1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the X86 specific subclass of TargetMachine.
11 //===----------------------------------------------------------------------===//
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetObjectFile.h"
21 #include "X86TargetTransformInfo.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/CodeGen/ExecutionDomainFix.h"
26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
27 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 #include "llvm/CodeGen/MIRParser/MIParser.h"
34 #include "llvm/CodeGen/MIRYamlMapping.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/TargetRegistry.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/TargetParser/Triple.h"
50 #include "llvm/Transforms/CFGuard.h"
57 static cl::opt
<bool> EnableMachineCombinerPass("x86-machine-combiner",
58 cl::desc("Enable the machine combiner pass"),
59 cl::init(true), cl::Hidden
);
62 EnableTileRAPass("x86-tile-ra",
63 cl::desc("Enable the tile register allocation pass"),
64 cl::init(true), cl::Hidden
);
66 extern "C" LLVM_C_ABI
void LLVMInitializeX86Target() {
67 // Register the target.
68 RegisterTargetMachine
<X86TargetMachine
> X(getTheX86_32Target());
69 RegisterTargetMachine
<X86TargetMachine
> Y(getTheX86_64Target());
71 PassRegistry
&PR
= *PassRegistry::getPassRegistry();
72 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR
);
73 initializeX86LowerAMXTypeLegacyPassPass(PR
);
74 initializeX86PreTileConfigPass(PR
);
75 initializeGlobalISel(PR
);
76 initializeWinEHStatePassPass(PR
);
77 initializeFixupBWInstPassPass(PR
);
78 initializeCompressEVEXPassPass(PR
);
79 initializeFixupLEAPassPass(PR
);
80 initializeFPSPass(PR
);
81 initializeX86FixupSetCCPassPass(PR
);
82 initializeX86CallFrameOptimizationPass(PR
);
83 initializeX86CmovConverterPassPass(PR
);
84 initializeX86TileConfigPass(PR
);
85 initializeX86FastPreTileConfigPass(PR
);
86 initializeX86FastTileConfigPass(PR
);
87 initializeKCFIPass(PR
);
88 initializeX86LowerTileCopyPass(PR
);
89 initializeX86ExpandPseudoPass(PR
);
90 initializeX86ExecutionDomainFixPass(PR
);
91 initializeX86DomainReassignmentPass(PR
);
92 initializeX86AvoidSFBPassPass(PR
);
93 initializeX86AvoidTrailingCallPassPass(PR
);
94 initializeX86SpeculativeLoadHardeningPassPass(PR
);
95 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR
);
96 initializeX86FlagsCopyLoweringPassPass(PR
);
97 initializeX86LoadValueInjectionLoadHardeningPassPass(PR
);
98 initializeX86LoadValueInjectionRetHardeningPassPass(PR
);
99 initializeX86OptimizeLEAPassPass(PR
);
100 initializeX86PartialReductionPass(PR
);
101 initializePseudoProbeInserterPass(PR
);
102 initializeX86ReturnThunksPass(PR
);
103 initializeX86DAGToDAGISelLegacyPass(PR
);
104 initializeX86ArgumentStackSlotPassPass(PR
);
105 initializeX86FixupInstTuningPassPass(PR
);
106 initializeX86FixupVectorConstantsPassPass(PR
);
107 initializeX86DynAllocaExpanderPass(PR
);
110 static std::unique_ptr
<TargetLoweringObjectFile
> createTLOF(const Triple
&TT
) {
111 if (TT
.isOSBinFormatMachO()) {
112 if (TT
.getArch() == Triple::x86_64
)
113 return std::make_unique
<X86_64MachoTargetObjectFile
>();
114 return std::make_unique
<TargetLoweringObjectFileMachO
>();
117 if (TT
.isOSBinFormatCOFF())
118 return std::make_unique
<TargetLoweringObjectFileCOFF
>();
120 if (TT
.getArch() == Triple::x86_64
)
121 return std::make_unique
<X86_64ELFTargetObjectFile
>();
122 return std::make_unique
<X86ELFTargetObjectFile
>();
125 static std::string
computeDataLayout(const Triple
&TT
) {
126 // X86 is little endian
127 std::string Ret
= "e";
129 Ret
+= DataLayout::getManglingComponent(TT
);
130 // X86 and x32 have 32 bit pointers.
131 if (!TT
.isArch64Bit() || TT
.isX32() || TT
.isOSNaCl())
134 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
135 Ret
+= "-p270:32:32-p271:32:32-p272:64:64";
137 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
138 // 128 bit integers are not specified in the 32-bit ABIs but are used
139 // internally for lowering f128, so we match the alignment to that.
140 if (TT
.isArch64Bit() || TT
.isOSWindows() || TT
.isOSNaCl())
141 Ret
+= "-i64:64-i128:128";
142 else if (TT
.isOSIAMCU())
143 Ret
+= "-i64:32-f64:32";
145 Ret
+= "-i128:128-f64:32:64";
147 // Some ABIs align long double to 128 bits, others to 32.
148 if (TT
.isOSNaCl() || TT
.isOSIAMCU())
150 else if (TT
.isArch64Bit() || TT
.isOSDarwin() || TT
.isWindowsMSVCEnvironment())
158 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
159 if (TT
.isArch64Bit())
160 Ret
+= "-n8:16:32:64";
164 // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
165 if ((!TT
.isArch64Bit() && TT
.isOSWindows()) || TT
.isOSIAMCU())
166 Ret
+= "-a:0:32-S32";
173 static Reloc::Model
getEffectiveRelocModel(const Triple
&TT
, bool JIT
,
174 std::optional
<Reloc::Model
> RM
) {
175 bool is64Bit
= TT
.getArch() == Triple::x86_64
;
177 // JIT codegen should use static relocations by default, since it's
178 // typically executed in process and not relocatable.
180 return Reloc::Static
;
182 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
183 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
184 // use static relocation model by default.
185 if (TT
.isOSDarwin()) {
188 return Reloc::DynamicNoPIC
;
190 if (TT
.isOSWindows() && is64Bit
)
192 return Reloc::Static
;
195 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
196 // is defined as a model for code which may be used in static or dynamic
197 // executables but not necessarily a shared library. On X86-32 we just
198 // compile in -static mode, in x86-64 we use PIC.
199 if (*RM
== Reloc::DynamicNoPIC
) {
202 if (!TT
.isOSDarwin())
203 return Reloc::Static
;
206 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
207 // the Mach-O file format doesn't support it.
208 if (*RM
== Reloc::Static
&& TT
.isOSDarwin() && is64Bit
)
214 static CodeModel::Model
215 getEffectiveX86CodeModel(const Triple
&TT
, std::optional
<CodeModel::Model
> CM
,
217 bool Is64Bit
= TT
.getArch() == Triple::x86_64
;
219 if (*CM
== CodeModel::Tiny
)
220 report_fatal_error("Target does not support the tiny CodeModel", false);
224 return Is64Bit
? CodeModel::Large
: CodeModel::Small
;
225 return CodeModel::Small
;
228 /// Create an X86 target.
230 X86TargetMachine::X86TargetMachine(const Target
&T
, const Triple
&TT
,
231 StringRef CPU
, StringRef FS
,
232 const TargetOptions
&Options
,
233 std::optional
<Reloc::Model
> RM
,
234 std::optional
<CodeModel::Model
> CM
,
235 CodeGenOptLevel OL
, bool JIT
)
236 : CodeGenTargetMachineImpl(T
, computeDataLayout(TT
), TT
, CPU
, FS
, Options
,
237 getEffectiveRelocModel(TT
, JIT
, RM
),
238 getEffectiveX86CodeModel(TT
, CM
, JIT
), OL
),
239 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT
) {
240 // On PS4/PS5, the "return address" of a 'noreturn' call must still be within
241 // the calling function. Note that this also includes __stack_chk_fail,
242 // so there was some target-specific logic in the instruction selectors
243 // to handle that. That code has since been generalized, so the only thing
244 // needed is to set TrapUnreachable here.
245 if (TT
.isPS() || TT
.isOSBinFormatMachO()) {
246 this->Options
.TrapUnreachable
= true;
247 this->Options
.NoTrapAfterNoreturn
= TT
.isOSBinFormatMachO();
250 setMachineOutliner(true);
252 // x86 supports the debug entry values.
253 setSupportsDebugEntryValues(true);
258 X86TargetMachine::~X86TargetMachine() = default;
261 X86TargetMachine::getSubtargetImpl(const Function
&F
) const {
262 Attribute CPUAttr
= F
.getFnAttribute("target-cpu");
263 Attribute TuneAttr
= F
.getFnAttribute("tune-cpu");
264 Attribute FSAttr
= F
.getFnAttribute("target-features");
267 CPUAttr
.isValid() ? CPUAttr
.getValueAsString() : (StringRef
)TargetCPU
;
268 // "x86-64" is a default target setting for many front ends. In these cases,
269 // they actually request for "generic" tuning unless the "tune-cpu" was
271 StringRef TuneCPU
= TuneAttr
.isValid() ? TuneAttr
.getValueAsString()
272 : CPU
== "x86-64" ? "generic"
275 FSAttr
.isValid() ? FSAttr
.getValueAsString() : (StringRef
)TargetFS
;
277 SmallString
<512> Key
;
278 // The additions here are ordered so that the definitely short strings are
279 // added first so we won't exceed the small size. We append the
280 // much longer FS string at the end so that we only heap allocate at most
283 // Extract prefer-vector-width attribute.
284 unsigned PreferVectorWidthOverride
= 0;
285 Attribute PreferVecWidthAttr
= F
.getFnAttribute("prefer-vector-width");
286 if (PreferVecWidthAttr
.isValid()) {
287 StringRef Val
= PreferVecWidthAttr
.getValueAsString();
289 if (!Val
.getAsInteger(0, Width
)) {
292 PreferVectorWidthOverride
= Width
;
296 // Extract min-legal-vector-width attribute.
297 unsigned RequiredVectorWidth
= UINT32_MAX
;
298 Attribute MinLegalVecWidthAttr
= F
.getFnAttribute("min-legal-vector-width");
299 if (MinLegalVecWidthAttr
.isValid()) {
300 StringRef Val
= MinLegalVecWidthAttr
.getValueAsString();
302 if (!Val
.getAsInteger(0, Width
)) {
305 RequiredVectorWidth
= Width
;
309 // Add CPU to the Key.
312 // Add tune CPU to the Key.
315 // Keep track of the start of the feature portion of the string.
316 unsigned FSStart
= Key
.size();
318 // FIXME: This is related to the code below to reset the target options,
319 // we need to know whether or not the soft float flag is set on the
320 // function before we can generate a subtarget. We also need to use
321 // it as a key for the subtarget since that can be the only difference
322 // between two functions.
323 bool SoftFloat
= F
.getFnAttribute("use-soft-float").getValueAsBool();
324 // If the soft float attribute is set on the function turn on the soft float
325 // subtarget feature.
327 Key
+= FS
.empty() ? "+soft-float" : "+soft-float,";
331 // We may have added +soft-float to the features so move the StringRef to
332 // point to the full string in the Key.
333 FS
= Key
.substr(FSStart
);
335 auto &I
= SubtargetMap
[Key
];
337 // This needs to be done before we create a new subtarget since any
338 // creation will depend on the TM and the code generation flags on the
339 // function that reside in TargetOptions.
340 resetTargetOptions(F
);
341 I
= std::make_unique
<X86Subtarget
>(
342 TargetTriple
, CPU
, TuneCPU
, FS
, *this,
343 MaybeAlign(F
.getParent()->getOverrideStackAlignment()),
344 PreferVectorWidthOverride
, RequiredVectorWidth
);
349 yaml::MachineFunctionInfo
*X86TargetMachine::createDefaultFuncInfoYAML() const {
350 return new yaml::X86MachineFunctionInfo();
353 yaml::MachineFunctionInfo
*
354 X86TargetMachine::convertFuncInfoToYAML(const MachineFunction
&MF
) const {
355 const auto *MFI
= MF
.getInfo
<X86MachineFunctionInfo
>();
356 return new yaml::X86MachineFunctionInfo(*MFI
);
359 bool X86TargetMachine::parseMachineFunctionInfo(
360 const yaml::MachineFunctionInfo
&MFI
, PerFunctionMIParsingState
&PFS
,
361 SMDiagnostic
&Error
, SMRange
&SourceRange
) const {
362 const auto &YamlMFI
= static_cast<const yaml::X86MachineFunctionInfo
&>(MFI
);
363 PFS
.MF
.getInfo
<X86MachineFunctionInfo
>()->initializeBaseYamlFields(YamlMFI
);
367 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS
,
368 unsigned DestAS
) const {
369 assert(SrcAS
!= DestAS
&& "Expected different address spaces!");
370 if (getPointerSize(SrcAS
) != getPointerSize(DestAS
))
372 return SrcAS
< 256 && DestAS
< 256;
375 void X86TargetMachine::reset() { SubtargetMap
.clear(); }
377 //===----------------------------------------------------------------------===//
379 //===----------------------------------------------------------------------===//
382 X86TargetMachine::getTargetTransformInfo(const Function
&F
) const {
383 return TargetTransformInfo(X86TTIImpl(this, F
));
386 //===----------------------------------------------------------------------===//
387 // Pass Pipeline Configuration
388 //===----------------------------------------------------------------------===//
392 /// X86 Code Generator Pass Configuration Options.
393 class X86PassConfig
: public TargetPassConfig
{
395 X86PassConfig(X86TargetMachine
&TM
, PassManagerBase
&PM
)
396 : TargetPassConfig(TM
, PM
) {}
398 X86TargetMachine
&getX86TargetMachine() const {
399 return getTM
<X86TargetMachine
>();
403 createMachineScheduler(MachineSchedContext
*C
) const override
{
404 ScheduleDAGMILive
*DAG
= createGenericSchedLive(C
);
405 DAG
->addMutation(createX86MacroFusionDAGMutation());
410 createPostMachineScheduler(MachineSchedContext
*C
) const override
{
411 ScheduleDAGMI
*DAG
= createGenericSchedPostRA(C
);
412 DAG
->addMutation(createX86MacroFusionDAGMutation());
416 void addIRPasses() override
;
417 bool addInstSelector() override
;
418 bool addIRTranslator() override
;
419 bool addLegalizeMachineIR() override
;
420 bool addRegBankSelect() override
;
421 bool addGlobalInstructionSelect() override
;
422 bool addILPOpts() override
;
423 bool addPreISel() override
;
424 void addMachineSSAOptimization() override
;
425 void addPreRegAlloc() override
;
426 bool addPostFastRegAllocRewrite() override
;
427 void addPostRegAlloc() override
;
428 void addPreEmitPass() override
;
429 void addPreEmitPass2() override
;
430 void addPreSched2() override
;
431 bool addRegAssignAndRewriteOptimized() override
;
433 std::unique_ptr
<CSEConfigBase
> getCSEConfig() const override
;
436 class X86ExecutionDomainFix
: public ExecutionDomainFix
{
439 X86ExecutionDomainFix() : ExecutionDomainFix(ID
, X86::VR128XRegClass
) {}
440 StringRef
getPassName() const override
{
441 return "X86 Execution Dependency Fix";
444 char X86ExecutionDomainFix::ID
;
446 } // end anonymous namespace
448 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix
, "x86-execution-domain-fix",
449 "X86 Execution Domain Fix", false, false)
450 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis
)
451 INITIALIZE_PASS_END(X86ExecutionDomainFix
, "x86-execution-domain-fix",
452 "X86 Execution Domain Fix", false, false)
454 TargetPassConfig
*X86TargetMachine::createPassConfig(PassManagerBase
&PM
) {
455 return new X86PassConfig(*this, PM
);
458 MachineFunctionInfo
*X86TargetMachine::createMachineFunctionInfo(
459 BumpPtrAllocator
&Allocator
, const Function
&F
,
460 const TargetSubtargetInfo
*STI
) const {
461 return X86MachineFunctionInfo::create
<X86MachineFunctionInfo
>(Allocator
, F
,
465 void X86PassConfig::addIRPasses() {
466 addPass(createAtomicExpandLegacyPass());
468 // We add both pass anyway and when these two passes run, we skip the pass
469 // based on the option level and option attribute.
470 addPass(createX86LowerAMXIntrinsicsPass());
471 addPass(createX86LowerAMXTypePass());
473 TargetPassConfig::addIRPasses();
475 if (TM
->getOptLevel() != CodeGenOptLevel::None
) {
476 addPass(createInterleavedAccessPass());
477 addPass(createX86PartialReductionPass());
480 // Add passes that handle indirect branch removal and insertion of a retpoline
481 // thunk. These will be a no-op unless a function subtarget has the retpoline
483 addPass(createIndirectBrExpandPass());
485 // Add Control Flow Guard checks.
486 const Triple
&TT
= TM
->getTargetTriple();
487 if (TT
.isOSWindows()) {
488 if (TT
.getArch() == Triple::x86_64
) {
489 addPass(createCFGuardDispatchPass());
491 addPass(createCFGuardCheckPass());
495 if (TM
->Options
.JMCInstrument
)
496 addPass(createJMCInstrumenterPass());
499 bool X86PassConfig::addInstSelector() {
500 // Install an instruction selector.
501 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
503 // For ELF, cleanup any local-dynamic TLS accesses.
504 if (TM
->getTargetTriple().isOSBinFormatELF() &&
505 getOptLevel() != CodeGenOptLevel::None
)
506 addPass(createCleanupLocalDynamicTLSPass());
508 addPass(createX86GlobalBaseRegPass());
509 addPass(createX86ArgumentStackSlotPass());
513 bool X86PassConfig::addIRTranslator() {
514 addPass(new IRTranslator(getOptLevel()));
518 bool X86PassConfig::addLegalizeMachineIR() {
519 addPass(new Legalizer());
523 bool X86PassConfig::addRegBankSelect() {
524 addPass(new RegBankSelect());
528 bool X86PassConfig::addGlobalInstructionSelect() {
529 addPass(new InstructionSelect(getOptLevel()));
530 // Add GlobalBaseReg in case there is no SelectionDAG passes afterwards
531 if (isGlobalISelAbortEnabled())
532 addPass(createX86GlobalBaseRegPass());
536 bool X86PassConfig::addILPOpts() {
537 addPass(&EarlyIfConverterLegacyID
);
538 if (EnableMachineCombinerPass
)
539 addPass(&MachineCombinerID
);
540 addPass(createX86CmovConverterPass());
544 bool X86PassConfig::addPreISel() {
545 // Only add this pass for 32-bit x86 Windows.
546 const Triple
&TT
= TM
->getTargetTriple();
547 if (TT
.isOSWindows() && TT
.getArch() == Triple::x86
)
548 addPass(createX86WinEHStatePass());
552 void X86PassConfig::addPreRegAlloc() {
553 if (getOptLevel() != CodeGenOptLevel::None
) {
554 addPass(&LiveRangeShrinkID
);
555 addPass(createX86WinFixupBufferSecurityCheckPass());
556 addPass(createX86FixupSetCC());
557 addPass(createX86OptimizeLEAs());
558 addPass(createX86CallFrameOptimization());
559 addPass(createX86AvoidStoreForwardingBlocks());
562 addPass(createX86SpeculativeLoadHardeningPass());
563 addPass(createX86FlagsCopyLoweringPass());
564 addPass(createX86DynAllocaExpander());
566 if (getOptLevel() != CodeGenOptLevel::None
)
567 addPass(createX86PreTileConfigPass());
569 addPass(createX86FastPreTileConfigPass());
572 void X86PassConfig::addMachineSSAOptimization() {
573 addPass(createX86DomainReassignmentPass());
574 TargetPassConfig::addMachineSSAOptimization();
577 void X86PassConfig::addPostRegAlloc() {
578 addPass(createX86LowerTileCopyPass());
579 addPass(createX86FloatingPointStackifierPass());
580 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
581 // to using the Speculative Execution Side Effect Suppression pass for
582 // mitigation. This is to prevent slow downs due to
583 // analyses needed by the LVIHardening pass when compiling at -O0.
584 if (getOptLevel() != CodeGenOptLevel::None
)
585 addPass(createX86LoadValueInjectionLoadHardeningPass());
588 void X86PassConfig::addPreSched2() {
589 addPass(createX86ExpandPseudoPass());
590 addPass(createKCFIPass());
593 void X86PassConfig::addPreEmitPass() {
594 if (getOptLevel() != CodeGenOptLevel::None
) {
595 addPass(new X86ExecutionDomainFix());
596 addPass(createBreakFalseDeps());
599 addPass(createX86IndirectBranchTrackingPass());
601 addPass(createX86IssueVZeroUpperPass());
603 if (getOptLevel() != CodeGenOptLevel::None
) {
604 addPass(createX86FixupBWInsts());
605 addPass(createX86PadShortFunctions());
606 addPass(createX86FixupLEAs());
607 addPass(createX86FixupInstTuning());
608 addPass(createX86FixupVectorConstants());
610 addPass(createX86CompressEVEXPass());
611 addPass(createX86DiscriminateMemOpsPass());
612 addPass(createX86InsertPrefetchPass());
613 addPass(createX86InsertX87waitPass());
616 void X86PassConfig::addPreEmitPass2() {
617 const Triple
&TT
= TM
->getTargetTriple();
618 const MCAsmInfo
*MAI
= TM
->getMCAsmInfo();
620 // The X86 Speculative Execution Pass must run after all control
621 // flow graph modifying passes. As a result it was listed to run right before
622 // the X86 Retpoline Thunks pass. The reason it must run after control flow
623 // graph modifications is that the model of LFENCE in LLVM has to be updated
624 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
625 // placement of this pass was hand checked to ensure that the subsequent
626 // passes don't move the code around the LFENCEs in a way that will hurt the
627 // correctness of this pass. This placement has been shown to work based on
628 // hand inspection of the codegen output.
629 addPass(createX86SpeculativeExecutionSideEffectSuppression());
630 addPass(createX86IndirectThunksPass());
631 addPass(createX86ReturnThunksPass());
633 // Insert extra int3 instructions after trailing call instructions to avoid
634 // issues in the unwinder.
635 if (TT
.isOSWindows() && TT
.getArch() == Triple::x86_64
)
636 addPass(createX86AvoidTrailingCallPass());
638 // Verify basic block incoming and outgoing cfa offset and register values and
639 // correct CFA calculation rule where needed by inserting appropriate CFI
641 if (!TT
.isOSDarwin() &&
642 (!TT
.isOSWindows() ||
643 MAI
->getExceptionHandlingType() == ExceptionHandling::DwarfCFI
))
644 addPass(createCFIInstrInserter());
646 if (TT
.isOSWindows()) {
647 // Identify valid longjmp targets for Windows Control Flow Guard.
648 addPass(createCFGuardLongjmpPass());
649 // Identify valid eh continuation targets for Windows EHCont Guard.
650 addPass(createEHContGuardCatchretPass());
652 addPass(createX86LoadValueInjectionRetHardeningPass());
654 // Insert pseudo probe annotation for callsite profiling
655 addPass(createPseudoProbeInserter());
657 // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms,
658 // also CALL_RVMARKER.
659 addPass(createUnpackMachineBundles([&TT
](const MachineFunction
&MF
) {
660 // Only run bundle expansion if the module uses kcfi, or there are relevant
661 // ObjC runtime functions present in the module.
662 const Function
&F
= MF
.getFunction();
663 const Module
*M
= F
.getParent();
664 return M
->getModuleFlag("kcfi") ||
666 (M
->getFunction("objc_retainAutoreleasedReturnValue") ||
667 M
->getFunction("objc_unsafeClaimAutoreleasedReturnValue")));
671 bool X86PassConfig::addPostFastRegAllocRewrite() {
672 addPass(createX86FastTileConfigPass());
676 std::unique_ptr
<CSEConfigBase
> X86PassConfig::getCSEConfig() const {
677 return getStandardCSEConfigForOpt(TM
->getOptLevel());
680 static bool onlyAllocateTileRegisters(const TargetRegisterInfo
&TRI
,
681 const MachineRegisterInfo
&MRI
,
682 const Register Reg
) {
683 const TargetRegisterClass
*RC
= MRI
.getRegClass(Reg
);
684 return static_cast<const X86RegisterInfo
&>(TRI
).isTileRegisterClass(RC
);
687 bool X86PassConfig::addRegAssignAndRewriteOptimized() {
688 // Don't support tile RA when RA is specified by command line "-regalloc".
689 if (!isCustomizedRegAlloc() && EnableTileRAPass
) {
690 // Allocate tile register first.
691 addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters
));
692 addPass(createX86TileConfigPass());
694 return TargetPassConfig::addRegAssignAndRewriteOptimized();