[TableGen] Fix validateOperandClass for non Phyical Reg (#118146)
[llvm-project.git] / llvm / lib / IR / DIExpressionOptimizer.cpp
blobbe9e13a34235a82e1130632b9fd1240d5d5c0d5d
1 //===- DIExpressionOptimizer.cpp - Constant folding of DIExpressions ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions to constant fold DIExpressions. Which were
10 // declared in DIExpressionOptimizer.h
12 //===----------------------------------------------------------------------===//
14 #include "llvm/BinaryFormat/Dwarf.h"
15 #include "llvm/IR/DebugInfoMetadata.h"
17 using namespace llvm;
19 /// Returns true if the Op is a DW_OP_constu.
20 static std::optional<uint64_t> isConstantVal(DIExpression::ExprOperand Op) {
21 if (Op.getOp() == dwarf::DW_OP_constu)
22 return Op.getArg(0);
23 return std::nullopt;
26 /// Returns true if an operation and operand result in a No Op.
27 static bool isNeutralElement(uint64_t Op, uint64_t Val) {
28 switch (Op) {
29 case dwarf::DW_OP_plus:
30 case dwarf::DW_OP_minus:
31 case dwarf::DW_OP_shl:
32 case dwarf::DW_OP_shr:
33 return Val == 0;
34 case dwarf::DW_OP_mul:
35 case dwarf::DW_OP_div:
36 return Val == 1;
37 default:
38 return false;
42 /// Try to fold \p Const1 and \p Const2 by applying \p Operator and returning
43 /// the result, if there is an overflow, return a std::nullopt.
44 static std::optional<uint64_t>
45 foldOperationIfPossible(uint64_t Const1, uint64_t Const2,
46 dwarf::LocationAtom Operator) {
48 bool ResultOverflowed;
49 switch (Operator) {
50 case dwarf::DW_OP_plus: {
51 auto Result = SaturatingAdd(Const1, Const2, &ResultOverflowed);
52 if (ResultOverflowed)
53 return std::nullopt;
54 return Result;
56 case dwarf::DW_OP_minus: {
57 if (Const1 < Const2)
58 return std::nullopt;
59 return Const1 - Const2;
61 case dwarf::DW_OP_shl: {
62 if (Const2 >= std::numeric_limits<uint64_t>::digits ||
63 static_cast<uint64_t>(countl_zero(Const1)) < Const2)
64 return std::nullopt;
65 return Const1 << Const2;
67 case dwarf::DW_OP_shr: {
68 if (Const2 >= std::numeric_limits<uint64_t>::digits ||
69 static_cast<uint64_t>(countr_zero(Const1)) < Const2)
70 return std::nullopt;
71 return Const1 >> Const2;
73 case dwarf::DW_OP_mul: {
74 auto Result = SaturatingMultiply(Const1, Const2, &ResultOverflowed);
75 if (ResultOverflowed)
76 return std::nullopt;
77 return Result;
79 case dwarf::DW_OP_div: {
80 if (Const2)
81 return Const1 / Const2;
82 return std::nullopt;
84 default:
85 return std::nullopt;
89 /// Returns true if the two operations \p Operator1 and \p Operator2 are
90 /// commutative and can be folded.
91 static bool operationsAreFoldableAndCommutative(dwarf::LocationAtom Operator1,
92 dwarf::LocationAtom Operator2) {
93 return Operator1 == Operator2 &&
94 (Operator1 == dwarf::DW_OP_plus || Operator1 == dwarf::DW_OP_mul);
97 /// Consume one operator and its operand(s).
98 static void consumeOneOperator(DIExpressionCursor &Cursor, uint64_t &Loc,
99 const DIExpression::ExprOperand &Op) {
100 Cursor.consume(1);
101 Loc = Loc + Op.getSize();
104 /// Reset the Cursor to the beginning of the WorkingOps.
105 void startFromBeginning(uint64_t &Loc, DIExpressionCursor &Cursor,
106 ArrayRef<uint64_t> WorkingOps) {
107 Cursor.assignNewExpr(WorkingOps);
108 Loc = 0;
111 /// This function will canonicalize:
112 /// 1. DW_OP_plus_uconst to DW_OP_constu <const-val> DW_OP_plus
113 /// 2. DW_OP_lit<n> to DW_OP_constu <n>
114 static SmallVector<uint64_t>
115 canonicalizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) {
116 DIExpressionCursor Cursor(WorkingOps);
117 uint64_t Loc = 0;
118 SmallVector<uint64_t> ResultOps;
119 while (Loc < WorkingOps.size()) {
120 auto Op = Cursor.peek();
121 /// Expression has no operations, break.
122 if (!Op)
123 break;
124 auto OpRaw = Op->getOp();
126 if (OpRaw >= dwarf::DW_OP_lit0 && OpRaw <= dwarf::DW_OP_lit31) {
127 ResultOps.push_back(dwarf::DW_OP_constu);
128 ResultOps.push_back(OpRaw - dwarf::DW_OP_lit0);
129 consumeOneOperator(Cursor, Loc, *Cursor.peek());
130 continue;
132 if (OpRaw == dwarf::DW_OP_plus_uconst) {
133 ResultOps.push_back(dwarf::DW_OP_constu);
134 ResultOps.push_back(Op->getArg(0));
135 ResultOps.push_back(dwarf::DW_OP_plus);
136 consumeOneOperator(Cursor, Loc, *Cursor.peek());
137 continue;
139 uint64_t PrevLoc = Loc;
140 consumeOneOperator(Cursor, Loc, *Cursor.peek());
141 ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
143 return ResultOps;
146 /// This function will convert:
147 /// 1. DW_OP_constu <const-val> DW_OP_plus to DW_OP_plus_uconst
148 /// 2. DW_OP_constu, 0 to DW_OP_lit0
149 static SmallVector<uint64_t>
150 optimizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) {
151 DIExpressionCursor Cursor(WorkingOps);
152 uint64_t Loc = 0;
153 SmallVector<uint64_t> ResultOps;
154 while (Loc < WorkingOps.size()) {
155 auto Op1 = Cursor.peek();
156 /// Expression has no operations, exit.
157 if (!Op1)
158 break;
159 auto Op1Raw = Op1->getOp();
161 if (Op1Raw == dwarf::DW_OP_constu && Op1->getArg(0) == 0) {
162 ResultOps.push_back(dwarf::DW_OP_lit0);
163 consumeOneOperator(Cursor, Loc, *Cursor.peek());
164 continue;
167 auto Op2 = Cursor.peekNext();
168 /// Expression has no more operations, copy into ResultOps and exit.
169 if (!Op2) {
170 uint64_t PrevLoc = Loc;
171 consumeOneOperator(Cursor, Loc, *Cursor.peek());
172 ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
173 break;
175 auto Op2Raw = Op2->getOp();
177 if (Op1Raw == dwarf::DW_OP_constu && Op2Raw == dwarf::DW_OP_plus) {
178 ResultOps.push_back(dwarf::DW_OP_plus_uconst);
179 ResultOps.push_back(Op1->getArg(0));
180 consumeOneOperator(Cursor, Loc, *Cursor.peek());
181 consumeOneOperator(Cursor, Loc, *Cursor.peek());
182 continue;
184 uint64_t PrevLoc = Loc;
185 consumeOneOperator(Cursor, Loc, *Cursor.peek());
186 ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
188 return ResultOps;
191 /// {DW_OP_constu, 0, DW_OP_[plus, minus, shl, shr]} -> {}
192 /// {DW_OP_constu, 1, DW_OP_[mul, div]} -> {}
193 static bool tryFoldNoOpMath(uint64_t Const1,
194 ArrayRef<DIExpression::ExprOperand> Ops,
195 uint64_t &Loc, DIExpressionCursor &Cursor,
196 SmallVectorImpl<uint64_t> &WorkingOps) {
198 if (isNeutralElement(Ops[1].getOp(), Const1)) {
199 WorkingOps.erase(WorkingOps.begin() + Loc, WorkingOps.begin() + Loc + 3);
200 startFromBeginning(Loc, Cursor, WorkingOps);
201 return true;
203 return false;
206 /// {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_[plus,
207 /// minus, mul, div, shl, shr] -> {DW_OP_constu, Const1 [+, -, *, /, <<, >>]
208 /// Const2}
209 static bool tryFoldConstants(uint64_t Const1,
210 ArrayRef<DIExpression::ExprOperand> Ops,
211 uint64_t &Loc, DIExpressionCursor &Cursor,
212 SmallVectorImpl<uint64_t> &WorkingOps) {
214 auto Const2 = isConstantVal(Ops[1]);
215 if (!Const2)
216 return false;
218 auto Result = foldOperationIfPossible(
219 Const1, *Const2, static_cast<dwarf::LocationAtom>(Ops[2].getOp()));
220 if (!Result) {
221 consumeOneOperator(Cursor, Loc, Ops[0]);
222 return true;
224 WorkingOps.erase(WorkingOps.begin() + Loc + 2, WorkingOps.begin() + Loc + 5);
225 WorkingOps[Loc] = dwarf::DW_OP_constu;
226 WorkingOps[Loc + 1] = *Result;
227 startFromBeginning(Loc, Cursor, WorkingOps);
228 return true;
231 /// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_constu, Const2,
232 /// DW_OP_[plus, mul]} -> {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus,
233 /// mul]}
234 static bool tryFoldCommutativeMath(uint64_t Const1,
235 ArrayRef<DIExpression::ExprOperand> Ops,
236 uint64_t &Loc, DIExpressionCursor &Cursor,
237 SmallVectorImpl<uint64_t> &WorkingOps) {
239 auto Const2 = isConstantVal(Ops[2]);
240 auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp());
241 auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp());
243 if (!Const2 || !operationsAreFoldableAndCommutative(Operand1, Operand2))
244 return false;
246 auto Result = foldOperationIfPossible(Const1, *Const2, Operand1);
247 if (!Result) {
248 consumeOneOperator(Cursor, Loc, Ops[0]);
249 return true;
251 WorkingOps.erase(WorkingOps.begin() + Loc + 3, WorkingOps.begin() + Loc + 6);
252 WorkingOps[Loc] = dwarf::DW_OP_constu;
253 WorkingOps[Loc + 1] = *Result;
254 startFromBeginning(Loc, Cursor, WorkingOps);
255 return true;
258 /// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_LLVM_arg, Arg1,
259 /// DW_OP_[plus, mul], DW_OP_constu, Const2, DW_OP_[plus, mul]} ->
260 /// {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus, mul], DW_OP_LLVM_arg,
261 /// Arg1, DW_OP_[plus, mul]}
262 static bool tryFoldCommutativeMathWithArgInBetween(
263 uint64_t Const1, ArrayRef<DIExpression::ExprOperand> Ops, uint64_t &Loc,
264 DIExpressionCursor &Cursor, SmallVectorImpl<uint64_t> &WorkingOps) {
266 auto Const2 = isConstantVal(Ops[4]);
267 auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp());
268 auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp());
269 auto Operand3 = static_cast<dwarf::LocationAtom>(Ops[5].getOp());
271 if (!Const2 || Ops[2].getOp() != dwarf::DW_OP_LLVM_arg ||
272 !operationsAreFoldableAndCommutative(Operand1, Operand2) ||
273 !operationsAreFoldableAndCommutative(Operand2, Operand3))
274 return false;
276 auto Result = foldOperationIfPossible(Const1, *Const2, Operand1);
277 if (!Result) {
278 consumeOneOperator(Cursor, Loc, Ops[0]);
279 return true;
281 WorkingOps.erase(WorkingOps.begin() + Loc + 6, WorkingOps.begin() + Loc + 9);
282 WorkingOps[Loc] = dwarf::DW_OP_constu;
283 WorkingOps[Loc + 1] = *Result;
284 startFromBeginning(Loc, Cursor, WorkingOps);
285 return true;
288 DIExpression *DIExpression::foldConstantMath() {
290 SmallVector<uint64_t, 8> WorkingOps(Elements.begin(), Elements.end());
291 uint64_t Loc = 0;
292 SmallVector<uint64_t> ResultOps = canonicalizeDwarfOperations(WorkingOps);
293 DIExpressionCursor Cursor(ResultOps);
294 SmallVector<DIExpression::ExprOperand, 8> Ops;
296 // Iterate over all Operations in a DIExpression to match the smallest pattern
297 // that can be folded.
298 while (Loc < ResultOps.size()) {
299 Ops.clear();
301 auto Op = Cursor.peek();
302 // Expression has no operations, exit.
303 if (!Op)
304 break;
306 auto Const1 = isConstantVal(*Op);
308 if (!Const1) {
309 // Early exit, all of the following patterns start with a constant value.
310 consumeOneOperator(Cursor, Loc, *Op);
311 continue;
314 Ops.push_back(*Op);
316 Op = Cursor.peekNext();
317 // All following patterns require at least 2 Operations, exit.
318 if (!Op)
319 break;
321 Ops.push_back(*Op);
323 // Try to fold a constant no-op, such as {+ 0}
324 if (tryFoldNoOpMath(*Const1, Ops, Loc, Cursor, ResultOps))
325 continue;
327 Op = Cursor.peekNextN(2);
328 // Op[1] could still match a pattern, skip iteration.
329 if (!Op) {
330 consumeOneOperator(Cursor, Loc, Ops[0]);
331 continue;
334 Ops.push_back(*Op);
336 // Try to fold a pattern of two constants such as {C1 + C2}.
337 if (tryFoldConstants(*Const1, Ops, Loc, Cursor, ResultOps))
338 continue;
340 Op = Cursor.peekNextN(3);
341 // Op[1] and Op[2] could still match a pattern, skip iteration.
342 if (!Op) {
343 consumeOneOperator(Cursor, Loc, Ops[0]);
344 continue;
347 Ops.push_back(*Op);
349 // Try to fold commutative constant math, such as {C1 + C2 +}.
350 if (tryFoldCommutativeMath(*Const1, Ops, Loc, Cursor, ResultOps))
351 continue;
353 Op = Cursor.peekNextN(4);
354 if (!Op) {
355 consumeOneOperator(Cursor, Loc, Ops[0]);
356 continue;
359 Ops.push_back(*Op);
360 Op = Cursor.peekNextN(5);
361 if (!Op) {
362 consumeOneOperator(Cursor, Loc, Ops[0]);
363 continue;
366 Ops.push_back(*Op);
368 // Try to fold commutative constant math with an LLVM_Arg in between, such
369 // as {C1 + Arg + C2 +}.
370 if (tryFoldCommutativeMathWithArgInBetween(*Const1, Ops, Loc, Cursor,
371 ResultOps))
372 continue;
374 consumeOneOperator(Cursor, Loc, Ops[0]);
376 ResultOps = optimizeDwarfOperations(ResultOps);
377 auto *Result = DIExpression::get(getContext(), ResultOps);
378 assert(Result->isValid() && "concatenated expression is not valid");
379 return Result;