1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "HexagonInstrInfo.h"
14 #include "HexagonFrameLowering.h"
15 #include "HexagonHazardRecognizer.h"
16 #include "HexagonRegisterInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/DFAPacketizer.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetOpcodes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGenTypes/MachineValueType.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/MC/MCAsmInfo.h"
44 #include "llvm/MC/MCInstBuilder.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCInstrItineraries.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
65 #define DEBUG_TYPE "hexagon-instrinfo"
67 #define GET_INSTRINFO_CTOR_DTOR
68 #define GET_INSTRMAP_INFO
69 #include "HexagonDepTimingClasses.h"
70 #include "HexagonGenDFAPacketizer.inc"
71 #include "HexagonGenInstrInfo.inc"
73 cl::opt
<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden
,
74 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
75 "packetization boundary."));
77 static cl::opt
<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
78 cl::Hidden
, cl::init(true), cl::desc("Enable branch prediction"));
80 static cl::opt
<bool> DisableNVSchedule(
81 "disable-hexagon-nv-schedule", cl::Hidden
,
82 cl::desc("Disable schedule adjustment for new value stores."));
84 static cl::opt
<bool> EnableTimingClassLatency(
85 "enable-timing-class-latency", cl::Hidden
, cl::init(false),
86 cl::desc("Enable timing class latency"));
88 static cl::opt
<bool> EnableALUForwarding(
89 "enable-alu-forwarding", cl::Hidden
, cl::init(true),
90 cl::desc("Enable vec alu forwarding"));
92 static cl::opt
<bool> EnableACCForwarding(
93 "enable-acc-forwarding", cl::Hidden
, cl::init(true),
94 cl::desc("Enable vec acc forwarding"));
96 static cl::opt
<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
97 cl::init(true), cl::Hidden
,
98 cl::desc("branch relax asm"));
101 UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden
,
102 cl::desc("Use the DFA based hazard recognizer."));
104 /// Constants for Hexagon instructions.
105 const int Hexagon_MEMW_OFFSET_MAX
= 4095;
106 const int Hexagon_MEMW_OFFSET_MIN
= -4096;
107 const int Hexagon_MEMD_OFFSET_MAX
= 8191;
108 const int Hexagon_MEMD_OFFSET_MIN
= -8192;
109 const int Hexagon_MEMH_OFFSET_MAX
= 2047;
110 const int Hexagon_MEMH_OFFSET_MIN
= -2048;
111 const int Hexagon_MEMB_OFFSET_MAX
= 1023;
112 const int Hexagon_MEMB_OFFSET_MIN
= -1024;
113 const int Hexagon_ADDI_OFFSET_MAX
= 32767;
114 const int Hexagon_ADDI_OFFSET_MIN
= -32768;
116 // Pin the vtable to this file.
117 void HexagonInstrInfo::anchor() {}
119 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget
&ST
)
120 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN
, Hexagon::ADJCALLSTACKUP
),
124 namespace HexagonFUnits
{
125 bool isSlot0Only(unsigned units
);
129 static bool isIntRegForSubInst(Register Reg
) {
130 return (Reg
>= Hexagon::R0
&& Reg
<= Hexagon::R7
) ||
131 (Reg
>= Hexagon::R16
&& Reg
<= Hexagon::R23
);
134 static bool isDblRegForSubInst(Register Reg
, const HexagonRegisterInfo
&HRI
) {
135 return isIntRegForSubInst(HRI
.getSubReg(Reg
, Hexagon::isub_lo
)) &&
136 isIntRegForSubInst(HRI
.getSubReg(Reg
, Hexagon::isub_hi
));
139 /// Calculate number of instructions excluding the debug instructions.
140 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB
,
141 MachineBasicBlock::const_instr_iterator MIE
) {
143 for (; MIB
!= MIE
; ++MIB
) {
144 if (!MIB
->isDebugInstr())
150 // Check if the A2_tfrsi instruction is cheap or not. If the operand has
151 // to be constant-extendend it is not cheap since it occupies two slots
153 bool HexagonInstrInfo::isAsCheapAsAMove(const MachineInstr
&MI
) const {
154 // Enable the following steps only at Os/Oz
155 if (!(MI
.getMF()->getFunction().hasOptSize()))
156 return MI
.isAsCheapAsAMove();
158 if (MI
.getOpcode() == Hexagon::A2_tfrsi
) {
159 auto Op
= MI
.getOperand(1);
160 // If the instruction has a global address as operand, it is not cheap
161 // since the operand will be constant extended.
164 // If the instruction has an operand of size > 16bits, its will be
165 // const-extended and hence, it is not cheap.
167 int64_t Imm
= Op
.getImm();
172 return MI
.isAsCheapAsAMove();
175 // Do not sink floating point instructions that updates USR register.
180 // MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions.
181 // TODO: On some of these floating point instructions, USR is marked as Use.
182 // In reality, these instructions also Def the USR. If USR is marked as Def,
183 // some of the assumptions in assembler packetization are broken.
184 bool HexagonInstrInfo::shouldSink(const MachineInstr
&MI
) const {
185 // Assumption: A floating point instruction that reads the USR will write
187 if (isFloat(MI
) && MI
.hasRegisterImplicitUseOperand(Hexagon::USR
))
192 /// Find the hardware loop instruction used to set-up the specified loop.
193 /// On Hexagon, we have two instructions used to set-up the hardware loop
194 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
195 /// to indicate the end of a loop.
196 MachineInstr
*HexagonInstrInfo::findLoopInstr(MachineBasicBlock
*BB
,
197 unsigned EndLoopOp
, MachineBasicBlock
*TargetBB
,
198 SmallPtrSet
<MachineBasicBlock
*, 8> &Visited
) const {
201 if (EndLoopOp
== Hexagon::ENDLOOP0
) {
202 LOOPi
= Hexagon::J2_loop0i
;
203 LOOPr
= Hexagon::J2_loop0r
;
204 } else { // EndLoopOp == Hexagon::EndLOOP1
205 LOOPi
= Hexagon::J2_loop1i
;
206 LOOPr
= Hexagon::J2_loop1r
;
209 // The loop set-up instruction will be in a predecessor block
210 for (MachineBasicBlock
*PB
: BB
->predecessors()) {
211 // If this has been visited, already skip it.
212 if (!Visited
.insert(PB
).second
)
216 for (MachineInstr
&I
: llvm::reverse(PB
->instrs())) {
217 unsigned Opc
= I
.getOpcode();
218 if (Opc
== LOOPi
|| Opc
== LOOPr
)
220 // We've reached a different loop, which means the loop01 has been
222 if (Opc
== EndLoopOp
&& I
.getOperand(0).getMBB() != TargetBB
)
225 // Check the predecessors for the LOOP instruction.
226 if (MachineInstr
*Loop
= findLoopInstr(PB
, EndLoopOp
, TargetBB
, Visited
))
232 /// Gather register def/uses from MI.
233 /// This treats possible (predicated) defs as actually happening ones
234 /// (conservatively).
235 static inline void parseOperands(const MachineInstr
&MI
,
236 SmallVectorImpl
<Register
> &Defs
, SmallVectorImpl
<Register
> &Uses
) {
240 for (const MachineOperand
&MO
: MI
.operands()) {
244 Register Reg
= MO
.getReg();
249 Uses
.push_back(MO
.getReg());
252 Defs
.push_back(MO
.getReg());
256 // Position dependent, so check twice for swap.
257 static bool isDuplexPairMatch(unsigned Ga
, unsigned Gb
) {
259 case HexagonII::HSIG_None
:
262 case HexagonII::HSIG_L1
:
263 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_A
);
264 case HexagonII::HSIG_L2
:
265 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
266 Gb
== HexagonII::HSIG_A
);
267 case HexagonII::HSIG_S1
:
268 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
269 Gb
== HexagonII::HSIG_S1
|| Gb
== HexagonII::HSIG_A
);
270 case HexagonII::HSIG_S2
:
271 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
272 Gb
== HexagonII::HSIG_S1
|| Gb
== HexagonII::HSIG_S2
||
273 Gb
== HexagonII::HSIG_A
);
274 case HexagonII::HSIG_A
:
275 return (Gb
== HexagonII::HSIG_A
);
276 case HexagonII::HSIG_Compound
:
277 return (Gb
== HexagonII::HSIG_Compound
);
282 /// isLoadFromStackSlot - If the specified machine instruction is a direct
283 /// load from a stack slot, return the virtual or physical register number of
284 /// the destination along with the FrameIndex of the loaded stack slot. If
285 /// not, return 0. This predicate must return 0 if the instruction has
286 /// any side effects other than loading from the stack slot.
287 Register
HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
288 int &FrameIndex
) const {
289 switch (MI
.getOpcode()) {
292 case Hexagon::L2_loadri_io
:
293 case Hexagon::L2_loadrd_io
:
294 case Hexagon::V6_vL32b_ai
:
295 case Hexagon::V6_vL32b_nt_ai
:
296 case Hexagon::V6_vL32Ub_ai
:
297 case Hexagon::LDriw_pred
:
298 case Hexagon::LDriw_ctr
:
299 case Hexagon::PS_vloadrq_ai
:
300 case Hexagon::PS_vloadrw_ai
:
301 case Hexagon::PS_vloadrw_nt_ai
: {
302 const MachineOperand OpFI
= MI
.getOperand(1);
305 const MachineOperand OpOff
= MI
.getOperand(2);
306 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
308 FrameIndex
= OpFI
.getIndex();
309 return MI
.getOperand(0).getReg();
312 case Hexagon::L2_ploadrit_io
:
313 case Hexagon::L2_ploadrif_io
:
314 case Hexagon::L2_ploadrdt_io
:
315 case Hexagon::L2_ploadrdf_io
: {
316 const MachineOperand OpFI
= MI
.getOperand(2);
319 const MachineOperand OpOff
= MI
.getOperand(3);
320 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
322 FrameIndex
= OpFI
.getIndex();
323 return MI
.getOperand(0).getReg();
330 /// isStoreToStackSlot - If the specified machine instruction is a direct
331 /// store to a stack slot, return the virtual or physical register number of
332 /// the source reg along with the FrameIndex of the loaded stack slot. If
333 /// not, return 0. This predicate must return 0 if the instruction has
334 /// any side effects other than storing to the stack slot.
335 Register
HexagonInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
336 int &FrameIndex
) const {
337 switch (MI
.getOpcode()) {
340 case Hexagon::S2_storerb_io
:
341 case Hexagon::S2_storerh_io
:
342 case Hexagon::S2_storeri_io
:
343 case Hexagon::S2_storerd_io
:
344 case Hexagon::V6_vS32b_ai
:
345 case Hexagon::V6_vS32Ub_ai
:
346 case Hexagon::STriw_pred
:
347 case Hexagon::STriw_ctr
:
348 case Hexagon::PS_vstorerq_ai
:
349 case Hexagon::PS_vstorerw_ai
: {
350 const MachineOperand
&OpFI
= MI
.getOperand(0);
353 const MachineOperand
&OpOff
= MI
.getOperand(1);
354 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
356 FrameIndex
= OpFI
.getIndex();
357 return MI
.getOperand(2).getReg();
360 case Hexagon::S2_pstorerbt_io
:
361 case Hexagon::S2_pstorerbf_io
:
362 case Hexagon::S2_pstorerht_io
:
363 case Hexagon::S2_pstorerhf_io
:
364 case Hexagon::S2_pstorerit_io
:
365 case Hexagon::S2_pstorerif_io
:
366 case Hexagon::S2_pstorerdt_io
:
367 case Hexagon::S2_pstorerdf_io
: {
368 const MachineOperand
&OpFI
= MI
.getOperand(1);
371 const MachineOperand
&OpOff
= MI
.getOperand(2);
372 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
374 FrameIndex
= OpFI
.getIndex();
375 return MI
.getOperand(3).getReg();
382 /// This function checks if the instruction or bundle of instructions
383 /// has load from stack slot and returns frameindex and machine memory
384 /// operand of that instruction if true.
385 bool HexagonInstrInfo::hasLoadFromStackSlot(
386 const MachineInstr
&MI
,
387 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
389 const MachineBasicBlock
*MBB
= MI
.getParent();
390 MachineBasicBlock::const_instr_iterator MII
= MI
.getIterator();
391 for (++MII
; MII
!= MBB
->instr_end() && MII
->isInsideBundle(); ++MII
)
392 if (TargetInstrInfo::hasLoadFromStackSlot(*MII
, Accesses
))
397 return TargetInstrInfo::hasLoadFromStackSlot(MI
, Accesses
);
400 /// This function checks if the instruction or bundle of instructions
401 /// has store to stack slot and returns frameindex and machine memory
402 /// operand of that instruction if true.
403 bool HexagonInstrInfo::hasStoreToStackSlot(
404 const MachineInstr
&MI
,
405 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
407 const MachineBasicBlock
*MBB
= MI
.getParent();
408 MachineBasicBlock::const_instr_iterator MII
= MI
.getIterator();
409 for (++MII
; MII
!= MBB
->instr_end() && MII
->isInsideBundle(); ++MII
)
410 if (TargetInstrInfo::hasStoreToStackSlot(*MII
, Accesses
))
415 return TargetInstrInfo::hasStoreToStackSlot(MI
, Accesses
);
418 /// This function can analyze one/two way branching only and should (mostly) be
419 /// called by target independent side.
420 /// First entry is always the opcode of the branching instruction, except when
421 /// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a
422 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
423 /// e.g. Jump_c p will have
427 /// Cond[0] = ENDLOOP
430 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
433 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
434 MachineBasicBlock
*&TBB
,
435 MachineBasicBlock
*&FBB
,
436 SmallVectorImpl
<MachineOperand
> &Cond
,
437 bool AllowModify
) const {
442 // If the block has no terminators, it just falls into the block after it.
443 MachineBasicBlock::instr_iterator I
= MBB
.instr_end();
444 if (I
== MBB
.instr_begin())
447 // A basic block may looks like this:
457 // It has two succs but does not have a terminator
458 // Don't know how to handle it.
462 // Don't analyze EH branches.
464 } while (I
!= MBB
.instr_begin());
469 while (I
->isDebugInstr()) {
470 if (I
== MBB
.instr_begin())
475 bool JumpToBlock
= I
->getOpcode() == Hexagon::J2_jump
&&
476 I
->getOperand(0).isMBB();
477 // Delete the J2_jump if it's equivalent to a fall-through.
478 if (AllowModify
&& JumpToBlock
&&
479 MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
480 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
481 I
->eraseFromParent();
483 if (I
== MBB
.instr_begin())
487 if (!isUnpredicatedTerminator(*I
))
490 // Get the last instruction in the block.
491 MachineInstr
*LastInst
= &*I
;
492 MachineInstr
*SecondLastInst
= nullptr;
493 // Find one more terminator if present.
495 if (&*I
!= LastInst
&& !I
->isBundle() && isUnpredicatedTerminator(*I
)) {
497 SecondLastInst
= &*I
;
499 // This is a third branch.
502 if (I
== MBB
.instr_begin())
507 int LastOpcode
= LastInst
->getOpcode();
508 int SecLastOpcode
= SecondLastInst
? SecondLastInst
->getOpcode() : 0;
509 // If the branch target is not a basic block, it could be a tail call.
510 // (It is, if the target is a function.)
511 if (LastOpcode
== Hexagon::J2_jump
&& !LastInst
->getOperand(0).isMBB())
513 if (SecLastOpcode
== Hexagon::J2_jump
&&
514 !SecondLastInst
->getOperand(0).isMBB())
517 bool LastOpcodeHasJMP_c
= PredOpcodeHasJMP_c(LastOpcode
);
518 bool LastOpcodeHasNVJump
= isNewValueJump(*LastInst
);
520 if (LastOpcodeHasJMP_c
&& !LastInst
->getOperand(1).isMBB())
523 // If there is only one terminator instruction, process it.
524 if (LastInst
&& !SecondLastInst
) {
525 if (LastOpcode
== Hexagon::J2_jump
) {
526 TBB
= LastInst
->getOperand(0).getMBB();
529 if (isEndLoopN(LastOpcode
)) {
530 TBB
= LastInst
->getOperand(0).getMBB();
531 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
532 Cond
.push_back(LastInst
->getOperand(0));
535 if (LastOpcodeHasJMP_c
) {
536 TBB
= LastInst
->getOperand(1).getMBB();
537 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
538 Cond
.push_back(LastInst
->getOperand(0));
541 // Only supporting rr/ri versions of new-value jumps.
542 if (LastOpcodeHasNVJump
&& (LastInst
->getNumExplicitOperands() == 3)) {
543 TBB
= LastInst
->getOperand(2).getMBB();
544 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
545 Cond
.push_back(LastInst
->getOperand(0));
546 Cond
.push_back(LastInst
->getOperand(1));
549 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB
)
550 << " with one jump\n";);
551 // Otherwise, don't know what this is.
555 bool SecLastOpcodeHasJMP_c
= PredOpcodeHasJMP_c(SecLastOpcode
);
556 bool SecLastOpcodeHasNVJump
= isNewValueJump(*SecondLastInst
);
557 if (SecLastOpcodeHasJMP_c
&& (LastOpcode
== Hexagon::J2_jump
)) {
558 if (!SecondLastInst
->getOperand(1).isMBB())
560 TBB
= SecondLastInst
->getOperand(1).getMBB();
561 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
562 Cond
.push_back(SecondLastInst
->getOperand(0));
563 FBB
= LastInst
->getOperand(0).getMBB();
567 // Only supporting rr/ri versions of new-value jumps.
568 if (SecLastOpcodeHasNVJump
&&
569 (SecondLastInst
->getNumExplicitOperands() == 3) &&
570 (LastOpcode
== Hexagon::J2_jump
)) {
571 TBB
= SecondLastInst
->getOperand(2).getMBB();
572 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
573 Cond
.push_back(SecondLastInst
->getOperand(0));
574 Cond
.push_back(SecondLastInst
->getOperand(1));
575 FBB
= LastInst
->getOperand(0).getMBB();
579 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
580 // executed, so remove it.
581 if (SecLastOpcode
== Hexagon::J2_jump
&& LastOpcode
== Hexagon::J2_jump
) {
582 TBB
= SecondLastInst
->getOperand(0).getMBB();
583 I
= LastInst
->getIterator();
585 I
->eraseFromParent();
589 // If the block ends with an ENDLOOP, and J2_jump, handle it.
590 if (isEndLoopN(SecLastOpcode
) && LastOpcode
== Hexagon::J2_jump
) {
591 TBB
= SecondLastInst
->getOperand(0).getMBB();
592 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
593 Cond
.push_back(SecondLastInst
->getOperand(0));
594 FBB
= LastInst
->getOperand(0).getMBB();
597 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB
)
598 << " with two jumps";);
599 // Otherwise, can't handle this.
603 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
604 int *BytesRemoved
) const {
605 assert(!BytesRemoved
&& "code size not handled");
607 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB
));
608 MachineBasicBlock::iterator I
= MBB
.end();
610 while (I
!= MBB
.begin()) {
612 if (I
->isDebugInstr())
614 // Only removing branches from end of MBB.
617 if (Count
&& (I
->getOpcode() == Hexagon::J2_jump
))
618 llvm_unreachable("Malformed basic block: unconditional branch not last");
619 MBB
.erase(&MBB
.back());
626 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
627 MachineBasicBlock
*TBB
,
628 MachineBasicBlock
*FBB
,
629 ArrayRef
<MachineOperand
> Cond
,
631 int *BytesAdded
) const {
632 unsigned BOpc
= Hexagon::J2_jump
;
633 unsigned BccOpc
= Hexagon::J2_jumpt
;
634 assert(validateBranchCond(Cond
) && "Invalid branching condition");
635 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
636 assert(!BytesAdded
&& "code size not handled");
638 // Check if reverseBranchCondition has asked to reverse this branch
639 // If we want to reverse the branch an odd number of times, we want
641 if (!Cond
.empty() && Cond
[0].isImm())
642 BccOpc
= Cond
[0].getImm();
646 // Due to a bug in TailMerging/CFG Optimization, we need to add a
647 // special case handling of a predicated jump followed by an
648 // unconditional jump. If not, Tail Merging and CFG Optimization go
649 // into an infinite loop.
650 MachineBasicBlock
*NewTBB
, *NewFBB
;
651 SmallVector
<MachineOperand
, 4> Cond
;
652 auto Term
= MBB
.getFirstTerminator();
653 if (Term
!= MBB
.end() && isPredicated(*Term
) &&
654 !analyzeBranch(MBB
, NewTBB
, NewFBB
, Cond
, false) &&
655 MachineFunction::iterator(NewTBB
) == ++MBB
.getIterator()) {
656 reverseBranchCondition(Cond
);
658 return insertBranch(MBB
, TBB
, nullptr, Cond
, DL
);
660 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(TBB
);
661 } else if (isEndLoopN(Cond
[0].getImm())) {
662 int EndLoopOp
= Cond
[0].getImm();
663 assert(Cond
[1].isMBB());
664 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
665 // Check for it, and change the BB target if needed.
666 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
667 MachineInstr
*Loop
= findLoopInstr(TBB
, EndLoopOp
, Cond
[1].getMBB(),
669 assert(Loop
!= nullptr && "Inserting an ENDLOOP without a LOOP");
670 Loop
->getOperand(0).setMBB(TBB
);
671 // Add the ENDLOOP after the finding the LOOP0.
672 BuildMI(&MBB
, DL
, get(EndLoopOp
)).addMBB(TBB
);
673 } else if (isNewValueJump(Cond
[0].getImm())) {
674 assert((Cond
.size() == 3) && "Only supporting rr/ri version of nvjump");
676 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
677 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
678 unsigned Flags1
= getUndefRegState(Cond
[1].isUndef());
679 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
680 << printMBBReference(MBB
););
681 if (Cond
[2].isReg()) {
682 unsigned Flags2
= getUndefRegState(Cond
[2].isUndef());
683 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(Cond
[1].getReg(), Flags1
).
684 addReg(Cond
[2].getReg(), Flags2
).addMBB(TBB
);
685 } else if(Cond
[2].isImm()) {
686 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(Cond
[1].getReg(), Flags1
).
687 addImm(Cond
[2].getImm()).addMBB(TBB
);
689 llvm_unreachable("Invalid condition for branching");
691 assert((Cond
.size() == 2) && "Malformed cond vector");
692 const MachineOperand
&RO
= Cond
[1];
693 unsigned Flags
= getUndefRegState(RO
.isUndef());
694 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(RO
.getReg(), Flags
).addMBB(TBB
);
698 assert((!Cond
.empty()) &&
699 "Cond. cannot be empty when multiple branchings are required");
700 assert((!isNewValueJump(Cond
[0].getImm())) &&
701 "NV-jump cannot be inserted with another branch");
702 // Special case for hardware loops. The condition is a basic block.
703 if (isEndLoopN(Cond
[0].getImm())) {
704 int EndLoopOp
= Cond
[0].getImm();
705 assert(Cond
[1].isMBB());
706 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
707 // Check for it, and change the BB target if needed.
708 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
709 MachineInstr
*Loop
= findLoopInstr(TBB
, EndLoopOp
, Cond
[1].getMBB(),
711 assert(Loop
!= nullptr && "Inserting an ENDLOOP without a LOOP");
712 Loop
->getOperand(0).setMBB(TBB
);
713 // Add the ENDLOOP after the finding the LOOP0.
714 BuildMI(&MBB
, DL
, get(EndLoopOp
)).addMBB(TBB
);
716 const MachineOperand
&RO
= Cond
[1];
717 unsigned Flags
= getUndefRegState(RO
.isUndef());
718 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(RO
.getReg(), Flags
).addMBB(TBB
);
720 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(FBB
);
726 class HexagonPipelinerLoopInfo
: public TargetInstrInfo::PipelinerLoopInfo
{
727 MachineInstr
*Loop
, *EndLoop
;
729 const HexagonInstrInfo
*TII
;
735 HexagonPipelinerLoopInfo(MachineInstr
*Loop
, MachineInstr
*EndLoop
)
736 : Loop(Loop
), EndLoop(EndLoop
), MF(Loop
->getParent()->getParent()),
737 TII(MF
->getSubtarget
<HexagonSubtarget
>().getInstrInfo()),
738 DL(Loop
->getDebugLoc()) {
739 // Inspect the Loop instruction up-front, as it may be deleted when we call
740 // createTripCountGreaterCondition.
741 TripCount
= Loop
->getOpcode() == Hexagon::J2_loop0r
743 : Loop
->getOperand(1).getImm();
745 LoopCount
= Loop
->getOperand(1).getReg();
748 bool shouldIgnoreForPipelining(const MachineInstr
*MI
) const override
{
749 // Only ignore the terminator.
750 return MI
== EndLoop
;
753 std::optional
<bool> createTripCountGreaterCondition(
754 int TC
, MachineBasicBlock
&MBB
,
755 SmallVectorImpl
<MachineOperand
> &Cond
) override
{
756 if (TripCount
== -1) {
757 // Check if we're done with the loop.
758 Register Done
= TII
->createVR(MF
, MVT::i1
);
759 MachineInstr
*NewCmp
= BuildMI(&MBB
, DL
,
760 TII
->get(Hexagon::C2_cmpgtui
), Done
)
763 Cond
.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf
));
764 Cond
.push_back(NewCmp
->getOperand(0));
768 return TripCount
> TC
;
771 void setPreheader(MachineBasicBlock
*NewPreheader
) override
{
772 NewPreheader
->splice(NewPreheader
->getFirstTerminator(), Loop
->getParent(),
776 void adjustTripCount(int TripCountAdjust
) override
{
777 // If the loop trip count is a compile-time value, then just change the
779 if (Loop
->getOpcode() == Hexagon::J2_loop0i
||
780 Loop
->getOpcode() == Hexagon::J2_loop1i
) {
781 int64_t TripCount
= Loop
->getOperand(1).getImm() + TripCountAdjust
;
782 assert(TripCount
> 0 && "Can't create an empty or negative loop!");
783 Loop
->getOperand(1).setImm(TripCount
);
787 // The loop trip count is a run-time value. We generate code to subtract
788 // one from the trip count, and update the loop instruction.
789 Register LoopCount
= Loop
->getOperand(1).getReg();
790 Register NewLoopCount
= TII
->createVR(MF
, MVT::i32
);
791 BuildMI(*Loop
->getParent(), Loop
, Loop
->getDebugLoc(),
792 TII
->get(Hexagon::A2_addi
), NewLoopCount
)
794 .addImm(TripCountAdjust
);
795 Loop
->getOperand(1).setReg(NewLoopCount
);
798 void disposed() override
{ Loop
->eraseFromParent(); }
802 std::unique_ptr
<TargetInstrInfo::PipelinerLoopInfo
>
803 HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock
*LoopBB
) const {
804 // We really "analyze" only hardware loops right now.
805 MachineBasicBlock::iterator I
= LoopBB
->getFirstTerminator();
807 if (I
!= LoopBB
->end() && isEndLoopN(I
->getOpcode())) {
808 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
809 MachineInstr
*LoopInst
= findLoopInstr(
810 LoopBB
, I
->getOpcode(), I
->getOperand(0).getMBB(), VisitedBBs
);
812 return std::make_unique
<HexagonPipelinerLoopInfo
>(LoopInst
, &*I
);
817 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&MBB
,
818 unsigned NumCycles
, unsigned ExtraPredCycles
,
819 BranchProbability Probability
) const {
820 return nonDbgBBSize(&MBB
) <= 3;
823 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
824 unsigned NumTCycles
, unsigned ExtraTCycles
, MachineBasicBlock
&FMBB
,
825 unsigned NumFCycles
, unsigned ExtraFCycles
, BranchProbability Probability
)
827 return nonDbgBBSize(&TMBB
) <= 3 && nonDbgBBSize(&FMBB
) <= 3;
830 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock
&MBB
,
831 unsigned NumInstrs
, BranchProbability Probability
) const {
832 return NumInstrs
<= 4;
835 static void getLiveInRegsAt(LivePhysRegs
&Regs
, const MachineInstr
&MI
) {
836 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>,2> Clobbers
;
837 const MachineBasicBlock
&B
= *MI
.getParent();
839 auto E
= MachineBasicBlock::const_iterator(MI
.getIterator());
840 for (auto I
= B
.begin(); I
!= E
; ++I
) {
842 Regs
.stepForward(*I
, Clobbers
);
846 static void getLiveOutRegsAt(LivePhysRegs
&Regs
, const MachineInstr
&MI
) {
847 const MachineBasicBlock
&B
= *MI
.getParent();
849 auto E
= ++MachineBasicBlock::const_iterator(MI
.getIterator()).getReverse();
850 for (auto I
= B
.rbegin(); I
!= E
; ++I
)
851 Regs
.stepBackward(*I
);
854 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
855 MachineBasicBlock::iterator I
,
856 const DebugLoc
&DL
, MCRegister DestReg
,
857 MCRegister SrcReg
, bool KillSrc
,
859 bool RenamableSrc
) const {
860 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
861 unsigned KillFlag
= getKillRegState(KillSrc
);
863 if (Hexagon::IntRegsRegClass
.contains(SrcReg
, DestReg
)) {
864 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfr
), DestReg
)
865 .addReg(SrcReg
, KillFlag
);
868 if (Hexagon::DoubleRegsRegClass
.contains(SrcReg
, DestReg
)) {
869 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrp
), DestReg
)
870 .addReg(SrcReg
, KillFlag
);
873 if (Hexagon::PredRegsRegClass
.contains(SrcReg
, DestReg
)) {
874 // Map Pd = Ps to Pd = or(Ps, Ps).
875 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_or
), DestReg
)
876 .addReg(SrcReg
).addReg(SrcReg
, KillFlag
);
879 if (Hexagon::CtrRegsRegClass
.contains(DestReg
) &&
880 Hexagon::IntRegsRegClass
.contains(SrcReg
)) {
881 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrrcr
), DestReg
)
882 .addReg(SrcReg
, KillFlag
);
885 if (Hexagon::IntRegsRegClass
.contains(DestReg
) &&
886 Hexagon::CtrRegsRegClass
.contains(SrcReg
)) {
887 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrcrr
), DestReg
)
888 .addReg(SrcReg
, KillFlag
);
891 if (Hexagon::ModRegsRegClass
.contains(DestReg
) &&
892 Hexagon::IntRegsRegClass
.contains(SrcReg
)) {
893 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrrcr
), DestReg
)
894 .addReg(SrcReg
, KillFlag
);
897 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
898 Hexagon::IntRegsRegClass
.contains(DestReg
)) {
899 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrpr
), DestReg
)
900 .addReg(SrcReg
, KillFlag
);
903 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
904 Hexagon::PredRegsRegClass
.contains(DestReg
)) {
905 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrrp
), DestReg
)
906 .addReg(SrcReg
, KillFlag
);
909 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
910 Hexagon::IntRegsRegClass
.contains(DestReg
)) {
911 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrpr
), DestReg
)
912 .addReg(SrcReg
, KillFlag
);
915 if (Hexagon::HvxVRRegClass
.contains(SrcReg
, DestReg
)) {
916 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_vassign
), DestReg
).
917 addReg(SrcReg
, KillFlag
);
920 if (Hexagon::HvxWRRegClass
.contains(SrcReg
, DestReg
)) {
921 LivePhysRegs
LiveAtMI(HRI
);
922 getLiveInRegsAt(LiveAtMI
, *I
);
923 Register SrcLo
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
924 Register SrcHi
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
925 unsigned UndefLo
= getUndefRegState(!LiveAtMI
.contains(SrcLo
));
926 unsigned UndefHi
= getUndefRegState(!LiveAtMI
.contains(SrcHi
));
927 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_vcombine
), DestReg
)
928 .addReg(SrcHi
, KillFlag
| UndefHi
)
929 .addReg(SrcLo
, KillFlag
| UndefLo
);
932 if (Hexagon::HvxQRRegClass
.contains(SrcReg
, DestReg
)) {
933 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_pred_and
), DestReg
)
935 .addReg(SrcReg
, KillFlag
);
938 if (Hexagon::HvxQRRegClass
.contains(SrcReg
) &&
939 Hexagon::HvxVRRegClass
.contains(DestReg
)) {
940 llvm_unreachable("Unimplemented pred to vec");
943 if (Hexagon::HvxQRRegClass
.contains(DestReg
) &&
944 Hexagon::HvxVRRegClass
.contains(SrcReg
)) {
945 llvm_unreachable("Unimplemented vec to pred");
950 // Show the invalid registers to ease debugging.
951 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB
) << ": "
952 << printReg(DestReg
, &HRI
) << " = " << printReg(SrcReg
, &HRI
) << '\n';
954 llvm_unreachable("Unimplemented");
957 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
958 MachineBasicBlock::iterator I
,
959 Register SrcReg
, bool isKill
, int FI
,
960 const TargetRegisterClass
*RC
,
961 const TargetRegisterInfo
*TRI
,
962 Register VReg
) const {
963 DebugLoc DL
= MBB
.findDebugLoc(I
);
964 MachineFunction
&MF
= *MBB
.getParent();
965 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
966 unsigned KillFlag
= getKillRegState(isKill
);
968 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
969 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
970 MFI
.getObjectSize(FI
), MFI
.getObjectAlign(FI
));
972 if (Hexagon::IntRegsRegClass
.hasSubClassEq(RC
)) {
973 BuildMI(MBB
, I
, DL
, get(Hexagon::S2_storeri_io
))
974 .addFrameIndex(FI
).addImm(0)
975 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
976 } else if (Hexagon::DoubleRegsRegClass
.hasSubClassEq(RC
)) {
977 BuildMI(MBB
, I
, DL
, get(Hexagon::S2_storerd_io
))
978 .addFrameIndex(FI
).addImm(0)
979 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
980 } else if (Hexagon::PredRegsRegClass
.hasSubClassEq(RC
)) {
981 BuildMI(MBB
, I
, DL
, get(Hexagon::STriw_pred
))
982 .addFrameIndex(FI
).addImm(0)
983 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
984 } else if (Hexagon::ModRegsRegClass
.hasSubClassEq(RC
)) {
985 BuildMI(MBB
, I
, DL
, get(Hexagon::STriw_ctr
))
986 .addFrameIndex(FI
).addImm(0)
987 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
988 } else if (Hexagon::HvxQRRegClass
.hasSubClassEq(RC
)) {
989 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vstorerq_ai
))
990 .addFrameIndex(FI
).addImm(0)
991 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
992 } else if (Hexagon::HvxVRRegClass
.hasSubClassEq(RC
)) {
993 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vstorerv_ai
))
994 .addFrameIndex(FI
).addImm(0)
995 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
996 } else if (Hexagon::HvxWRRegClass
.hasSubClassEq(RC
)) {
997 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vstorerw_ai
))
998 .addFrameIndex(FI
).addImm(0)
999 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
1001 llvm_unreachable("Unimplemented");
1005 void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
1006 MachineBasicBlock::iterator I
,
1007 Register DestReg
, int FI
,
1008 const TargetRegisterClass
*RC
,
1009 const TargetRegisterInfo
*TRI
,
1010 Register VReg
) const {
1011 DebugLoc DL
= MBB
.findDebugLoc(I
);
1012 MachineFunction
&MF
= *MBB
.getParent();
1013 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1015 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1016 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
1017 MFI
.getObjectSize(FI
), MFI
.getObjectAlign(FI
));
1019 if (Hexagon::IntRegsRegClass
.hasSubClassEq(RC
)) {
1020 BuildMI(MBB
, I
, DL
, get(Hexagon::L2_loadri_io
), DestReg
)
1021 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
1022 } else if (Hexagon::DoubleRegsRegClass
.hasSubClassEq(RC
)) {
1023 BuildMI(MBB
, I
, DL
, get(Hexagon::L2_loadrd_io
), DestReg
)
1024 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
1025 } else if (Hexagon::PredRegsRegClass
.hasSubClassEq(RC
)) {
1026 BuildMI(MBB
, I
, DL
, get(Hexagon::LDriw_pred
), DestReg
)
1027 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
1028 } else if (Hexagon::ModRegsRegClass
.hasSubClassEq(RC
)) {
1029 BuildMI(MBB
, I
, DL
, get(Hexagon::LDriw_ctr
), DestReg
)
1030 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
1031 } else if (Hexagon::HvxQRRegClass
.hasSubClassEq(RC
)) {
1032 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vloadrq_ai
), DestReg
)
1033 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
1034 } else if (Hexagon::HvxVRRegClass
.hasSubClassEq(RC
)) {
1035 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vloadrv_ai
), DestReg
)
1036 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
1037 } else if (Hexagon::HvxWRRegClass
.hasSubClassEq(RC
)) {
1038 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vloadrw_ai
), DestReg
)
1039 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
1041 llvm_unreachable("Can't store this register to stack slot");
1045 /// expandPostRAPseudo - This function is called for all pseudo instructions
1046 /// that remain after register allocation. Many pseudo instructions are
1047 /// created to help register allocation. This is the place to convert them
1048 /// into real instructions. The target can edit MI in place, or it can insert
1049 /// new instructions and erase MI. The function should return true if
1050 /// anything was changed.
1051 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
1052 MachineBasicBlock
&MBB
= *MI
.getParent();
1053 MachineFunction
&MF
= *MBB
.getParent();
1054 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1055 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
1056 LivePhysRegs
LiveIn(HRI
), LiveOut(HRI
);
1057 DebugLoc DL
= MI
.getDebugLoc();
1058 unsigned Opc
= MI
.getOpcode();
1060 auto RealCirc
= [&](unsigned Opc
, bool HasImm
, unsigned MxOp
) {
1061 Register Mx
= MI
.getOperand(MxOp
).getReg();
1062 Register CSx
= (Mx
== Hexagon::M0
? Hexagon::CS0
: Hexagon::CS1
);
1063 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrrcr
), CSx
)
1064 .add(MI
.getOperand((HasImm
? 5 : 4)));
1065 auto MIB
= BuildMI(MBB
, MI
, DL
, get(Opc
)).add(MI
.getOperand(0))
1066 .add(MI
.getOperand(1)).add(MI
.getOperand(2)).add(MI
.getOperand(3));
1068 MIB
.add(MI
.getOperand(4));
1069 MIB
.addReg(CSx
, RegState::Implicit
);
1074 auto UseAligned
= [&](const MachineInstr
&MI
, Align NeedAlign
) {
1075 if (MI
.memoperands().empty())
1077 return all_of(MI
.memoperands(), [NeedAlign
](const MachineMemOperand
*MMO
) {
1078 return MMO
->getAlign() >= NeedAlign
;
1083 case Hexagon::PS_call_instrprof_custom
: {
1084 auto Op0
= MI
.getOperand(0);
1085 assert(Op0
.isGlobal() &&
1086 "First operand must be a global containing handler name.");
1087 const GlobalValue
*NameVar
= Op0
.getGlobal();
1088 const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(NameVar
);
1089 auto *Arr
= cast
<ConstantDataArray
>(GV
->getInitializer());
1090 StringRef NameStr
= Arr
->isCString() ? Arr
->getAsCString() : Arr
->getAsString();
1092 MachineOperand
&Op1
= MI
.getOperand(1);
1093 // Set R0 with the imm value to be passed to the custom profiling handler.
1094 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrsi
), Hexagon::R0
)
1095 .addImm(Op1
.getImm());
1096 // The call to the custom handler is being treated as a special one as the
1097 // callee is responsible for saving and restoring all the registers
1098 // (including caller saved registers) it needs to modify. This is
1099 // done to reduce the impact of instrumentation on the code being
1100 // instrumented/profiled.
1101 // NOTE: R14, R15 and R28 are reserved for PLT handling. These registers
1102 // are in the Def list of the Hexagon::PS_call_instrprof_custom and
1103 // therefore will be handled appropriately duing register allocation.
1105 // TODO: It may be a good idea to add a separate pseudo instruction for
1106 // static relocation which doesn't need to reserve r14, r15 and r28.
1108 auto MIB
= BuildMI(MBB
, MI
, DL
, get(Hexagon::J2_call
))
1109 .addUse(Hexagon::R0
, RegState::Implicit
|RegState::InternalRead
)
1110 .addDef(Hexagon::R29
, RegState::ImplicitDefine
)
1111 .addDef(Hexagon::R30
, RegState::ImplicitDefine
)
1112 .addDef(Hexagon::R14
, RegState::ImplicitDefine
)
1113 .addDef(Hexagon::R15
, RegState::ImplicitDefine
)
1114 .addDef(Hexagon::R28
, RegState::ImplicitDefine
);
1115 const char *cstr
= MF
.createExternalSymbolName(NameStr
);
1116 MIB
.addExternalSymbol(cstr
);
1120 case TargetOpcode::COPY
: {
1121 MachineOperand
&MD
= MI
.getOperand(0);
1122 MachineOperand
&MS
= MI
.getOperand(1);
1123 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
1124 if (MD
.getReg() != MS
.getReg() && !MS
.isUndef()) {
1125 copyPhysReg(MBB
, MI
, DL
, MD
.getReg(), MS
.getReg(), MS
.isKill());
1126 std::prev(MBBI
)->copyImplicitOps(*MBB
.getParent(), MI
);
1131 case Hexagon::PS_aligna
:
1132 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_andir
), MI
.getOperand(0).getReg())
1133 .addReg(HRI
.getFrameRegister())
1134 .addImm(-MI
.getOperand(1).getImm());
1137 case Hexagon::V6_vassignp
: {
1138 Register SrcReg
= MI
.getOperand(1).getReg();
1139 Register DstReg
= MI
.getOperand(0).getReg();
1140 Register SrcLo
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
1141 Register SrcHi
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
1142 getLiveInRegsAt(LiveIn
, MI
);
1143 unsigned UndefLo
= getUndefRegState(!LiveIn
.contains(SrcLo
));
1144 unsigned UndefHi
= getUndefRegState(!LiveIn
.contains(SrcHi
));
1145 unsigned Kill
= getKillRegState(MI
.getOperand(1).isKill());
1146 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vcombine
), DstReg
)
1147 .addReg(SrcHi
, UndefHi
)
1148 .addReg(SrcLo
, Kill
| UndefLo
);
1152 case Hexagon::V6_lo
: {
1153 Register SrcReg
= MI
.getOperand(1).getReg();
1154 Register DstReg
= MI
.getOperand(0).getReg();
1155 Register SrcSubLo
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
1156 copyPhysReg(MBB
, MI
, DL
, DstReg
, SrcSubLo
, MI
.getOperand(1).isKill());
1158 MRI
.clearKillFlags(SrcSubLo
);
1161 case Hexagon::V6_hi
: {
1162 Register SrcReg
= MI
.getOperand(1).getReg();
1163 Register DstReg
= MI
.getOperand(0).getReg();
1164 Register SrcSubHi
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
1165 copyPhysReg(MBB
, MI
, DL
, DstReg
, SrcSubHi
, MI
.getOperand(1).isKill());
1167 MRI
.clearKillFlags(SrcSubHi
);
1170 case Hexagon::PS_vloadrv_ai
: {
1171 Register DstReg
= MI
.getOperand(0).getReg();
1172 const MachineOperand
&BaseOp
= MI
.getOperand(1);
1173 assert(BaseOp
.getSubReg() == 0);
1174 int Offset
= MI
.getOperand(2).getImm();
1175 Align NeedAlign
= HRI
.getSpillAlign(Hexagon::HvxVRRegClass
);
1176 unsigned NewOpc
= UseAligned(MI
, NeedAlign
) ? Hexagon::V6_vL32b_ai
1177 : Hexagon::V6_vL32Ub_ai
;
1178 BuildMI(MBB
, MI
, DL
, get(NewOpc
), DstReg
)
1179 .addReg(BaseOp
.getReg(), getRegState(BaseOp
))
1185 case Hexagon::PS_vloadrw_ai
: {
1186 Register DstReg
= MI
.getOperand(0).getReg();
1187 const MachineOperand
&BaseOp
= MI
.getOperand(1);
1188 assert(BaseOp
.getSubReg() == 0);
1189 int Offset
= MI
.getOperand(2).getImm();
1190 unsigned VecOffset
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1191 Align NeedAlign
= HRI
.getSpillAlign(Hexagon::HvxVRRegClass
);
1192 unsigned NewOpc
= UseAligned(MI
, NeedAlign
) ? Hexagon::V6_vL32b_ai
1193 : Hexagon::V6_vL32Ub_ai
;
1194 BuildMI(MBB
, MI
, DL
, get(NewOpc
),
1195 HRI
.getSubReg(DstReg
, Hexagon::vsub_lo
))
1196 .addReg(BaseOp
.getReg(), getRegState(BaseOp
) & ~RegState::Kill
)
1199 BuildMI(MBB
, MI
, DL
, get(NewOpc
),
1200 HRI
.getSubReg(DstReg
, Hexagon::vsub_hi
))
1201 .addReg(BaseOp
.getReg(), getRegState(BaseOp
))
1202 .addImm(Offset
+ VecOffset
)
1207 case Hexagon::PS_vstorerv_ai
: {
1208 const MachineOperand
&SrcOp
= MI
.getOperand(2);
1209 assert(SrcOp
.getSubReg() == 0);
1210 const MachineOperand
&BaseOp
= MI
.getOperand(0);
1211 assert(BaseOp
.getSubReg() == 0);
1212 int Offset
= MI
.getOperand(1).getImm();
1213 Align NeedAlign
= HRI
.getSpillAlign(Hexagon::HvxVRRegClass
);
1214 unsigned NewOpc
= UseAligned(MI
, NeedAlign
) ? Hexagon::V6_vS32b_ai
1215 : Hexagon::V6_vS32Ub_ai
;
1216 BuildMI(MBB
, MI
, DL
, get(NewOpc
))
1217 .addReg(BaseOp
.getReg(), getRegState(BaseOp
))
1219 .addReg(SrcOp
.getReg(), getRegState(SrcOp
))
1224 case Hexagon::PS_vstorerw_ai
: {
1225 Register SrcReg
= MI
.getOperand(2).getReg();
1226 const MachineOperand
&BaseOp
= MI
.getOperand(0);
1227 assert(BaseOp
.getSubReg() == 0);
1228 int Offset
= MI
.getOperand(1).getImm();
1229 unsigned VecOffset
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1230 Align NeedAlign
= HRI
.getSpillAlign(Hexagon::HvxVRRegClass
);
1231 unsigned NewOpc
= UseAligned(MI
, NeedAlign
) ? Hexagon::V6_vS32b_ai
1232 : Hexagon::V6_vS32Ub_ai
;
1233 BuildMI(MBB
, MI
, DL
, get(NewOpc
))
1234 .addReg(BaseOp
.getReg(), getRegState(BaseOp
) & ~RegState::Kill
)
1236 .addReg(HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
))
1238 BuildMI(MBB
, MI
, DL
, get(NewOpc
))
1239 .addReg(BaseOp
.getReg(), getRegState(BaseOp
))
1240 .addImm(Offset
+ VecOffset
)
1241 .addReg(HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
))
1246 case Hexagon::PS_true
: {
1247 Register Reg
= MI
.getOperand(0).getReg();
1248 BuildMI(MBB
, MI
, DL
, get(Hexagon::C2_orn
), Reg
)
1249 .addReg(Reg
, RegState::Undef
)
1250 .addReg(Reg
, RegState::Undef
);
1254 case Hexagon::PS_false
: {
1255 Register Reg
= MI
.getOperand(0).getReg();
1256 BuildMI(MBB
, MI
, DL
, get(Hexagon::C2_andn
), Reg
)
1257 .addReg(Reg
, RegState::Undef
)
1258 .addReg(Reg
, RegState::Undef
);
1262 case Hexagon::PS_qtrue
: {
1263 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_veqw
), MI
.getOperand(0).getReg())
1264 .addReg(Hexagon::V0
, RegState::Undef
)
1265 .addReg(Hexagon::V0
, RegState::Undef
);
1269 case Hexagon::PS_qfalse
: {
1270 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgtw
), MI
.getOperand(0).getReg())
1271 .addReg(Hexagon::V0
, RegState::Undef
)
1272 .addReg(Hexagon::V0
, RegState::Undef
);
1276 case Hexagon::PS_vdd0
: {
1277 Register Vd
= MI
.getOperand(0).getReg();
1278 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vsubw_dv
), Vd
)
1279 .addReg(Vd
, RegState::Undef
)
1280 .addReg(Vd
, RegState::Undef
);
1284 case Hexagon::PS_vmulw
: {
1285 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1286 Register DstReg
= MI
.getOperand(0).getReg();
1287 Register Src1Reg
= MI
.getOperand(1).getReg();
1288 Register Src2Reg
= MI
.getOperand(2).getReg();
1289 Register Src1SubHi
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_hi
);
1290 Register Src1SubLo
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_lo
);
1291 Register Src2SubHi
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_hi
);
1292 Register Src2SubLo
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_lo
);
1293 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_mpyi
),
1294 HRI
.getSubReg(DstReg
, Hexagon::isub_hi
))
1297 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_mpyi
),
1298 HRI
.getSubReg(DstReg
, Hexagon::isub_lo
))
1302 MRI
.clearKillFlags(Src1SubHi
);
1303 MRI
.clearKillFlags(Src1SubLo
);
1304 MRI
.clearKillFlags(Src2SubHi
);
1305 MRI
.clearKillFlags(Src2SubLo
);
1308 case Hexagon::PS_vmulw_acc
: {
1309 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1310 Register DstReg
= MI
.getOperand(0).getReg();
1311 Register Src1Reg
= MI
.getOperand(1).getReg();
1312 Register Src2Reg
= MI
.getOperand(2).getReg();
1313 Register Src3Reg
= MI
.getOperand(3).getReg();
1314 Register Src1SubHi
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_hi
);
1315 Register Src1SubLo
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_lo
);
1316 Register Src2SubHi
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_hi
);
1317 Register Src2SubLo
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_lo
);
1318 Register Src3SubHi
= HRI
.getSubReg(Src3Reg
, Hexagon::isub_hi
);
1319 Register Src3SubLo
= HRI
.getSubReg(Src3Reg
, Hexagon::isub_lo
);
1320 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_maci
),
1321 HRI
.getSubReg(DstReg
, Hexagon::isub_hi
))
1325 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_maci
),
1326 HRI
.getSubReg(DstReg
, Hexagon::isub_lo
))
1331 MRI
.clearKillFlags(Src1SubHi
);
1332 MRI
.clearKillFlags(Src1SubLo
);
1333 MRI
.clearKillFlags(Src2SubHi
);
1334 MRI
.clearKillFlags(Src2SubLo
);
1335 MRI
.clearKillFlags(Src3SubHi
);
1336 MRI
.clearKillFlags(Src3SubLo
);
1339 case Hexagon::PS_pselect
: {
1340 const MachineOperand
&Op0
= MI
.getOperand(0);
1341 const MachineOperand
&Op1
= MI
.getOperand(1);
1342 const MachineOperand
&Op2
= MI
.getOperand(2);
1343 const MachineOperand
&Op3
= MI
.getOperand(3);
1344 Register Rd
= Op0
.getReg();
1345 Register Pu
= Op1
.getReg();
1346 Register Rs
= Op2
.getReg();
1347 Register Rt
= Op3
.getReg();
1348 DebugLoc DL
= MI
.getDebugLoc();
1349 unsigned K1
= getKillRegState(Op1
.isKill());
1350 unsigned K2
= getKillRegState(Op2
.isKill());
1351 unsigned K3
= getKillRegState(Op3
.isKill());
1353 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrpt
), Rd
)
1354 .addReg(Pu
, (Rd
== Rt
) ? K1
: 0)
1357 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrpf
), Rd
)
1363 case Hexagon::PS_vselect
: {
1364 const MachineOperand
&Op0
= MI
.getOperand(0);
1365 const MachineOperand
&Op1
= MI
.getOperand(1);
1366 const MachineOperand
&Op2
= MI
.getOperand(2);
1367 const MachineOperand
&Op3
= MI
.getOperand(3);
1368 getLiveOutRegsAt(LiveOut
, MI
);
1369 bool IsDestLive
= !LiveOut
.available(MRI
, Op0
.getReg());
1370 Register PReg
= Op1
.getReg();
1371 assert(Op1
.getSubReg() == 0);
1372 unsigned PState
= getRegState(Op1
);
1374 if (Op0
.getReg() != Op2
.getReg()) {
1375 unsigned S
= Op0
.getReg() != Op3
.getReg() ? PState
& ~RegState::Kill
1377 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vcmov
))
1382 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1385 if (Op0
.getReg() != Op3
.getReg()) {
1386 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vncmov
))
1388 .addReg(PReg
, PState
)
1391 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1396 case Hexagon::PS_wselect
: {
1397 MachineOperand
&Op0
= MI
.getOperand(0);
1398 MachineOperand
&Op1
= MI
.getOperand(1);
1399 MachineOperand
&Op2
= MI
.getOperand(2);
1400 MachineOperand
&Op3
= MI
.getOperand(3);
1401 getLiveOutRegsAt(LiveOut
, MI
);
1402 bool IsDestLive
= !LiveOut
.available(MRI
, Op0
.getReg());
1403 Register PReg
= Op1
.getReg();
1404 assert(Op1
.getSubReg() == 0);
1405 unsigned PState
= getRegState(Op1
);
1407 if (Op0
.getReg() != Op2
.getReg()) {
1408 unsigned S
= Op0
.getReg() != Op3
.getReg() ? PState
& ~RegState::Kill
1410 Register SrcLo
= HRI
.getSubReg(Op2
.getReg(), Hexagon::vsub_lo
);
1411 Register SrcHi
= HRI
.getSubReg(Op2
.getReg(), Hexagon::vsub_hi
);
1412 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vccombine
))
1418 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1421 if (Op0
.getReg() != Op3
.getReg()) {
1422 Register SrcLo
= HRI
.getSubReg(Op3
.getReg(), Hexagon::vsub_lo
);
1423 Register SrcHi
= HRI
.getSubReg(Op3
.getReg(), Hexagon::vsub_hi
);
1424 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vnccombine
))
1426 .addReg(PReg
, PState
)
1430 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1436 case Hexagon::PS_crash
: {
1437 // Generate a misaligned load that is guaranteed to cause a crash.
1438 class CrashPseudoSourceValue
: public PseudoSourceValue
{
1440 CrashPseudoSourceValue(const TargetMachine
&TM
)
1441 : PseudoSourceValue(TargetCustom
, TM
) {}
1443 bool isConstant(const MachineFrameInfo
*) const override
{
1446 bool isAliased(const MachineFrameInfo
*) const override
{
1449 bool mayAlias(const MachineFrameInfo
*) const override
{
1452 void printCustom(raw_ostream
&OS
) const override
{
1453 OS
<< "MisalignedCrash";
1457 static const CrashPseudoSourceValue
CrashPSV(MF
.getTarget());
1458 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1459 MachinePointerInfo(&CrashPSV
),
1460 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 8,
1462 BuildMI(MBB
, MI
, DL
, get(Hexagon::PS_loadrdabs
), Hexagon::D13
)
1463 .addImm(0xBADC0FEE) // Misaligned load.
1464 .addMemOperand(MMO
);
1469 case Hexagon::PS_tailcall_i
:
1470 MI
.setDesc(get(Hexagon::J2_jump
));
1472 case Hexagon::PS_tailcall_r
:
1473 case Hexagon::PS_jmpret
:
1474 MI
.setDesc(get(Hexagon::J2_jumpr
));
1476 case Hexagon::PS_jmprett
:
1477 MI
.setDesc(get(Hexagon::J2_jumprt
));
1479 case Hexagon::PS_jmpretf
:
1480 MI
.setDesc(get(Hexagon::J2_jumprf
));
1482 case Hexagon::PS_jmprettnewpt
:
1483 MI
.setDesc(get(Hexagon::J2_jumprtnewpt
));
1485 case Hexagon::PS_jmpretfnewpt
:
1486 MI
.setDesc(get(Hexagon::J2_jumprfnewpt
));
1488 case Hexagon::PS_jmprettnew
:
1489 MI
.setDesc(get(Hexagon::J2_jumprtnew
));
1491 case Hexagon::PS_jmpretfnew
:
1492 MI
.setDesc(get(Hexagon::J2_jumprfnew
));
1495 case Hexagon::PS_loadrub_pci
:
1496 return RealCirc(Hexagon::L2_loadrub_pci
, /*HasImm*/true, /*MxOp*/4);
1497 case Hexagon::PS_loadrb_pci
:
1498 return RealCirc(Hexagon::L2_loadrb_pci
, /*HasImm*/true, /*MxOp*/4);
1499 case Hexagon::PS_loadruh_pci
:
1500 return RealCirc(Hexagon::L2_loadruh_pci
, /*HasImm*/true, /*MxOp*/4);
1501 case Hexagon::PS_loadrh_pci
:
1502 return RealCirc(Hexagon::L2_loadrh_pci
, /*HasImm*/true, /*MxOp*/4);
1503 case Hexagon::PS_loadri_pci
:
1504 return RealCirc(Hexagon::L2_loadri_pci
, /*HasImm*/true, /*MxOp*/4);
1505 case Hexagon::PS_loadrd_pci
:
1506 return RealCirc(Hexagon::L2_loadrd_pci
, /*HasImm*/true, /*MxOp*/4);
1507 case Hexagon::PS_loadrub_pcr
:
1508 return RealCirc(Hexagon::L2_loadrub_pcr
, /*HasImm*/false, /*MxOp*/3);
1509 case Hexagon::PS_loadrb_pcr
:
1510 return RealCirc(Hexagon::L2_loadrb_pcr
, /*HasImm*/false, /*MxOp*/3);
1511 case Hexagon::PS_loadruh_pcr
:
1512 return RealCirc(Hexagon::L2_loadruh_pcr
, /*HasImm*/false, /*MxOp*/3);
1513 case Hexagon::PS_loadrh_pcr
:
1514 return RealCirc(Hexagon::L2_loadrh_pcr
, /*HasImm*/false, /*MxOp*/3);
1515 case Hexagon::PS_loadri_pcr
:
1516 return RealCirc(Hexagon::L2_loadri_pcr
, /*HasImm*/false, /*MxOp*/3);
1517 case Hexagon::PS_loadrd_pcr
:
1518 return RealCirc(Hexagon::L2_loadrd_pcr
, /*HasImm*/false, /*MxOp*/3);
1519 case Hexagon::PS_storerb_pci
:
1520 return RealCirc(Hexagon::S2_storerb_pci
, /*HasImm*/true, /*MxOp*/3);
1521 case Hexagon::PS_storerh_pci
:
1522 return RealCirc(Hexagon::S2_storerh_pci
, /*HasImm*/true, /*MxOp*/3);
1523 case Hexagon::PS_storerf_pci
:
1524 return RealCirc(Hexagon::S2_storerf_pci
, /*HasImm*/true, /*MxOp*/3);
1525 case Hexagon::PS_storeri_pci
:
1526 return RealCirc(Hexagon::S2_storeri_pci
, /*HasImm*/true, /*MxOp*/3);
1527 case Hexagon::PS_storerd_pci
:
1528 return RealCirc(Hexagon::S2_storerd_pci
, /*HasImm*/true, /*MxOp*/3);
1529 case Hexagon::PS_storerb_pcr
:
1530 return RealCirc(Hexagon::S2_storerb_pcr
, /*HasImm*/false, /*MxOp*/2);
1531 case Hexagon::PS_storerh_pcr
:
1532 return RealCirc(Hexagon::S2_storerh_pcr
, /*HasImm*/false, /*MxOp*/2);
1533 case Hexagon::PS_storerf_pcr
:
1534 return RealCirc(Hexagon::S2_storerf_pcr
, /*HasImm*/false, /*MxOp*/2);
1535 case Hexagon::PS_storeri_pcr
:
1536 return RealCirc(Hexagon::S2_storeri_pcr
, /*HasImm*/false, /*MxOp*/2);
1537 case Hexagon::PS_storerd_pcr
:
1538 return RealCirc(Hexagon::S2_storerd_pcr
, /*HasImm*/false, /*MxOp*/2);
1544 MachineBasicBlock::instr_iterator
1545 HexagonInstrInfo::expandVGatherPseudo(MachineInstr
&MI
) const {
1546 MachineBasicBlock
&MBB
= *MI
.getParent();
1547 const DebugLoc
&DL
= MI
.getDebugLoc();
1548 unsigned Opc
= MI
.getOpcode();
1549 MachineBasicBlock::iterator First
;
1552 case Hexagon::V6_vgathermh_pseudo
:
1553 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermh
))
1554 .add(MI
.getOperand(2))
1555 .add(MI
.getOperand(3))
1556 .add(MI
.getOperand(4));
1557 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1558 .add(MI
.getOperand(0))
1559 .addImm(MI
.getOperand(1).getImm())
1560 .addReg(Hexagon::VTMP
);
1562 return First
.getInstrIterator();
1564 case Hexagon::V6_vgathermw_pseudo
:
1565 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermw
))
1566 .add(MI
.getOperand(2))
1567 .add(MI
.getOperand(3))
1568 .add(MI
.getOperand(4));
1569 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1570 .add(MI
.getOperand(0))
1571 .addImm(MI
.getOperand(1).getImm())
1572 .addReg(Hexagon::VTMP
);
1574 return First
.getInstrIterator();
1576 case Hexagon::V6_vgathermhw_pseudo
:
1577 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhw
))
1578 .add(MI
.getOperand(2))
1579 .add(MI
.getOperand(3))
1580 .add(MI
.getOperand(4));
1581 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1582 .add(MI
.getOperand(0))
1583 .addImm(MI
.getOperand(1).getImm())
1584 .addReg(Hexagon::VTMP
);
1586 return First
.getInstrIterator();
1588 case Hexagon::V6_vgathermhq_pseudo
:
1589 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhq
))
1590 .add(MI
.getOperand(2))
1591 .add(MI
.getOperand(3))
1592 .add(MI
.getOperand(4))
1593 .add(MI
.getOperand(5));
1594 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1595 .add(MI
.getOperand(0))
1596 .addImm(MI
.getOperand(1).getImm())
1597 .addReg(Hexagon::VTMP
);
1599 return First
.getInstrIterator();
1601 case Hexagon::V6_vgathermwq_pseudo
:
1602 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermwq
))
1603 .add(MI
.getOperand(2))
1604 .add(MI
.getOperand(3))
1605 .add(MI
.getOperand(4))
1606 .add(MI
.getOperand(5));
1607 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1608 .add(MI
.getOperand(0))
1609 .addImm(MI
.getOperand(1).getImm())
1610 .addReg(Hexagon::VTMP
);
1612 return First
.getInstrIterator();
1614 case Hexagon::V6_vgathermhwq_pseudo
:
1615 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhwq
))
1616 .add(MI
.getOperand(2))
1617 .add(MI
.getOperand(3))
1618 .add(MI
.getOperand(4))
1619 .add(MI
.getOperand(5));
1620 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1621 .add(MI
.getOperand(0))
1622 .addImm(MI
.getOperand(1).getImm())
1623 .addReg(Hexagon::VTMP
);
1625 return First
.getInstrIterator();
1628 return MI
.getIterator();
1631 // We indicate that we want to reverse the branch by
1632 // inserting the reversed branching opcode.
1633 bool HexagonInstrInfo::reverseBranchCondition(
1634 SmallVectorImpl
<MachineOperand
> &Cond
) const {
1637 assert(Cond
[0].isImm() && "First entry in the cond vector not imm-val");
1638 unsigned opcode
= Cond
[0].getImm();
1640 assert(get(opcode
).isBranch() && "Should be a branching condition.");
1641 if (isEndLoopN(opcode
))
1643 unsigned NewOpcode
= getInvertedPredicatedOpcode(opcode
);
1644 Cond
[0].setImm(NewOpcode
);
1648 void HexagonInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
1649 MachineBasicBlock::iterator MI
) const {
1651 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_nop
));
1654 bool HexagonInstrInfo::isPostIncrement(const MachineInstr
&MI
) const {
1655 return getAddrMode(MI
) == HexagonII::PostInc
;
1658 // Returns true if an instruction is predicated irrespective of the predicate
1659 // sense. For example, all of the following will return true.
1660 // if (p0) R1 = add(R2, R3)
1661 // if (!p0) R1 = add(R2, R3)
1662 // if (p0.new) R1 = add(R2, R3)
1663 // if (!p0.new) R1 = add(R2, R3)
1664 // Note: New-value stores are not included here as in the current
1665 // implementation, we don't need to check their predicate sense.
1666 bool HexagonInstrInfo::isPredicated(const MachineInstr
&MI
) const {
1667 const uint64_t F
= MI
.getDesc().TSFlags
;
1668 return (F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
;
1671 bool HexagonInstrInfo::PredicateInstruction(
1672 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Cond
) const {
1673 if (Cond
.empty() || isNewValueJump(Cond
[0].getImm()) ||
1674 isEndLoopN(Cond
[0].getImm())) {
1675 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI
.dump(););
1678 int Opc
= MI
.getOpcode();
1679 assert (isPredicable(MI
) && "Expected predicable instruction");
1680 bool invertJump
= predOpcodeHasNot(Cond
);
1682 // We have to predicate MI "in place", i.e. after this function returns,
1683 // MI will need to be transformed into a predicated form. To avoid com-
1684 // plicated manipulations with the operands (handling tied operands,
1685 // etc.), build a new temporary instruction, then overwrite MI with it.
1687 MachineBasicBlock
&B
= *MI
.getParent();
1688 DebugLoc DL
= MI
.getDebugLoc();
1689 unsigned PredOpc
= getCondOpcode(Opc
, invertJump
);
1690 MachineInstrBuilder T
= BuildMI(B
, MI
, DL
, get(PredOpc
));
1691 unsigned NOp
= 0, NumOps
= MI
.getNumOperands();
1692 while (NOp
< NumOps
) {
1693 MachineOperand
&Op
= MI
.getOperand(NOp
);
1694 if (!Op
.isReg() || !Op
.isDef() || Op
.isImplicit())
1701 unsigned PredRegPos
, PredRegFlags
;
1702 bool GotPredReg
= getPredReg(Cond
, PredReg
, PredRegPos
, PredRegFlags
);
1705 T
.addReg(PredReg
, PredRegFlags
);
1706 while (NOp
< NumOps
)
1707 T
.add(MI
.getOperand(NOp
++));
1709 MI
.setDesc(get(PredOpc
));
1710 while (unsigned n
= MI
.getNumOperands())
1711 MI
.removeOperand(n
-1);
1712 for (unsigned i
= 0, n
= T
->getNumOperands(); i
< n
; ++i
)
1713 MI
.addOperand(T
->getOperand(i
));
1715 MachineBasicBlock::instr_iterator TI
= T
->getIterator();
1718 MachineRegisterInfo
&MRI
= B
.getParent()->getRegInfo();
1719 MRI
.clearKillFlags(PredReg
);
1723 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1724 ArrayRef
<MachineOperand
> Pred2
) const {
1729 bool HexagonInstrInfo::ClobbersPredicate(MachineInstr
&MI
,
1730 std::vector
<MachineOperand
> &Pred
,
1731 bool SkipDead
) const {
1732 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
1734 for (const MachineOperand
&MO
: MI
.operands()) {
1738 const TargetRegisterClass
* RC
= HRI
.getMinimalPhysRegClass(MO
.getReg());
1739 if (RC
== &Hexagon::PredRegsRegClass
) {
1744 } else if (MO
.isRegMask()) {
1745 for (Register PR
: Hexagon::PredRegsRegClass
) {
1746 if (!MI
.modifiesRegister(PR
, &HRI
))
1756 bool HexagonInstrInfo::isPredicable(const MachineInstr
&MI
) const {
1757 if (!MI
.getDesc().isPredicable())
1760 if (MI
.isCall() || isTailCall(MI
)) {
1761 if (!Subtarget
.usePredicatedCalls())
1765 // HVX loads are not predicable on v60, but are on v62.
1766 if (!Subtarget
.hasV62Ops()) {
1767 switch (MI
.getOpcode()) {
1768 case Hexagon::V6_vL32b_ai
:
1769 case Hexagon::V6_vL32b_pi
:
1770 case Hexagon::V6_vL32b_ppu
:
1771 case Hexagon::V6_vL32b_cur_ai
:
1772 case Hexagon::V6_vL32b_cur_pi
:
1773 case Hexagon::V6_vL32b_cur_ppu
:
1774 case Hexagon::V6_vL32b_nt_ai
:
1775 case Hexagon::V6_vL32b_nt_pi
:
1776 case Hexagon::V6_vL32b_nt_ppu
:
1777 case Hexagon::V6_vL32b_tmp_ai
:
1778 case Hexagon::V6_vL32b_tmp_pi
:
1779 case Hexagon::V6_vL32b_tmp_ppu
:
1780 case Hexagon::V6_vL32b_nt_cur_ai
:
1781 case Hexagon::V6_vL32b_nt_cur_pi
:
1782 case Hexagon::V6_vL32b_nt_cur_ppu
:
1783 case Hexagon::V6_vL32b_nt_tmp_ai
:
1784 case Hexagon::V6_vL32b_nt_tmp_pi
:
1785 case Hexagon::V6_vL32b_nt_tmp_ppu
:
1792 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
1793 const MachineBasicBlock
*MBB
,
1794 const MachineFunction
&MF
) const {
1795 // Debug info is never a scheduling boundary. It's necessary to be explicit
1796 // due to the special treatment of IT instructions below, otherwise a
1797 // dbg_value followed by an IT will result in the IT instruction being
1798 // considered a scheduling hazard, which is wrong. It should be the actual
1799 // instruction preceding the dbg_value instruction(s), just like it is
1800 // when debug info is not present.
1801 if (MI
.isDebugInstr())
1804 // Throwing call is a boundary.
1806 // Don't mess around with no return calls.
1807 if (doesNotReturn(MI
))
1809 // If any of the block's successors is a landing pad, this could be a
1811 for (auto *I
: MBB
->successors())
1816 // Terminators and labels can't be scheduled around.
1817 if (MI
.getDesc().isTerminator() || MI
.isPosition())
1820 // INLINEASM_BR can jump to another block
1821 if (MI
.getOpcode() == TargetOpcode::INLINEASM_BR
)
1824 if (MI
.isInlineAsm() && !ScheduleInlineAsm
)
1830 /// Measure the specified inline asm to determine an approximation of its
1832 /// Comments (which run till the next SeparatorString or newline) do not
1833 /// count as an instruction.
1834 /// Any other non-whitespace text is considered an instruction, with
1835 /// multiple instructions separated by SeparatorString or newlines.
1836 /// Variable-length instructions are not handled here; this function
1837 /// may be overloaded in the target code to do that.
1838 /// Hexagon counts the number of ##'s and adjust for that many
1839 /// constant exenders.
1840 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str
,
1841 const MCAsmInfo
&MAI
,
1842 const TargetSubtargetInfo
*STI
) const {
1843 StringRef
AStr(Str
);
1844 // Count the number of instructions in the asm.
1845 bool atInsnStart
= true;
1846 unsigned Length
= 0;
1847 const unsigned MaxInstLength
= MAI
.getMaxInstLength(STI
);
1848 for (; *Str
; ++Str
) {
1849 if (*Str
== '\n' || strncmp(Str
, MAI
.getSeparatorString(),
1850 strlen(MAI
.getSeparatorString())) == 0)
1852 if (atInsnStart
&& !isSpace(static_cast<unsigned char>(*Str
))) {
1853 Length
+= MaxInstLength
;
1854 atInsnStart
= false;
1856 if (atInsnStart
&& strncmp(Str
, MAI
.getCommentString().data(),
1857 MAI
.getCommentString().size()) == 0)
1858 atInsnStart
= false;
1861 // Add to size number of constant extenders seen * 4.
1862 StringRef
Occ("##");
1863 Length
+= AStr
.count(Occ
)*4;
1867 ScheduleHazardRecognizer
*
1868 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1869 const InstrItineraryData
*II
, const ScheduleDAG
*DAG
) const {
1870 if (UseDFAHazardRec
)
1871 return new HexagonHazardRecognizer(II
, this, Subtarget
);
1872 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II
, DAG
);
1875 /// For a comparison instruction, return the source registers in
1876 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1877 /// compares against in CmpValue. Return true if the comparison instruction
1878 /// can be analyzed.
1879 bool HexagonInstrInfo::analyzeCompare(const MachineInstr
&MI
, Register
&SrcReg
,
1880 Register
&SrcReg2
, int64_t &Mask
,
1881 int64_t &Value
) const {
1882 unsigned Opc
= MI
.getOpcode();
1884 // Set mask and the first source register.
1886 case Hexagon::C2_cmpeq
:
1887 case Hexagon::C2_cmpeqp
:
1888 case Hexagon::C2_cmpgt
:
1889 case Hexagon::C2_cmpgtp
:
1890 case Hexagon::C2_cmpgtu
:
1891 case Hexagon::C2_cmpgtup
:
1892 case Hexagon::C4_cmpneq
:
1893 case Hexagon::C4_cmplte
:
1894 case Hexagon::C4_cmplteu
:
1895 case Hexagon::C2_cmpeqi
:
1896 case Hexagon::C2_cmpgti
:
1897 case Hexagon::C2_cmpgtui
:
1898 case Hexagon::C4_cmpneqi
:
1899 case Hexagon::C4_cmplteui
:
1900 case Hexagon::C4_cmpltei
:
1901 SrcReg
= MI
.getOperand(1).getReg();
1904 case Hexagon::A4_cmpbeq
:
1905 case Hexagon::A4_cmpbgt
:
1906 case Hexagon::A4_cmpbgtu
:
1907 case Hexagon::A4_cmpbeqi
:
1908 case Hexagon::A4_cmpbgti
:
1909 case Hexagon::A4_cmpbgtui
:
1910 SrcReg
= MI
.getOperand(1).getReg();
1913 case Hexagon::A4_cmpheq
:
1914 case Hexagon::A4_cmphgt
:
1915 case Hexagon::A4_cmphgtu
:
1916 case Hexagon::A4_cmpheqi
:
1917 case Hexagon::A4_cmphgti
:
1918 case Hexagon::A4_cmphgtui
:
1919 SrcReg
= MI
.getOperand(1).getReg();
1924 // Set the value/second source register.
1926 case Hexagon::C2_cmpeq
:
1927 case Hexagon::C2_cmpeqp
:
1928 case Hexagon::C2_cmpgt
:
1929 case Hexagon::C2_cmpgtp
:
1930 case Hexagon::C2_cmpgtu
:
1931 case Hexagon::C2_cmpgtup
:
1932 case Hexagon::A4_cmpbeq
:
1933 case Hexagon::A4_cmpbgt
:
1934 case Hexagon::A4_cmpbgtu
:
1935 case Hexagon::A4_cmpheq
:
1936 case Hexagon::A4_cmphgt
:
1937 case Hexagon::A4_cmphgtu
:
1938 case Hexagon::C4_cmpneq
:
1939 case Hexagon::C4_cmplte
:
1940 case Hexagon::C4_cmplteu
:
1941 SrcReg2
= MI
.getOperand(2).getReg();
1945 case Hexagon::C2_cmpeqi
:
1946 case Hexagon::C2_cmpgtui
:
1947 case Hexagon::C2_cmpgti
:
1948 case Hexagon::C4_cmpneqi
:
1949 case Hexagon::C4_cmplteui
:
1950 case Hexagon::C4_cmpltei
:
1951 case Hexagon::A4_cmpbeqi
:
1952 case Hexagon::A4_cmpbgti
:
1953 case Hexagon::A4_cmpbgtui
:
1954 case Hexagon::A4_cmpheqi
:
1955 case Hexagon::A4_cmphgti
:
1956 case Hexagon::A4_cmphgtui
: {
1958 const MachineOperand
&Op2
= MI
.getOperand(2);
1961 Value
= MI
.getOperand(2).getImm();
1969 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1970 const MachineInstr
&MI
,
1971 unsigned *PredCost
) const {
1972 return getInstrTimingClassLatency(ItinData
, MI
);
1975 DFAPacketizer
*HexagonInstrInfo::CreateTargetScheduleState(
1976 const TargetSubtargetInfo
&STI
) const {
1977 const InstrItineraryData
*II
= STI
.getInstrItineraryData();
1978 return static_cast<const HexagonSubtarget
&>(STI
).createDFAPacketizer(II
);
1981 // Inspired by this pair:
1982 // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1983 // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
1984 // Currently AA considers the addresses in these instructions to be aliasing.
1985 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1986 const MachineInstr
&MIa
, const MachineInstr
&MIb
) const {
1987 if (MIa
.hasUnmodeledSideEffects() || MIb
.hasUnmodeledSideEffects() ||
1988 MIa
.hasOrderedMemoryRef() || MIb
.hasOrderedMemoryRef())
1991 // Instructions that are pure loads, not loads and stores like memops are not
1993 if (MIa
.mayLoad() && !isMemOp(MIa
) && MIb
.mayLoad() && !isMemOp(MIb
))
1996 // Get the base register in MIa.
1997 unsigned BasePosA
, OffsetPosA
;
1998 if (!getBaseAndOffsetPosition(MIa
, BasePosA
, OffsetPosA
))
2000 const MachineOperand
&BaseA
= MIa
.getOperand(BasePosA
);
2001 Register BaseRegA
= BaseA
.getReg();
2002 unsigned BaseSubA
= BaseA
.getSubReg();
2004 // Get the base register in MIb.
2005 unsigned BasePosB
, OffsetPosB
;
2006 if (!getBaseAndOffsetPosition(MIb
, BasePosB
, OffsetPosB
))
2008 const MachineOperand
&BaseB
= MIb
.getOperand(BasePosB
);
2009 Register BaseRegB
= BaseB
.getReg();
2010 unsigned BaseSubB
= BaseB
.getSubReg();
2012 if (BaseRegA
!= BaseRegB
|| BaseSubA
!= BaseSubB
)
2015 // Get the access sizes.
2016 unsigned SizeA
= getMemAccessSize(MIa
);
2017 unsigned SizeB
= getMemAccessSize(MIb
);
2019 // Get the offsets. Handle immediates only for now.
2020 const MachineOperand
&OffA
= MIa
.getOperand(OffsetPosA
);
2021 const MachineOperand
&OffB
= MIb
.getOperand(OffsetPosB
);
2022 if (!MIa
.getOperand(OffsetPosA
).isImm() ||
2023 !MIb
.getOperand(OffsetPosB
).isImm())
2025 int OffsetA
= isPostIncrement(MIa
) ? 0 : OffA
.getImm();
2026 int OffsetB
= isPostIncrement(MIb
) ? 0 : OffB
.getImm();
2028 // This is a mem access with the same base register and known offsets from it.
2030 if (OffsetA
> OffsetB
) {
2031 uint64_t OffDiff
= (uint64_t)((int64_t)OffsetA
- (int64_t)OffsetB
);
2032 return SizeB
<= OffDiff
;
2034 if (OffsetA
< OffsetB
) {
2035 uint64_t OffDiff
= (uint64_t)((int64_t)OffsetB
- (int64_t)OffsetA
);
2036 return SizeA
<= OffDiff
;
2042 /// If the instruction is an increment of a constant value, return the amount.
2043 bool HexagonInstrInfo::getIncrementValue(const MachineInstr
&MI
,
2045 if (isPostIncrement(MI
)) {
2046 unsigned BasePos
= 0, OffsetPos
= 0;
2047 if (!getBaseAndOffsetPosition(MI
, BasePos
, OffsetPos
))
2049 const MachineOperand
&OffsetOp
= MI
.getOperand(OffsetPos
);
2050 if (OffsetOp
.isImm()) {
2051 Value
= OffsetOp
.getImm();
2054 } else if (MI
.getOpcode() == Hexagon::A2_addi
) {
2055 const MachineOperand
&AddOp
= MI
.getOperand(2);
2056 if (AddOp
.isImm()) {
2057 Value
= AddOp
.getImm();
2065 std::pair
<unsigned, unsigned>
2066 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
2067 return std::make_pair(TF
& ~HexagonII::MO_Bitmasks
,
2068 TF
& HexagonII::MO_Bitmasks
);
2071 ArrayRef
<std::pair
<unsigned, const char*>>
2072 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2073 using namespace HexagonII
;
2075 static const std::pair
<unsigned, const char*> Flags
[] = {
2076 {MO_PCREL
, "hexagon-pcrel"},
2077 {MO_GOT
, "hexagon-got"},
2078 {MO_LO16
, "hexagon-lo16"},
2079 {MO_HI16
, "hexagon-hi16"},
2080 {MO_GPREL
, "hexagon-gprel"},
2081 {MO_GDGOT
, "hexagon-gdgot"},
2082 {MO_GDPLT
, "hexagon-gdplt"},
2083 {MO_IE
, "hexagon-ie"},
2084 {MO_IEGOT
, "hexagon-iegot"},
2085 {MO_TPREL
, "hexagon-tprel"}
2087 return ArrayRef(Flags
);
2090 ArrayRef
<std::pair
<unsigned, const char*>>
2091 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
2092 using namespace HexagonII
;
2094 static const std::pair
<unsigned, const char*> Flags
[] = {
2095 {HMOTF_ConstExtended
, "hexagon-ext"}
2097 return ArrayRef(Flags
);
2100 Register
HexagonInstrInfo::createVR(MachineFunction
*MF
, MVT VT
) const {
2101 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
2102 const TargetRegisterClass
*TRC
;
2103 if (VT
== MVT::i1
) {
2104 TRC
= &Hexagon::PredRegsRegClass
;
2105 } else if (VT
== MVT::i32
|| VT
== MVT::f32
) {
2106 TRC
= &Hexagon::IntRegsRegClass
;
2107 } else if (VT
== MVT::i64
|| VT
== MVT::f64
) {
2108 TRC
= &Hexagon::DoubleRegsRegClass
;
2110 llvm_unreachable("Cannot handle this register class");
2113 Register NewReg
= MRI
.createVirtualRegister(TRC
);
2117 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr
&MI
) const {
2118 return (getAddrMode(MI
) == HexagonII::AbsoluteSet
);
2121 bool HexagonInstrInfo::isAccumulator(const MachineInstr
&MI
) const {
2122 const uint64_t F
= MI
.getDesc().TSFlags
;
2123 return((F
>> HexagonII::AccumulatorPos
) & HexagonII::AccumulatorMask
);
2126 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr
&MI
) const {
2127 return getAddrMode(MI
) == HexagonII::BaseImmOffset
;
2130 bool HexagonInstrInfo::isComplex(const MachineInstr
&MI
) const {
2131 return !isTC1(MI
) && !isTC2Early(MI
) && !MI
.getDesc().mayLoad() &&
2132 !MI
.getDesc().mayStore() &&
2133 MI
.getDesc().getOpcode() != Hexagon::S2_allocframe
&&
2134 MI
.getDesc().getOpcode() != Hexagon::L2_deallocframe
&&
2135 !isMemOp(MI
) && !MI
.isBranch() && !MI
.isReturn() && !MI
.isCall();
2138 // Return true if the instruction is a compound branch instruction.
2139 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr
&MI
) const {
2140 return getType(MI
) == HexagonII::TypeCJ
&& MI
.isBranch();
2143 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2144 // isFPImm and later getFPImm as well.
2145 bool HexagonInstrInfo::isConstExtended(const MachineInstr
&MI
) const {
2146 const uint64_t F
= MI
.getDesc().TSFlags
;
2147 unsigned isExtended
= (F
>> HexagonII::ExtendedPos
) & HexagonII::ExtendedMask
;
2148 if (isExtended
) // Instruction must be extended.
2151 unsigned isExtendable
=
2152 (F
>> HexagonII::ExtendablePos
) & HexagonII::ExtendableMask
;
2159 short ExtOpNum
= getCExtOpNum(MI
);
2160 const MachineOperand
&MO
= MI
.getOperand(ExtOpNum
);
2161 // Use MO operand flags to determine if MO
2162 // has the HMOTF_ConstExtended flag set.
2163 if (MO
.getTargetFlags() & HexagonII::HMOTF_ConstExtended
)
2165 // If this is a Machine BB address we are talking about, and it is
2166 // not marked as extended, say so.
2170 // We could be using an instruction with an extendable immediate and shoehorn
2171 // a global address into it. If it is a global address it will be constant
2172 // extended. We do this for COMBINE.
2173 if (MO
.isGlobal() || MO
.isSymbol() || MO
.isBlockAddress() ||
2174 MO
.isJTI() || MO
.isCPI() || MO
.isFPImm())
2177 // If the extendable operand is not 'Immediate' type, the instruction should
2178 // have 'isExtended' flag set.
2179 assert(MO
.isImm() && "Extendable operand must be Immediate type");
2181 int64_t Value
= MO
.getImm();
2182 if ((F
>> HexagonII::ExtentSignedPos
) & HexagonII::ExtentSignedMask
) {
2183 int32_t SValue
= Value
;
2184 int32_t MinValue
= getMinValue(MI
);
2185 int32_t MaxValue
= getMaxValue(MI
);
2186 return SValue
< MinValue
|| SValue
> MaxValue
;
2188 uint32_t UValue
= Value
;
2189 uint32_t MinValue
= getMinValue(MI
);
2190 uint32_t MaxValue
= getMaxValue(MI
);
2191 return UValue
< MinValue
|| UValue
> MaxValue
;
2194 bool HexagonInstrInfo::isDeallocRet(const MachineInstr
&MI
) const {
2195 switch (MI
.getOpcode()) {
2196 case Hexagon::L4_return
:
2197 case Hexagon::L4_return_t
:
2198 case Hexagon::L4_return_f
:
2199 case Hexagon::L4_return_tnew_pnt
:
2200 case Hexagon::L4_return_fnew_pnt
:
2201 case Hexagon::L4_return_tnew_pt
:
2202 case Hexagon::L4_return_fnew_pt
:
2208 // Return true when ConsMI uses a register defined by ProdMI.
2209 bool HexagonInstrInfo::isDependent(const MachineInstr
&ProdMI
,
2210 const MachineInstr
&ConsMI
) const {
2211 if (!ProdMI
.getDesc().getNumDefs())
2213 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
2215 SmallVector
<Register
, 4> DefsA
;
2216 SmallVector
<Register
, 4> DefsB
;
2217 SmallVector
<Register
, 8> UsesA
;
2218 SmallVector
<Register
, 8> UsesB
;
2220 parseOperands(ProdMI
, DefsA
, UsesA
);
2221 parseOperands(ConsMI
, DefsB
, UsesB
);
2223 for (auto &RegA
: DefsA
)
2224 for (auto &RegB
: UsesB
) {
2225 // True data dependency.
2229 if (RegA
.isPhysical() && llvm::is_contained(HRI
.subregs(RegA
), RegB
))
2232 if (RegB
.isPhysical() && llvm::is_contained(HRI
.subregs(RegB
), RegA
))
2239 // Returns true if the instruction is alread a .cur.
2240 bool HexagonInstrInfo::isDotCurInst(const MachineInstr
&MI
) const {
2241 switch (MI
.getOpcode()) {
2242 case Hexagon::V6_vL32b_cur_pi
:
2243 case Hexagon::V6_vL32b_cur_ai
:
2249 // Returns true, if any one of the operands is a dot new
2250 // insn, whether it is predicated dot new or register dot new.
2251 bool HexagonInstrInfo::isDotNewInst(const MachineInstr
&MI
) const {
2252 if (isNewValueInst(MI
) || (isPredicated(MI
) && isPredicatedNew(MI
)))
2258 /// Symmetrical. See if these two instructions are fit for duplex pair.
2259 bool HexagonInstrInfo::isDuplexPair(const MachineInstr
&MIa
,
2260 const MachineInstr
&MIb
) const {
2261 HexagonII::SubInstructionGroup MIaG
= getDuplexCandidateGroup(MIa
);
2262 HexagonII::SubInstructionGroup MIbG
= getDuplexCandidateGroup(MIb
);
2263 return (isDuplexPairMatch(MIaG
, MIbG
) || isDuplexPairMatch(MIbG
, MIaG
));
2266 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode
) const {
2267 return (Opcode
== Hexagon::ENDLOOP0
||
2268 Opcode
== Hexagon::ENDLOOP1
);
2271 bool HexagonInstrInfo::isExpr(unsigned OpType
) const {
2273 case MachineOperand::MO_MachineBasicBlock
:
2274 case MachineOperand::MO_GlobalAddress
:
2275 case MachineOperand::MO_ExternalSymbol
:
2276 case MachineOperand::MO_JumpTableIndex
:
2277 case MachineOperand::MO_ConstantPoolIndex
:
2278 case MachineOperand::MO_BlockAddress
:
2285 bool HexagonInstrInfo::isExtendable(const MachineInstr
&MI
) const {
2286 const MCInstrDesc
&MID
= MI
.getDesc();
2287 const uint64_t F
= MID
.TSFlags
;
2288 if ((F
>> HexagonII::ExtendablePos
) & HexagonII::ExtendableMask
)
2291 // TODO: This is largely obsolete now. Will need to be removed
2292 // in consecutive patches.
2293 switch (MI
.getOpcode()) {
2294 // PS_fi and PS_fia remain special cases.
2295 case Hexagon::PS_fi
:
2296 case Hexagon::PS_fia
:
2304 // This returns true in two cases:
2305 // - The OP code itself indicates that this is an extended instruction.
2306 // - One of MOs has been marked with HMOTF_ConstExtended flag.
2307 bool HexagonInstrInfo::isExtended(const MachineInstr
&MI
) const {
2308 // First check if this is permanently extended op code.
2309 const uint64_t F
= MI
.getDesc().TSFlags
;
2310 if ((F
>> HexagonII::ExtendedPos
) & HexagonII::ExtendedMask
)
2312 // Use MO operand flags to determine if one of MI's operands
2313 // has HMOTF_ConstExtended flag set.
2314 for (const MachineOperand
&MO
: MI
.operands())
2315 if (MO
.getTargetFlags() & HexagonII::HMOTF_ConstExtended
)
2320 bool HexagonInstrInfo::isFloat(const MachineInstr
&MI
) const {
2321 unsigned Opcode
= MI
.getOpcode();
2322 const uint64_t F
= get(Opcode
).TSFlags
;
2323 return (F
>> HexagonII::FPPos
) & HexagonII::FPMask
;
2326 // No V60 HVX VMEM with A_INDIRECT.
2327 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr
&I
,
2328 const MachineInstr
&J
) const {
2331 if (!I
.mayLoad() && !I
.mayStore())
2333 return J
.isIndirectBranch() || isIndirectCall(J
) || isIndirectL4Return(J
);
2336 bool HexagonInstrInfo::isIndirectCall(const MachineInstr
&MI
) const {
2337 switch (MI
.getOpcode()) {
2338 case Hexagon::J2_callr
:
2339 case Hexagon::J2_callrf
:
2340 case Hexagon::J2_callrt
:
2341 case Hexagon::PS_call_nr
:
2347 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr
&MI
) const {
2348 switch (MI
.getOpcode()) {
2349 case Hexagon::L4_return
:
2350 case Hexagon::L4_return_t
:
2351 case Hexagon::L4_return_f
:
2352 case Hexagon::L4_return_fnew_pnt
:
2353 case Hexagon::L4_return_fnew_pt
:
2354 case Hexagon::L4_return_tnew_pnt
:
2355 case Hexagon::L4_return_tnew_pt
:
2361 bool HexagonInstrInfo::isJumpR(const MachineInstr
&MI
) const {
2362 switch (MI
.getOpcode()) {
2363 case Hexagon::J2_jumpr
:
2364 case Hexagon::J2_jumprt
:
2365 case Hexagon::J2_jumprf
:
2366 case Hexagon::J2_jumprtnewpt
:
2367 case Hexagon::J2_jumprfnewpt
:
2368 case Hexagon::J2_jumprtnew
:
2369 case Hexagon::J2_jumprfnew
:
2375 // Return true if a given MI can accommodate given offset.
2376 // Use abs estimate as oppose to the exact number.
2377 // TODO: This will need to be changed to use MC level
2378 // definition of instruction extendable field size.
2379 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr
&MI
,
2380 unsigned offset
) const {
2381 // This selection of jump instructions matches to that what
2382 // analyzeBranch can parse, plus NVJ.
2383 if (isNewValueJump(MI
)) // r9:2
2384 return isInt
<11>(offset
);
2386 switch (MI
.getOpcode()) {
2387 // Still missing Jump to address condition on register value.
2390 case Hexagon::J2_jump
: // bits<24> dst; // r22:2
2391 case Hexagon::J2_call
:
2392 case Hexagon::PS_call_nr
:
2393 return isInt
<24>(offset
);
2394 case Hexagon::J2_jumpt
: //bits<17> dst; // r15:2
2395 case Hexagon::J2_jumpf
:
2396 case Hexagon::J2_jumptnew
:
2397 case Hexagon::J2_jumptnewpt
:
2398 case Hexagon::J2_jumpfnew
:
2399 case Hexagon::J2_jumpfnewpt
:
2400 case Hexagon::J2_callt
:
2401 case Hexagon::J2_callf
:
2402 return isInt
<17>(offset
);
2403 case Hexagon::J2_loop0i
:
2404 case Hexagon::J2_loop0iext
:
2405 case Hexagon::J2_loop0r
:
2406 case Hexagon::J2_loop0rext
:
2407 case Hexagon::J2_loop1i
:
2408 case Hexagon::J2_loop1iext
:
2409 case Hexagon::J2_loop1r
:
2410 case Hexagon::J2_loop1rext
:
2411 return isInt
<9>(offset
);
2412 // TODO: Add all the compound branches here. Can we do this in Relation model?
2413 case Hexagon::J4_cmpeqi_tp0_jump_nt
:
2414 case Hexagon::J4_cmpeqi_tp1_jump_nt
:
2415 case Hexagon::J4_cmpeqn1_tp0_jump_nt
:
2416 case Hexagon::J4_cmpeqn1_tp1_jump_nt
:
2417 return isInt
<11>(offset
);
2421 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr
&MI
) const {
2422 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2423 // resource, but all operands can be received late like an ALU instruction.
2424 return getType(MI
) == HexagonII::TypeCVI_VX_LATE
;
2427 bool HexagonInstrInfo::isLoopN(const MachineInstr
&MI
) const {
2428 unsigned Opcode
= MI
.getOpcode();
2429 return Opcode
== Hexagon::J2_loop0i
||
2430 Opcode
== Hexagon::J2_loop0r
||
2431 Opcode
== Hexagon::J2_loop0iext
||
2432 Opcode
== Hexagon::J2_loop0rext
||
2433 Opcode
== Hexagon::J2_loop1i
||
2434 Opcode
== Hexagon::J2_loop1r
||
2435 Opcode
== Hexagon::J2_loop1iext
||
2436 Opcode
== Hexagon::J2_loop1rext
;
2439 bool HexagonInstrInfo::isMemOp(const MachineInstr
&MI
) const {
2440 switch (MI
.getOpcode()) {
2441 default: return false;
2442 case Hexagon::L4_iadd_memopw_io
:
2443 case Hexagon::L4_isub_memopw_io
:
2444 case Hexagon::L4_add_memopw_io
:
2445 case Hexagon::L4_sub_memopw_io
:
2446 case Hexagon::L4_and_memopw_io
:
2447 case Hexagon::L4_or_memopw_io
:
2448 case Hexagon::L4_iadd_memoph_io
:
2449 case Hexagon::L4_isub_memoph_io
:
2450 case Hexagon::L4_add_memoph_io
:
2451 case Hexagon::L4_sub_memoph_io
:
2452 case Hexagon::L4_and_memoph_io
:
2453 case Hexagon::L4_or_memoph_io
:
2454 case Hexagon::L4_iadd_memopb_io
:
2455 case Hexagon::L4_isub_memopb_io
:
2456 case Hexagon::L4_add_memopb_io
:
2457 case Hexagon::L4_sub_memopb_io
:
2458 case Hexagon::L4_and_memopb_io
:
2459 case Hexagon::L4_or_memopb_io
:
2460 case Hexagon::L4_ior_memopb_io
:
2461 case Hexagon::L4_ior_memoph_io
:
2462 case Hexagon::L4_ior_memopw_io
:
2463 case Hexagon::L4_iand_memopb_io
:
2464 case Hexagon::L4_iand_memoph_io
:
2465 case Hexagon::L4_iand_memopw_io
:
2471 bool HexagonInstrInfo::isNewValue(const MachineInstr
&MI
) const {
2472 const uint64_t F
= MI
.getDesc().TSFlags
;
2473 return (F
>> HexagonII::NewValuePos
) & HexagonII::NewValueMask
;
2476 bool HexagonInstrInfo::isNewValue(unsigned Opcode
) const {
2477 const uint64_t F
= get(Opcode
).TSFlags
;
2478 return (F
>> HexagonII::NewValuePos
) & HexagonII::NewValueMask
;
2481 bool HexagonInstrInfo::isNewValueInst(const MachineInstr
&MI
) const {
2482 return isNewValueJump(MI
) || isNewValueStore(MI
);
2485 bool HexagonInstrInfo::isNewValueJump(const MachineInstr
&MI
) const {
2486 return isNewValue(MI
) && MI
.isBranch();
2489 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode
) const {
2490 return isNewValue(Opcode
) && get(Opcode
).isBranch() && isPredicated(Opcode
);
2493 bool HexagonInstrInfo::isNewValueStore(const MachineInstr
&MI
) const {
2494 const uint64_t F
= MI
.getDesc().TSFlags
;
2495 return (F
>> HexagonII::NVStorePos
) & HexagonII::NVStoreMask
;
2498 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode
) const {
2499 const uint64_t F
= get(Opcode
).TSFlags
;
2500 return (F
>> HexagonII::NVStorePos
) & HexagonII::NVStoreMask
;
2503 // Returns true if a particular operand is extendable for an instruction.
2504 bool HexagonInstrInfo::isOperandExtended(const MachineInstr
&MI
,
2505 unsigned OperandNum
) const {
2506 const uint64_t F
= MI
.getDesc().TSFlags
;
2507 return ((F
>> HexagonII::ExtendableOpPos
) & HexagonII::ExtendableOpMask
)
2511 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr
&MI
) const {
2512 const uint64_t F
= MI
.getDesc().TSFlags
;
2513 assert(isPredicated(MI
));
2514 return (F
>> HexagonII::PredicatedNewPos
) & HexagonII::PredicatedNewMask
;
2517 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode
) const {
2518 const uint64_t F
= get(Opcode
).TSFlags
;
2519 assert(isPredicated(Opcode
));
2520 return (F
>> HexagonII::PredicatedNewPos
) & HexagonII::PredicatedNewMask
;
2523 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr
&MI
) const {
2524 const uint64_t F
= MI
.getDesc().TSFlags
;
2525 return !((F
>> HexagonII::PredicatedFalsePos
) &
2526 HexagonII::PredicatedFalseMask
);
2529 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode
) const {
2530 const uint64_t F
= get(Opcode
).TSFlags
;
2531 // Make sure that the instruction is predicated.
2532 assert((F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
);
2533 return !((F
>> HexagonII::PredicatedFalsePos
) &
2534 HexagonII::PredicatedFalseMask
);
2537 bool HexagonInstrInfo::isPredicated(unsigned Opcode
) const {
2538 const uint64_t F
= get(Opcode
).TSFlags
;
2539 return (F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
;
2542 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode
) const {
2543 const uint64_t F
= get(Opcode
).TSFlags
;
2544 return (F
>> HexagonII::PredicateLatePos
) & HexagonII::PredicateLateMask
;
2547 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode
) const {
2548 const uint64_t F
= get(Opcode
).TSFlags
;
2549 assert(get(Opcode
).isBranch() &&
2550 (isPredicatedNew(Opcode
) || isNewValue(Opcode
)));
2551 return (F
>> HexagonII::TakenPos
) & HexagonII::TakenMask
;
2554 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr
&MI
) const {
2555 return MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4
||
2556 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT
||
2557 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC
||
2558 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
;
2561 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr
&MI
) const {
2562 switch (MI
.getOpcode()) {
2564 case Hexagon::L2_loadrb_io
:
2565 case Hexagon::L4_loadrb_ur
:
2566 case Hexagon::L4_loadrb_ap
:
2567 case Hexagon::L2_loadrb_pr
:
2568 case Hexagon::L2_loadrb_pbr
:
2569 case Hexagon::L2_loadrb_pi
:
2570 case Hexagon::L2_loadrb_pci
:
2571 case Hexagon::L2_loadrb_pcr
:
2572 case Hexagon::L2_loadbsw2_io
:
2573 case Hexagon::L4_loadbsw2_ur
:
2574 case Hexagon::L4_loadbsw2_ap
:
2575 case Hexagon::L2_loadbsw2_pr
:
2576 case Hexagon::L2_loadbsw2_pbr
:
2577 case Hexagon::L2_loadbsw2_pi
:
2578 case Hexagon::L2_loadbsw2_pci
:
2579 case Hexagon::L2_loadbsw2_pcr
:
2580 case Hexagon::L2_loadbsw4_io
:
2581 case Hexagon::L4_loadbsw4_ur
:
2582 case Hexagon::L4_loadbsw4_ap
:
2583 case Hexagon::L2_loadbsw4_pr
:
2584 case Hexagon::L2_loadbsw4_pbr
:
2585 case Hexagon::L2_loadbsw4_pi
:
2586 case Hexagon::L2_loadbsw4_pci
:
2587 case Hexagon::L2_loadbsw4_pcr
:
2588 case Hexagon::L4_loadrb_rr
:
2589 case Hexagon::L2_ploadrbt_io
:
2590 case Hexagon::L2_ploadrbt_pi
:
2591 case Hexagon::L2_ploadrbf_io
:
2592 case Hexagon::L2_ploadrbf_pi
:
2593 case Hexagon::L2_ploadrbtnew_io
:
2594 case Hexagon::L2_ploadrbfnew_io
:
2595 case Hexagon::L4_ploadrbt_rr
:
2596 case Hexagon::L4_ploadrbf_rr
:
2597 case Hexagon::L4_ploadrbtnew_rr
:
2598 case Hexagon::L4_ploadrbfnew_rr
:
2599 case Hexagon::L2_ploadrbtnew_pi
:
2600 case Hexagon::L2_ploadrbfnew_pi
:
2601 case Hexagon::L4_ploadrbt_abs
:
2602 case Hexagon::L4_ploadrbf_abs
:
2603 case Hexagon::L4_ploadrbtnew_abs
:
2604 case Hexagon::L4_ploadrbfnew_abs
:
2605 case Hexagon::L2_loadrbgp
:
2607 case Hexagon::L2_loadrh_io
:
2608 case Hexagon::L4_loadrh_ur
:
2609 case Hexagon::L4_loadrh_ap
:
2610 case Hexagon::L2_loadrh_pr
:
2611 case Hexagon::L2_loadrh_pbr
:
2612 case Hexagon::L2_loadrh_pi
:
2613 case Hexagon::L2_loadrh_pci
:
2614 case Hexagon::L2_loadrh_pcr
:
2615 case Hexagon::L4_loadrh_rr
:
2616 case Hexagon::L2_ploadrht_io
:
2617 case Hexagon::L2_ploadrht_pi
:
2618 case Hexagon::L2_ploadrhf_io
:
2619 case Hexagon::L2_ploadrhf_pi
:
2620 case Hexagon::L2_ploadrhtnew_io
:
2621 case Hexagon::L2_ploadrhfnew_io
:
2622 case Hexagon::L4_ploadrht_rr
:
2623 case Hexagon::L4_ploadrhf_rr
:
2624 case Hexagon::L4_ploadrhtnew_rr
:
2625 case Hexagon::L4_ploadrhfnew_rr
:
2626 case Hexagon::L2_ploadrhtnew_pi
:
2627 case Hexagon::L2_ploadrhfnew_pi
:
2628 case Hexagon::L4_ploadrht_abs
:
2629 case Hexagon::L4_ploadrhf_abs
:
2630 case Hexagon::L4_ploadrhtnew_abs
:
2631 case Hexagon::L4_ploadrhfnew_abs
:
2632 case Hexagon::L2_loadrhgp
:
2639 bool HexagonInstrInfo::isSolo(const MachineInstr
&MI
) const {
2640 const uint64_t F
= MI
.getDesc().TSFlags
;
2641 return (F
>> HexagonII::SoloPos
) & HexagonII::SoloMask
;
2644 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr
&MI
) const {
2645 switch (MI
.getOpcode()) {
2646 case Hexagon::STriw_pred
:
2647 case Hexagon::LDriw_pred
:
2654 bool HexagonInstrInfo::isTailCall(const MachineInstr
&MI
) const {
2658 for (auto &Op
: MI
.operands())
2659 if (Op
.isGlobal() || Op
.isSymbol())
2664 // Returns true when SU has a timing class TC1.
2665 bool HexagonInstrInfo::isTC1(const MachineInstr
&MI
) const {
2666 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2667 return is_TC1(SchedClass
);
2670 bool HexagonInstrInfo::isTC2(const MachineInstr
&MI
) const {
2671 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2672 return is_TC2(SchedClass
);
2675 bool HexagonInstrInfo::isTC2Early(const MachineInstr
&MI
) const {
2676 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2677 return is_TC2early(SchedClass
);
2680 bool HexagonInstrInfo::isTC4x(const MachineInstr
&MI
) const {
2681 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2682 return is_TC4x(SchedClass
);
2685 // Schedule this ASAP.
2686 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr
&MI1
,
2687 const MachineInstr
&MI2
) const {
2688 if (mayBeCurLoad(MI1
)) {
2689 // if (result of SU is used in Next) return true;
2690 Register DstReg
= MI1
.getOperand(0).getReg();
2691 int N
= MI2
.getNumOperands();
2692 for (int I
= 0; I
< N
; I
++)
2693 if (MI2
.getOperand(I
).isReg() && DstReg
== MI2
.getOperand(I
).getReg())
2696 if (mayBeNewStore(MI2
))
2697 if (MI2
.getOpcode() == Hexagon::V6_vS32b_pi
)
2698 if (MI1
.getOperand(0).isReg() && MI2
.getOperand(3).isReg() &&
2699 MI1
.getOperand(0).getReg() == MI2
.getOperand(3).getReg())
2704 bool HexagonInstrInfo::isHVXVec(const MachineInstr
&MI
) const {
2705 const uint64_t V
= getType(MI
);
2706 return HexagonII::TypeCVI_FIRST
<= V
&& V
<= HexagonII::TypeCVI_LAST
;
2709 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2710 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT
, int Offset
) const {
2711 int Size
= VT
.getSizeInBits() / 8;
2712 if (Offset
% Size
!= 0)
2714 int Count
= Offset
/ Size
;
2716 switch (VT
.getSimpleVT().SimpleTy
) {
2717 // For scalars the auto-inc is s4
2729 return isInt
<4>(Count
);
2730 // For HVX vectors the auto-inc is s3
2739 return isInt
<3>(Count
);
2744 llvm_unreachable("Not an valid type!");
2747 bool HexagonInstrInfo::isValidOffset(unsigned Opcode
, int Offset
,
2748 const TargetRegisterInfo
*TRI
, bool Extend
) const {
2749 // This function is to check whether the "Offset" is in the correct range of
2750 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2751 // inserted to calculate the final address. Due to this reason, the function
2752 // assumes that the "Offset" has correct alignment.
2753 // We used to assert if the offset was not properly aligned, however,
2754 // there are cases where a misaligned pointer recast can cause this
2755 // problem, and we need to allow for it. The front end warns of such
2756 // misaligns with respect to load size.
2758 case Hexagon::PS_vstorerq_ai
:
2759 case Hexagon::PS_vstorerv_ai
:
2760 case Hexagon::PS_vstorerw_ai
:
2761 case Hexagon::PS_vstorerw_nt_ai
:
2762 case Hexagon::PS_vloadrq_ai
:
2763 case Hexagon::PS_vloadrv_ai
:
2764 case Hexagon::PS_vloadrw_ai
:
2765 case Hexagon::PS_vloadrw_nt_ai
:
2766 case Hexagon::V6_vL32b_ai
:
2767 case Hexagon::V6_vS32b_ai
:
2768 case Hexagon::V6_vS32b_pred_ai
:
2769 case Hexagon::V6_vS32b_npred_ai
:
2770 case Hexagon::V6_vS32b_qpred_ai
:
2771 case Hexagon::V6_vS32b_nqpred_ai
:
2772 case Hexagon::V6_vS32b_new_ai
:
2773 case Hexagon::V6_vS32b_new_pred_ai
:
2774 case Hexagon::V6_vS32b_new_npred_ai
:
2775 case Hexagon::V6_vS32b_nt_pred_ai
:
2776 case Hexagon::V6_vS32b_nt_npred_ai
:
2777 case Hexagon::V6_vS32b_nt_new_ai
:
2778 case Hexagon::V6_vS32b_nt_new_pred_ai
:
2779 case Hexagon::V6_vS32b_nt_new_npred_ai
:
2780 case Hexagon::V6_vS32b_nt_qpred_ai
:
2781 case Hexagon::V6_vS32b_nt_nqpred_ai
:
2782 case Hexagon::V6_vL32b_nt_ai
:
2783 case Hexagon::V6_vS32b_nt_ai
:
2784 case Hexagon::V6_vL32Ub_ai
:
2785 case Hexagon::V6_vS32Ub_ai
:
2786 case Hexagon::V6_vL32b_cur_ai
:
2787 case Hexagon::V6_vL32b_tmp_ai
:
2788 case Hexagon::V6_vL32b_pred_ai
:
2789 case Hexagon::V6_vL32b_npred_ai
:
2790 case Hexagon::V6_vL32b_cur_pred_ai
:
2791 case Hexagon::V6_vL32b_cur_npred_ai
:
2792 case Hexagon::V6_vL32b_tmp_pred_ai
:
2793 case Hexagon::V6_vL32b_tmp_npred_ai
:
2794 case Hexagon::V6_vL32b_nt_cur_ai
:
2795 case Hexagon::V6_vL32b_nt_tmp_ai
:
2796 case Hexagon::V6_vL32b_nt_pred_ai
:
2797 case Hexagon::V6_vL32b_nt_npred_ai
:
2798 case Hexagon::V6_vL32b_nt_cur_pred_ai
:
2799 case Hexagon::V6_vL32b_nt_cur_npred_ai
:
2800 case Hexagon::V6_vL32b_nt_tmp_pred_ai
:
2801 case Hexagon::V6_vL32b_nt_tmp_npred_ai
:
2802 case Hexagon::V6_vgathermh_pseudo
:
2803 case Hexagon::V6_vgathermw_pseudo
:
2804 case Hexagon::V6_vgathermhw_pseudo
:
2805 case Hexagon::V6_vgathermhq_pseudo
:
2806 case Hexagon::V6_vgathermwq_pseudo
:
2807 case Hexagon::V6_vgathermhwq_pseudo
: {
2808 unsigned VectorSize
= TRI
->getSpillSize(Hexagon::HvxVRRegClass
);
2809 assert(isPowerOf2_32(VectorSize
));
2810 if (Offset
& (VectorSize
-1))
2812 return isInt
<4>(Offset
>> Log2_32(VectorSize
));
2815 case Hexagon::J2_loop0i
:
2816 case Hexagon::J2_loop1i
:
2817 return isUInt
<10>(Offset
);
2819 case Hexagon::S4_storeirb_io
:
2820 case Hexagon::S4_storeirbt_io
:
2821 case Hexagon::S4_storeirbf_io
:
2822 return isUInt
<6>(Offset
);
2824 case Hexagon::S4_storeirh_io
:
2825 case Hexagon::S4_storeirht_io
:
2826 case Hexagon::S4_storeirhf_io
:
2827 return isShiftedUInt
<6,1>(Offset
);
2829 case Hexagon::S4_storeiri_io
:
2830 case Hexagon::S4_storeirit_io
:
2831 case Hexagon::S4_storeirif_io
:
2832 return isShiftedUInt
<6,2>(Offset
);
2833 // Handle these two compare instructions that are not extendable.
2834 case Hexagon::A4_cmpbeqi
:
2835 return isUInt
<8>(Offset
);
2836 case Hexagon::A4_cmpbgti
:
2837 return isInt
<8>(Offset
);
2844 case Hexagon::L2_loadri_io
:
2845 case Hexagon::S2_storeri_io
:
2846 return (Offset
>= Hexagon_MEMW_OFFSET_MIN
) &&
2847 (Offset
<= Hexagon_MEMW_OFFSET_MAX
);
2849 case Hexagon::L2_loadrd_io
:
2850 case Hexagon::S2_storerd_io
:
2851 return (Offset
>= Hexagon_MEMD_OFFSET_MIN
) &&
2852 (Offset
<= Hexagon_MEMD_OFFSET_MAX
);
2854 case Hexagon::L2_loadrh_io
:
2855 case Hexagon::L2_loadruh_io
:
2856 case Hexagon::S2_storerh_io
:
2857 case Hexagon::S2_storerf_io
:
2858 return (Offset
>= Hexagon_MEMH_OFFSET_MIN
) &&
2859 (Offset
<= Hexagon_MEMH_OFFSET_MAX
);
2861 case Hexagon::L2_loadrb_io
:
2862 case Hexagon::L2_loadrub_io
:
2863 case Hexagon::S2_storerb_io
:
2864 return (Offset
>= Hexagon_MEMB_OFFSET_MIN
) &&
2865 (Offset
<= Hexagon_MEMB_OFFSET_MAX
);
2867 case Hexagon::A2_addi
:
2868 return (Offset
>= Hexagon_ADDI_OFFSET_MIN
) &&
2869 (Offset
<= Hexagon_ADDI_OFFSET_MAX
);
2871 case Hexagon::L4_iadd_memopw_io
:
2872 case Hexagon::L4_isub_memopw_io
:
2873 case Hexagon::L4_add_memopw_io
:
2874 case Hexagon::L4_sub_memopw_io
:
2875 case Hexagon::L4_iand_memopw_io
:
2876 case Hexagon::L4_ior_memopw_io
:
2877 case Hexagon::L4_and_memopw_io
:
2878 case Hexagon::L4_or_memopw_io
:
2879 return (0 <= Offset
&& Offset
<= 255);
2881 case Hexagon::L4_iadd_memoph_io
:
2882 case Hexagon::L4_isub_memoph_io
:
2883 case Hexagon::L4_add_memoph_io
:
2884 case Hexagon::L4_sub_memoph_io
:
2885 case Hexagon::L4_iand_memoph_io
:
2886 case Hexagon::L4_ior_memoph_io
:
2887 case Hexagon::L4_and_memoph_io
:
2888 case Hexagon::L4_or_memoph_io
:
2889 return (0 <= Offset
&& Offset
<= 127);
2891 case Hexagon::L4_iadd_memopb_io
:
2892 case Hexagon::L4_isub_memopb_io
:
2893 case Hexagon::L4_add_memopb_io
:
2894 case Hexagon::L4_sub_memopb_io
:
2895 case Hexagon::L4_iand_memopb_io
:
2896 case Hexagon::L4_ior_memopb_io
:
2897 case Hexagon::L4_and_memopb_io
:
2898 case Hexagon::L4_or_memopb_io
:
2899 return (0 <= Offset
&& Offset
<= 63);
2901 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2902 // any size. Later pass knows how to handle it.
2903 case Hexagon::STriw_pred
:
2904 case Hexagon::LDriw_pred
:
2905 case Hexagon::STriw_ctr
:
2906 case Hexagon::LDriw_ctr
:
2909 case Hexagon::PS_fi
:
2910 case Hexagon::PS_fia
:
2911 case Hexagon::INLINEASM
:
2914 case Hexagon::L2_ploadrbt_io
:
2915 case Hexagon::L2_ploadrbf_io
:
2916 case Hexagon::L2_ploadrubt_io
:
2917 case Hexagon::L2_ploadrubf_io
:
2918 case Hexagon::S2_pstorerbt_io
:
2919 case Hexagon::S2_pstorerbf_io
:
2920 return isUInt
<6>(Offset
);
2922 case Hexagon::L2_ploadrht_io
:
2923 case Hexagon::L2_ploadrhf_io
:
2924 case Hexagon::L2_ploadruht_io
:
2925 case Hexagon::L2_ploadruhf_io
:
2926 case Hexagon::S2_pstorerht_io
:
2927 case Hexagon::S2_pstorerhf_io
:
2928 return isShiftedUInt
<6,1>(Offset
);
2930 case Hexagon::L2_ploadrit_io
:
2931 case Hexagon::L2_ploadrif_io
:
2932 case Hexagon::S2_pstorerit_io
:
2933 case Hexagon::S2_pstorerif_io
:
2934 return isShiftedUInt
<6,2>(Offset
);
2936 case Hexagon::L2_ploadrdt_io
:
2937 case Hexagon::L2_ploadrdf_io
:
2938 case Hexagon::S2_pstorerdt_io
:
2939 case Hexagon::S2_pstorerdf_io
:
2940 return isShiftedUInt
<6,3>(Offset
);
2942 case Hexagon::L2_loadbsw2_io
:
2943 case Hexagon::L2_loadbzw2_io
:
2944 return isShiftedInt
<11,1>(Offset
);
2946 case Hexagon::L2_loadbsw4_io
:
2947 case Hexagon::L2_loadbzw4_io
:
2948 return isShiftedInt
<11,2>(Offset
);
2951 dbgs() << "Failed Opcode is : " << Opcode
<< " (" << getName(Opcode
)
2953 llvm_unreachable("No offset range is defined for this opcode. "
2954 "Please define it in the above switch statement!");
2957 bool HexagonInstrInfo::isVecAcc(const MachineInstr
&MI
) const {
2958 return isHVXVec(MI
) && isAccumulator(MI
);
2961 bool HexagonInstrInfo::isVecALU(const MachineInstr
&MI
) const {
2962 const uint64_t F
= get(MI
.getOpcode()).TSFlags
;
2963 const uint64_t V
= ((F
>> HexagonII::TypePos
) & HexagonII::TypeMask
);
2965 V
== HexagonII::TypeCVI_VA
||
2966 V
== HexagonII::TypeCVI_VA_DV
;
2969 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr
&ProdMI
,
2970 const MachineInstr
&ConsMI
) const {
2971 if (EnableACCForwarding
&& isVecAcc(ProdMI
) && isVecAcc(ConsMI
))
2974 if (EnableALUForwarding
&& (isVecALU(ConsMI
) || isLateSourceInstr(ConsMI
)))
2977 if (mayBeNewStore(ConsMI
))
2983 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr
&MI
) const {
2984 switch (MI
.getOpcode()) {
2986 case Hexagon::L2_loadrub_io
:
2987 case Hexagon::L4_loadrub_ur
:
2988 case Hexagon::L4_loadrub_ap
:
2989 case Hexagon::L2_loadrub_pr
:
2990 case Hexagon::L2_loadrub_pbr
:
2991 case Hexagon::L2_loadrub_pi
:
2992 case Hexagon::L2_loadrub_pci
:
2993 case Hexagon::L2_loadrub_pcr
:
2994 case Hexagon::L2_loadbzw2_io
:
2995 case Hexagon::L4_loadbzw2_ur
:
2996 case Hexagon::L4_loadbzw2_ap
:
2997 case Hexagon::L2_loadbzw2_pr
:
2998 case Hexagon::L2_loadbzw2_pbr
:
2999 case Hexagon::L2_loadbzw2_pi
:
3000 case Hexagon::L2_loadbzw2_pci
:
3001 case Hexagon::L2_loadbzw2_pcr
:
3002 case Hexagon::L2_loadbzw4_io
:
3003 case Hexagon::L4_loadbzw4_ur
:
3004 case Hexagon::L4_loadbzw4_ap
:
3005 case Hexagon::L2_loadbzw4_pr
:
3006 case Hexagon::L2_loadbzw4_pbr
:
3007 case Hexagon::L2_loadbzw4_pi
:
3008 case Hexagon::L2_loadbzw4_pci
:
3009 case Hexagon::L2_loadbzw4_pcr
:
3010 case Hexagon::L4_loadrub_rr
:
3011 case Hexagon::L2_ploadrubt_io
:
3012 case Hexagon::L2_ploadrubt_pi
:
3013 case Hexagon::L2_ploadrubf_io
:
3014 case Hexagon::L2_ploadrubf_pi
:
3015 case Hexagon::L2_ploadrubtnew_io
:
3016 case Hexagon::L2_ploadrubfnew_io
:
3017 case Hexagon::L4_ploadrubt_rr
:
3018 case Hexagon::L4_ploadrubf_rr
:
3019 case Hexagon::L4_ploadrubtnew_rr
:
3020 case Hexagon::L4_ploadrubfnew_rr
:
3021 case Hexagon::L2_ploadrubtnew_pi
:
3022 case Hexagon::L2_ploadrubfnew_pi
:
3023 case Hexagon::L4_ploadrubt_abs
:
3024 case Hexagon::L4_ploadrubf_abs
:
3025 case Hexagon::L4_ploadrubtnew_abs
:
3026 case Hexagon::L4_ploadrubfnew_abs
:
3027 case Hexagon::L2_loadrubgp
:
3029 case Hexagon::L2_loadruh_io
:
3030 case Hexagon::L4_loadruh_ur
:
3031 case Hexagon::L4_loadruh_ap
:
3032 case Hexagon::L2_loadruh_pr
:
3033 case Hexagon::L2_loadruh_pbr
:
3034 case Hexagon::L2_loadruh_pi
:
3035 case Hexagon::L2_loadruh_pci
:
3036 case Hexagon::L2_loadruh_pcr
:
3037 case Hexagon::L4_loadruh_rr
:
3038 case Hexagon::L2_ploadruht_io
:
3039 case Hexagon::L2_ploadruht_pi
:
3040 case Hexagon::L2_ploadruhf_io
:
3041 case Hexagon::L2_ploadruhf_pi
:
3042 case Hexagon::L2_ploadruhtnew_io
:
3043 case Hexagon::L2_ploadruhfnew_io
:
3044 case Hexagon::L4_ploadruht_rr
:
3045 case Hexagon::L4_ploadruhf_rr
:
3046 case Hexagon::L4_ploadruhtnew_rr
:
3047 case Hexagon::L4_ploadruhfnew_rr
:
3048 case Hexagon::L2_ploadruhtnew_pi
:
3049 case Hexagon::L2_ploadruhfnew_pi
:
3050 case Hexagon::L4_ploadruht_abs
:
3051 case Hexagon::L4_ploadruhf_abs
:
3052 case Hexagon::L4_ploadruhtnew_abs
:
3053 case Hexagon::L4_ploadruhfnew_abs
:
3054 case Hexagon::L2_loadruhgp
:
3061 // Add latency to instruction.
3062 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr
&MI1
,
3063 const MachineInstr
&MI2
) const {
3064 if (isHVXVec(MI1
) && isHVXVec(MI2
))
3065 if (!isVecUsableNextPacket(MI1
, MI2
))
3070 /// Get the base register and byte offset of a load/store instr.
3071 bool HexagonInstrInfo::getMemOperandsWithOffsetWidth(
3072 const MachineInstr
&LdSt
, SmallVectorImpl
<const MachineOperand
*> &BaseOps
,
3073 int64_t &Offset
, bool &OffsetIsScalable
, LocationSize
&Width
,
3074 const TargetRegisterInfo
*TRI
) const {
3075 OffsetIsScalable
= false;
3076 const MachineOperand
*BaseOp
= getBaseAndOffset(LdSt
, Offset
, Width
);
3077 if (!BaseOp
|| !BaseOp
->isReg())
3079 BaseOps
.push_back(BaseOp
);
3083 /// Can these instructions execute at the same time in a bundle.
3084 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr
&First
,
3085 const MachineInstr
&Second
) const {
3086 if (Second
.mayStore() && First
.getOpcode() == Hexagon::S2_allocframe
) {
3087 const MachineOperand
&Op
= Second
.getOperand(0);
3088 if (Op
.isReg() && Op
.isUse() && Op
.getReg() == Hexagon::R29
)
3091 if (DisableNVSchedule
)
3093 if (mayBeNewStore(Second
)) {
3094 // Make sure the definition of the first instruction is the value being
3096 const MachineOperand
&Stored
=
3097 Second
.getOperand(Second
.getNumOperands() - 1);
3098 if (!Stored
.isReg())
3100 for (unsigned i
= 0, e
= First
.getNumOperands(); i
< e
; ++i
) {
3101 const MachineOperand
&Op
= First
.getOperand(i
);
3102 if (Op
.isReg() && Op
.isDef() && Op
.getReg() == Stored
.getReg())
3109 bool HexagonInstrInfo::doesNotReturn(const MachineInstr
&CallMI
) const {
3110 unsigned Opc
= CallMI
.getOpcode();
3111 return Opc
== Hexagon::PS_call_nr
|| Opc
== Hexagon::PS_callr_nr
;
3114 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock
*B
) const {
3121 // Returns true if an instruction can be converted into a non-extended
3122 // equivalent instruction.
3123 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr
&MI
) const {
3125 // Check if the instruction has a register form that uses register in place
3126 // of the extended operand, if so return that as the non-extended form.
3127 if (Hexagon::getRegForm(MI
.getOpcode()) >= 0)
3130 if (MI
.getDesc().mayLoad() || MI
.getDesc().mayStore()) {
3131 // Check addressing mode and retrieve non-ext equivalent instruction.
3133 switch (getAddrMode(MI
)) {
3134 case HexagonII::Absolute
:
3135 // Load/store with absolute addressing mode can be converted into
3136 // base+offset mode.
3137 NonExtOpcode
= Hexagon::changeAddrMode_abs_io(MI
.getOpcode());
3139 case HexagonII::BaseImmOffset
:
3140 // Load/store with base+offset addressing mode can be converted into
3141 // base+register offset addressing mode. However left shift operand should
3143 NonExtOpcode
= Hexagon::changeAddrMode_io_rr(MI
.getOpcode());
3145 case HexagonII::BaseLongOffset
:
3146 NonExtOpcode
= Hexagon::changeAddrMode_ur_rr(MI
.getOpcode());
3151 if (NonExtOpcode
< 0)
3158 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr
&MI
) const {
3159 return Hexagon::getRealHWInstr(MI
.getOpcode(),
3160 Hexagon::InstrType_Pseudo
) >= 0;
3163 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock
*B
)
3165 MachineBasicBlock::const_iterator I
= B
->getFirstTerminator(), E
= B
->end();
3174 // Returns true, if a LD insn can be promoted to a cur load.
3175 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr
&MI
) const {
3176 const uint64_t F
= MI
.getDesc().TSFlags
;
3177 return ((F
>> HexagonII::mayCVLoadPos
) & HexagonII::mayCVLoadMask
) &&
3178 Subtarget
.hasV60Ops();
3181 // Returns true, if a ST insn can be promoted to a new-value store.
3182 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr
&MI
) const {
3183 if (MI
.mayStore() && !Subtarget
.useNewValueStores())
3186 const uint64_t F
= MI
.getDesc().TSFlags
;
3187 return (F
>> HexagonII::mayNVStorePos
) & HexagonII::mayNVStoreMask
;
3190 bool HexagonInstrInfo::producesStall(const MachineInstr
&ProdMI
,
3191 const MachineInstr
&ConsMI
) const {
3192 // There is no stall when ProdMI is not a V60 vector.
3193 if (!isHVXVec(ProdMI
))
3196 // There is no stall when ProdMI and ConsMI are not dependent.
3197 if (!isDependent(ProdMI
, ConsMI
))
3200 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3201 // are scheduled in consecutive packets.
3202 if (isVecUsableNextPacket(ProdMI
, ConsMI
))
3208 bool HexagonInstrInfo::producesStall(const MachineInstr
&MI
,
3209 MachineBasicBlock::const_instr_iterator BII
) const {
3210 // There is no stall when I is not a V60 vector.
3214 MachineBasicBlock::const_instr_iterator MII
= BII
;
3215 MachineBasicBlock::const_instr_iterator MIE
= MII
->getParent()->instr_end();
3217 if (!MII
->isBundle())
3218 return producesStall(*MII
, MI
);
3220 for (++MII
; MII
!= MIE
&& MII
->isInsideBundle(); ++MII
) {
3221 const MachineInstr
&J
= *MII
;
3222 if (producesStall(J
, MI
))
3228 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr
&MI
,
3229 Register PredReg
) const {
3230 for (const MachineOperand
&MO
: MI
.operands()) {
3231 // Predicate register must be explicitly defined.
3232 if (MO
.isRegMask() && MO
.clobbersPhysReg(PredReg
))
3234 if (MO
.isReg() && MO
.isDef() && MO
.isImplicit() && (MO
.getReg() == PredReg
))
3238 // Instruction that produce late predicate cannot be used as sources of
3240 switch (MI
.getOpcode()) {
3241 case Hexagon::A4_addp_c
:
3242 case Hexagon::A4_subp_c
:
3243 case Hexagon::A4_tlbmatch
:
3244 case Hexagon::A5_ACS
:
3245 case Hexagon::F2_sfinvsqrta
:
3246 case Hexagon::F2_sfrecipa
:
3247 case Hexagon::J2_endloop0
:
3248 case Hexagon::J2_endloop01
:
3249 case Hexagon::J2_ploop1si
:
3250 case Hexagon::J2_ploop1sr
:
3251 case Hexagon::J2_ploop2si
:
3252 case Hexagon::J2_ploop2sr
:
3253 case Hexagon::J2_ploop3si
:
3254 case Hexagon::J2_ploop3sr
:
3255 case Hexagon::S2_cabacdecbin
:
3256 case Hexagon::S2_storew_locked
:
3257 case Hexagon::S4_stored_locked
:
3263 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode
) const {
3264 return Opcode
== Hexagon::J2_jumpt
||
3265 Opcode
== Hexagon::J2_jumptpt
||
3266 Opcode
== Hexagon::J2_jumpf
||
3267 Opcode
== Hexagon::J2_jumpfpt
||
3268 Opcode
== Hexagon::J2_jumptnew
||
3269 Opcode
== Hexagon::J2_jumpfnew
||
3270 Opcode
== Hexagon::J2_jumptnewpt
||
3271 Opcode
== Hexagon::J2_jumpfnewpt
;
3274 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef
<MachineOperand
> Cond
) const {
3275 if (Cond
.empty() || !isPredicated(Cond
[0].getImm()))
3277 return !isPredicatedTrue(Cond
[0].getImm());
3280 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr
&MI
) const {
3281 const uint64_t F
= MI
.getDesc().TSFlags
;
3282 return (F
>> HexagonII::AddrModePos
) & HexagonII::AddrModeMask
;
3285 // Returns the base register in a memory access (load/store). The offset is
3286 // returned in Offset and the access size is returned in AccessSize.
3287 // If the base operand has a subregister or the offset field does not contain
3288 // an immediate value, return nullptr.
3290 HexagonInstrInfo::getBaseAndOffset(const MachineInstr
&MI
, int64_t &Offset
,
3291 LocationSize
&AccessSize
) const {
3292 // Return if it is not a base+offset type instruction or a MemOp.
3293 if (getAddrMode(MI
) != HexagonII::BaseImmOffset
&&
3294 getAddrMode(MI
) != HexagonII::BaseLongOffset
&&
3295 !isMemOp(MI
) && !isPostIncrement(MI
))
3298 AccessSize
= getMemAccessSize(MI
);
3300 unsigned BasePos
= 0, OffsetPos
= 0;
3301 if (!getBaseAndOffsetPosition(MI
, BasePos
, OffsetPos
))
3304 // Post increment updates its EA after the mem access,
3305 // so we need to treat its offset as zero.
3306 if (isPostIncrement(MI
)) {
3309 const MachineOperand
&OffsetOp
= MI
.getOperand(OffsetPos
);
3310 if (!OffsetOp
.isImm())
3312 Offset
= OffsetOp
.getImm();
3315 const MachineOperand
&BaseOp
= MI
.getOperand(BasePos
);
3316 if (BaseOp
.getSubReg() != 0)
3318 return &const_cast<MachineOperand
&>(BaseOp
);
3321 /// Return the position of the base and offset operands for this instruction.
3322 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr
&MI
,
3323 unsigned &BasePos
, unsigned &OffsetPos
) const {
3324 if (!isAddrModeWithOffset(MI
) && !isPostIncrement(MI
))
3327 // Deal with memops first.
3331 } else if (MI
.mayStore()) {
3334 } else if (MI
.mayLoad()) {
3340 if (isPredicated(MI
)) {
3344 if (isPostIncrement(MI
)) {
3349 if (!MI
.getOperand(BasePos
).isReg() || !MI
.getOperand(OffsetPos
).isImm())
3355 // Inserts branching instructions in reverse order of their occurrence.
3356 // e.g. jump_t t1 (i1)
3358 // Jumpers = {i2, i1}
3359 SmallVector
<MachineInstr
*, 2> HexagonInstrInfo::getBranchingInstrs(
3360 MachineBasicBlock
& MBB
) const {
3361 SmallVector
<MachineInstr
*, 2> Jumpers
;
3362 // If the block has no terminators, it just falls into the block after it.
3363 MachineBasicBlock::instr_iterator I
= MBB
.instr_end();
3364 if (I
== MBB
.instr_begin())
3367 // A basic block may looks like this:
3377 // It has two succs but does not have a terminator
3378 // Don't know how to handle it.
3383 } while (I
!= MBB
.instr_begin());
3385 I
= MBB
.instr_end();
3388 while (I
->isDebugInstr()) {
3389 if (I
== MBB
.instr_begin())
3393 if (!isUnpredicatedTerminator(*I
))
3396 // Get the last instruction in the block.
3397 MachineInstr
*LastInst
= &*I
;
3398 Jumpers
.push_back(LastInst
);
3399 MachineInstr
*SecondLastInst
= nullptr;
3400 // Find one more terminator if present.
3402 if (&*I
!= LastInst
&& !I
->isBundle() && isUnpredicatedTerminator(*I
)) {
3403 if (!SecondLastInst
) {
3404 SecondLastInst
= &*I
;
3405 Jumpers
.push_back(SecondLastInst
);
3406 } else // This is a third branch.
3409 if (I
== MBB
.instr_begin())
3416 // Returns Operand Index for the constant extended instruction.
3417 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr
&MI
) const {
3418 const uint64_t F
= MI
.getDesc().TSFlags
;
3419 return (F
>> HexagonII::ExtendableOpPos
) & HexagonII::ExtendableOpMask
;
3422 // See if instruction could potentially be a duplex candidate.
3423 // If so, return its group. Zero otherwise.
3424 HexagonII::CompoundGroup
HexagonInstrInfo::getCompoundCandidateGroup(
3425 const MachineInstr
&MI
) const {
3426 Register DstReg
, SrcReg
, Src1Reg
, Src2Reg
;
3428 switch (MI
.getOpcode()) {
3430 return HexagonII::HCG_None
;
3433 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3434 // "Rd16=#U6 ; jump #r9:2"
3435 // "Rd16=Rs16 ; jump #r9:2"
3437 case Hexagon::C2_cmpeq
:
3438 case Hexagon::C2_cmpgt
:
3439 case Hexagon::C2_cmpgtu
:
3440 DstReg
= MI
.getOperand(0).getReg();
3441 Src1Reg
= MI
.getOperand(1).getReg();
3442 Src2Reg
= MI
.getOperand(2).getReg();
3443 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3444 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3445 isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
))
3446 return HexagonII::HCG_A
;
3448 case Hexagon::C2_cmpeqi
:
3449 case Hexagon::C2_cmpgti
:
3450 case Hexagon::C2_cmpgtui
:
3451 // P0 = cmp.eq(Rs,#u2)
3452 DstReg
= MI
.getOperand(0).getReg();
3453 SrcReg
= MI
.getOperand(1).getReg();
3454 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3455 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3456 isIntRegForSubInst(SrcReg
) && MI
.getOperand(2).isImm() &&
3457 ((isUInt
<5>(MI
.getOperand(2).getImm())) ||
3458 (MI
.getOperand(2).getImm() == -1)))
3459 return HexagonII::HCG_A
;
3461 case Hexagon::A2_tfr
:
3463 DstReg
= MI
.getOperand(0).getReg();
3464 SrcReg
= MI
.getOperand(1).getReg();
3465 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
3466 return HexagonII::HCG_A
;
3468 case Hexagon::A2_tfrsi
:
3470 // Do not test for #u6 size since the const is getting extended
3471 // regardless and compound could be formed.
3472 DstReg
= MI
.getOperand(0).getReg();
3473 if (isIntRegForSubInst(DstReg
))
3474 return HexagonII::HCG_A
;
3476 case Hexagon::S2_tstbit_i
:
3477 DstReg
= MI
.getOperand(0).getReg();
3478 Src1Reg
= MI
.getOperand(1).getReg();
3479 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3480 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3481 MI
.getOperand(2).isImm() &&
3482 isIntRegForSubInst(Src1Reg
) && (MI
.getOperand(2).getImm() == 0))
3483 return HexagonII::HCG_A
;
3485 // The fact that .new form is used pretty much guarantees
3486 // that predicate register will match. Nevertheless,
3487 // there could be some false positives without additional
3489 case Hexagon::J2_jumptnew
:
3490 case Hexagon::J2_jumpfnew
:
3491 case Hexagon::J2_jumptnewpt
:
3492 case Hexagon::J2_jumpfnewpt
:
3493 Src1Reg
= MI
.getOperand(0).getReg();
3494 if (Hexagon::PredRegsRegClass
.contains(Src1Reg
) &&
3495 (Hexagon::P0
== Src1Reg
|| Hexagon::P1
== Src1Reg
))
3496 return HexagonII::HCG_B
;
3498 // Transfer and jump:
3499 // Rd=#U6 ; jump #r9:2
3500 // Rd=Rs ; jump #r9:2
3501 // Do not test for jump range here.
3502 case Hexagon::J2_jump
:
3503 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
3504 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
3505 return HexagonII::HCG_C
;
3508 return HexagonII::HCG_None
;
3511 // Returns -1 when there is no opcode found.
3512 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr
&GA
,
3513 const MachineInstr
&GB
) const {
3514 assert(getCompoundCandidateGroup(GA
) == HexagonII::HCG_A
);
3515 assert(getCompoundCandidateGroup(GB
) == HexagonII::HCG_B
);
3516 if ((GA
.getOpcode() != Hexagon::C2_cmpeqi
) ||
3517 (GB
.getOpcode() != Hexagon::J2_jumptnew
))
3519 Register DestReg
= GA
.getOperand(0).getReg();
3520 if (!GB
.readsRegister(DestReg
, /*TRI=*/nullptr))
3522 if (DestReg
!= Hexagon::P0
&& DestReg
!= Hexagon::P1
)
3524 // The value compared against must be either u5 or -1.
3525 const MachineOperand
&CmpOp
= GA
.getOperand(2);
3528 int V
= CmpOp
.getImm();
3530 return DestReg
== Hexagon::P0
? Hexagon::J4_cmpeqn1_tp0_jump_nt
3531 : Hexagon::J4_cmpeqn1_tp1_jump_nt
;
3534 return DestReg
== Hexagon::P0
? Hexagon::J4_cmpeqi_tp0_jump_nt
3535 : Hexagon::J4_cmpeqi_tp1_jump_nt
;
3538 // Returns -1 if there is no opcode found.
3539 int HexagonInstrInfo::getDuplexOpcode(const MachineInstr
&MI
,
3540 bool ForBigCore
) const {
3541 // Static table to switch the opcodes across Tiny Core and Big Core.
3542 // dup_ opcodes are Big core opcodes.
3543 // NOTE: There are special instructions that need to handled later.
3544 // L4_return* instructions, they will only occupy SLOT0 (on big core too).
3545 // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2.
3546 // The compiler need to base the root instruction to L6_return_map_to_raw
3547 // which can go any slot.
3548 static const std::map
<unsigned, unsigned> DupMap
= {
3549 {Hexagon::A2_add
, Hexagon::dup_A2_add
},
3550 {Hexagon::A2_addi
, Hexagon::dup_A2_addi
},
3551 {Hexagon::A2_andir
, Hexagon::dup_A2_andir
},
3552 {Hexagon::A2_combineii
, Hexagon::dup_A2_combineii
},
3553 {Hexagon::A2_sxtb
, Hexagon::dup_A2_sxtb
},
3554 {Hexagon::A2_sxth
, Hexagon::dup_A2_sxth
},
3555 {Hexagon::A2_tfr
, Hexagon::dup_A2_tfr
},
3556 {Hexagon::A2_tfrsi
, Hexagon::dup_A2_tfrsi
},
3557 {Hexagon::A2_zxtb
, Hexagon::dup_A2_zxtb
},
3558 {Hexagon::A2_zxth
, Hexagon::dup_A2_zxth
},
3559 {Hexagon::A4_combineii
, Hexagon::dup_A4_combineii
},
3560 {Hexagon::A4_combineir
, Hexagon::dup_A4_combineir
},
3561 {Hexagon::A4_combineri
, Hexagon::dup_A4_combineri
},
3562 {Hexagon::C2_cmoveif
, Hexagon::dup_C2_cmoveif
},
3563 {Hexagon::C2_cmoveit
, Hexagon::dup_C2_cmoveit
},
3564 {Hexagon::C2_cmovenewif
, Hexagon::dup_C2_cmovenewif
},
3565 {Hexagon::C2_cmovenewit
, Hexagon::dup_C2_cmovenewit
},
3566 {Hexagon::C2_cmpeqi
, Hexagon::dup_C2_cmpeqi
},
3567 {Hexagon::L2_deallocframe
, Hexagon::dup_L2_deallocframe
},
3568 {Hexagon::L2_loadrb_io
, Hexagon::dup_L2_loadrb_io
},
3569 {Hexagon::L2_loadrd_io
, Hexagon::dup_L2_loadrd_io
},
3570 {Hexagon::L2_loadrh_io
, Hexagon::dup_L2_loadrh_io
},
3571 {Hexagon::L2_loadri_io
, Hexagon::dup_L2_loadri_io
},
3572 {Hexagon::L2_loadrub_io
, Hexagon::dup_L2_loadrub_io
},
3573 {Hexagon::L2_loadruh_io
, Hexagon::dup_L2_loadruh_io
},
3574 {Hexagon::S2_allocframe
, Hexagon::dup_S2_allocframe
},
3575 {Hexagon::S2_storerb_io
, Hexagon::dup_S2_storerb_io
},
3576 {Hexagon::S2_storerd_io
, Hexagon::dup_S2_storerd_io
},
3577 {Hexagon::S2_storerh_io
, Hexagon::dup_S2_storerh_io
},
3578 {Hexagon::S2_storeri_io
, Hexagon::dup_S2_storeri_io
},
3579 {Hexagon::S4_storeirb_io
, Hexagon::dup_S4_storeirb_io
},
3580 {Hexagon::S4_storeiri_io
, Hexagon::dup_S4_storeiri_io
},
3582 unsigned OpNum
= MI
.getOpcode();
3583 // Conversion to Big core.
3585 auto Iter
= DupMap
.find(OpNum
);
3586 if (Iter
!= DupMap
.end())
3587 return Iter
->second
;
3588 } else { // Conversion to Tiny core.
3589 for (const auto &Iter
: DupMap
)
3590 if (Iter
.second
== OpNum
)
3596 int HexagonInstrInfo::getCondOpcode(int Opc
, bool invertPredicate
) const {
3597 enum Hexagon::PredSense inPredSense
;
3598 inPredSense
= invertPredicate
? Hexagon::PredSense_false
:
3599 Hexagon::PredSense_true
;
3600 int CondOpcode
= Hexagon::getPredOpcode(Opc
, inPredSense
);
3601 if (CondOpcode
>= 0) // Valid Conditional opcode/instruction
3604 llvm_unreachable("Unexpected predicable instruction");
3607 // Return the cur value instruction for a given store.
3608 int HexagonInstrInfo::getDotCurOp(const MachineInstr
&MI
) const {
3609 switch (MI
.getOpcode()) {
3610 default: llvm_unreachable("Unknown .cur type");
3611 case Hexagon::V6_vL32b_pi
:
3612 return Hexagon::V6_vL32b_cur_pi
;
3613 case Hexagon::V6_vL32b_ai
:
3614 return Hexagon::V6_vL32b_cur_ai
;
3615 case Hexagon::V6_vL32b_nt_pi
:
3616 return Hexagon::V6_vL32b_nt_cur_pi
;
3617 case Hexagon::V6_vL32b_nt_ai
:
3618 return Hexagon::V6_vL32b_nt_cur_ai
;
3619 case Hexagon::V6_vL32b_ppu
:
3620 return Hexagon::V6_vL32b_cur_ppu
;
3621 case Hexagon::V6_vL32b_nt_ppu
:
3622 return Hexagon::V6_vL32b_nt_cur_ppu
;
3627 // Return the regular version of the .cur instruction.
3628 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr
&MI
) const {
3629 switch (MI
.getOpcode()) {
3630 default: llvm_unreachable("Unknown .cur type");
3631 case Hexagon::V6_vL32b_cur_pi
:
3632 return Hexagon::V6_vL32b_pi
;
3633 case Hexagon::V6_vL32b_cur_ai
:
3634 return Hexagon::V6_vL32b_ai
;
3635 case Hexagon::V6_vL32b_nt_cur_pi
:
3636 return Hexagon::V6_vL32b_nt_pi
;
3637 case Hexagon::V6_vL32b_nt_cur_ai
:
3638 return Hexagon::V6_vL32b_nt_ai
;
3639 case Hexagon::V6_vL32b_cur_ppu
:
3640 return Hexagon::V6_vL32b_ppu
;
3641 case Hexagon::V6_vL32b_nt_cur_ppu
:
3642 return Hexagon::V6_vL32b_nt_ppu
;
3647 // The diagram below shows the steps involved in the conversion of a predicated
3648 // store instruction to its .new predicated new-value form.
3650 // Note: It doesn't include conditional new-value stores as they can't be
3651 // converted to .new predicate.
3653 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3655 // / \ (not OK. it will cause new-value store to be
3656 // / X conditional on p0.new while R2 producer is
3659 // p.new store p.old NV store
3660 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3666 // [if (p0)memw(R0+#0)=R2]
3668 // The following set of instructions further explains the scenario where
3669 // conditional new-value store becomes invalid when promoted to .new predicate
3672 // { 1) if (p0) r0 = add(r1, r2)
3673 // 2) p0 = cmp.eq(r3, #0) }
3675 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3676 // the first two instructions because in instr 1, r0 is conditional on old value
3677 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3678 // is not valid for new-value stores.
3679 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3680 // from the "Conditional Store" list. Because a predicated new value store
3681 // would NOT be promoted to a double dot new store. See diagram below:
3682 // This function returns yes for those stores that are predicated but not
3683 // yet promoted to predicate dot new instructions.
3685 // +---------------------+
3686 // /-----| if (p0) memw(..)=r0 |---------\~
3687 // || +---------------------+ ||
3688 // promote || /\ /\ || promote
3690 // \||/ demote || \||/
3692 // +-------------------------+ || +-------------------------+
3693 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3694 // +-------------------------+ || +-------------------------+
3697 // promote || \/ NOT possible
3701 // +-----------------------------+
3702 // | if (p0.new) memw(..)=r0.new |
3703 // +-----------------------------+
3704 // Double Dot New Store
3706 // Returns the most basic instruction for the .new predicated instructions and
3707 // new-value stores.
3708 // For example, all of the following instructions will be converted back to the
3709 // same instruction:
3710 // 1) if (p0.new) memw(R0+#0) = R1.new --->
3711 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3712 // 3) if (p0.new) memw(R0+#0) = R1 --->
3714 // To understand the translation of instruction 1 to its original form, consider
3715 // a packet with 3 instructions.
3716 // { p0 = cmp.eq(R0,R1)
3717 // if (p0.new) R2 = add(R3, R4)
3718 // R5 = add (R3, R1)
3720 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3722 // This instruction can be part of the previous packet only if both p0 and R2
3723 // are promoted to .new values. This promotion happens in steps, first
3724 // predicate register is promoted to .new and in the next iteration R2 is
3725 // promoted. Therefore, in case of dependence check failure (due to R5) during
3726 // next iteration, it should be converted back to its most basic form.
3728 // Return the new value instruction for a given store.
3729 int HexagonInstrInfo::getDotNewOp(const MachineInstr
&MI
) const {
3730 int NVOpcode
= Hexagon::getNewValueOpcode(MI
.getOpcode());
3731 if (NVOpcode
>= 0) // Valid new-value store instruction.
3734 switch (MI
.getOpcode()) {
3736 report_fatal_error(Twine("Unknown .new type: ") +
3737 std::to_string(MI
.getOpcode()));
3738 case Hexagon::S4_storerb_ur
:
3739 return Hexagon::S4_storerbnew_ur
;
3741 case Hexagon::S2_storerb_pci
:
3742 return Hexagon::S2_storerb_pci
;
3744 case Hexagon::S2_storeri_pci
:
3745 return Hexagon::S2_storeri_pci
;
3747 case Hexagon::S2_storerh_pci
:
3748 return Hexagon::S2_storerh_pci
;
3750 case Hexagon::S2_storerd_pci
:
3751 return Hexagon::S2_storerd_pci
;
3753 case Hexagon::S2_storerf_pci
:
3754 return Hexagon::S2_storerf_pci
;
3756 case Hexagon::V6_vS32b_ai
:
3757 return Hexagon::V6_vS32b_new_ai
;
3759 case Hexagon::V6_vS32b_pi
:
3760 return Hexagon::V6_vS32b_new_pi
;
3765 // Returns the opcode to use when converting MI, which is a conditional jump,
3766 // into a conditional instruction which uses the .new value of the predicate.
3767 // We also use branch probabilities to add a hint to the jump.
3768 // If MBPI is null, all edges will be treated as equally likely for the
3769 // purposes of establishing a predication hint.
3770 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr
&MI
,
3771 const MachineBranchProbabilityInfo
*MBPI
) const {
3772 // We assume that block can have at most two successors.
3773 const MachineBasicBlock
*Src
= MI
.getParent();
3774 const MachineOperand
&BrTarget
= MI
.getOperand(1);
3776 const BranchProbability
OneHalf(1, 2);
3778 auto getEdgeProbability
= [MBPI
] (const MachineBasicBlock
*Src
,
3779 const MachineBasicBlock
*Dst
) {
3781 return MBPI
->getEdgeProbability(Src
, Dst
);
3782 return BranchProbability(1, Src
->succ_size());
3785 if (BrTarget
.isMBB()) {
3786 const MachineBasicBlock
*Dst
= BrTarget
.getMBB();
3787 Taken
= getEdgeProbability(Src
, Dst
) >= OneHalf
;
3789 // The branch target is not a basic block (most likely a function).
3790 // Since BPI only gives probabilities for targets that are basic blocks,
3791 // try to identify another target of this branch (potentially a fall-
3792 // -through) and check the probability of that target.
3794 // The only handled branch combinations are:
3795 // - one conditional branch,
3796 // - one conditional branch followed by one unconditional branch.
3797 // Otherwise, assume not-taken.
3798 assert(MI
.isConditionalBranch());
3799 const MachineBasicBlock
&B
= *MI
.getParent();
3800 bool SawCond
= false, Bad
= false;
3801 for (const MachineInstr
&I
: B
) {
3804 if (I
.isConditionalBranch()) {
3811 if (I
.isUnconditionalBranch() && !SawCond
) {
3817 MachineBasicBlock::const_instr_iterator
It(MI
);
3818 MachineBasicBlock::const_instr_iterator NextIt
= std::next(It
);
3819 if (NextIt
== B
.instr_end()) {
3820 // If this branch is the last, look for the fall-through block.
3821 for (const MachineBasicBlock
*SB
: B
.successors()) {
3822 if (!B
.isLayoutSuccessor(SB
))
3824 Taken
= getEdgeProbability(Src
, SB
) < OneHalf
;
3828 assert(NextIt
->isUnconditionalBranch());
3829 // Find the first MBB operand and assume it's the target.
3830 const MachineBasicBlock
*BT
= nullptr;
3831 for (const MachineOperand
&Op
: NextIt
->operands()) {
3837 Taken
= BT
&& getEdgeProbability(Src
, BT
) < OneHalf
;
3842 // The Taken flag should be set to something reasonable by this point.
3844 switch (MI
.getOpcode()) {
3845 case Hexagon::J2_jumpt
:
3846 return Taken
? Hexagon::J2_jumptnewpt
: Hexagon::J2_jumptnew
;
3847 case Hexagon::J2_jumpf
:
3848 return Taken
? Hexagon::J2_jumpfnewpt
: Hexagon::J2_jumpfnew
;
3851 llvm_unreachable("Unexpected jump instruction.");
3855 // Return .new predicate version for an instruction.
3856 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr
&MI
,
3857 const MachineBranchProbabilityInfo
*MBPI
) const {
3858 switch (MI
.getOpcode()) {
3860 case Hexagon::J2_jumpt
:
3861 case Hexagon::J2_jumpf
:
3862 return getDotNewPredJumpOp(MI
, MBPI
);
3865 int NewOpcode
= Hexagon::getPredNewOpcode(MI
.getOpcode());
3871 int HexagonInstrInfo::getDotOldOp(const MachineInstr
&MI
) const {
3872 int NewOp
= MI
.getOpcode();
3873 if (isPredicated(NewOp
) && isPredicatedNew(NewOp
)) { // Get predicate old form
3874 NewOp
= Hexagon::getPredOldOpcode(NewOp
);
3875 // All Hexagon architectures have prediction bits on dot-new branches,
3876 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3877 // to pick the right opcode when converting back to dot-old.
3878 if (!Subtarget
.hasFeature(Hexagon::ArchV60
)) {
3880 case Hexagon::J2_jumptpt
:
3881 NewOp
= Hexagon::J2_jumpt
;
3883 case Hexagon::J2_jumpfpt
:
3884 NewOp
= Hexagon::J2_jumpf
;
3886 case Hexagon::J2_jumprtpt
:
3887 NewOp
= Hexagon::J2_jumprt
;
3889 case Hexagon::J2_jumprfpt
:
3890 NewOp
= Hexagon::J2_jumprf
;
3894 assert(NewOp
>= 0 &&
3895 "Couldn't change predicate new instruction to its old form.");
3898 if (isNewValueStore(NewOp
)) { // Convert into non-new-value format
3899 NewOp
= Hexagon::getNonNVStore(NewOp
);
3900 assert(NewOp
>= 0 && "Couldn't change new-value store to its old form.");
3903 if (Subtarget
.hasV60Ops())
3906 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3908 case Hexagon::J2_jumpfpt
:
3909 return Hexagon::J2_jumpf
;
3910 case Hexagon::J2_jumptpt
:
3911 return Hexagon::J2_jumpt
;
3912 case Hexagon::J2_jumprfpt
:
3913 return Hexagon::J2_jumprf
;
3914 case Hexagon::J2_jumprtpt
:
3915 return Hexagon::J2_jumprt
;
3920 // See if instruction could potentially be a duplex candidate.
3921 // If so, return its group. Zero otherwise.
3922 HexagonII::SubInstructionGroup
HexagonInstrInfo::getDuplexCandidateGroup(
3923 const MachineInstr
&MI
) const {
3924 Register DstReg
, SrcReg
, Src1Reg
, Src2Reg
;
3925 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
3927 switch (MI
.getOpcode()) {
3929 return HexagonII::HSIG_None
;
3933 // Rd = memw(Rs+#u4:2)
3934 // Rd = memub(Rs+#u4:0)
3935 case Hexagon::L2_loadri_io
:
3936 case Hexagon::dup_L2_loadri_io
:
3937 DstReg
= MI
.getOperand(0).getReg();
3938 SrcReg
= MI
.getOperand(1).getReg();
3939 // Special case this one from Group L2.
3940 // Rd = memw(r29+#u5:2)
3941 if (isIntRegForSubInst(DstReg
)) {
3942 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3943 HRI
.getStackRegister() == SrcReg
&&
3944 MI
.getOperand(2).isImm() &&
3945 isShiftedUInt
<5,2>(MI
.getOperand(2).getImm()))
3946 return HexagonII::HSIG_L2
;
3947 // Rd = memw(Rs+#u4:2)
3948 if (isIntRegForSubInst(SrcReg
) &&
3949 (MI
.getOperand(2).isImm() &&
3950 isShiftedUInt
<4,2>(MI
.getOperand(2).getImm())))
3951 return HexagonII::HSIG_L1
;
3954 case Hexagon::L2_loadrub_io
:
3955 case Hexagon::dup_L2_loadrub_io
:
3956 // Rd = memub(Rs+#u4:0)
3957 DstReg
= MI
.getOperand(0).getReg();
3958 SrcReg
= MI
.getOperand(1).getReg();
3959 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3960 MI
.getOperand(2).isImm() && isUInt
<4>(MI
.getOperand(2).getImm()))
3961 return HexagonII::HSIG_L1
;
3966 // Rd = memh/memuh(Rs+#u3:1)
3967 // Rd = memb(Rs+#u3:0)
3968 // Rd = memw(r29+#u5:2) - Handled above.
3969 // Rdd = memd(r29+#u5:3)
3971 // [if ([!]p0[.new])] dealloc_return
3972 // [if ([!]p0[.new])] jumpr r31
3973 case Hexagon::L2_loadrh_io
:
3974 case Hexagon::L2_loadruh_io
:
3975 case Hexagon::dup_L2_loadrh_io
:
3976 case Hexagon::dup_L2_loadruh_io
:
3977 // Rd = memh/memuh(Rs+#u3:1)
3978 DstReg
= MI
.getOperand(0).getReg();
3979 SrcReg
= MI
.getOperand(1).getReg();
3980 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3981 MI
.getOperand(2).isImm() &&
3982 isShiftedUInt
<3,1>(MI
.getOperand(2).getImm()))
3983 return HexagonII::HSIG_L2
;
3985 case Hexagon::L2_loadrb_io
:
3986 case Hexagon::dup_L2_loadrb_io
:
3987 // Rd = memb(Rs+#u3:0)
3988 DstReg
= MI
.getOperand(0).getReg();
3989 SrcReg
= MI
.getOperand(1).getReg();
3990 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3991 MI
.getOperand(2).isImm() &&
3992 isUInt
<3>(MI
.getOperand(2).getImm()))
3993 return HexagonII::HSIG_L2
;
3995 case Hexagon::L2_loadrd_io
:
3996 case Hexagon::dup_L2_loadrd_io
:
3997 // Rdd = memd(r29+#u5:3)
3998 DstReg
= MI
.getOperand(0).getReg();
3999 SrcReg
= MI
.getOperand(1).getReg();
4000 if (isDblRegForSubInst(DstReg
, HRI
) &&
4001 Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
4002 HRI
.getStackRegister() == SrcReg
&&
4003 MI
.getOperand(2).isImm() &&
4004 isShiftedUInt
<5,3>(MI
.getOperand(2).getImm()))
4005 return HexagonII::HSIG_L2
;
4007 // dealloc_return is not documented in Hexagon Manual, but marked
4008 // with A_SUBINSN attribute in iset_v4classic.py.
4009 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
4010 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
4011 case Hexagon::L4_return
:
4012 case Hexagon::L2_deallocframe
:
4013 case Hexagon::dup_L2_deallocframe
:
4014 return HexagonII::HSIG_L2
;
4015 case Hexagon::EH_RETURN_JMPR
:
4016 case Hexagon::PS_jmpret
:
4017 case Hexagon::SL2_jumpr31
:
4019 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
4020 DstReg
= MI
.getOperand(0).getReg();
4021 if (Hexagon::IntRegsRegClass
.contains(DstReg
) && (Hexagon::R31
== DstReg
))
4022 return HexagonII::HSIG_L2
;
4024 case Hexagon::PS_jmprett
:
4025 case Hexagon::PS_jmpretf
:
4026 case Hexagon::PS_jmprettnewpt
:
4027 case Hexagon::PS_jmpretfnewpt
:
4028 case Hexagon::PS_jmprettnew
:
4029 case Hexagon::PS_jmpretfnew
:
4030 case Hexagon::SL2_jumpr31_t
:
4031 case Hexagon::SL2_jumpr31_f
:
4032 case Hexagon::SL2_jumpr31_tnew
:
4033 case Hexagon::SL2_jumpr31_fnew
:
4034 DstReg
= MI
.getOperand(1).getReg();
4035 SrcReg
= MI
.getOperand(0).getReg();
4036 // [if ([!]p0[.new])] jumpr r31
4037 if ((Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
4038 (Hexagon::P0
== SrcReg
)) &&
4039 (Hexagon::IntRegsRegClass
.contains(DstReg
) && (Hexagon::R31
== DstReg
)))
4040 return HexagonII::HSIG_L2
;
4042 case Hexagon::L4_return_t
:
4043 case Hexagon::L4_return_f
:
4044 case Hexagon::L4_return_tnew_pnt
:
4045 case Hexagon::L4_return_fnew_pnt
:
4046 case Hexagon::L4_return_tnew_pt
:
4047 case Hexagon::L4_return_fnew_pt
:
4048 // [if ([!]p0[.new])] dealloc_return
4049 SrcReg
= MI
.getOperand(0).getReg();
4050 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) && (Hexagon::P0
== SrcReg
))
4051 return HexagonII::HSIG_L2
;
4056 // memw(Rs+#u4:2) = Rt
4057 // memb(Rs+#u4:0) = Rt
4058 case Hexagon::S2_storeri_io
:
4059 case Hexagon::dup_S2_storeri_io
:
4060 // Special case this one from Group S2.
4061 // memw(r29+#u5:2) = Rt
4062 Src1Reg
= MI
.getOperand(0).getReg();
4063 Src2Reg
= MI
.getOperand(2).getReg();
4064 if (Hexagon::IntRegsRegClass
.contains(Src1Reg
) &&
4065 isIntRegForSubInst(Src2Reg
) &&
4066 HRI
.getStackRegister() == Src1Reg
&& MI
.getOperand(1).isImm() &&
4067 isShiftedUInt
<5,2>(MI
.getOperand(1).getImm()))
4068 return HexagonII::HSIG_S2
;
4069 // memw(Rs+#u4:2) = Rt
4070 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
4071 MI
.getOperand(1).isImm() &&
4072 isShiftedUInt
<4,2>(MI
.getOperand(1).getImm()))
4073 return HexagonII::HSIG_S1
;
4075 case Hexagon::S2_storerb_io
:
4076 case Hexagon::dup_S2_storerb_io
:
4077 // memb(Rs+#u4:0) = Rt
4078 Src1Reg
= MI
.getOperand(0).getReg();
4079 Src2Reg
= MI
.getOperand(2).getReg();
4080 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
4081 MI
.getOperand(1).isImm() && isUInt
<4>(MI
.getOperand(1).getImm()))
4082 return HexagonII::HSIG_S1
;
4087 // memh(Rs+#u3:1) = Rt
4088 // memw(r29+#u5:2) = Rt
4089 // memd(r29+#s6:3) = Rtt
4090 // memw(Rs+#u4:2) = #U1
4091 // memb(Rs+#u4) = #U1
4092 // allocframe(#u5:3)
4093 case Hexagon::S2_storerh_io
:
4094 case Hexagon::dup_S2_storerh_io
:
4095 // memh(Rs+#u3:1) = Rt
4096 Src1Reg
= MI
.getOperand(0).getReg();
4097 Src2Reg
= MI
.getOperand(2).getReg();
4098 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
4099 MI
.getOperand(1).isImm() &&
4100 isShiftedUInt
<3,1>(MI
.getOperand(1).getImm()))
4101 return HexagonII::HSIG_S1
;
4103 case Hexagon::S2_storerd_io
:
4104 case Hexagon::dup_S2_storerd_io
:
4105 // memd(r29+#s6:3) = Rtt
4106 Src1Reg
= MI
.getOperand(0).getReg();
4107 Src2Reg
= MI
.getOperand(2).getReg();
4108 if (isDblRegForSubInst(Src2Reg
, HRI
) &&
4109 Hexagon::IntRegsRegClass
.contains(Src1Reg
) &&
4110 HRI
.getStackRegister() == Src1Reg
&& MI
.getOperand(1).isImm() &&
4111 isShiftedInt
<6,3>(MI
.getOperand(1).getImm()))
4112 return HexagonII::HSIG_S2
;
4114 case Hexagon::S4_storeiri_io
:
4115 case Hexagon::dup_S4_storeiri_io
:
4116 // memw(Rs+#u4:2) = #U1
4117 Src1Reg
= MI
.getOperand(0).getReg();
4118 if (isIntRegForSubInst(Src1Reg
) && MI
.getOperand(1).isImm() &&
4119 isShiftedUInt
<4,2>(MI
.getOperand(1).getImm()) &&
4120 MI
.getOperand(2).isImm() && isUInt
<1>(MI
.getOperand(2).getImm()))
4121 return HexagonII::HSIG_S2
;
4123 case Hexagon::S4_storeirb_io
:
4124 case Hexagon::dup_S4_storeirb_io
:
4125 // memb(Rs+#u4) = #U1
4126 Src1Reg
= MI
.getOperand(0).getReg();
4127 if (isIntRegForSubInst(Src1Reg
) &&
4128 MI
.getOperand(1).isImm() && isUInt
<4>(MI
.getOperand(1).getImm()) &&
4129 MI
.getOperand(2).isImm() && isUInt
<1>(MI
.getOperand(2).getImm()))
4130 return HexagonII::HSIG_S2
;
4132 case Hexagon::S2_allocframe
:
4133 case Hexagon::dup_S2_allocframe
:
4134 if (MI
.getOperand(2).isImm() &&
4135 isShiftedUInt
<5,3>(MI
.getOperand(2).getImm()))
4136 return HexagonII::HSIG_S1
;
4145 // if ([!]P0[.new]) Rd = #0
4146 // Rd = add(r29,#u6:2)
4148 // P0 = cmp.eq(Rs,#u2)
4149 // Rdd = combine(#0,Rs)
4150 // Rdd = combine(Rs,#0)
4151 // Rdd = combine(#u2,#U2)
4154 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4156 case Hexagon::A2_addi
:
4157 case Hexagon::dup_A2_addi
:
4158 DstReg
= MI
.getOperand(0).getReg();
4159 SrcReg
= MI
.getOperand(1).getReg();
4160 if (isIntRegForSubInst(DstReg
)) {
4161 // Rd = add(r29,#u6:2)
4162 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
4163 HRI
.getStackRegister() == SrcReg
&& MI
.getOperand(2).isImm() &&
4164 isShiftedUInt
<6,2>(MI
.getOperand(2).getImm()))
4165 return HexagonII::HSIG_A
;
4167 if ((DstReg
== SrcReg
) && MI
.getOperand(2).isImm() &&
4168 isInt
<7>(MI
.getOperand(2).getImm()))
4169 return HexagonII::HSIG_A
;
4172 if (isIntRegForSubInst(SrcReg
) && MI
.getOperand(2).isImm() &&
4173 ((MI
.getOperand(2).getImm() == 1) ||
4174 (MI
.getOperand(2).getImm() == -1)))
4175 return HexagonII::HSIG_A
;
4178 case Hexagon::A2_add
:
4179 case Hexagon::dup_A2_add
:
4181 DstReg
= MI
.getOperand(0).getReg();
4182 Src1Reg
= MI
.getOperand(1).getReg();
4183 Src2Reg
= MI
.getOperand(2).getReg();
4184 if (isIntRegForSubInst(DstReg
) && (DstReg
== Src1Reg
) &&
4185 isIntRegForSubInst(Src2Reg
))
4186 return HexagonII::HSIG_A
;
4188 case Hexagon::A2_andir
:
4189 case Hexagon::dup_A2_andir
:
4191 // Rd16=and(Rs16,#255)
4192 // Rd16=and(Rs16,#1)
4193 DstReg
= MI
.getOperand(0).getReg();
4194 SrcReg
= MI
.getOperand(1).getReg();
4195 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
4196 MI
.getOperand(2).isImm() &&
4197 ((MI
.getOperand(2).getImm() == 1) ||
4198 (MI
.getOperand(2).getImm() == 255)))
4199 return HexagonII::HSIG_A
;
4201 case Hexagon::A2_tfr
:
4202 case Hexagon::dup_A2_tfr
:
4204 DstReg
= MI
.getOperand(0).getReg();
4205 SrcReg
= MI
.getOperand(1).getReg();
4206 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
4207 return HexagonII::HSIG_A
;
4209 case Hexagon::A2_tfrsi
:
4210 case Hexagon::dup_A2_tfrsi
:
4212 // Do not test for #u6 size since the const is getting extended
4213 // regardless and compound could be formed.
4215 DstReg
= MI
.getOperand(0).getReg();
4216 if (isIntRegForSubInst(DstReg
))
4217 return HexagonII::HSIG_A
;
4219 case Hexagon::C2_cmoveit
:
4220 case Hexagon::C2_cmovenewit
:
4221 case Hexagon::C2_cmoveif
:
4222 case Hexagon::C2_cmovenewif
:
4223 case Hexagon::dup_C2_cmoveit
:
4224 case Hexagon::dup_C2_cmovenewit
:
4225 case Hexagon::dup_C2_cmoveif
:
4226 case Hexagon::dup_C2_cmovenewif
:
4227 // if ([!]P0[.new]) Rd = #0
4229 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
4230 DstReg
= MI
.getOperand(0).getReg();
4231 SrcReg
= MI
.getOperand(1).getReg();
4232 if (isIntRegForSubInst(DstReg
) &&
4233 Hexagon::PredRegsRegClass
.contains(SrcReg
) && Hexagon::P0
== SrcReg
&&
4234 MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0)
4235 return HexagonII::HSIG_A
;
4237 case Hexagon::C2_cmpeqi
:
4238 case Hexagon::dup_C2_cmpeqi
:
4239 // P0 = cmp.eq(Rs,#u2)
4240 DstReg
= MI
.getOperand(0).getReg();
4241 SrcReg
= MI
.getOperand(1).getReg();
4242 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
4243 Hexagon::P0
== DstReg
&& isIntRegForSubInst(SrcReg
) &&
4244 MI
.getOperand(2).isImm() && isUInt
<2>(MI
.getOperand(2).getImm()))
4245 return HexagonII::HSIG_A
;
4247 case Hexagon::A2_combineii
:
4248 case Hexagon::A4_combineii
:
4249 case Hexagon::dup_A2_combineii
:
4250 case Hexagon::dup_A4_combineii
:
4251 // Rdd = combine(#u2,#U2)
4252 DstReg
= MI
.getOperand(0).getReg();
4253 if (isDblRegForSubInst(DstReg
, HRI
) &&
4254 ((MI
.getOperand(1).isImm() && isUInt
<2>(MI
.getOperand(1).getImm())) ||
4255 (MI
.getOperand(1).isGlobal() &&
4256 isUInt
<2>(MI
.getOperand(1).getOffset()))) &&
4257 ((MI
.getOperand(2).isImm() && isUInt
<2>(MI
.getOperand(2).getImm())) ||
4258 (MI
.getOperand(2).isGlobal() &&
4259 isUInt
<2>(MI
.getOperand(2).getOffset()))))
4260 return HexagonII::HSIG_A
;
4262 case Hexagon::A4_combineri
:
4263 case Hexagon::dup_A4_combineri
:
4264 // Rdd = combine(Rs,#0)
4265 // Rdd = combine(Rs,#0)
4266 DstReg
= MI
.getOperand(0).getReg();
4267 SrcReg
= MI
.getOperand(1).getReg();
4268 if (isDblRegForSubInst(DstReg
, HRI
) && isIntRegForSubInst(SrcReg
) &&
4269 ((MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0) ||
4270 (MI
.getOperand(2).isGlobal() && MI
.getOperand(2).getOffset() == 0)))
4271 return HexagonII::HSIG_A
;
4273 case Hexagon::A4_combineir
:
4274 case Hexagon::dup_A4_combineir
:
4275 // Rdd = combine(#0,Rs)
4276 DstReg
= MI
.getOperand(0).getReg();
4277 SrcReg
= MI
.getOperand(2).getReg();
4278 if (isDblRegForSubInst(DstReg
, HRI
) && isIntRegForSubInst(SrcReg
) &&
4279 ((MI
.getOperand(1).isImm() && MI
.getOperand(1).getImm() == 0) ||
4280 (MI
.getOperand(1).isGlobal() && MI
.getOperand(1).getOffset() == 0)))
4281 return HexagonII::HSIG_A
;
4283 case Hexagon::A2_sxtb
:
4284 case Hexagon::A2_sxth
:
4285 case Hexagon::A2_zxtb
:
4286 case Hexagon::A2_zxth
:
4287 case Hexagon::dup_A2_sxtb
:
4288 case Hexagon::dup_A2_sxth
:
4289 case Hexagon::dup_A2_zxtb
:
4290 case Hexagon::dup_A2_zxth
:
4291 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4292 DstReg
= MI
.getOperand(0).getReg();
4293 SrcReg
= MI
.getOperand(1).getReg();
4294 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
4295 return HexagonII::HSIG_A
;
4299 return HexagonII::HSIG_None
;
4302 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr
&MI
) const {
4303 return Hexagon::getRealHWInstr(MI
.getOpcode(), Hexagon::InstrType_Real
);
4306 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4307 const InstrItineraryData
*ItinData
, const MachineInstr
&MI
) const {
4308 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4309 // still have a MinLatency property, which getStageLatency checks.
4311 return getInstrLatency(ItinData
, MI
);
4313 if (MI
.isTransient())
4315 return ItinData
->getStageLatency(MI
.getDesc().getSchedClass());
4318 /// getOperandLatency - Compute and return the use operand latency of a given
4319 /// pair of def and use.
4320 /// In most cases, the static scheduling itinerary was enough to determine the
4321 /// operand latency. But it may not be possible for instructions with variable
4322 /// number of defs / uses.
4324 /// This is a raw interface to the itinerary that may be directly overriden by
4325 /// a target. Use computeOperandLatency to get the best estimate of latency.
4326 std::optional
<unsigned> HexagonInstrInfo::getOperandLatency(
4327 const InstrItineraryData
*ItinData
, const MachineInstr
&DefMI
,
4328 unsigned DefIdx
, const MachineInstr
&UseMI
, unsigned UseIdx
) const {
4329 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
4331 // Get DefIdx and UseIdx for super registers.
4332 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
4334 if (DefMO
.isReg() && DefMO
.getReg().isPhysical()) {
4335 if (DefMO
.isImplicit()) {
4336 for (MCPhysReg SR
: HRI
.superregs(DefMO
.getReg())) {
4337 int Idx
= DefMI
.findRegisterDefOperandIdx(SR
, &HRI
, false, false);
4345 const MachineOperand
&UseMO
= UseMI
.getOperand(UseIdx
);
4346 if (UseMO
.isImplicit()) {
4347 for (MCPhysReg SR
: HRI
.superregs(UseMO
.getReg())) {
4348 int Idx
= UseMI
.findRegisterUseOperandIdx(SR
, &HRI
, false);
4357 std::optional
<unsigned> Latency
= TargetInstrInfo::getOperandLatency(
4358 ItinData
, DefMI
, DefIdx
, UseMI
, UseIdx
);
4360 // We should never have 0 cycle latency between two instructions unless
4361 // they can be packetized together. However, this decision can't be made
4367 // inverts the predication logic.
4370 bool HexagonInstrInfo::getInvertedPredSense(
4371 SmallVectorImpl
<MachineOperand
> &Cond
) const {
4374 unsigned Opc
= getInvertedPredicatedOpcode(Cond
[0].getImm());
4375 Cond
[0].setImm(Opc
);
4379 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc
) const {
4381 InvPredOpcode
= isPredicatedTrue(Opc
) ? Hexagon::getFalsePredOpcode(Opc
)
4382 : Hexagon::getTruePredOpcode(Opc
);
4383 if (InvPredOpcode
>= 0) // Valid instruction with the inverted predicate.
4384 return InvPredOpcode
;
4386 llvm_unreachable("Unexpected predicated instruction");
4389 // Returns the max value that doesn't need to be extended.
4390 int HexagonInstrInfo::getMaxValue(const MachineInstr
&MI
) const {
4391 const uint64_t F
= MI
.getDesc().TSFlags
;
4392 unsigned isSigned
= (F
>> HexagonII::ExtentSignedPos
)
4393 & HexagonII::ExtentSignedMask
;
4394 unsigned bits
= (F
>> HexagonII::ExtentBitsPos
)
4395 & HexagonII::ExtentBitsMask
;
4397 if (isSigned
) // if value is signed
4398 return ~(-1U << (bits
- 1));
4400 return ~(-1U << bits
);
4404 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr
&MI
) const {
4405 switch (MI
.getOpcode()) {
4406 case Hexagon::L2_loadrbgp
:
4407 case Hexagon::L2_loadrdgp
:
4408 case Hexagon::L2_loadrhgp
:
4409 case Hexagon::L2_loadrigp
:
4410 case Hexagon::L2_loadrubgp
:
4411 case Hexagon::L2_loadruhgp
:
4412 case Hexagon::S2_storerbgp
:
4413 case Hexagon::S2_storerbnewgp
:
4414 case Hexagon::S2_storerhgp
:
4415 case Hexagon::S2_storerhnewgp
:
4416 case Hexagon::S2_storerigp
:
4417 case Hexagon::S2_storerinewgp
:
4418 case Hexagon::S2_storerdgp
:
4419 case Hexagon::S2_storerfgp
:
4422 const uint64_t F
= MI
.getDesc().TSFlags
;
4424 ((F
>> HexagonII::AddrModePos
) & HexagonII::AddrModeMask
);
4425 // Disallow any base+offset instruction. The assembler does not yet reorder
4426 // based up any zero offset instruction.
4427 return (addrMode
== HexagonII::BaseRegOffset
||
4428 addrMode
== HexagonII::BaseImmOffset
||
4429 addrMode
== HexagonII::BaseLongOffset
);
4432 bool HexagonInstrInfo::isPureSlot0(const MachineInstr
&MI
) const {
4433 // Workaround for the Global Scheduler. Sometimes, it creates
4434 // A4_ext as a Pseudo instruction and calls this function to see if
4435 // it can be added to an existing bundle. Since the instruction doesn't
4436 // belong to any BB yet, we can't use getUnits API.
4437 if (MI
.getOpcode() == Hexagon::A4_ext
)
4440 unsigned FuncUnits
= getUnits(MI
);
4441 return HexagonFUnits::isSlot0Only(FuncUnits
);
4444 bool HexagonInstrInfo::isRestrictNoSlot1Store(const MachineInstr
&MI
) const {
4445 const uint64_t F
= MI
.getDesc().TSFlags
;
4446 return ((F
>> HexagonII::RestrictNoSlot1StorePos
) &
4447 HexagonII::RestrictNoSlot1StoreMask
);
4450 void HexagonInstrInfo::changeDuplexOpcode(MachineBasicBlock::instr_iterator MII
,
4451 bool ToBigInstrs
) const {
4453 if (ToBigInstrs
) { // To BigCore Instr.
4454 // Check if the instruction can form a Duplex.
4455 if (getDuplexCandidateGroup(*MII
))
4456 // Get the opcode marked "dup_*" tag.
4457 Opcode
= getDuplexOpcode(*MII
, ToBigInstrs
);
4458 } else // To TinyCore Instr.
4459 Opcode
= getDuplexOpcode(*MII
, ToBigInstrs
);
4461 // Change the opcode of the instruction.
4463 MII
->setDesc(get(Opcode
));
4466 // This function is used to translate instructions to facilitate generating
4467 // Duplexes on TinyCore.
4468 void HexagonInstrInfo::translateInstrsForDup(MachineFunction
&MF
,
4469 bool ToBigInstrs
) const {
4471 for (MachineBasicBlock::instr_iterator Instr
= MB
.instr_begin(),
4472 End
= MB
.instr_end();
4473 Instr
!= End
; ++Instr
)
4474 changeDuplexOpcode(Instr
, ToBigInstrs
);
4477 // This is a specialized form of above function.
4478 void HexagonInstrInfo::translateInstrsForDup(
4479 MachineBasicBlock::instr_iterator MII
, bool ToBigInstrs
) const {
4480 MachineBasicBlock
*MBB
= MII
->getParent();
4481 while ((MII
!= MBB
->instr_end()) && MII
->isInsideBundle()) {
4482 changeDuplexOpcode(MII
, ToBigInstrs
);
4487 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr
&MI
) const {
4488 using namespace HexagonII
;
4490 const uint64_t F
= MI
.getDesc().TSFlags
;
4491 unsigned S
= (F
>> MemAccessSizePos
) & MemAccesSizeMask
;
4492 unsigned Size
= getMemAccessSizeInBytes(MemAccessSize(S
));
4495 // Y2_dcfetchbo is special
4496 if (MI
.getOpcode() == Hexagon::Y2_dcfetchbo
)
4497 return HexagonII::DoubleWordAccess
;
4499 // Handle vector access sizes.
4500 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
4502 case HexagonII::HVXVectorAccess
:
4503 return HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
4505 llvm_unreachable("Unexpected instruction");
4509 // Returns the min value that doesn't need to be extended.
4510 int HexagonInstrInfo::getMinValue(const MachineInstr
&MI
) const {
4511 const uint64_t F
= MI
.getDesc().TSFlags
;
4512 unsigned isSigned
= (F
>> HexagonII::ExtentSignedPos
)
4513 & HexagonII::ExtentSignedMask
;
4514 unsigned bits
= (F
>> HexagonII::ExtentBitsPos
)
4515 & HexagonII::ExtentBitsMask
;
4517 if (isSigned
) // if value is signed
4518 return -1U << (bits
- 1);
4523 // Returns opcode of the non-extended equivalent instruction.
4524 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr
&MI
) const {
4525 // Check if the instruction has a register form that uses register in place
4526 // of the extended operand, if so return that as the non-extended form.
4527 short NonExtOpcode
= Hexagon::getRegForm(MI
.getOpcode());
4528 if (NonExtOpcode
>= 0)
4529 return NonExtOpcode
;
4531 if (MI
.getDesc().mayLoad() || MI
.getDesc().mayStore()) {
4532 // Check addressing mode and retrieve non-ext equivalent instruction.
4533 switch (getAddrMode(MI
)) {
4534 case HexagonII::Absolute
:
4535 return Hexagon::changeAddrMode_abs_io(MI
.getOpcode());
4536 case HexagonII::BaseImmOffset
:
4537 return Hexagon::changeAddrMode_io_rr(MI
.getOpcode());
4538 case HexagonII::BaseLongOffset
:
4539 return Hexagon::changeAddrMode_ur_rr(MI
.getOpcode());
4548 bool HexagonInstrInfo::getPredReg(ArrayRef
<MachineOperand
> Cond
,
4549 Register
&PredReg
, unsigned &PredRegPos
, unsigned &PredRegFlags
) const {
4552 assert(Cond
.size() == 2);
4553 if (isNewValueJump(Cond
[0].getImm()) || Cond
[1].isMBB()) {
4554 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4557 PredReg
= Cond
[1].getReg();
4559 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4561 if (Cond
[1].isImplicit())
4562 PredRegFlags
= RegState::Implicit
;
4563 if (Cond
[1].isUndef())
4564 PredRegFlags
|= RegState::Undef
;
4568 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr
&MI
) const {
4569 return Hexagon::getRealHWInstr(MI
.getOpcode(), Hexagon::InstrType_Pseudo
);
4572 short HexagonInstrInfo::getRegForm(const MachineInstr
&MI
) const {
4573 return Hexagon::getRegForm(MI
.getOpcode());
4576 // Return the number of bytes required to encode the instruction.
4577 // Hexagon instructions are fixed length, 4 bytes, unless they
4578 // use a constant extender, which requires another 4 bytes.
4579 // For debug instructions and prolog labels, return 0.
4580 unsigned HexagonInstrInfo::getSize(const MachineInstr
&MI
) const {
4581 if (MI
.isDebugInstr() || MI
.isPosition())
4584 unsigned Size
= MI
.getDesc().getSize();
4586 // Assume the default insn size in case it cannot be determined
4587 // for whatever reason.
4588 Size
= HEXAGON_INSTR_SIZE
;
4590 if (isConstExtended(MI
) || isExtended(MI
))
4591 Size
+= HEXAGON_INSTR_SIZE
;
4593 // Try and compute number of instructions in asm.
4594 if (BranchRelaxAsmLarge
&& MI
.getOpcode() == Hexagon::INLINEASM
) {
4595 const MachineBasicBlock
&MBB
= *MI
.getParent();
4596 const MachineFunction
*MF
= MBB
.getParent();
4597 const MCAsmInfo
*MAI
= MF
->getTarget().getMCAsmInfo();
4599 // Count the number of register definitions to find the asm string.
4600 unsigned NumDefs
= 0;
4601 for (; MI
.getOperand(NumDefs
).isReg() && MI
.getOperand(NumDefs
).isDef();
4603 assert(NumDefs
!= MI
.getNumOperands()-2 && "No asm string?");
4605 assert(MI
.getOperand(NumDefs
).isSymbol() && "No asm string?");
4606 // Disassemble the AsmStr and approximate number of instructions.
4607 const char *AsmStr
= MI
.getOperand(NumDefs
).getSymbolName();
4608 Size
= getInlineAsmLength(AsmStr
, *MAI
);
4614 uint64_t HexagonInstrInfo::getType(const MachineInstr
&MI
) const {
4615 const uint64_t F
= MI
.getDesc().TSFlags
;
4616 return (F
>> HexagonII::TypePos
) & HexagonII::TypeMask
;
4619 InstrStage::FuncUnits
HexagonInstrInfo::getUnits(const MachineInstr
&MI
) const {
4620 const InstrItineraryData
&II
= *Subtarget
.getInstrItineraryData();
4621 const InstrStage
&IS
= *II
.beginStage(MI
.getDesc().getSchedClass());
4623 return IS
.getUnits();
4626 // Calculate size of the basic block without debug instructions.
4627 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock
*BB
) const {
4628 return nonDbgMICount(BB
->instr_begin(), BB
->instr_end());
4631 unsigned HexagonInstrInfo::nonDbgBundleSize(
4632 MachineBasicBlock::const_iterator BundleHead
) const {
4633 assert(BundleHead
->isBundle() && "Not a bundle header");
4634 auto MII
= BundleHead
.getInstrIterator();
4635 // Skip the bundle header.
4636 return nonDbgMICount(++MII
, getBundleEnd(BundleHead
.getInstrIterator()));
4639 /// immediateExtend - Changes the instruction in place to one using an immediate
4641 void HexagonInstrInfo::immediateExtend(MachineInstr
&MI
) const {
4642 assert((isExtendable(MI
)||isConstExtended(MI
)) &&
4643 "Instruction must be extendable");
4644 // Find which operand is extendable.
4645 short ExtOpNum
= getCExtOpNum(MI
);
4646 MachineOperand
&MO
= MI
.getOperand(ExtOpNum
);
4647 // This needs to be something we understand.
4648 assert((MO
.isMBB() || MO
.isImm()) &&
4649 "Branch with unknown extendable field type");
4650 // Mark given operand as extended.
4651 MO
.addTargetFlag(HexagonII::HMOTF_ConstExtended
);
4654 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4655 MachineInstr
&MI
, MachineBasicBlock
*NewTarget
) const {
4656 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4657 << printMBBReference(*NewTarget
);
4659 assert(MI
.isBranch());
4660 unsigned NewOpcode
= getInvertedPredicatedOpcode(MI
.getOpcode());
4661 int TargetPos
= MI
.getNumOperands() - 1;
4662 // In general branch target is the last operand,
4663 // but some implicit defs added at the end might change it.
4664 while ((TargetPos
> -1) && !MI
.getOperand(TargetPos
).isMBB())
4666 assert((TargetPos
>= 0) && MI
.getOperand(TargetPos
).isMBB());
4667 MI
.getOperand(TargetPos
).setMBB(NewTarget
);
4668 if (EnableBranchPrediction
&& isPredicatedNew(MI
)) {
4669 NewOpcode
= reversePrediction(NewOpcode
);
4671 MI
.setDesc(get(NewOpcode
));
4675 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction
&MF
) const {
4676 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4677 MachineFunction::iterator A
= MF
.begin();
4678 MachineBasicBlock
&B
= *A
;
4679 MachineBasicBlock::iterator I
= B
.begin();
4680 DebugLoc DL
= I
->getDebugLoc();
4681 MachineInstr
*NewMI
;
4683 for (unsigned insn
= TargetOpcode::GENERIC_OP_END
+1;
4684 insn
< Hexagon::INSTRUCTION_LIST_END
; ++insn
) {
4685 NewMI
= BuildMI(B
, I
, DL
, get(insn
));
4686 LLVM_DEBUG(dbgs() << "\n"
4687 << getName(NewMI
->getOpcode())
4688 << " Class: " << NewMI
->getDesc().getSchedClass());
4689 NewMI
->eraseFromParent();
4691 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4694 // inverts the predication logic.
4697 bool HexagonInstrInfo::reversePredSense(MachineInstr
&MI
) const {
4698 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI
.dump());
4699 MI
.setDesc(get(getInvertedPredicatedOpcode(MI
.getOpcode())));
4703 // Reverse the branch prediction.
4704 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode
) const {
4705 int PredRevOpcode
= -1;
4706 if (isPredictedTaken(Opcode
))
4707 PredRevOpcode
= Hexagon::notTakenBranchPrediction(Opcode
);
4709 PredRevOpcode
= Hexagon::takenBranchPrediction(Opcode
);
4710 assert(PredRevOpcode
> 0);
4711 return PredRevOpcode
;
4714 // TODO: Add more rigorous validation.
4715 bool HexagonInstrInfo::validateBranchCond(const ArrayRef
<MachineOperand
> &Cond
)
4717 return Cond
.empty() || (Cond
[0].isImm() && (Cond
.size() != 1));
4720 void HexagonInstrInfo::
4721 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB
) const {
4722 assert(MIB
->isBundle());
4723 MachineOperand
&Operand
= MIB
->getOperand(0);
4724 if (Operand
.isImm())
4725 Operand
.setImm(Operand
.getImm() | memShufDisabledMask
);
4727 MIB
->addOperand(MachineOperand::CreateImm(memShufDisabledMask
));
4730 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr
&MIB
) const {
4731 assert(MIB
.isBundle());
4732 const MachineOperand
&Operand
= MIB
.getOperand(0);
4733 return (Operand
.isImm() && (Operand
.getImm() & memShufDisabledMask
) != 0);
4736 // Addressing mode relations.
4737 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc
) const {
4738 return Opc
>= 0 ? Hexagon::changeAddrMode_abs_io(Opc
) : Opc
;
4741 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc
) const {
4742 return Opc
>= 0 ? Hexagon::changeAddrMode_io_abs(Opc
) : Opc
;
4745 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc
) const {
4746 return Opc
>= 0 ? Hexagon::changeAddrMode_io_pi(Opc
) : Opc
;
4749 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc
) const {
4750 return Opc
>= 0 ? Hexagon::changeAddrMode_io_rr(Opc
) : Opc
;
4753 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc
) const {
4754 return Opc
>= 0 ? Hexagon::changeAddrMode_pi_io(Opc
) : Opc
;
4757 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc
) const {
4758 return Opc
>= 0 ? Hexagon::changeAddrMode_rr_io(Opc
) : Opc
;
4761 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc
) const {
4762 return Opc
>= 0 ? Hexagon::changeAddrMode_rr_ur(Opc
) : Opc
;
4765 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc
) const {
4766 return Opc
>= 0 ? Hexagon::changeAddrMode_ur_rr(Opc
) : Opc
;
4769 MCInst
HexagonInstrInfo::getNop() const {
4770 static const MCInst Nop
= MCInstBuilder(Hexagon::A2_nop
);
4772 return MCInstBuilder(Hexagon::BUNDLE
)