[SmallPtrSet] Remove SmallArray member (NFC) (#118099)
[llvm-project.git] / llvm / lib / Target / X86 / X86TargetMachine.cpp
blob20dfdd27b33df6a062004dcc3e98ff6f0883d10a
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
11 //===----------------------------------------------------------------------===//
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetObjectFile.h"
21 #include "X86TargetTransformInfo.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/MIRParser/MIParser.h"
34 #include "llvm/CodeGen/MIRYamlMapping.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/TargetRegistry.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/TargetParser/Triple.h"
50 #include "llvm/Transforms/CFGuard.h"
51 #include <memory>
52 #include <optional>
53 #include <string>
55 using namespace llvm;
57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
58 cl::desc("Enable the machine combiner pass"),
59 cl::init(true), cl::Hidden);
61 static cl::opt<bool>
62 EnableTileRAPass("x86-tile-ra",
63 cl::desc("Enable the tile register allocation pass"),
64 cl::init(true), cl::Hidden);
66 extern "C" LLVM_C_ABI void LLVMInitializeX86Target() {
67 // Register the target.
68 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
69 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
71 PassRegistry &PR = *PassRegistry::getPassRegistry();
72 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR);
73 initializeX86LowerAMXTypeLegacyPassPass(PR);
74 initializeX86PreTileConfigPass(PR);
75 initializeGlobalISel(PR);
76 initializeWinEHStatePassPass(PR);
77 initializeFixupBWInstPassPass(PR);
78 initializeCompressEVEXPassPass(PR);
79 initializeFixupLEAPassPass(PR);
80 initializeFPSPass(PR);
81 initializeX86FixupSetCCPassPass(PR);
82 initializeX86CallFrameOptimizationPass(PR);
83 initializeX86CmovConverterPassPass(PR);
84 initializeX86TileConfigPass(PR);
85 initializeX86FastPreTileConfigPass(PR);
86 initializeX86FastTileConfigPass(PR);
87 initializeKCFIPass(PR);
88 initializeX86LowerTileCopyPass(PR);
89 initializeX86ExpandPseudoPass(PR);
90 initializeX86ExecutionDomainFixPass(PR);
91 initializeX86DomainReassignmentPass(PR);
92 initializeX86AvoidSFBPassPass(PR);
93 initializeX86AvoidTrailingCallPassPass(PR);
94 initializeX86SpeculativeLoadHardeningPassPass(PR);
95 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
96 initializeX86FlagsCopyLoweringPassPass(PR);
97 initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
98 initializeX86LoadValueInjectionRetHardeningPassPass(PR);
99 initializeX86OptimizeLEAPassPass(PR);
100 initializeX86PartialReductionPass(PR);
101 initializePseudoProbeInserterPass(PR);
102 initializeX86ReturnThunksPass(PR);
103 initializeX86DAGToDAGISelLegacyPass(PR);
104 initializeX86ArgumentStackSlotPassPass(PR);
105 initializeX86FixupInstTuningPassPass(PR);
106 initializeX86FixupVectorConstantsPassPass(PR);
107 initializeX86DynAllocaExpanderPass(PR);
110 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
111 if (TT.isOSBinFormatMachO()) {
112 if (TT.getArch() == Triple::x86_64)
113 return std::make_unique<X86_64MachoTargetObjectFile>();
114 return std::make_unique<TargetLoweringObjectFileMachO>();
117 if (TT.isOSBinFormatCOFF())
118 return std::make_unique<TargetLoweringObjectFileCOFF>();
120 if (TT.getArch() == Triple::x86_64)
121 return std::make_unique<X86_64ELFTargetObjectFile>();
122 return std::make_unique<X86ELFTargetObjectFile>();
125 static std::string computeDataLayout(const Triple &TT) {
126 // X86 is little endian
127 std::string Ret = "e";
129 Ret += DataLayout::getManglingComponent(TT);
130 // X86 and x32 have 32 bit pointers.
131 if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl())
132 Ret += "-p:32:32";
134 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
135 Ret += "-p270:32:32-p271:32:32-p272:64:64";
137 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
138 // 128 bit integers are not specified in the 32-bit ABIs but are used
139 // internally for lowering f128, so we match the alignment to that.
140 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
141 Ret += "-i64:64-i128:128";
142 else if (TT.isOSIAMCU())
143 Ret += "-i64:32-f64:32";
144 else
145 Ret += "-i128:128-f64:32:64";
147 // Some ABIs align long double to 128 bits, others to 32.
148 if (TT.isOSNaCl() || TT.isOSIAMCU())
149 ; // No f80
150 else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment())
151 Ret += "-f80:128";
152 else
153 Ret += "-f80:32";
155 if (TT.isOSIAMCU())
156 Ret += "-f128:32";
158 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
159 if (TT.isArch64Bit())
160 Ret += "-n8:16:32:64";
161 else
162 Ret += "-n8:16:32";
164 // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
165 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
166 Ret += "-a:0:32-S32";
167 else
168 Ret += "-S128";
170 return Ret;
173 static Reloc::Model getEffectiveRelocModel(const Triple &TT, bool JIT,
174 std::optional<Reloc::Model> RM) {
175 bool is64Bit = TT.getArch() == Triple::x86_64;
176 if (!RM) {
177 // JIT codegen should use static relocations by default, since it's
178 // typically executed in process and not relocatable.
179 if (JIT)
180 return Reloc::Static;
182 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
183 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
184 // use static relocation model by default.
185 if (TT.isOSDarwin()) {
186 if (is64Bit)
187 return Reloc::PIC_;
188 return Reloc::DynamicNoPIC;
190 if (TT.isOSWindows() && is64Bit)
191 return Reloc::PIC_;
192 return Reloc::Static;
195 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
196 // is defined as a model for code which may be used in static or dynamic
197 // executables but not necessarily a shared library. On X86-32 we just
198 // compile in -static mode, in x86-64 we use PIC.
199 if (*RM == Reloc::DynamicNoPIC) {
200 if (is64Bit)
201 return Reloc::PIC_;
202 if (!TT.isOSDarwin())
203 return Reloc::Static;
206 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
207 // the Mach-O file format doesn't support it.
208 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
209 return Reloc::PIC_;
211 return *RM;
214 static CodeModel::Model
215 getEffectiveX86CodeModel(const Triple &TT, std::optional<CodeModel::Model> CM,
216 bool JIT) {
217 bool Is64Bit = TT.getArch() == Triple::x86_64;
218 if (CM) {
219 if (*CM == CodeModel::Tiny)
220 report_fatal_error("Target does not support the tiny CodeModel", false);
221 return *CM;
223 if (JIT)
224 return Is64Bit ? CodeModel::Large : CodeModel::Small;
225 return CodeModel::Small;
228 /// Create an X86 target.
230 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
231 StringRef CPU, StringRef FS,
232 const TargetOptions &Options,
233 std::optional<Reloc::Model> RM,
234 std::optional<CodeModel::Model> CM,
235 CodeGenOptLevel OL, bool JIT)
236 : CodeGenTargetMachineImpl(T, computeDataLayout(TT), TT, CPU, FS, Options,
237 getEffectiveRelocModel(TT, JIT, RM),
238 getEffectiveX86CodeModel(TT, CM, JIT), OL),
239 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
240 // On PS4/PS5, the "return address" of a 'noreturn' call must still be within
241 // the calling function. Note that this also includes __stack_chk_fail,
242 // so there was some target-specific logic in the instruction selectors
243 // to handle that. That code has since been generalized, so the only thing
244 // needed is to set TrapUnreachable here.
245 if (TT.isPS() || TT.isOSBinFormatMachO()) {
246 this->Options.TrapUnreachable = true;
247 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
250 setMachineOutliner(true);
252 // x86 supports the debug entry values.
253 setSupportsDebugEntryValues(true);
255 initAsmInfo();
258 X86TargetMachine::~X86TargetMachine() = default;
260 const X86Subtarget *
261 X86TargetMachine::getSubtargetImpl(const Function &F) const {
262 Attribute CPUAttr = F.getFnAttribute("target-cpu");
263 Attribute TuneAttr = F.getFnAttribute("tune-cpu");
264 Attribute FSAttr = F.getFnAttribute("target-features");
266 StringRef CPU =
267 CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
268 // "x86-64" is a default target setting for many front ends. In these cases,
269 // they actually request for "generic" tuning unless the "tune-cpu" was
270 // specified.
271 StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString()
272 : CPU == "x86-64" ? "generic"
273 : (StringRef)CPU;
274 StringRef FS =
275 FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
277 SmallString<512> Key;
278 // The additions here are ordered so that the definitely short strings are
279 // added first so we won't exceed the small size. We append the
280 // much longer FS string at the end so that we only heap allocate at most
281 // one time.
283 // Extract prefer-vector-width attribute.
284 unsigned PreferVectorWidthOverride = 0;
285 Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
286 if (PreferVecWidthAttr.isValid()) {
287 StringRef Val = PreferVecWidthAttr.getValueAsString();
288 unsigned Width;
289 if (!Val.getAsInteger(0, Width)) {
290 Key += 'p';
291 Key += Val;
292 PreferVectorWidthOverride = Width;
296 // Extract min-legal-vector-width attribute.
297 unsigned RequiredVectorWidth = UINT32_MAX;
298 Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
299 if (MinLegalVecWidthAttr.isValid()) {
300 StringRef Val = MinLegalVecWidthAttr.getValueAsString();
301 unsigned Width;
302 if (!Val.getAsInteger(0, Width)) {
303 Key += 'm';
304 Key += Val;
305 RequiredVectorWidth = Width;
309 // Add CPU to the Key.
310 Key += CPU;
312 // Add tune CPU to the Key.
313 Key += TuneCPU;
315 // Keep track of the start of the feature portion of the string.
316 unsigned FSStart = Key.size();
318 // FIXME: This is related to the code below to reset the target options,
319 // we need to know whether or not the soft float flag is set on the
320 // function before we can generate a subtarget. We also need to use
321 // it as a key for the subtarget since that can be the only difference
322 // between two functions.
323 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
324 // If the soft float attribute is set on the function turn on the soft float
325 // subtarget feature.
326 if (SoftFloat)
327 Key += FS.empty() ? "+soft-float" : "+soft-float,";
329 Key += FS;
331 // We may have added +soft-float to the features so move the StringRef to
332 // point to the full string in the Key.
333 FS = Key.substr(FSStart);
335 auto &I = SubtargetMap[Key];
336 if (!I) {
337 // This needs to be done before we create a new subtarget since any
338 // creation will depend on the TM and the code generation flags on the
339 // function that reside in TargetOptions.
340 resetTargetOptions(F);
341 I = std::make_unique<X86Subtarget>(
342 TargetTriple, CPU, TuneCPU, FS, *this,
343 MaybeAlign(F.getParent()->getOverrideStackAlignment()),
344 PreferVectorWidthOverride, RequiredVectorWidth);
346 return I.get();
349 yaml::MachineFunctionInfo *X86TargetMachine::createDefaultFuncInfoYAML() const {
350 return new yaml::X86MachineFunctionInfo();
353 yaml::MachineFunctionInfo *
354 X86TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
355 const auto *MFI = MF.getInfo<X86MachineFunctionInfo>();
356 return new yaml::X86MachineFunctionInfo(*MFI);
359 bool X86TargetMachine::parseMachineFunctionInfo(
360 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
361 SMDiagnostic &Error, SMRange &SourceRange) const {
362 const auto &YamlMFI = static_cast<const yaml::X86MachineFunctionInfo &>(MFI);
363 PFS.MF.getInfo<X86MachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
364 return false;
367 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
368 unsigned DestAS) const {
369 assert(SrcAS != DestAS && "Expected different address spaces!");
370 if (getPointerSize(SrcAS) != getPointerSize(DestAS))
371 return false;
372 return SrcAS < 256 && DestAS < 256;
375 void X86TargetMachine::reset() { SubtargetMap.clear(); }
377 //===----------------------------------------------------------------------===//
378 // X86 TTI query.
379 //===----------------------------------------------------------------------===//
381 TargetTransformInfo
382 X86TargetMachine::getTargetTransformInfo(const Function &F) const {
383 return TargetTransformInfo(X86TTIImpl(this, F));
386 //===----------------------------------------------------------------------===//
387 // Pass Pipeline Configuration
388 //===----------------------------------------------------------------------===//
390 namespace {
392 /// X86 Code Generator Pass Configuration Options.
393 class X86PassConfig : public TargetPassConfig {
394 public:
395 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
396 : TargetPassConfig(TM, PM) {}
398 X86TargetMachine &getX86TargetMachine() const {
399 return getTM<X86TargetMachine>();
402 ScheduleDAGInstrs *
403 createMachineScheduler(MachineSchedContext *C) const override {
404 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
405 DAG->addMutation(createX86MacroFusionDAGMutation());
406 return DAG;
409 ScheduleDAGInstrs *
410 createPostMachineScheduler(MachineSchedContext *C) const override {
411 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
412 DAG->addMutation(createX86MacroFusionDAGMutation());
413 return DAG;
416 void addIRPasses() override;
417 bool addInstSelector() override;
418 bool addIRTranslator() override;
419 bool addLegalizeMachineIR() override;
420 bool addRegBankSelect() override;
421 bool addGlobalInstructionSelect() override;
422 bool addILPOpts() override;
423 bool addPreISel() override;
424 void addMachineSSAOptimization() override;
425 void addPreRegAlloc() override;
426 bool addPostFastRegAllocRewrite() override;
427 void addPostRegAlloc() override;
428 void addPreEmitPass() override;
429 void addPreEmitPass2() override;
430 void addPreSched2() override;
431 bool addRegAssignAndRewriteOptimized() override;
433 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
436 class X86ExecutionDomainFix : public ExecutionDomainFix {
437 public:
438 static char ID;
439 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
440 StringRef getPassName() const override {
441 return "X86 Execution Dependency Fix";
444 char X86ExecutionDomainFix::ID;
446 } // end anonymous namespace
448 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
449 "X86 Execution Domain Fix", false, false)
450 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
451 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
452 "X86 Execution Domain Fix", false, false)
454 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
455 return new X86PassConfig(*this, PM);
458 MachineFunctionInfo *X86TargetMachine::createMachineFunctionInfo(
459 BumpPtrAllocator &Allocator, const Function &F,
460 const TargetSubtargetInfo *STI) const {
461 return X86MachineFunctionInfo::create<X86MachineFunctionInfo>(Allocator, F,
462 STI);
465 void X86PassConfig::addIRPasses() {
466 addPass(createAtomicExpandLegacyPass());
468 // We add both pass anyway and when these two passes run, we skip the pass
469 // based on the option level and option attribute.
470 addPass(createX86LowerAMXIntrinsicsPass());
471 addPass(createX86LowerAMXTypePass());
473 TargetPassConfig::addIRPasses();
475 if (TM->getOptLevel() != CodeGenOptLevel::None) {
476 addPass(createInterleavedAccessPass());
477 addPass(createX86PartialReductionPass());
480 // Add passes that handle indirect branch removal and insertion of a retpoline
481 // thunk. These will be a no-op unless a function subtarget has the retpoline
482 // feature enabled.
483 addPass(createIndirectBrExpandPass());
485 // Add Control Flow Guard checks.
486 const Triple &TT = TM->getTargetTriple();
487 if (TT.isOSWindows()) {
488 if (TT.getArch() == Triple::x86_64) {
489 addPass(createCFGuardDispatchPass());
490 } else {
491 addPass(createCFGuardCheckPass());
495 if (TM->Options.JMCInstrument)
496 addPass(createJMCInstrumenterPass());
499 bool X86PassConfig::addInstSelector() {
500 // Install an instruction selector.
501 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
503 // For ELF, cleanup any local-dynamic TLS accesses.
504 if (TM->getTargetTriple().isOSBinFormatELF() &&
505 getOptLevel() != CodeGenOptLevel::None)
506 addPass(createCleanupLocalDynamicTLSPass());
508 addPass(createX86GlobalBaseRegPass());
509 addPass(createX86ArgumentStackSlotPass());
510 return false;
513 bool X86PassConfig::addIRTranslator() {
514 addPass(new IRTranslator(getOptLevel()));
515 return false;
518 bool X86PassConfig::addLegalizeMachineIR() {
519 addPass(new Legalizer());
520 return false;
523 bool X86PassConfig::addRegBankSelect() {
524 addPass(new RegBankSelect());
525 return false;
528 bool X86PassConfig::addGlobalInstructionSelect() {
529 addPass(new InstructionSelect(getOptLevel()));
530 // Add GlobalBaseReg in case there is no SelectionDAG passes afterwards
531 if (isGlobalISelAbortEnabled())
532 addPass(createX86GlobalBaseRegPass());
533 return false;
536 bool X86PassConfig::addILPOpts() {
537 addPass(&EarlyIfConverterLegacyID);
538 if (EnableMachineCombinerPass)
539 addPass(&MachineCombinerID);
540 addPass(createX86CmovConverterPass());
541 return true;
544 bool X86PassConfig::addPreISel() {
545 // Only add this pass for 32-bit x86 Windows.
546 const Triple &TT = TM->getTargetTriple();
547 if (TT.isOSWindows() && TT.getArch() == Triple::x86)
548 addPass(createX86WinEHStatePass());
549 return true;
552 void X86PassConfig::addPreRegAlloc() {
553 if (getOptLevel() != CodeGenOptLevel::None) {
554 addPass(&LiveRangeShrinkID);
555 addPass(createX86WinFixupBufferSecurityCheckPass());
556 addPass(createX86FixupSetCC());
557 addPass(createX86OptimizeLEAs());
558 addPass(createX86CallFrameOptimization());
559 addPass(createX86AvoidStoreForwardingBlocks());
562 addPass(createX86SpeculativeLoadHardeningPass());
563 addPass(createX86FlagsCopyLoweringPass());
564 addPass(createX86DynAllocaExpander());
566 if (getOptLevel() != CodeGenOptLevel::None)
567 addPass(createX86PreTileConfigPass());
568 else
569 addPass(createX86FastPreTileConfigPass());
572 void X86PassConfig::addMachineSSAOptimization() {
573 addPass(createX86DomainReassignmentPass());
574 TargetPassConfig::addMachineSSAOptimization();
577 void X86PassConfig::addPostRegAlloc() {
578 addPass(createX86LowerTileCopyPass());
579 addPass(createX86FloatingPointStackifierPass());
580 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
581 // to using the Speculative Execution Side Effect Suppression pass for
582 // mitigation. This is to prevent slow downs due to
583 // analyses needed by the LVIHardening pass when compiling at -O0.
584 if (getOptLevel() != CodeGenOptLevel::None)
585 addPass(createX86LoadValueInjectionLoadHardeningPass());
588 void X86PassConfig::addPreSched2() {
589 addPass(createX86ExpandPseudoPass());
590 addPass(createKCFIPass());
593 void X86PassConfig::addPreEmitPass() {
594 if (getOptLevel() != CodeGenOptLevel::None) {
595 addPass(new X86ExecutionDomainFix());
596 addPass(createBreakFalseDeps());
599 addPass(createX86IndirectBranchTrackingPass());
601 addPass(createX86IssueVZeroUpperPass());
603 if (getOptLevel() != CodeGenOptLevel::None) {
604 addPass(createX86FixupBWInsts());
605 addPass(createX86PadShortFunctions());
606 addPass(createX86FixupLEAs());
607 addPass(createX86FixupInstTuning());
608 addPass(createX86FixupVectorConstants());
610 addPass(createX86CompressEVEXPass());
611 addPass(createX86DiscriminateMemOpsPass());
612 addPass(createX86InsertPrefetchPass());
613 addPass(createX86InsertX87waitPass());
616 void X86PassConfig::addPreEmitPass2() {
617 const Triple &TT = TM->getTargetTriple();
618 const MCAsmInfo *MAI = TM->getMCAsmInfo();
620 // The X86 Speculative Execution Pass must run after all control
621 // flow graph modifying passes. As a result it was listed to run right before
622 // the X86 Retpoline Thunks pass. The reason it must run after control flow
623 // graph modifications is that the model of LFENCE in LLVM has to be updated
624 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
625 // placement of this pass was hand checked to ensure that the subsequent
626 // passes don't move the code around the LFENCEs in a way that will hurt the
627 // correctness of this pass. This placement has been shown to work based on
628 // hand inspection of the codegen output.
629 addPass(createX86SpeculativeExecutionSideEffectSuppression());
630 addPass(createX86IndirectThunksPass());
631 addPass(createX86ReturnThunksPass());
633 // Insert extra int3 instructions after trailing call instructions to avoid
634 // issues in the unwinder.
635 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
636 addPass(createX86AvoidTrailingCallPass());
638 // Verify basic block incoming and outgoing cfa offset and register values and
639 // correct CFA calculation rule where needed by inserting appropriate CFI
640 // instructions.
641 if (!TT.isOSDarwin() &&
642 (!TT.isOSWindows() ||
643 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
644 addPass(createCFIInstrInserter());
646 if (TT.isOSWindows()) {
647 // Identify valid longjmp targets for Windows Control Flow Guard.
648 addPass(createCFGuardLongjmpPass());
649 // Identify valid eh continuation targets for Windows EHCont Guard.
650 addPass(createEHContGuardCatchretPass());
652 addPass(createX86LoadValueInjectionRetHardeningPass());
654 // Insert pseudo probe annotation for callsite profiling
655 addPass(createPseudoProbeInserter());
657 // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms,
658 // also CALL_RVMARKER.
659 addPass(createUnpackMachineBundles([&TT](const MachineFunction &MF) {
660 // Only run bundle expansion if the module uses kcfi, or there are relevant
661 // ObjC runtime functions present in the module.
662 const Function &F = MF.getFunction();
663 const Module *M = F.getParent();
664 return M->getModuleFlag("kcfi") ||
665 (TT.isOSDarwin() &&
666 (M->getFunction("objc_retainAutoreleasedReturnValue") ||
667 M->getFunction("objc_unsafeClaimAutoreleasedReturnValue")));
668 }));
671 bool X86PassConfig::addPostFastRegAllocRewrite() {
672 addPass(createX86FastTileConfigPass());
673 return true;
676 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
677 return getStandardCSEConfigForOpt(TM->getOptLevel());
680 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI,
681 const MachineRegisterInfo &MRI,
682 const Register Reg) {
683 const TargetRegisterClass *RC = MRI.getRegClass(Reg);
684 return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(RC);
687 bool X86PassConfig::addRegAssignAndRewriteOptimized() {
688 // Don't support tile RA when RA is specified by command line "-regalloc".
689 if (!isCustomizedRegAlloc() && EnableTileRAPass) {
690 // Allocate tile register first.
691 addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters));
692 addPass(createX86TileConfigPass());
694 return TargetPassConfig::addRegAssignAndRewriteOptimized();