch (IntrinsicID
) {
2613 case Intrinsic::vector_reduce_add
:
2614 case Intrinsic::vector_reduce_mul
:
2615 case Intrinsic::vector_reduce_and
:
2616 case Intrinsic::vector_reduce_or
:
2617 case Intrinsic::vector_reduce_xor
:
2618 case Intrinsic::vector_reduce_smin
:
2619 case Intrinsic::vector_reduce_smax
:
2620 case Intrinsic::vector_reduce_umin
:
2621 case Intrinsic::vector_reduce_umax
:
2622 if (Constant
*C
= constantFoldVectorReduce(IntrinsicID
, Operands
[0]))
2627 // Support ConstantVector in case we have an Undef in the top.
2628 if (isa
<ConstantVector
>(Operands
[0]) ||
2629 isa
<ConstantDataVector
>(Operands
[0])) {
2630 auto *Op
= cast
<Constant
>(Operands
[0]);
2631 switch (IntrinsicID
) {
2633 case Intrinsic::x86_sse_cvtss2si
:
2634 case Intrinsic::x86_sse_cvtss2si64
:
2635 case Intrinsic::x86_sse2_cvtsd2si
:
2636 case Intrinsic::x86_sse2_cvtsd2si64
:
2637 if (ConstantFP
*FPOp
=
2638 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2639 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2640 /*roundTowardZero=*/false, Ty
,
2643 case Intrinsic::x86_sse_cvttss2si
:
2644 case Intrinsic::x86_sse_cvttss2si64
:
2645 case Intrinsic::x86_sse2_cvttsd2si
:
2646 case Intrinsic::x86_sse2_cvttsd2si64
:
2647 if (ConstantFP
*FPOp
=
2648 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2649 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2650 /*roundTowardZero=*/true, Ty
,
2659 static Constant
*evaluateCompare(const APFloat
&Op1
, const APFloat
&Op2
,
2660 const ConstrainedFPIntrinsic
*Call
) {
2661 APFloat::opStatus St
= APFloat::opOK
;
2662 auto *FCmp
= cast
<ConstrainedFPCmpIntrinsic
>(Call
);
2663 FCmpInst::Predicate Cond
= FCmp
->getPredicate();
2664 if (FCmp
->isSignaling()) {
2665 if (Op1
.isNaN() || Op2
.isNaN())
2666 St
= APFloat::opInvalidOp
;
2668 if (Op1
.isSignaling() || Op2
.isSignaling())
2669 St
= APFloat::opInvalidOp
;
2671 bool Result
= FCmpInst::compare(Op1
, Op2
, Cond
);
2672 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic
*>(FCmp
), St
))
2673 return ConstantInt::get(Call
->getType()->getScalarType(), Result
);
2677 static Constant
*ConstantFoldLibCall2(StringRef Name
, Type
*Ty
,
2678 ArrayRef
<Constant
*> Operands
,
2679 const TargetLibraryInfo
*TLI
) {
2683 LibFunc Func
= NotLibFunc
;
2684 if (!TLI
->getLibFunc(Name
, Func
))
2687 const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0]);
2691 const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1]);
2695 const APFloat
&Op1V
= Op1
->getValueAPF();
2696 const APFloat
&Op2V
= Op2
->getValueAPF();
2703 case LibFunc_pow_finite
:
2704 case LibFunc_powf_finite
:
2706 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
2710 if (TLI
->has(Func
)) {
2711 APFloat V
= Op1
->getValueAPF();
2712 if (APFloat::opStatus::opOK
== V
.mod(Op2
->getValueAPF()))
2713 return ConstantFP::get(Ty
->getContext(), V
);
2716 case LibFunc_remainder
:
2717 case LibFunc_remainderf
:
2718 if (TLI
->has(Func
)) {
2719 APFloat V
= Op1
->getValueAPF();
2720 if (APFloat::opStatus::opOK
== V
.remainder(Op2
->getValueAPF()))
2721 return ConstantFP::get(Ty
->getContext(), V
);
2725 case LibFunc_atan2f
:
2726 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2727 // (Solaris), so we do not assume a known result for that.
2728 if (Op1V
.isZero() && Op2V
.isZero())
2731 case LibFunc_atan2_finite
:
2732 case LibFunc_atan2f_finite
:
2734 return ConstantFoldBinaryFP(atan2
, Op1V
, Op2V
, Ty
);
2741 static Constant
*ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID
, Type
*Ty
,
2742 ArrayRef
<Constant
*> Operands
,
2743 const CallBase
*Call
) {
2744 assert(Operands
.size() == 2 && "Wrong number of operands.");
2746 if (Ty
->isFloatingPointTy()) {
2747 // TODO: We should have undef handling for all of the FP intrinsics that
2748 // are attempted to be folded in this function.
2749 bool IsOp0Undef
= isa
<UndefValue
>(Operands
[0]);
2750 bool IsOp1Undef
= isa
<UndefValue
>(Operands
[1]);
2751 switch (IntrinsicID
) {
2752 case Intrinsic::maxnum
:
2753 case Intrinsic::minnum
:
2754 case Intrinsic::maximum
:
2755 case Intrinsic::minimum
:
2756 // If one argument is undef, return the other argument.
2765 if (const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
2766 const APFloat
&Op1V
= Op1
->getValueAPF();
2768 if (const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
2769 if (Op2
->getType() != Op1
->getType())
2771 const APFloat
&Op2V
= Op2
->getValueAPF();
2773 if (const auto *ConstrIntr
=
2774 dyn_cast_if_present
<ConstrainedFPIntrinsic
>(Call
)) {
2775 RoundingMode RM
= getEvaluationRoundingMode(ConstrIntr
);
2777 APFloat::opStatus St
;
2778 switch (IntrinsicID
) {
2781 case Intrinsic::experimental_constrained_fadd
:
2782 St
= Res
.add(Op2V
, RM
);
2784 case Intrinsic::experimental_constrained_fsub
:
2785 St
= Res
.subtract(Op2V
, RM
);
2787 case Intrinsic::experimental_constrained_fmul
:
2788 St
= Res
.multiply(Op2V
, RM
);
2790 case Intrinsic::experimental_constrained_fdiv
:
2791 St
= Res
.divide(Op2V
, RM
);
2793 case Intrinsic::experimental_constrained_frem
:
2796 case Intrinsic::experimental_constrained_fcmp
:
2797 case Intrinsic::experimental_constrained_fcmps
:
2798 return evaluateCompare(Op1V
, Op2V
, ConstrIntr
);
2800 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic
*>(ConstrIntr
),
2802 return ConstantFP::get(Ty
->getContext(), Res
);
2806 switch (IntrinsicID
) {
2809 case Intrinsic::copysign
:
2810 return ConstantFP::get(Ty
->getContext(), APFloat::copySign(Op1V
, Op2V
));
2811 case Intrinsic::minnum
:
2812 return ConstantFP::get(Ty
->getContext(), minnum(Op1V
, Op2V
));
2813 case Intrinsic::maxnum
:
2814 return ConstantFP::get(Ty
->getContext(), maxnum(Op1V
, Op2V
));
2815 case Intrinsic::minimum
:
2816 return ConstantFP::get(Ty
->getContext(), minimum(Op1V
, Op2V
));
2817 case Intrinsic::maximum
:
2818 return ConstantFP::get(Ty
->getContext(), maximum(Op1V
, Op2V
));
2821 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
2824 switch (IntrinsicID
) {
2827 case Intrinsic::pow
:
2828 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
2829 case Intrinsic::amdgcn_fmul_legacy
:
2830 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2831 // NaN or infinity, gives +0.0.
2832 if (Op1V
.isZero() || Op2V
.isZero())
2833 return ConstantFP::getZero(Ty
);
2834 return ConstantFP::get(Ty
->getContext(), Op1V
* Op2V
);
2837 } else if (auto *Op2C
= dyn_cast
<ConstantInt
>(Operands
[1])) {
2838 switch (IntrinsicID
) {
2839 case Intrinsic::ldexp
: {
2840 return ConstantFP::get(
2842 scalbn(Op1V
, Op2C
->getSExtValue(), APFloat::rmNearestTiesToEven
));
2844 case Intrinsic::is_fpclass
: {
2845 FPClassTest Mask
= static_cast<FPClassTest
>(Op2C
->getZExtValue());
2847 ((Mask
& fcSNan
) && Op1V
.isNaN() && Op1V
.isSignaling()) ||
2848 ((Mask
& fcQNan
) && Op1V
.isNaN() && !Op1V
.isSignaling()) ||
2849 ((Mask
& fcNegInf
) && Op1V
.isNegInfinity()) ||
2850 ((Mask
& fcNegNormal
) && Op1V
.isNormal() && Op1V
.isNegative()) ||
2851 ((Mask
& fcNegSubnormal
) && Op1V
.isDenormal() && Op1V
.isNegative()) ||
2852 ((Mask
& fcNegZero
) && Op1V
.isZero() && Op1V
.isNegative()) ||
2853 ((Mask
& fcPosZero
) && Op1V
.isZero() && !Op1V
.isNegative()) ||
2854 ((Mask
& fcPosSubnormal
) && Op1V
.isDenormal() && !Op1V
.isNegative()) ||
2855 ((Mask
& fcPosNormal
) && Op1V
.isNormal() && !Op1V
.isNegative()) ||
2856 ((Mask
& fcPosInf
) && Op1V
.isPosInfinity());
2857 return ConstantInt::get(Ty
, Result
);
2859 case Intrinsic::powi
: {
2860 int Exp
= static_cast<int>(Op2C
->getSExtValue());
2861 switch (Ty
->getTypeID()) {
2862 case Type::HalfTyID
:
2863 case Type::FloatTyID
: {
2864 APFloat
Res(static_cast<float>(std::pow(Op1V
.convertToFloat(), Exp
)));
2865 if (Ty
->isHalfTy()) {
2867 Res
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
,
2870 return ConstantFP::get(Ty
->getContext(), Res
);
2872 case Type::DoubleTyID
:
2873 return ConstantFP::get(Ty
, std::pow(Op1V
.convertToDouble(), Exp
));
2885 if (Operands
[0]->getType()->isIntegerTy() &&
2886 Operands
[1]->getType()->isIntegerTy()) {
2887 const APInt
*C0
, *C1
;
2888 if (!getConstIntOrUndef(Operands
[0], C0
) ||
2889 !getConstIntOrUndef(Operands
[1], C1
))
2892 switch (IntrinsicID
) {
2894 case Intrinsic::smax
:
2895 case Intrinsic::smin
:
2896 case Intrinsic::umax
:
2897 case Intrinsic::umin
:
2898 // This is the same as for binary ops - poison propagates.
2899 // TODO: Poison handling should be consolidated.
2900 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
2901 return PoisonValue::get(Ty
);
2904 return UndefValue::get(Ty
);
2906 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID
, Ty
);
2907 return ConstantInt::get(
2908 Ty
, ICmpInst::compare(*C0
, *C1
,
2909 MinMaxIntrinsic::getPredicate(IntrinsicID
))
2913 case Intrinsic::scmp
:
2914 case Intrinsic::ucmp
:
2915 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
2916 return PoisonValue::get(Ty
);
2919 return ConstantInt::get(Ty
, 0);
2922 if (IntrinsicID
== Intrinsic::scmp
)
2923 Res
= C0
->sgt(*C1
) ? 1 : C0
->slt(*C1
) ? -1 : 0;
2925 Res
= C0
->ugt(*C1
) ? 1 : C0
->ult(*C1
) ? -1 : 0;
2926 return ConstantInt::get(Ty
, Res
, /*IsSigned=*/true);
2928 case Intrinsic::usub_with_overflow
:
2929 case Intrinsic::ssub_with_overflow
:
2930 // X - undef -> { 0, false }
2931 // undef - X -> { 0, false }
2933 return Constant::getNullValue(Ty
);
2935 case Intrinsic::uadd_with_overflow
:
2936 case Intrinsic::sadd_with_overflow
:
2937 // X + undef -> { -1, false }
2938 // undef + x -> { -1, false }
2940 return ConstantStruct::get(
2941 cast
<StructType
>(Ty
),
2942 {Constant::getAllOnesValue(Ty
->getStructElementType(0)),
2943 Constant::getNullValue(Ty
->getStructElementType(1))});
2946 case Intrinsic::smul_with_overflow
:
2947 case Intrinsic::umul_with_overflow
: {
2948 // undef * X -> { 0, false }
2949 // X * undef -> { 0, false }
2951 return Constant::getNullValue(Ty
);
2955 switch (IntrinsicID
) {
2956 default: llvm_unreachable("Invalid case");
2957 case Intrinsic::sadd_with_overflow
:
2958 Res
= C0
->sadd_ov(*C1
, Overflow
);
2960 case Intrinsic::uadd_with_overflow
:
2961 Res
= C0
->uadd_ov(*C1
, Overflow
);
2963 case Intrinsic::ssub_with_overflow
:
2964 Res
= C0
->ssub_ov(*C1
, Overflow
);
2966 case Intrinsic::usub_with_overflow
:
2967 Res
= C0
->usub_ov(*C1
, Overflow
);
2969 case Intrinsic::smul_with_overflow
:
2970 Res
= C0
->smul_ov(*C1
, Overflow
);
2972 case Intrinsic::umul_with_overflow
:
2973 Res
= C0
->umul_ov(*C1
, Overflow
);
2977 ConstantInt::get(Ty
->getContext(), Res
),
2978 ConstantInt::get(Type::getInt1Ty(Ty
->getContext()), Overflow
)
2980 return ConstantStruct::get(cast
<StructType
>(Ty
), Ops
);
2982 case Intrinsic::uadd_sat
:
2983 case Intrinsic::sadd_sat
:
2984 // This is the same as for binary ops - poison propagates.
2985 // TODO: Poison handling should be consolidated.
2986 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
2987 return PoisonValue::get(Ty
);
2990 return UndefValue::get(Ty
);
2992 return Constant::getAllOnesValue(Ty
);
2993 if (IntrinsicID
== Intrinsic::uadd_sat
)
2994 return ConstantInt::get(Ty
, C0
->uadd_sat(*C1
));
2996 return ConstantInt::get(Ty
, C0
->sadd_sat(*C1
));
2997 case Intrinsic::usub_sat
:
2998 case Intrinsic::ssub_sat
:
2999 // This is the same as for binary ops - poison propagates.
3000 // TODO: Poison handling should be consolidated.
3001 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
3002 return PoisonValue::get(Ty
);
3005 return UndefValue::get(Ty
);
3007 return Constant::getNullValue(Ty
);
3008 if (IntrinsicID
== Intrinsic::usub_sat
)
3009 return ConstantInt::get(Ty
, C0
->usub_sat(*C1
));
3011 return ConstantInt::get(Ty
, C0
->ssub_sat(*C1
));
3012 case Intrinsic::cttz
:
3013 case Intrinsic::ctlz
:
3014 assert(C1
&& "Must be constant int");
3016 // cttz(0, 1) and ctlz(0, 1) are poison.
3017 if (C1
->isOne() && (!C0
|| C0
->isZero()))
3018 return PoisonValue::get(Ty
);
3020 return Constant::getNullValue(Ty
);
3021 if (IntrinsicID
== Intrinsic::cttz
)
3022 return ConstantInt::get(Ty
, C0
->countr_zero());
3024 return ConstantInt::get(Ty
, C0
->countl_zero());
3026 case Intrinsic::abs
:
3027 assert(C1
&& "Must be constant int");
3028 assert((C1
->isOne() || C1
->isZero()) && "Must be 0 or 1");
3030 // Undef or minimum val operand with poison min --> poison
3031 if (C1
->isOne() && (!C0
|| C0
->isMinSignedValue()))
3032 return PoisonValue::get(Ty
);
3034 // Undef operand with no poison min --> 0 (sign bit must be clear)
3036 return Constant::getNullValue(Ty
);
3038 return ConstantInt::get(Ty
, C0
->abs());
3039 case Intrinsic::amdgcn_wave_reduce_umin
:
3040 case Intrinsic::amdgcn_wave_reduce_umax
:
3041 return dyn_cast
<Constant
>(Operands
[0]);
3047 // Support ConstantVector in case we have an Undef in the top.
3048 if ((isa
<ConstantVector
>(Operands
[0]) ||
3049 isa
<ConstantDataVector
>(Operands
[0])) &&
3050 // Check for default rounding mode.
3051 // FIXME: Support other rounding modes?
3052 isa
<ConstantInt
>(Operands
[1]) &&
3053 cast
<ConstantInt
>(Operands
[1])->getValue() == 4) {
3054 auto *Op
= cast
<Constant
>(Operands
[0]);
3055 switch (IntrinsicID
) {
3057 case Intrinsic::x86_avx512_vcvtss2si32
:
3058 case Intrinsic::x86_avx512_vcvtss2si64
:
3059 case Intrinsic::x86_avx512_vcvtsd2si32
:
3060 case Intrinsic::x86_avx512_vcvtsd2si64
:
3061 if (ConstantFP
*FPOp
=
3062 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
3063 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
3064 /*roundTowardZero=*/false, Ty
,
3067 case Intrinsic::x86_avx512_vcvtss2usi32
:
3068 case Intrinsic::x86_avx512_vcvtss2usi64
:
3069 case Intrinsic::x86_avx512_vcvtsd2usi32
:
3070 case Intrinsic::x86_avx512_vcvtsd2usi64
:
3071 if (ConstantFP
*FPOp
=
3072 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
3073 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
3074 /*roundTowardZero=*/false, Ty
,
3077 case Intrinsic::x86_avx512_cvttss2si
:
3078 case Intrinsic::x86_avx512_cvttss2si64
:
3079 case Intrinsic::x86_avx512_cvttsd2si
:
3080 case Intrinsic::x86_avx512_cvttsd2si64
:
3081 if (ConstantFP
*FPOp
=
3082 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
3083 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
3084 /*roundTowardZero=*/true, Ty
,
3087 case Intrinsic::x86_avx512_cvttss2usi
:
3088 case Intrinsic::x86_avx512_cvttss2usi64
:
3089 case Intrinsic::x86_avx512_cvttsd2usi
:
3090 case Intrinsic::x86_avx512_cvttsd2usi64
:
3091 if (ConstantFP
*FPOp
=
3092 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
3093 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
3094 /*roundTowardZero=*/true, Ty
,
3102 static APFloat
ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID
,
3105 const APFloat
&S2
) {
3107 const fltSemantics
&Sem
= S0
.getSemantics();
3108 APFloat
MA(Sem
), SC(Sem
), TC(Sem
);
3109 if (abs(S2
) >= abs(S0
) && abs(S2
) >= abs(S1
)) {
3110 if (S2
.isNegative() && S2
.isNonZero() && !S2
.isNaN()) {
3120 } else if (abs(S1
) >= abs(S0
)) {
3121 if (S1
.isNegative() && S1
.isNonZero() && !S1
.isNaN()) {
3132 if (S0
.isNegative() && S0
.isNonZero() && !S0
.isNaN()) {
3143 switch (IntrinsicID
) {
3145 llvm_unreachable("unhandled amdgcn cube intrinsic");
3146 case Intrinsic::amdgcn_cubeid
:
3147 return APFloat(Sem
, ID
);
3148 case Intrinsic::amdgcn_cubema
:
3150 case Intrinsic::amdgcn_cubesc
:
3152 case Intrinsic::amdgcn_cubetc
:
3157 static Constant
*ConstantFoldAMDGCNPermIntrinsic(ArrayRef
<Constant
*> Operands
,
3159 const APInt
*C0
, *C1
, *C2
;
3160 if (!getConstIntOrUndef(Operands
[0], C0
) ||
3161 !getConstIntOrUndef(Operands
[1], C1
) ||
3162 !getConstIntOrUndef(Operands
[2], C2
))
3166 return UndefValue::get(Ty
);
3169 unsigned NumUndefBytes
= 0;
3170 for (unsigned I
= 0; I
< 32; I
+= 8) {
3171 unsigned Sel
= C2
->extractBitsAsZExtValue(8, I
);
3179 const APInt
*Src
= ((Sel
& 10) == 10 || (Sel
& 12) == 4) ? C0
: C1
;
3183 B
= Src
->extractBitsAsZExtValue(8, (Sel
& 3) * 8);
3185 B
= Src
->extractBitsAsZExtValue(1, (Sel
& 1) ? 31 : 15) * 0xff;
3188 Val
.insertBits(B
, I
, 8);
3191 if (NumUndefBytes
== 4)
3192 return UndefValue::get(Ty
);
3194 return ConstantInt::get(Ty
, Val
);
3197 static Constant
*ConstantFoldScalarCall3(StringRef Name
,
3198 Intrinsic::ID IntrinsicID
,
3200 ArrayRef
<Constant
*> Operands
,
3201 const TargetLibraryInfo
*TLI
,
3202 const CallBase
*Call
) {
3203 assert(Operands
.size() == 3 && "Wrong number of operands.");
3205 if (const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
3206 if (const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
3207 if (const auto *Op3
= dyn_cast
<ConstantFP
>(Operands
[2])) {
3208 const APFloat
&C1
= Op1
->getValueAPF();
3209 const APFloat
&C2
= Op2
->getValueAPF();
3210 const APFloat
&C3
= Op3
->getValueAPF();
3212 if (const auto *ConstrIntr
= dyn_cast
<ConstrainedFPIntrinsic
>(Call
)) {
3213 RoundingMode RM
= getEvaluationRoundingMode(ConstrIntr
);
3215 APFloat::opStatus St
;
3216 switch (IntrinsicID
) {
3219 case Intrinsic::experimental_constrained_fma
:
3220 case Intrinsic::experimental_constrained_fmuladd
:
3221 St
= Res
.fusedMultiplyAdd(C2
, C3
, RM
);
3224 if (mayFoldConstrained(
3225 const_cast<ConstrainedFPIntrinsic
*>(ConstrIntr
), St
))
3226 return ConstantFP::get(Ty
->getContext(), Res
);
3230 switch (IntrinsicID
) {
3232 case Intrinsic::amdgcn_fma_legacy
: {
3233 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3234 // NaN or infinity, gives +0.0.
3235 if (C1
.isZero() || C2
.isZero()) {
3236 // It's tempting to just return C3 here, but that would give the
3237 // wrong result if C3 was -0.0.
3238 return ConstantFP::get(Ty
->getContext(), APFloat(0.0f
) + C3
);
3242 case Intrinsic::fma
:
3243 case Intrinsic::fmuladd
: {
3245 V
.fusedMultiplyAdd(C2
, C3
, APFloat::rmNearestTiesToEven
);
3246 return ConstantFP::get(Ty
->getContext(), V
);
3248 case Intrinsic::amdgcn_cubeid
:
3249 case Intrinsic::amdgcn_cubema
:
3250 case Intrinsic::amdgcn_cubesc
:
3251 case Intrinsic::amdgcn_cubetc
: {
3252 APFloat V
= ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID
, C1
, C2
, C3
);
3253 return ConstantFP::get(Ty
->getContext(), V
);
3260 if (IntrinsicID
== Intrinsic::smul_fix
||
3261 IntrinsicID
== Intrinsic::smul_fix_sat
) {
3262 // poison * C -> poison
3263 // C * poison -> poison
3264 if (isa
<PoisonValue
>(Operands
[0]) || isa
<PoisonValue
>(Operands
[1]))
3265 return PoisonValue::get(Ty
);
3267 const APInt
*C0
, *C1
;
3268 if (!getConstIntOrUndef(Operands
[0], C0
) ||
3269 !getConstIntOrUndef(Operands
[1], C1
))
3275 return Constant::getNullValue(Ty
);
3277 // This code performs rounding towards negative infinity in case the result
3278 // cannot be represented exactly for the given scale. Targets that do care
3279 // about rounding should use a target hook for specifying how rounding
3280 // should be done, and provide their own folding to be consistent with
3281 // rounding. This is the same approach as used by
3282 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3283 unsigned Scale
= cast
<ConstantInt
>(Operands
[2])->getZExtValue();
3284 unsigned Width
= C0
->getBitWidth();
3285 assert(Scale
< Width
&& "Illegal scale.");
3286 unsigned ExtendedWidth
= Width
* 2;
3288 (C0
->sext(ExtendedWidth
) * C1
->sext(ExtendedWidth
)).ashr(Scale
);
3289 if (IntrinsicID
== Intrinsic::smul_fix_sat
) {
3290 APInt Max
= APInt::getSignedMaxValue(Width
).sext(ExtendedWidth
);
3291 APInt Min
= APInt::getSignedMinValue(Width
).sext(ExtendedWidth
);
3292 Product
= APIntOps::smin(Product
, Max
);
3293 Product
= APIntOps::smax(Product
, Min
);
3295 return ConstantInt::get(Ty
->getContext(), Product
.sextOrTrunc(Width
));
3298 if (IntrinsicID
== Intrinsic::fshl
|| IntrinsicID
== Intrinsic::fshr
) {
3299 const APInt
*C0
, *C1
, *C2
;
3300 if (!getConstIntOrUndef(Operands
[0], C0
) ||
3301 !getConstIntOrUndef(Operands
[1], C1
) ||
3302 !getConstIntOrUndef(Operands
[2], C2
))
3305 bool IsRight
= IntrinsicID
== Intrinsic::fshr
;
3307 return Operands
[IsRight
? 1 : 0];
3309 return UndefValue::get(Ty
);
3311 // The shift amount is interpreted as modulo the bitwidth. If the shift
3312 // amount is effectively 0, avoid UB due to oversized inverse shift below.
3313 unsigned BitWidth
= C2
->getBitWidth();
3314 unsigned ShAmt
= C2
->urem(BitWidth
);
3316 return Operands
[IsRight
? 1 : 0];
3318 // (C0 << ShlAmt) | (C1 >> LshrAmt)
3319 unsigned LshrAmt
= IsRight
? ShAmt
: BitWidth
- ShAmt
;
3320 unsigned ShlAmt
= !IsRight
? ShAmt
: BitWidth
- ShAmt
;
3322 return ConstantInt::get(Ty
, C1
->lshr(LshrAmt
));
3324 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
));
3325 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
) | C1
->lshr(LshrAmt
));
3328 if (IntrinsicID
== Intrinsic::amdgcn_perm
)
3329 return ConstantFoldAMDGCNPermIntrinsic(Operands
, Ty
);
3334 static Constant
*ConstantFoldScalarCall(StringRef Name
,
3335 Intrinsic::ID IntrinsicID
,
3337 ArrayRef
<Constant
*> Operands
,
3338 const TargetLibraryInfo
*TLI
,
3339 const CallBase
*Call
) {
3340 if (Operands
.size() == 1)
3341 return ConstantFoldScalarCall1(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
3343 if (Operands
.size() == 2) {
3344 if (Constant
*FoldedLibCall
=
3345 ConstantFoldLibCall2(Name
, Ty
, Operands
, TLI
)) {
3346 return FoldedLibCall
;
3348 return ConstantFoldIntrinsicCall2(IntrinsicID
, Ty
, Operands
, Call
);
3351 if (Operands
.size() == 3)
3352 return ConstantFoldScalarCall3(Name
, IntrinsicID
, Ty
, Operands
, TLI
, Call
);
3357 static Constant
*ConstantFoldFixedVectorCall(
3358 StringRef Name
, Intrinsic::ID IntrinsicID
, FixedVectorType
*FVTy
,
3359 ArrayRef
<Constant
*> Operands
, const DataLayout
&DL
,
3360 const TargetLibraryInfo
*TLI
, const CallBase
*Call
) {
3361 SmallVector
<Constant
*, 4> Result(FVTy
->getNumElements());
3362 SmallVector
<Constant
*, 4> Lane(Operands
.size());
3363 Type
*Ty
= FVTy
->getElementType();
3365 switch (IntrinsicID
) {
3366 case Intrinsic::masked_load
: {
3367 auto *SrcPtr
= Operands
[0];
3368 auto *Mask
= Operands
[2];
3369 auto *Passthru
= Operands
[3];
3371 Constant
*VecData
= ConstantFoldLoadFromConstPtr(SrcPtr
, FVTy
, DL
);
3373 SmallVector
<Constant
*, 32> NewElements
;
3374 for (unsigned I
= 0, E
= FVTy
->getNumElements(); I
!= E
; ++I
) {
3375 auto *MaskElt
= Mask
->getAggregateElement(I
);
3378 auto *PassthruElt
= Passthru
->getAggregateElement(I
);
3379 auto *VecElt
= VecData
? VecData
->getAggregateElement(I
) : nullptr;
3380 if (isa
<UndefValue
>(MaskElt
)) {
3382 NewElements
.push_back(PassthruElt
);
3384 NewElements
.push_back(VecElt
);
3388 if (MaskElt
->isNullValue()) {
3391 NewElements
.push_back(PassthruElt
);
3392 } else if (MaskElt
->isOneValue()) {
3395 NewElements
.push_back(VecElt
);
3400 if (NewElements
.size() != FVTy
->getNumElements())
3402 return ConstantVector::get(NewElements
);
3404 case Intrinsic::arm_mve_vctp8
:
3405 case Intrinsic::arm_mve_vctp16
:
3406 case Intrinsic::arm_mve_vctp32
:
3407 case Intrinsic::arm_mve_vctp64
: {
3408 if (auto *Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
3409 unsigned Lanes
= FVTy
->getNumElements();
3410 uint64_t Limit
= Op
->getZExtValue();
3412 SmallVector
<Constant
*, 16> NCs
;
3413 for (unsigned i
= 0; i
< Lanes
; i
++) {
3415 NCs
.push_back(ConstantInt::getTrue(Ty
));
3417 NCs
.push_back(ConstantInt::getFalse(Ty
));
3419 return ConstantVector::get(NCs
);
3423 case Intrinsic::get_active_lane_mask
: {
3424 auto *Op0
= dyn_cast
<ConstantInt
>(Operands
[0]);
3425 auto *Op1
= dyn_cast
<ConstantInt
>(Operands
[1]);
3427 unsigned Lanes
= FVTy
->getNumElements();
3428 uint64_t Base
= Op0
->getZExtValue();
3429 uint64_t Limit
= Op1
->getZExtValue();
3431 SmallVector
<Constant
*, 16> NCs
;
3432 for (unsigned i
= 0; i
< Lanes
; i
++) {
3433 if (Base
+ i
< Limit
)
3434 NCs
.push_back(ConstantInt::getTrue(Ty
));
3436 NCs
.push_back(ConstantInt::getFalse(Ty
));
3438 return ConstantVector::get(NCs
);
3446 for (unsigned I
= 0, E
= FVTy
->getNumElements(); I
!= E
; ++I
) {
3447 // Gather a column of constants.
3448 for (unsigned J
= 0, JE
= Operands
.size(); J
!= JE
; ++J
) {
3449 // Some intrinsics use a scalar type for certain arguments.
3450 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID
, J
)) {
3451 Lane
[J
] = Operands
[J
];
3455 Constant
*Agg
= Operands
[J
]->getAggregateElement(I
);
3462 // Use the regular scalar folding to simplify this column.
3464 ConstantFoldScalarCall(Name
, IntrinsicID
, Ty
, Lane
, TLI
, Call
);
3470 return ConstantVector::get(Result
);
3473 static Constant
*ConstantFoldScalableVectorCall(
3474 StringRef Name
, Intrinsic::ID IntrinsicID
, ScalableVectorType
*SVTy
,
3475 ArrayRef
<Constant
*> Operands
, const DataLayout
&DL
,
3476 const TargetLibraryInfo
*TLI
, const CallBase
*Call
) {
3477 switch (IntrinsicID
) {
3478 case Intrinsic::aarch64_sve_convert_from_svbool
: {
3479 auto *Src
= dyn_cast
<Constant
>(Operands
[0]);
3480 if (!Src
|| !Src
->isNullValue())
3483 return ConstantInt::getFalse(SVTy
);
3491 static std::pair
<Constant
*, Constant
*>
3492 ConstantFoldScalarFrexpCall(Constant
*Op
, Type
*IntTy
) {
3493 if (isa
<PoisonValue
>(Op
))
3494 return {Op
, PoisonValue::get(IntTy
)};
3496 auto *ConstFP
= dyn_cast
<ConstantFP
>(Op
);
3500 const APFloat
&U
= ConstFP
->getValueAPF();
3502 APFloat FrexpMant
= frexp(U
, FrexpExp
, APFloat::rmNearestTiesToEven
);
3503 Constant
*Result0
= ConstantFP::get(ConstFP
->getType(), FrexpMant
);
3505 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3507 Constant
*Result1
= FrexpMant
.isFinite()
3508 ? ConstantInt::getSigned(IntTy
, FrexpExp
)
3509 : ConstantInt::getNullValue(IntTy
);
3510 return {Result0
, Result1
};
3513 /// Handle intrinsics that return tuples, which may be tuples of vectors.
3515 ConstantFoldStructCall(StringRef Name
, Intrinsic::ID IntrinsicID
,
3516 StructType
*StTy
, ArrayRef
<Constant
*> Operands
,
3517 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
,
3518 const CallBase
*Call
) {
3520 switch (IntrinsicID
) {
3521 case Intrinsic::frexp
: {
3522 Type
*Ty0
= StTy
->getContainedType(0);
3523 Type
*Ty1
= StTy
->getContainedType(1)->getScalarType();
3525 if (auto *FVTy0
= dyn_cast
<FixedVectorType
>(Ty0
)) {
3526 SmallVector
<Constant
*, 4> Results0(FVTy0
->getNumElements());
3527 SmallVector
<Constant
*, 4> Results1(FVTy0
->getNumElements());
3529 for (unsigned I
= 0, E
= FVTy0
->getNumElements(); I
!= E
; ++I
) {
3530 Constant
*Lane
= Operands
[0]->getAggregateElement(I
);
3531 std::tie(Results0
[I
], Results1
[I
]) =
3532 ConstantFoldScalarFrexpCall(Lane
, Ty1
);
3537 return ConstantStruct::get(StTy
, ConstantVector::get(Results0
),
3538 ConstantVector::get(Results1
));
3541 auto [Result0
, Result1
] = ConstantFoldScalarFrexpCall(Operands
[0], Ty1
);
3544 return ConstantStruct::get(StTy
, Result0
, Result1
);
3546 case Intrinsic::sincos
: {
3547 Type
*Ty
= StTy
->getContainedType(0);
3548 Type
*TyScalar
= Ty
->getScalarType();
3550 auto ConstantFoldScalarSincosCall
=
3551 [&](Constant
*Op
) -> std::pair
<Constant
*, Constant
*> {
3552 Constant
*SinResult
=
3553 ConstantFoldScalarCall(Name
, Intrinsic::sin
, TyScalar
, Op
, TLI
, Call
);
3554 Constant
*CosResult
=
3555 ConstantFoldScalarCall(Name
, Intrinsic::cos
, TyScalar
, Op
, TLI
, Call
);
3556 return std::make_pair(SinResult
, CosResult
);
3559 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Ty
)) {
3560 SmallVector
<Constant
*> SinResults(FVTy
->getNumElements());
3561 SmallVector
<Constant
*> CosResults(FVTy
->getNumElements());
3563 for (unsigned I
= 0, E
= FVTy
->getNumElements(); I
!= E
; ++I
) {
3564 Constant
*Lane
= Operands
[0]->getAggregateElement(I
);
3565 std::tie(SinResults
[I
], CosResults
[I
]) =
3566 ConstantFoldScalarSincosCall(Lane
);
3567 if (!SinResults
[I
] || !CosResults
[I
])
3571 return ConstantStruct::get(StTy
, ConstantVector::get(SinResults
),
3572 ConstantVector::get(CosResults
));
3575 auto [SinResult
, CosResult
] = ConstantFoldScalarSincosCall(Operands
[0]);
3576 if (!SinResult
|| !CosResult
)
3578 return ConstantStruct::get(StTy
, SinResult
, CosResult
);
3581 // TODO: Constant folding of vector intrinsics that fall through here does
3582 // not work (e.g. overflow intrinsics)
3583 return ConstantFoldScalarCall(Name
, IntrinsicID
, StTy
, Operands
, TLI
, Call
);
3589 } // end anonymous namespace
3591 Constant
*llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID
, Constant
*LHS
,
3592 Constant
*RHS
, Type
*Ty
,
3593 Instruction
*FMFSource
) {
3594 return ConstantFoldIntrinsicCall2(ID
, Ty
, {LHS
, RHS
},
3595 dyn_cast_if_present
<CallBase
>(FMFSource
));
3598 Constant
*llvm::ConstantFoldCall(const CallBase
*Call
, Function
*F
,
3599 ArrayRef
<Constant
*> Operands
,
3600 const TargetLibraryInfo
*TLI
,
3601 bool AllowNonDeterministic
) {
3602 if (Call
->isNoBuiltin())
3607 // If this is not an intrinsic and not recognized as a library call, bail out.
3608 Intrinsic::ID IID
= F
->getIntrinsicID();
3609 if (IID
== Intrinsic::not_intrinsic
) {
3613 if (!TLI
->getLibFunc(*F
, LibF
))
3617 // Conservatively assume that floating-point libcalls may be
3618 // non-deterministic.
3619 Type
*Ty
= F
->getReturnType();
3620 if (!AllowNonDeterministic
&& Ty
->isFPOrFPVectorTy())
3623 StringRef Name
= F
->getName();
3624 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Ty
))
3625 return ConstantFoldFixedVectorCall(
3626 Name
, IID
, FVTy
, Operands
, F
->getDataLayout(), TLI
, Call
);
3628 if (auto *SVTy
= dyn_cast
<ScalableVectorType
>(Ty
))
3629 return ConstantFoldScalableVectorCall(
3630 Name
, IID
, SVTy
, Operands
, F
->getDataLayout(), TLI
, Call
);
3632 if (auto *StTy
= dyn_cast
<StructType
>(Ty
))
3633 return ConstantFoldStructCall(Name
, IID
, StTy
, Operands
,
3634 F
->getDataLayout(), TLI
, Call
);
3636 // TODO: If this is a library function, we already discovered that above,
3637 // so we should pass the LibFunc, not the name (and it might be better
3638 // still to separate intrinsic handling from libcalls).
3639 return ConstantFoldScalarCall(Name
, IID
, Ty
, Operands
, TLI
, Call
);
3642 bool llvm::isMathLibCallNoop(const CallBase
*Call
,
3643 const TargetLibraryInfo
*TLI
) {
3644 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3645 // (and to some extent ConstantFoldScalarCall).
3646 if (Call
->isNoBuiltin() || Call
->isStrictFP())
3648 Function
*F
= Call
->getCalledFunction();
3653 if (!TLI
|| !TLI
->getLibFunc(*F
, Func
))
3656 if (Call
->arg_size() == 1) {
3657 if (ConstantFP
*OpC
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0))) {
3658 const APFloat
&Op
= OpC
->getValueAPF();
3666 case LibFunc_log10l
:
3668 case LibFunc_log10f
:
3669 return Op
.isNaN() || (!Op
.isZero() && !Op
.isNegative());
3674 // FIXME: These boundaries are slightly conservative.
3675 if (OpC
->getType()->isDoubleTy())
3676 return !(Op
< APFloat(-745.0) || Op
> APFloat(709.0));
3677 if (OpC
->getType()->isFloatTy())
3678 return !(Op
< APFloat(-103.0f
) || Op
> APFloat(88.0f
));
3684 // FIXME: These boundaries are slightly conservative.
3685 if (OpC
->getType()->isDoubleTy())
3686 return !(Op
< APFloat(-1074.0) || Op
> APFloat(1023.0));
3687 if (OpC
->getType()->isFloatTy())
3688 return !(Op
< APFloat(-149.0f
) || Op
> APFloat(127.0f
));
3697 return !Op
.isInfinity();
3701 case LibFunc_tanf
: {
3702 // FIXME: Stop using the host math library.
3703 // FIXME: The computation isn't done in the right precision.
3704 Type
*Ty
= OpC
->getType();
3705 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy())
3706 return ConstantFoldFP(tan
, OpC
->getValueAPF(), Ty
) != nullptr;
3713 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3722 return !(Op
< APFloat::getOne(Op
.getSemantics(), true) ||
3723 Op
> APFloat::getOne(Op
.getSemantics()));
3731 // FIXME: These boundaries are slightly conservative.
3732 if (OpC
->getType()->isDoubleTy())
3733 return !(Op
< APFloat(-710.0) || Op
> APFloat(710.0));
3734 if (OpC
->getType()->isFloatTy())
3735 return !(Op
< APFloat(-89.0f
) || Op
> APFloat(89.0f
));
3741 return Op
.isNaN() || Op
.isZero() || !Op
.isNegative();
3743 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3751 if (Call
->arg_size() == 2) {
3752 ConstantFP
*Op0C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0));
3753 ConstantFP
*Op1C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(1));
3755 const APFloat
&Op0
= Op0C
->getValueAPF();
3756 const APFloat
&Op1
= Op1C
->getValueAPF();
3761 case LibFunc_powf
: {
3762 // FIXME: Stop using the host math library.
3763 // FIXME: The computation isn't done in the right precision.
3764 Type
*Ty
= Op0C
->getType();
3765 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy()) {
3766 if (Ty
== Op1C
->getType())
3767 return ConstantFoldBinaryFP(pow
, Op0
, Op1
, Ty
) != nullptr;
3775 case LibFunc_remainderl
:
3776 case LibFunc_remainder
:
3777 case LibFunc_remainderf
:
3778 return Op0
.isNaN() || Op1
.isNaN() ||
3779 (!Op0
.isInfinity() && !Op1
.isZero());
3782 case LibFunc_atan2f
:
3783 case LibFunc_atan2l
:
3784 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3785 // GLIBC and MSVC do not appear to raise an error on those, we
3786 // cannot rely on that behavior. POSIX and C11 say that a domain error
3787 // may occur, so allow for that possibility.
3788 return !Op0
.isZero() || !Op1
.isZero();
3799 void TargetFolder::anchor() {}