1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/IPO/Attributor.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CallGraph.h"
25 #include "llvm/Analysis/InlineCost.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MustExecute.h"
28 #include "llvm/IR/AttributeMask.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/ConstantFold.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/DebugCounter.h"
45 #include "llvm/Support/FileSystem.h"
46 #include "llvm/Support/GraphWriter.h"
47 #include "llvm/Support/ModRef.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50 #include "llvm/Transforms/Utils/Cloning.h"
51 #include "llvm/Transforms/Utils/Local.h"
55 #ifdef EXPENSIVE_CHECKS
56 #include "llvm/IR/Verifier.h"
65 #define DEBUG_TYPE "attributor"
66 #define VERBOSE_DEBUG_TYPE DEBUG_TYPE "-verbose"
68 DEBUG_COUNTER(ManifestDBGCounter
, "attributor-manifest",
69 "Determine what attributes are manifested in the IR");
71 STATISTIC(NumFnDeleted
, "Number of function deleted");
72 STATISTIC(NumFnWithExactDefinition
,
73 "Number of functions with exact definitions");
74 STATISTIC(NumFnWithoutExactDefinition
,
75 "Number of functions without exact definitions");
76 STATISTIC(NumFnShallowWrappersCreated
, "Number of shallow wrappers created");
77 STATISTIC(NumAttributesTimedOut
,
78 "Number of abstract attributes timed out before fixpoint");
79 STATISTIC(NumAttributesValidFixpoint
,
80 "Number of abstract attributes in a valid fixpoint state");
81 STATISTIC(NumAttributesManifested
,
82 "Number of abstract attributes manifested in IR");
84 // TODO: Determine a good default value.
86 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
87 // (when run with the first 5 abstract attributes). The results also indicate
88 // that we never reach 32 iterations but always find a fixpoint sooner.
90 // This will become more evolved once we perform two interleaved fixpoint
91 // iterations: bottom-up and top-down.
92 static cl::opt
<unsigned>
93 SetFixpointIterations("attributor-max-iterations", cl::Hidden
,
94 cl::desc("Maximal number of fixpoint iterations."),
97 static cl::opt
<unsigned>
98 MaxSpecializationPerCB("attributor-max-specializations-per-call-base",
100 cl::desc("Maximal number of callees specialized for "
102 cl::init(UINT32_MAX
));
104 static cl::opt
<unsigned, true> MaxInitializationChainLengthX(
105 "attributor-max-initialization-chain-length", cl::Hidden
,
107 "Maximal number of chained initializations (to avoid stack overflows)"),
108 cl::location(MaxInitializationChainLength
), cl::init(1024));
109 unsigned llvm::MaxInitializationChainLength
;
111 static cl::opt
<bool> AnnotateDeclarationCallSites(
112 "attributor-annotate-decl-cs", cl::Hidden
,
113 cl::desc("Annotate call sites of function declarations."), cl::init(false));
115 static cl::opt
<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
116 cl::init(true), cl::Hidden
);
119 AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden
,
120 cl::desc("Allow the Attributor to create shallow "
121 "wrappers for non-exact definitions."),
125 AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden
,
126 cl::desc("Allow the Attributor to use IP information "
127 "derived from non-exact functions via cloning"),
130 // These options can only used for debug builds.
132 static cl::list
<std::string
>
133 SeedAllowList("attributor-seed-allow-list", cl::Hidden
,
134 cl::desc("Comma separated list of attribute names that are "
135 "allowed to be seeded."),
138 static cl::list
<std::string
> FunctionSeedAllowList(
139 "attributor-function-seed-allow-list", cl::Hidden
,
140 cl::desc("Comma separated list of function names that are "
141 "allowed to be seeded."),
146 DumpDepGraph("attributor-dump-dep-graph", cl::Hidden
,
147 cl::desc("Dump the dependency graph to dot files."),
150 static cl::opt
<std::string
> DepGraphDotFileNamePrefix(
151 "attributor-depgraph-dot-filename-prefix", cl::Hidden
,
152 cl::desc("The prefix used for the CallGraph dot file names."));
154 static cl::opt
<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden
,
155 cl::desc("View the dependency graph."),
158 static cl::opt
<bool> PrintDependencies("attributor-print-dep", cl::Hidden
,
159 cl::desc("Print attribute dependencies"),
162 static cl::opt
<bool> EnableCallSiteSpecific(
163 "attributor-enable-call-site-specific-deduction", cl::Hidden
,
164 cl::desc("Allow the Attributor to do call site specific analysis"),
168 PrintCallGraph("attributor-print-call-graph", cl::Hidden
,
169 cl::desc("Print Attributor's internal call graph"),
172 static cl::opt
<bool> SimplifyAllLoads("attributor-simplify-all-loads",
174 cl::desc("Try to simplify all loads."),
177 static cl::opt
<bool> CloseWorldAssumption(
178 "attributor-assume-closed-world", cl::Hidden
,
179 cl::desc("Should a closed world be assumed, or not. Default if not set."));
181 /// Logic operators for the change status enum class.
184 ChangeStatus
llvm::operator|(ChangeStatus L
, ChangeStatus R
) {
185 return L
== ChangeStatus::CHANGED
? L
: R
;
187 ChangeStatus
&llvm::operator|=(ChangeStatus
&L
, ChangeStatus R
) {
191 ChangeStatus
llvm::operator&(ChangeStatus L
, ChangeStatus R
) {
192 return L
== ChangeStatus::UNCHANGED
? L
: R
;
194 ChangeStatus
&llvm::operator&=(ChangeStatus
&L
, ChangeStatus R
) {
200 bool AA::isGPU(const Module
&M
) {
201 Triple
T(M
.getTargetTriple());
202 return T
.isAMDGPU() || T
.isNVPTX();
205 bool AA::isNoSyncInst(Attributor
&A
, const Instruction
&I
,
206 const AbstractAttribute
&QueryingAA
) {
207 // We are looking for volatile instructions or non-relaxed atomics.
208 if (const auto *CB
= dyn_cast
<CallBase
>(&I
)) {
209 if (CB
->hasFnAttr(Attribute::NoSync
))
212 // Non-convergent and readnone imply nosync.
213 if (!CB
->isConvergent() && !CB
->mayReadOrWriteMemory())
216 if (AANoSync::isNoSyncIntrinsic(&I
))
220 return AA::hasAssumedIRAttr
<Attribute::NoSync
>(
221 A
, &QueryingAA
, IRPosition::callsite_function(*CB
),
222 DepClassTy::OPTIONAL
, IsKnownNoSync
);
225 if (!I
.mayReadOrWriteMemory())
228 return !I
.isVolatile() && !AANoSync::isNonRelaxedAtomic(&I
);
231 bool AA::isDynamicallyUnique(Attributor
&A
, const AbstractAttribute
&QueryingAA
,
232 const Value
&V
, bool ForAnalysisOnly
) {
233 // TODO: See the AAInstanceInfo class comment.
234 if (!ForAnalysisOnly
)
236 auto *InstanceInfoAA
= A
.getAAFor
<AAInstanceInfo
>(
237 QueryingAA
, IRPosition::value(V
), DepClassTy::OPTIONAL
);
238 return InstanceInfoAA
&& InstanceInfoAA
->isAssumedUniqueForAnalysis();
242 AA::getInitialValueForObj(Attributor
&A
, const AbstractAttribute
&QueryingAA
,
243 Value
&Obj
, Type
&Ty
, const TargetLibraryInfo
*TLI
,
244 const DataLayout
&DL
, AA::RangeTy
*RangePtr
) {
245 if (isa
<AllocaInst
>(Obj
))
246 return UndefValue::get(&Ty
);
247 if (Constant
*Init
= getInitialValueOfAllocation(&Obj
, TLI
, &Ty
))
249 auto *GV
= dyn_cast
<GlobalVariable
>(&Obj
);
253 bool UsedAssumedInformation
= false;
254 Constant
*Initializer
= nullptr;
255 if (A
.hasGlobalVariableSimplificationCallback(*GV
)) {
256 auto AssumedGV
= A
.getAssumedInitializerFromCallBack(
257 *GV
, &QueryingAA
, UsedAssumedInformation
);
258 Initializer
= *AssumedGV
;
262 if (!GV
->hasLocalLinkage() &&
263 (GV
->isInterposable() || !(GV
->isConstant() && GV
->hasInitializer())))
265 if (!GV
->hasInitializer())
266 return UndefValue::get(&Ty
);
269 Initializer
= GV
->getInitializer();
272 if (RangePtr
&& !RangePtr
->offsetOrSizeAreUnknown()) {
273 APInt Offset
= APInt(64, RangePtr
->Offset
);
274 return ConstantFoldLoadFromConst(Initializer
, &Ty
, Offset
, DL
);
277 return ConstantFoldLoadFromUniformValue(Initializer
, &Ty
, DL
);
280 bool AA::isValidInScope(const Value
&V
, const Function
*Scope
) {
281 if (isa
<Constant
>(V
))
283 if (auto *I
= dyn_cast
<Instruction
>(&V
))
284 return I
->getFunction() == Scope
;
285 if (auto *A
= dyn_cast
<Argument
>(&V
))
286 return A
->getParent() == Scope
;
290 bool AA::isValidAtPosition(const AA::ValueAndContext
&VAC
,
291 InformationCache
&InfoCache
) {
292 if (isa
<Constant
>(VAC
.getValue()) || VAC
.getValue() == VAC
.getCtxI())
294 const Function
*Scope
= nullptr;
295 const Instruction
*CtxI
= VAC
.getCtxI();
297 Scope
= CtxI
->getFunction();
298 if (auto *A
= dyn_cast
<Argument
>(VAC
.getValue()))
299 return A
->getParent() == Scope
;
300 if (auto *I
= dyn_cast
<Instruction
>(VAC
.getValue())) {
301 if (I
->getFunction() == Scope
) {
302 if (const DominatorTree
*DT
=
303 InfoCache
.getAnalysisResultForFunction
<DominatorTreeAnalysis
>(
305 return DT
->dominates(I
, CtxI
);
306 // Local dominance check mostly for the old PM passes.
307 if (CtxI
&& I
->getParent() == CtxI
->getParent())
309 make_range(I
->getIterator(), I
->getParent()->end()),
310 [&](const Instruction
&AfterI
) { return &AfterI
== CtxI
; });
316 Value
*AA::getWithType(Value
&V
, Type
&Ty
) {
317 if (V
.getType() == &Ty
)
319 if (isa
<PoisonValue
>(V
))
320 return PoisonValue::get(&Ty
);
321 if (isa
<UndefValue
>(V
))
322 return UndefValue::get(&Ty
);
323 if (auto *C
= dyn_cast
<Constant
>(&V
)) {
324 if (C
->isNullValue())
325 return Constant::getNullValue(&Ty
);
326 if (C
->getType()->isPointerTy() && Ty
.isPointerTy())
327 return ConstantExpr::getPointerCast(C
, &Ty
);
328 if (C
->getType()->getPrimitiveSizeInBits() >= Ty
.getPrimitiveSizeInBits()) {
329 if (C
->getType()->isIntegerTy() && Ty
.isIntegerTy())
330 return ConstantExpr::getTrunc(C
, &Ty
, /* OnlyIfReduced */ true);
331 if (C
->getType()->isFloatingPointTy() && Ty
.isFloatingPointTy())
332 return ConstantFoldCastInstruction(Instruction::FPTrunc
, C
, &Ty
);
338 std::optional
<Value
*>
339 AA::combineOptionalValuesInAAValueLatice(const std::optional
<Value
*> &A
,
340 const std::optional
<Value
*> &B
,
349 return Ty
? getWithType(**B
, *Ty
) : nullptr;
353 Ty
= (*A
)->getType();
354 if (isa_and_nonnull
<UndefValue
>(*A
))
355 return getWithType(**B
, *Ty
);
356 if (isa
<UndefValue
>(*B
))
358 if (*A
&& *B
&& *A
== getWithType(**B
, *Ty
))
363 template <bool IsLoad
, typename Ty
>
364 static bool getPotentialCopiesOfMemoryValue(
365 Attributor
&A
, Ty
&I
, SmallSetVector
<Value
*, 4> &PotentialCopies
,
366 SmallSetVector
<Instruction
*, 4> *PotentialValueOrigins
,
367 const AbstractAttribute
&QueryingAA
, bool &UsedAssumedInformation
,
369 LLVM_DEBUG(dbgs() << "Trying to determine the potential copies of " << I
370 << " (only exact: " << OnlyExact
<< ")\n";);
372 Value
&Ptr
= *I
.getPointerOperand();
373 // Containers to remember the pointer infos and new copies while we are not
374 // sure that we can find all of them. If we abort we want to avoid spurious
375 // dependences and potential copies in the provided container.
376 SmallVector
<const AAPointerInfo
*> PIs
;
377 SmallSetVector
<Value
*, 8> NewCopies
;
378 SmallSetVector
<Instruction
*, 8> NewCopyOrigins
;
381 A
.getInfoCache().getTargetLibraryInfoForFunction(*I
.getFunction());
383 auto Pred
= [&](Value
&Obj
) {
384 LLVM_DEBUG(dbgs() << "Visit underlying object " << Obj
<< "\n");
385 if (isa
<UndefValue
>(&Obj
))
387 if (isa
<ConstantPointerNull
>(&Obj
)) {
388 // A null pointer access can be undefined but any offset from null may
389 // be OK. We do not try to optimize the latter.
390 if (!NullPointerIsDefined(I
.getFunction(),
391 Ptr
.getType()->getPointerAddressSpace()) &&
392 A
.getAssumedSimplified(Ptr
, QueryingAA
, UsedAssumedInformation
,
393 AA::Interprocedural
) == &Obj
)
396 dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
399 // TODO: Use assumed noalias return.
400 if (!isa
<AllocaInst
>(&Obj
) && !isa
<GlobalVariable
>(&Obj
) &&
401 !(IsLoad
? isAllocationFn(&Obj
, TLI
) : isNoAliasCall(&Obj
))) {
402 LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << Obj
406 if (auto *GV
= dyn_cast
<GlobalVariable
>(&Obj
))
407 if (!GV
->hasLocalLinkage() &&
408 !(GV
->isConstant() && GV
->hasInitializer())) {
409 LLVM_DEBUG(dbgs() << "Underlying object is global with external "
410 "linkage, not supported yet: "
415 bool NullOnly
= true;
416 bool NullRequired
= false;
417 auto CheckForNullOnlyAndUndef
= [&](std::optional
<Value
*> V
,
419 if (!V
|| *V
== nullptr)
421 else if (isa
<UndefValue
>(*V
))
423 else if (isa
<Constant
>(*V
) && cast
<Constant
>(*V
)->isNullValue())
424 NullRequired
= !IsExact
;
429 auto AdjustWrittenValueType
= [&](const AAPointerInfo::Access
&Acc
,
431 Value
*AdjV
= AA::getWithType(V
, *I
.getType());
433 LLVM_DEBUG(dbgs() << "Underlying object written but stored value "
434 "cannot be converted to read type: "
435 << *Acc
.getRemoteInst() << " : " << *I
.getType()
441 auto SkipCB
= [&](const AAPointerInfo::Access
&Acc
) {
442 if ((IsLoad
&& !Acc
.isWriteOrAssumption()) || (!IsLoad
&& !Acc
.isRead()))
445 if (Acc
.isWrittenValueYetUndetermined())
447 if (PotentialValueOrigins
&& !isa
<AssumeInst
>(Acc
.getRemoteInst()))
449 if (!Acc
.isWrittenValueUnknown())
450 if (Value
*V
= AdjustWrittenValueType(Acc
, *Acc
.getWrittenValue()))
451 if (NewCopies
.count(V
)) {
452 NewCopyOrigins
.insert(Acc
.getRemoteInst());
455 if (auto *SI
= dyn_cast
<StoreInst
>(Acc
.getRemoteInst()))
456 if (Value
*V
= AdjustWrittenValueType(Acc
, *SI
->getValueOperand()))
457 if (NewCopies
.count(V
)) {
458 NewCopyOrigins
.insert(Acc
.getRemoteInst());
465 auto CheckAccess
= [&](const AAPointerInfo::Access
&Acc
, bool IsExact
) {
466 if ((IsLoad
&& !Acc
.isWriteOrAssumption()) || (!IsLoad
&& !Acc
.isRead()))
468 if (IsLoad
&& Acc
.isWrittenValueYetUndetermined())
470 CheckForNullOnlyAndUndef(Acc
.getContent(), IsExact
);
471 if (OnlyExact
&& !IsExact
&& !NullOnly
&&
472 !isa_and_nonnull
<UndefValue
>(Acc
.getWrittenValue())) {
473 LLVM_DEBUG(dbgs() << "Non exact access " << *Acc
.getRemoteInst()
477 if (NullRequired
&& !NullOnly
) {
478 LLVM_DEBUG(dbgs() << "Required all `null` accesses due to non exact "
479 "one, however found non-null one: "
480 << *Acc
.getRemoteInst() << ", abort!\n");
484 assert(isa
<LoadInst
>(I
) && "Expected load or store instruction only!");
485 if (!Acc
.isWrittenValueUnknown()) {
486 Value
*V
= AdjustWrittenValueType(Acc
, *Acc
.getWrittenValue());
490 if (PotentialValueOrigins
)
491 NewCopyOrigins
.insert(Acc
.getRemoteInst());
494 auto *SI
= dyn_cast
<StoreInst
>(Acc
.getRemoteInst());
496 LLVM_DEBUG(dbgs() << "Underlying object written through a non-store "
497 "instruction not supported yet: "
498 << *Acc
.getRemoteInst() << "\n";);
501 Value
*V
= AdjustWrittenValueType(Acc
, *SI
->getValueOperand());
505 if (PotentialValueOrigins
)
506 NewCopyOrigins
.insert(SI
);
508 assert(isa
<StoreInst
>(I
) && "Expected load or store instruction only!");
509 auto *LI
= dyn_cast
<LoadInst
>(Acc
.getRemoteInst());
510 if (!LI
&& OnlyExact
) {
511 LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
512 "instruction not supported yet: "
513 << *Acc
.getRemoteInst() << "\n";);
516 NewCopies
.insert(Acc
.getRemoteInst());
521 // If the value has been written to we don't need the initial value of the
523 bool HasBeenWrittenTo
= false;
526 auto *PI
= A
.getAAFor
<AAPointerInfo
>(QueryingAA
, IRPosition::value(Obj
),
528 if (!PI
|| !PI
->forallInterferingAccesses(
530 /* FindInterferingWrites */ IsLoad
,
531 /* FindInterferingReads */ !IsLoad
, CheckAccess
,
532 HasBeenWrittenTo
, Range
, SkipCB
)) {
535 << "Failed to verify all interfering accesses for underlying object: "
540 if (IsLoad
&& !HasBeenWrittenTo
&& !Range
.isUnassigned()) {
541 const DataLayout
&DL
= A
.getDataLayout();
542 Value
*InitialValue
= AA::getInitialValueForObj(
543 A
, QueryingAA
, Obj
, *I
.getType(), TLI
, DL
, &Range
);
545 LLVM_DEBUG(dbgs() << "Could not determine required initial value of "
546 "underlying object, abort!\n");
549 CheckForNullOnlyAndUndef(InitialValue
, /* IsExact */ true);
550 if (NullRequired
&& !NullOnly
) {
551 LLVM_DEBUG(dbgs() << "Non exact access but initial value that is not "
552 "null or undef, abort!\n");
556 NewCopies
.insert(InitialValue
);
557 if (PotentialValueOrigins
)
558 NewCopyOrigins
.insert(nullptr);
566 const auto *AAUO
= A
.getAAFor
<AAUnderlyingObjects
>(
567 QueryingAA
, IRPosition::value(Ptr
), DepClassTy::OPTIONAL
);
568 if (!AAUO
|| !AAUO
->forallUnderlyingObjects(Pred
)) {
570 dbgs() << "Underlying objects stored into could not be determined\n";);
574 // Only if we were successful collection all potential copies we record
575 // dependences (on non-fix AAPointerInfo AAs). We also only then modify the
576 // given PotentialCopies container.
577 for (const auto *PI
: PIs
) {
578 if (!PI
->getState().isAtFixpoint())
579 UsedAssumedInformation
= true;
580 A
.recordDependence(*PI
, QueryingAA
, DepClassTy::OPTIONAL
);
582 PotentialCopies
.insert(NewCopies
.begin(), NewCopies
.end());
583 if (PotentialValueOrigins
)
584 PotentialValueOrigins
->insert(NewCopyOrigins
.begin(), NewCopyOrigins
.end());
589 bool AA::getPotentiallyLoadedValues(
590 Attributor
&A
, LoadInst
&LI
, SmallSetVector
<Value
*, 4> &PotentialValues
,
591 SmallSetVector
<Instruction
*, 4> &PotentialValueOrigins
,
592 const AbstractAttribute
&QueryingAA
, bool &UsedAssumedInformation
,
594 return getPotentialCopiesOfMemoryValue
</* IsLoad */ true>(
595 A
, LI
, PotentialValues
, &PotentialValueOrigins
, QueryingAA
,
596 UsedAssumedInformation
, OnlyExact
);
599 bool AA::getPotentialCopiesOfStoredValue(
600 Attributor
&A
, StoreInst
&SI
, SmallSetVector
<Value
*, 4> &PotentialCopies
,
601 const AbstractAttribute
&QueryingAA
, bool &UsedAssumedInformation
,
603 return getPotentialCopiesOfMemoryValue
</* IsLoad */ false>(
604 A
, SI
, PotentialCopies
, nullptr, QueryingAA
, UsedAssumedInformation
,
608 static bool isAssumedReadOnlyOrReadNone(Attributor
&A
, const IRPosition
&IRP
,
609 const AbstractAttribute
&QueryingAA
,
610 bool RequireReadNone
, bool &IsKnown
) {
611 if (RequireReadNone
) {
612 if (AA::hasAssumedIRAttr
<Attribute::ReadNone
>(
613 A
, &QueryingAA
, IRP
, DepClassTy::OPTIONAL
, IsKnown
,
614 /* IgnoreSubsumingPositions */ true))
616 } else if (AA::hasAssumedIRAttr
<Attribute::ReadOnly
>(
617 A
, &QueryingAA
, IRP
, DepClassTy::OPTIONAL
, IsKnown
,
618 /* IgnoreSubsumingPositions */ true))
621 IRPosition::Kind Kind
= IRP
.getPositionKind();
622 if (Kind
== IRPosition::IRP_FUNCTION
|| Kind
== IRPosition::IRP_CALL_SITE
) {
623 const auto *MemLocAA
=
624 A
.getAAFor
<AAMemoryLocation
>(QueryingAA
, IRP
, DepClassTy::NONE
);
625 if (MemLocAA
&& MemLocAA
->isAssumedReadNone()) {
626 IsKnown
= MemLocAA
->isKnownReadNone();
628 A
.recordDependence(*MemLocAA
, QueryingAA
, DepClassTy::OPTIONAL
);
633 const auto *MemBehaviorAA
=
634 A
.getAAFor
<AAMemoryBehavior
>(QueryingAA
, IRP
, DepClassTy::NONE
);
636 (MemBehaviorAA
->isAssumedReadNone() ||
637 (!RequireReadNone
&& MemBehaviorAA
->isAssumedReadOnly()))) {
638 IsKnown
= RequireReadNone
? MemBehaviorAA
->isKnownReadNone()
639 : MemBehaviorAA
->isKnownReadOnly();
641 A
.recordDependence(*MemBehaviorAA
, QueryingAA
, DepClassTy::OPTIONAL
);
648 bool AA::isAssumedReadOnly(Attributor
&A
, const IRPosition
&IRP
,
649 const AbstractAttribute
&QueryingAA
, bool &IsKnown
) {
650 return isAssumedReadOnlyOrReadNone(A
, IRP
, QueryingAA
,
651 /* RequireReadNone */ false, IsKnown
);
653 bool AA::isAssumedReadNone(Attributor
&A
, const IRPosition
&IRP
,
654 const AbstractAttribute
&QueryingAA
, bool &IsKnown
) {
655 return isAssumedReadOnlyOrReadNone(A
, IRP
, QueryingAA
,
656 /* RequireReadNone */ true, IsKnown
);
660 isPotentiallyReachable(Attributor
&A
, const Instruction
&FromI
,
661 const Instruction
*ToI
, const Function
&ToFn
,
662 const AbstractAttribute
&QueryingAA
,
663 const AA::InstExclusionSetTy
*ExclusionSet
,
664 std::function
<bool(const Function
&F
)> GoBackwardsCB
) {
665 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
, {
666 dbgs() << "[AA] isPotentiallyReachable @" << ToFn
.getName() << " from "
667 << FromI
<< " [GBCB: " << bool(GoBackwardsCB
) << "][#ExS: "
668 << (ExclusionSet
? std::to_string(ExclusionSet
->size()) : "none")
671 for (auto *ES
: *ExclusionSet
)
672 dbgs() << *ES
<< "\n";
675 // We know kernels (generally) cannot be called from within the module. Thus,
676 // for reachability we would need to step back from a kernel which would allow
677 // us to reach anything anyway. Even if a kernel is invoked from another
678 // kernel, values like allocas and shared memory are not accessible. We
679 // implicitly check for this situation to avoid costly lookups.
680 if (GoBackwardsCB
&& &ToFn
!= FromI
.getFunction() &&
681 !GoBackwardsCB(*FromI
.getFunction()) && ToFn
.hasFnAttribute("kernel") &&
682 FromI
.getFunction()->hasFnAttribute("kernel")) {
683 LLVM_DEBUG(dbgs() << "[AA] assume kernel cannot be reached from within the "
684 "module; success\n";);
688 // If we can go arbitrarily backwards we will eventually reach an entry point
689 // that can reach ToI. Only if a set of blocks through which we cannot go is
690 // provided, or once we track internal functions not accessible from the
691 // outside, it makes sense to perform backwards analysis in the absence of a
693 if (!GoBackwardsCB
&& !ExclusionSet
) {
694 LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn
.getName() << " from " << FromI
695 << " is not checked backwards and does not have an "
696 "exclusion set, abort\n");
700 SmallPtrSet
<const Instruction
*, 8> Visited
;
701 SmallVector
<const Instruction
*> Worklist
;
702 Worklist
.push_back(&FromI
);
704 while (!Worklist
.empty()) {
705 const Instruction
*CurFromI
= Worklist
.pop_back_val();
706 if (!Visited
.insert(CurFromI
).second
)
709 const Function
*FromFn
= CurFromI
->getFunction();
710 if (FromFn
== &ToFn
) {
713 LLVM_DEBUG(dbgs() << "[AA] check " << *ToI
<< " from " << *CurFromI
714 << " intraprocedurally\n");
715 const auto *ReachabilityAA
= A
.getAAFor
<AAIntraFnReachability
>(
716 QueryingAA
, IRPosition::function(ToFn
), DepClassTy::OPTIONAL
);
717 bool Result
= !ReachabilityAA
|| ReachabilityAA
->isAssumedReachable(
718 A
, *CurFromI
, *ToI
, ExclusionSet
);
719 LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI
<< " "
720 << (Result
? "can potentially " : "cannot ") << "reach "
721 << *ToI
<< " [Intra]\n");
727 if (!ToFn
.isDeclaration() && ToI
) {
728 const auto *ToReachabilityAA
= A
.getAAFor
<AAIntraFnReachability
>(
729 QueryingAA
, IRPosition::function(ToFn
), DepClassTy::OPTIONAL
);
730 const Instruction
&EntryI
= ToFn
.getEntryBlock().front();
731 Result
= !ToReachabilityAA
|| ToReachabilityAA
->isAssumedReachable(
732 A
, EntryI
, *ToI
, ExclusionSet
);
733 LLVM_DEBUG(dbgs() << "[AA] Entry " << EntryI
<< " of @" << ToFn
.getName()
734 << " " << (Result
? "can potentially " : "cannot ")
735 << "reach @" << *ToI
<< " [ToFn]\n");
739 // The entry of the ToFn can reach the instruction ToI. If the current
740 // instruction is already known to reach the ToFn.
741 const auto *FnReachabilityAA
= A
.getAAFor
<AAInterFnReachability
>(
742 QueryingAA
, IRPosition::function(*FromFn
), DepClassTy::OPTIONAL
);
743 Result
= !FnReachabilityAA
|| FnReachabilityAA
->instructionCanReach(
744 A
, *CurFromI
, ToFn
, ExclusionSet
);
745 LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI
<< " in @" << FromFn
->getName()
746 << " " << (Result
? "can potentially " : "cannot ")
747 << "reach @" << ToFn
.getName() << " [FromFn]\n");
752 // TODO: Check assumed nounwind.
753 const auto *ReachabilityAA
= A
.getAAFor
<AAIntraFnReachability
>(
754 QueryingAA
, IRPosition::function(*FromFn
), DepClassTy::OPTIONAL
);
755 auto ReturnInstCB
= [&](Instruction
&Ret
) {
756 bool Result
= !ReachabilityAA
|| ReachabilityAA
->isAssumedReachable(
757 A
, *CurFromI
, Ret
, ExclusionSet
);
758 LLVM_DEBUG(dbgs() << "[AA][Ret] " << *CurFromI
<< " "
759 << (Result
? "can potentially " : "cannot ") << "reach "
760 << Ret
<< " [Intra]\n");
764 // Check if we can reach returns.
765 bool UsedAssumedInformation
= false;
766 if (A
.checkForAllInstructions(ReturnInstCB
, FromFn
, &QueryingAA
,
767 {Instruction::Ret
}, UsedAssumedInformation
)) {
768 LLVM_DEBUG(dbgs() << "[AA] No return is reachable, done\n");
772 if (!GoBackwardsCB
) {
773 LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn
.getName() << " from " << FromI
774 << " is not checked backwards, abort\n");
778 // If we do not go backwards from the FromFn we are done here and so far we
779 // could not find a way to reach ToFn/ToI.
780 if (!GoBackwardsCB(*FromFn
))
783 LLVM_DEBUG(dbgs() << "Stepping backwards to the call sites of @"
784 << FromFn
->getName() << "\n");
786 auto CheckCallSite
= [&](AbstractCallSite ACS
) {
787 CallBase
*CB
= ACS
.getInstruction();
791 if (isa
<InvokeInst
>(CB
))
794 Instruction
*Inst
= CB
->getNextNonDebugInstruction();
795 Worklist
.push_back(Inst
);
799 Result
= !A
.checkForAllCallSites(CheckCallSite
, *FromFn
,
800 /* RequireAllCallSites */ true,
801 &QueryingAA
, UsedAssumedInformation
);
803 LLVM_DEBUG(dbgs() << "[AA] stepping back to call sites from " << *CurFromI
804 << " in @" << FromFn
->getName()
805 << " failed, give up\n");
809 LLVM_DEBUG(dbgs() << "[AA] stepped back to call sites from " << *CurFromI
810 << " in @" << FromFn
->getName()
811 << " worklist size is: " << Worklist
.size() << "\n");
816 bool AA::isPotentiallyReachable(
817 Attributor
&A
, const Instruction
&FromI
, const Instruction
&ToI
,
818 const AbstractAttribute
&QueryingAA
,
819 const AA::InstExclusionSetTy
*ExclusionSet
,
820 std::function
<bool(const Function
&F
)> GoBackwardsCB
) {
821 const Function
*ToFn
= ToI
.getFunction();
822 return ::isPotentiallyReachable(A
, FromI
, &ToI
, *ToFn
, QueryingAA
,
823 ExclusionSet
, GoBackwardsCB
);
826 bool AA::isPotentiallyReachable(
827 Attributor
&A
, const Instruction
&FromI
, const Function
&ToFn
,
828 const AbstractAttribute
&QueryingAA
,
829 const AA::InstExclusionSetTy
*ExclusionSet
,
830 std::function
<bool(const Function
&F
)> GoBackwardsCB
) {
831 return ::isPotentiallyReachable(A
, FromI
, /* ToI */ nullptr, ToFn
, QueryingAA
,
832 ExclusionSet
, GoBackwardsCB
);
835 bool AA::isAssumedThreadLocalObject(Attributor
&A
, Value
&Obj
,
836 const AbstractAttribute
&QueryingAA
) {
837 if (isa
<UndefValue
>(Obj
))
839 if (isa
<AllocaInst
>(Obj
)) {
840 InformationCache
&InfoCache
= A
.getInfoCache();
841 if (!InfoCache
.stackIsAccessibleByOtherThreads()) {
843 dbgs() << "[AA] Object '" << Obj
844 << "' is thread local; stack objects are thread local.\n");
847 bool IsKnownNoCapture
;
848 bool IsAssumedNoCapture
= AA::hasAssumedIRAttr
<Attribute::NoCapture
>(
849 A
, &QueryingAA
, IRPosition::value(Obj
), DepClassTy::OPTIONAL
,
851 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
<< "' is "
852 << (IsAssumedNoCapture
? "" : "not") << " thread local; "
853 << (IsAssumedNoCapture
? "non-" : "")
854 << "captured stack object.\n");
855 return IsAssumedNoCapture
;
857 if (auto *GV
= dyn_cast
<GlobalVariable
>(&Obj
)) {
858 if (GV
->isConstant()) {
859 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
860 << "' is thread local; constant global\n");
863 if (GV
->isThreadLocal()) {
864 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
865 << "' is thread local; thread local global\n");
870 if (A
.getInfoCache().targetIsGPU()) {
871 if (Obj
.getType()->getPointerAddressSpace() ==
872 (int)AA::GPUAddressSpace::Local
) {
873 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
874 << "' is thread local; GPU local memory\n");
877 if (Obj
.getType()->getPointerAddressSpace() ==
878 (int)AA::GPUAddressSpace::Constant
) {
879 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
880 << "' is thread local; GPU constant memory\n");
885 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
<< "' is not thread local\n");
889 bool AA::isPotentiallyAffectedByBarrier(Attributor
&A
, const Instruction
&I
,
890 const AbstractAttribute
&QueryingAA
) {
891 if (!I
.mayHaveSideEffects() && !I
.mayReadFromMemory())
894 SmallSetVector
<const Value
*, 8> Ptrs
;
896 auto AddLocationPtr
= [&](std::optional
<MemoryLocation
> Loc
) {
897 if (!Loc
|| !Loc
->Ptr
) {
899 dbgs() << "[AA] Access to unknown location; -> requires barriers\n");
902 Ptrs
.insert(Loc
->Ptr
);
906 if (const MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(&I
)) {
907 if (!AddLocationPtr(MemoryLocation::getForDest(MI
)))
909 if (const MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(&I
))
910 if (!AddLocationPtr(MemoryLocation::getForSource(MTI
)))
912 } else if (!AddLocationPtr(MemoryLocation::getOrNone(&I
)))
915 return isPotentiallyAffectedByBarrier(A
, Ptrs
.getArrayRef(), QueryingAA
, &I
);
918 bool AA::isPotentiallyAffectedByBarrier(Attributor
&A
,
919 ArrayRef
<const Value
*> Ptrs
,
920 const AbstractAttribute
&QueryingAA
,
921 const Instruction
*CtxI
) {
922 for (const Value
*Ptr
: Ptrs
) {
924 LLVM_DEBUG(dbgs() << "[AA] nullptr; -> requires barriers\n");
928 auto Pred
= [&](Value
&Obj
) {
929 if (AA::isAssumedThreadLocalObject(A
, Obj
, QueryingAA
))
931 LLVM_DEBUG(dbgs() << "[AA] Access to '" << Obj
<< "' via '" << *Ptr
932 << "'; -> requires barrier\n");
936 const auto *UnderlyingObjsAA
= A
.getAAFor
<AAUnderlyingObjects
>(
937 QueryingAA
, IRPosition::value(*Ptr
), DepClassTy::OPTIONAL
);
938 if (!UnderlyingObjsAA
|| !UnderlyingObjsAA
->forallUnderlyingObjects(Pred
))
944 /// Return true if \p New is equal or worse than \p Old.
945 static bool isEqualOrWorse(const Attribute
&New
, const Attribute
&Old
) {
946 if (!Old
.isIntAttribute())
949 return Old
.getValueAsInt() >= New
.getValueAsInt();
952 /// Return true if the information provided by \p Attr was added to the
953 /// attribute set \p AttrSet. This is only the case if it was not already
954 /// present in \p AttrSet.
955 static bool addIfNotExistent(LLVMContext
&Ctx
, const Attribute
&Attr
,
956 AttributeSet AttrSet
, bool ForceReplace
,
959 if (Attr
.isEnumAttribute()) {
960 Attribute::AttrKind Kind
= Attr
.getKindAsEnum();
961 if (AttrSet
.hasAttribute(Kind
))
963 AB
.addAttribute(Kind
);
966 if (Attr
.isStringAttribute()) {
967 StringRef Kind
= Attr
.getKindAsString();
968 if (AttrSet
.hasAttribute(Kind
)) {
972 AB
.addAttribute(Kind
, Attr
.getValueAsString());
975 if (Attr
.isIntAttribute()) {
976 Attribute::AttrKind Kind
= Attr
.getKindAsEnum();
977 if (!ForceReplace
&& Kind
== Attribute::Memory
) {
978 MemoryEffects ME
= Attr
.getMemoryEffects() & AttrSet
.getMemoryEffects();
979 if (ME
== AttrSet
.getMemoryEffects())
981 AB
.addMemoryAttr(ME
);
984 if (AttrSet
.hasAttribute(Kind
)) {
985 if (!ForceReplace
&& isEqualOrWorse(Attr
, AttrSet
.getAttribute(Kind
)))
988 AB
.addAttribute(Attr
);
992 llvm_unreachable("Expected enum or string attribute!");
995 Argument
*IRPosition::getAssociatedArgument() const {
996 if (getPositionKind() == IRP_ARGUMENT
)
997 return cast
<Argument
>(&getAnchorValue());
999 // Not an Argument and no argument number means this is not a call site
1000 // argument, thus we cannot find a callback argument to return.
1001 int ArgNo
= getCallSiteArgNo();
1005 // Use abstract call sites to make the connection between the call site
1006 // values and the ones in callbacks. If a callback was found that makes use
1007 // of the underlying call site operand, we want the corresponding callback
1008 // callee argument and not the direct callee argument.
1009 std::optional
<Argument
*> CBCandidateArg
;
1010 SmallVector
<const Use
*, 4> CallbackUses
;
1011 const auto &CB
= cast
<CallBase
>(getAnchorValue());
1012 AbstractCallSite::getCallbackUses(CB
, CallbackUses
);
1013 for (const Use
*U
: CallbackUses
) {
1014 AbstractCallSite
ACS(U
);
1015 assert(ACS
&& ACS
.isCallbackCall());
1016 if (!ACS
.getCalledFunction())
1019 for (unsigned u
= 0, e
= ACS
.getNumArgOperands(); u
< e
; u
++) {
1021 // Test if the underlying call site operand is argument number u of the
1023 if (ACS
.getCallArgOperandNo(u
) != ArgNo
)
1026 assert(ACS
.getCalledFunction()->arg_size() > u
&&
1027 "ACS mapped into var-args arguments!");
1028 if (CBCandidateArg
) {
1029 CBCandidateArg
= nullptr;
1032 CBCandidateArg
= ACS
.getCalledFunction()->getArg(u
);
1036 // If we found a unique callback candidate argument, return it.
1037 if (CBCandidateArg
&& *CBCandidateArg
)
1038 return *CBCandidateArg
;
1040 // If no callbacks were found, or none used the underlying call site operand
1041 // exclusively, use the direct callee argument if available.
1042 auto *Callee
= dyn_cast_if_present
<Function
>(CB
.getCalledOperand());
1043 if (Callee
&& Callee
->arg_size() > unsigned(ArgNo
))
1044 return Callee
->getArg(ArgNo
);
1049 ChangeStatus
AbstractAttribute::update(Attributor
&A
) {
1050 ChangeStatus HasChanged
= ChangeStatus::UNCHANGED
;
1051 if (getState().isAtFixpoint())
1054 LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
1056 HasChanged
= updateImpl(A
);
1058 LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged
<< " " << *this
1064 Attributor::Attributor(SetVector
<Function
*> &Functions
,
1065 InformationCache
&InfoCache
,
1066 AttributorConfig Configuration
)
1067 : Allocator(InfoCache
.Allocator
), Functions(Functions
),
1068 InfoCache(InfoCache
), Configuration(Configuration
) {
1069 if (!isClosedWorldModule())
1071 for (Function
*Fn
: Functions
)
1072 if (Fn
->hasAddressTaken(/*PutOffender=*/nullptr,
1073 /*IgnoreCallbackUses=*/false,
1074 /*IgnoreAssumeLikeCalls=*/true,
1075 /*IgnoreLLVMUsed=*/true,
1076 /*IgnoreARCAttachedCall=*/false,
1077 /*IgnoreCastedDirectCall=*/true))
1078 InfoCache
.IndirectlyCallableFunctions
.push_back(Fn
);
1081 bool Attributor::getAttrsFromAssumes(const IRPosition
&IRP
,
1082 Attribute::AttrKind AK
,
1083 SmallVectorImpl
<Attribute
> &Attrs
) {
1084 assert(IRP
.getPositionKind() != IRPosition::IRP_INVALID
&&
1085 "Did expect a valid position!");
1086 MustBeExecutedContextExplorer
*Explorer
=
1087 getInfoCache().getMustBeExecutedContextExplorer();
1091 Value
&AssociatedValue
= IRP
.getAssociatedValue();
1093 const Assume2KnowledgeMap
&A2K
=
1094 getInfoCache().getKnowledgeMap().lookup({&AssociatedValue
, AK
});
1096 // Check if we found any potential assume use, if not we don't need to create
1097 // explorer iterators.
1101 LLVMContext
&Ctx
= AssociatedValue
.getContext();
1102 unsigned AttrsSize
= Attrs
.size();
1103 auto EIt
= Explorer
->begin(IRP
.getCtxI()),
1104 EEnd
= Explorer
->end(IRP
.getCtxI());
1105 for (const auto &It
: A2K
)
1106 if (Explorer
->findInContextOf(It
.first
, EIt
, EEnd
))
1107 Attrs
.push_back(Attribute::get(Ctx
, AK
, It
.second
.Max
));
1108 return AttrsSize
!= Attrs
.size();
1111 template <typename DescTy
>
1113 Attributor::updateAttrMap(const IRPosition
&IRP
, ArrayRef
<DescTy
> AttrDescs
,
1114 function_ref
<bool(const DescTy
&, AttributeSet
,
1115 AttributeMask
&, AttrBuilder
&)>
1117 if (AttrDescs
.empty())
1118 return ChangeStatus::UNCHANGED
;
1119 switch (IRP
.getPositionKind()) {
1120 case IRPosition::IRP_FLOAT
:
1121 case IRPosition::IRP_INVALID
:
1122 return ChangeStatus::UNCHANGED
;
1128 Value
*AttrListAnchor
= IRP
.getAttrListAnchor();
1129 auto It
= AttrsMap
.find(AttrListAnchor
);
1130 if (It
== AttrsMap
.end())
1131 AL
= IRP
.getAttrList();
1133 AL
= It
->getSecond();
1135 LLVMContext
&Ctx
= IRP
.getAnchorValue().getContext();
1136 auto AttrIdx
= IRP
.getAttrIdx();
1137 AttributeSet AS
= AL
.getAttributes(AttrIdx
);
1139 AttrBuilder
AB(Ctx
);
1141 ChangeStatus HasChanged
= ChangeStatus::UNCHANGED
;
1142 for (const DescTy
&AttrDesc
: AttrDescs
)
1143 if (CB(AttrDesc
, AS
, AM
, AB
))
1144 HasChanged
= ChangeStatus::CHANGED
;
1146 if (HasChanged
== ChangeStatus::UNCHANGED
)
1147 return ChangeStatus::UNCHANGED
;
1149 AL
= AL
.removeAttributesAtIndex(Ctx
, AttrIdx
, AM
);
1150 AL
= AL
.addAttributesAtIndex(Ctx
, AttrIdx
, AB
);
1151 AttrsMap
[AttrListAnchor
] = AL
;
1152 return ChangeStatus::CHANGED
;
1155 bool Attributor::hasAttr(const IRPosition
&IRP
,
1156 ArrayRef
<Attribute::AttrKind
> AttrKinds
,
1157 bool IgnoreSubsumingPositions
,
1158 Attribute::AttrKind ImpliedAttributeKind
) {
1159 bool Implied
= false;
1160 bool HasAttr
= false;
1161 auto HasAttrCB
= [&](const Attribute::AttrKind
&Kind
, AttributeSet AttrSet
,
1162 AttributeMask
&, AttrBuilder
&) {
1163 if (AttrSet
.hasAttribute(Kind
)) {
1164 Implied
|= Kind
!= ImpliedAttributeKind
;
1169 for (const IRPosition
&EquivIRP
: SubsumingPositionIterator(IRP
)) {
1170 updateAttrMap
<Attribute::AttrKind
>(EquivIRP
, AttrKinds
, HasAttrCB
);
1173 // The first position returned by the SubsumingPositionIterator is
1174 // always the position itself. If we ignore subsuming positions we
1175 // are done after the first iteration.
1176 if (IgnoreSubsumingPositions
)
1182 SmallVector
<Attribute
> Attrs
;
1183 for (Attribute::AttrKind AK
: AttrKinds
)
1184 if (getAttrsFromAssumes(IRP
, AK
, Attrs
)) {
1190 // Check if we should manifest the implied attribute kind at the IRP.
1191 if (ImpliedAttributeKind
!= Attribute::None
&& HasAttr
&& Implied
)
1192 manifestAttrs(IRP
, {Attribute::get(IRP
.getAnchorValue().getContext(),
1193 ImpliedAttributeKind
)});
1197 void Attributor::getAttrs(const IRPosition
&IRP
,
1198 ArrayRef
<Attribute::AttrKind
> AttrKinds
,
1199 SmallVectorImpl
<Attribute
> &Attrs
,
1200 bool IgnoreSubsumingPositions
) {
1201 auto CollectAttrCB
= [&](const Attribute::AttrKind
&Kind
,
1202 AttributeSet AttrSet
, AttributeMask
&,
1204 if (AttrSet
.hasAttribute(Kind
))
1205 Attrs
.push_back(AttrSet
.getAttribute(Kind
));
1208 for (const IRPosition
&EquivIRP
: SubsumingPositionIterator(IRP
)) {
1209 updateAttrMap
<Attribute::AttrKind
>(EquivIRP
, AttrKinds
, CollectAttrCB
);
1210 // The first position returned by the SubsumingPositionIterator is
1211 // always the position itself. If we ignore subsuming positions we
1212 // are done after the first iteration.
1213 if (IgnoreSubsumingPositions
)
1216 for (Attribute::AttrKind AK
: AttrKinds
)
1217 getAttrsFromAssumes(IRP
, AK
, Attrs
);
1220 ChangeStatus
Attributor::removeAttrs(const IRPosition
&IRP
,
1221 ArrayRef
<Attribute::AttrKind
> AttrKinds
) {
1222 auto RemoveAttrCB
= [&](const Attribute::AttrKind
&Kind
, AttributeSet AttrSet
,
1223 AttributeMask
&AM
, AttrBuilder
&) {
1224 if (!AttrSet
.hasAttribute(Kind
))
1226 AM
.addAttribute(Kind
);
1229 return updateAttrMap
<Attribute::AttrKind
>(IRP
, AttrKinds
, RemoveAttrCB
);
1232 ChangeStatus
Attributor::removeAttrs(const IRPosition
&IRP
,
1233 ArrayRef
<StringRef
> Attrs
) {
1234 auto RemoveAttrCB
= [&](StringRef Attr
, AttributeSet AttrSet
,
1235 AttributeMask
&AM
, AttrBuilder
&) -> bool {
1236 if (!AttrSet
.hasAttribute(Attr
))
1238 AM
.addAttribute(Attr
);
1242 return updateAttrMap
<StringRef
>(IRP
, Attrs
, RemoveAttrCB
);
1245 ChangeStatus
Attributor::manifestAttrs(const IRPosition
&IRP
,
1246 ArrayRef
<Attribute
> Attrs
,
1247 bool ForceReplace
) {
1248 LLVMContext
&Ctx
= IRP
.getAnchorValue().getContext();
1249 auto AddAttrCB
= [&](const Attribute
&Attr
, AttributeSet AttrSet
,
1250 AttributeMask
&, AttrBuilder
&AB
) {
1251 return addIfNotExistent(Ctx
, Attr
, AttrSet
, ForceReplace
, AB
);
1253 return updateAttrMap
<Attribute
>(IRP
, Attrs
, AddAttrCB
);
1256 const IRPosition
IRPosition::EmptyKey(DenseMapInfo
<void *>::getEmptyKey());
1258 IRPosition::TombstoneKey(DenseMapInfo
<void *>::getTombstoneKey());
1260 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition
&IRP
) {
1261 IRPositions
.emplace_back(IRP
);
1263 // Helper to determine if operand bundles on a call site are benign or
1264 // potentially problematic. We handle only llvm.assume for now.
1265 auto CanIgnoreOperandBundles
= [](const CallBase
&CB
) {
1266 return (isa
<IntrinsicInst
>(CB
) &&
1267 cast
<IntrinsicInst
>(CB
).getIntrinsicID() == Intrinsic ::assume
);
1270 const auto *CB
= dyn_cast
<CallBase
>(&IRP
.getAnchorValue());
1271 switch (IRP
.getPositionKind()) {
1272 case IRPosition::IRP_INVALID
:
1273 case IRPosition::IRP_FLOAT
:
1274 case IRPosition::IRP_FUNCTION
:
1276 case IRPosition::IRP_ARGUMENT
:
1277 case IRPosition::IRP_RETURNED
:
1278 IRPositions
.emplace_back(IRPosition::function(*IRP
.getAnchorScope()));
1280 case IRPosition::IRP_CALL_SITE
:
1281 assert(CB
&& "Expected call site!");
1282 // TODO: We need to look at the operand bundles similar to the redirection
1284 if (!CB
->hasOperandBundles() || CanIgnoreOperandBundles(*CB
))
1285 if (auto *Callee
= dyn_cast_if_present
<Function
>(CB
->getCalledOperand()))
1286 IRPositions
.emplace_back(IRPosition::function(*Callee
));
1288 case IRPosition::IRP_CALL_SITE_RETURNED
:
1289 assert(CB
&& "Expected call site!");
1290 // TODO: We need to look at the operand bundles similar to the redirection
1292 if (!CB
->hasOperandBundles() || CanIgnoreOperandBundles(*CB
)) {
1294 dyn_cast_if_present
<Function
>(CB
->getCalledOperand())) {
1295 IRPositions
.emplace_back(IRPosition::returned(*Callee
));
1296 IRPositions
.emplace_back(IRPosition::function(*Callee
));
1297 for (const Argument
&Arg
: Callee
->args())
1298 if (Arg
.hasReturnedAttr()) {
1299 IRPositions
.emplace_back(
1300 IRPosition::callsite_argument(*CB
, Arg
.getArgNo()));
1301 IRPositions
.emplace_back(
1302 IRPosition::value(*CB
->getArgOperand(Arg
.getArgNo())));
1303 IRPositions
.emplace_back(IRPosition::argument(Arg
));
1307 IRPositions
.emplace_back(IRPosition::callsite_function(*CB
));
1309 case IRPosition::IRP_CALL_SITE_ARGUMENT
: {
1310 assert(CB
&& "Expected call site!");
1311 // TODO: We need to look at the operand bundles similar to the redirection
1313 if (!CB
->hasOperandBundles() || CanIgnoreOperandBundles(*CB
)) {
1314 auto *Callee
= dyn_cast_if_present
<Function
>(CB
->getCalledOperand());
1316 if (Argument
*Arg
= IRP
.getAssociatedArgument())
1317 IRPositions
.emplace_back(IRPosition::argument(*Arg
));
1318 IRPositions
.emplace_back(IRPosition::function(*Callee
));
1321 IRPositions
.emplace_back(IRPosition::value(IRP
.getAssociatedValue()));
1327 void IRPosition::verify() {
1328 #ifdef EXPENSIVE_CHECKS
1329 switch (getPositionKind()) {
1331 assert((CBContext
== nullptr) &&
1332 "Invalid position must not have CallBaseContext!");
1333 assert(!Enc
.getOpaqueValue() &&
1334 "Expected a nullptr for an invalid position!");
1337 assert((!isa
<Argument
>(&getAssociatedValue())) &&
1338 "Expected specialized kind for argument values!");
1341 assert(isa
<Function
>(getAsValuePtr()) &&
1342 "Expected function for a 'returned' position!");
1343 assert(getAsValuePtr() == &getAssociatedValue() &&
1344 "Associated value mismatch!");
1346 case IRP_CALL_SITE_RETURNED
:
1347 assert((CBContext
== nullptr) &&
1348 "'call site returned' position must not have CallBaseContext!");
1349 assert((isa
<CallBase
>(getAsValuePtr())) &&
1350 "Expected call base for 'call site returned' position!");
1351 assert(getAsValuePtr() == &getAssociatedValue() &&
1352 "Associated value mismatch!");
1355 assert((CBContext
== nullptr) &&
1356 "'call site function' position must not have CallBaseContext!");
1357 assert((isa
<CallBase
>(getAsValuePtr())) &&
1358 "Expected call base for 'call site function' position!");
1359 assert(getAsValuePtr() == &getAssociatedValue() &&
1360 "Associated value mismatch!");
1363 assert(isa
<Function
>(getAsValuePtr()) &&
1364 "Expected function for a 'function' position!");
1365 assert(getAsValuePtr() == &getAssociatedValue() &&
1366 "Associated value mismatch!");
1369 assert(isa
<Argument
>(getAsValuePtr()) &&
1370 "Expected argument for a 'argument' position!");
1371 assert(getAsValuePtr() == &getAssociatedValue() &&
1372 "Associated value mismatch!");
1374 case IRP_CALL_SITE_ARGUMENT
: {
1375 assert((CBContext
== nullptr) &&
1376 "'call site argument' position must not have CallBaseContext!");
1377 Use
*U
= getAsUsePtr();
1378 (void)U
; // Silence unused variable warning.
1379 assert(U
&& "Expected use for a 'call site argument' position!");
1380 assert(isa
<CallBase
>(U
->getUser()) &&
1381 "Expected call base user for a 'call site argument' position!");
1382 assert(cast
<CallBase
>(U
->getUser())->isArgOperand(U
) &&
1383 "Expected call base argument operand for a 'call site argument' "
1385 assert(cast
<CallBase
>(U
->getUser())->getArgOperandNo(U
) ==
1386 unsigned(getCallSiteArgNo()) &&
1387 "Argument number mismatch!");
1388 assert(U
->get() == &getAssociatedValue() && "Associated value mismatch!");
1395 std::optional
<Constant
*>
1396 Attributor::getAssumedConstant(const IRPosition
&IRP
,
1397 const AbstractAttribute
&AA
,
1398 bool &UsedAssumedInformation
) {
1399 // First check all callbacks provided by outside AAs. If any of them returns
1400 // a non-null value that is different from the associated value, or
1401 // std::nullopt, we assume it's simplified.
1402 for (auto &CB
: SimplificationCallbacks
.lookup(IRP
)) {
1403 std::optional
<Value
*> SimplifiedV
= CB(IRP
, &AA
, UsedAssumedInformation
);
1405 return std::nullopt
;
1406 if (isa_and_nonnull
<Constant
>(*SimplifiedV
))
1407 return cast
<Constant
>(*SimplifiedV
);
1410 if (auto *C
= dyn_cast
<Constant
>(&IRP
.getAssociatedValue()))
1412 SmallVector
<AA::ValueAndContext
> Values
;
1413 if (getAssumedSimplifiedValues(IRP
, &AA
, Values
,
1414 AA::ValueScope::Interprocedural
,
1415 UsedAssumedInformation
)) {
1417 return std::nullopt
;
1418 if (auto *C
= dyn_cast_or_null
<Constant
>(
1419 AAPotentialValues::getSingleValue(*this, AA
, IRP
, Values
)))
1425 std::optional
<Value
*> Attributor::getAssumedSimplified(
1426 const IRPosition
&IRP
, const AbstractAttribute
*AA
,
1427 bool &UsedAssumedInformation
, AA::ValueScope S
) {
1428 // First check all callbacks provided by outside AAs. If any of them returns
1429 // a non-null value that is different from the associated value, or
1430 // std::nullopt, we assume it's simplified.
1431 for (auto &CB
: SimplificationCallbacks
.lookup(IRP
))
1432 return CB(IRP
, AA
, UsedAssumedInformation
);
1434 SmallVector
<AA::ValueAndContext
> Values
;
1435 if (!getAssumedSimplifiedValues(IRP
, AA
, Values
, S
, UsedAssumedInformation
))
1436 return &IRP
.getAssociatedValue();
1438 return std::nullopt
;
1440 if (Value
*V
= AAPotentialValues::getSingleValue(*this, *AA
, IRP
, Values
))
1442 if (IRP
.getPositionKind() == IRPosition::IRP_RETURNED
||
1443 IRP
.getPositionKind() == IRPosition::IRP_CALL_SITE_RETURNED
)
1445 return &IRP
.getAssociatedValue();
1448 bool Attributor::getAssumedSimplifiedValues(
1449 const IRPosition
&InitialIRP
, const AbstractAttribute
*AA
,
1450 SmallVectorImpl
<AA::ValueAndContext
> &Values
, AA::ValueScope S
,
1451 bool &UsedAssumedInformation
, bool RecurseForSelectAndPHI
) {
1452 SmallPtrSet
<Value
*, 8> Seen
;
1453 SmallVector
<IRPosition
, 8> Worklist
;
1454 Worklist
.push_back(InitialIRP
);
1455 while (!Worklist
.empty()) {
1456 const IRPosition
&IRP
= Worklist
.pop_back_val();
1458 // First check all callbacks provided by outside AAs. If any of them returns
1459 // a non-null value that is different from the associated value, or
1460 // std::nullopt, we assume it's simplified.
1461 int NV
= Values
.size();
1462 const auto &SimplificationCBs
= SimplificationCallbacks
.lookup(IRP
);
1463 for (const auto &CB
: SimplificationCBs
) {
1464 std::optional
<Value
*> CBResult
= CB(IRP
, AA
, UsedAssumedInformation
);
1465 if (!CBResult
.has_value())
1467 Value
*V
= *CBResult
;
1470 if ((S
& AA::ValueScope::Interprocedural
) ||
1471 AA::isValidInScope(*V
, IRP
.getAnchorScope()))
1472 Values
.push_back(AA::ValueAndContext
{*V
, nullptr});
1476 if (SimplificationCBs
.empty()) {
1477 // If no high-level/outside simplification occurred, use
1478 // AAPotentialValues.
1479 const auto *PotentialValuesAA
=
1480 getOrCreateAAFor
<AAPotentialValues
>(IRP
, AA
, DepClassTy::OPTIONAL
);
1481 if (PotentialValuesAA
&& PotentialValuesAA
->getAssumedSimplifiedValues(*this, Values
, S
)) {
1482 UsedAssumedInformation
|= !PotentialValuesAA
->isAtFixpoint();
1483 } else if (IRP
.getPositionKind() != IRPosition::IRP_RETURNED
) {
1484 Values
.push_back({IRP
.getAssociatedValue(), IRP
.getCtxI()});
1486 // TODO: We could visit all returns and add the operands.
1491 if (!RecurseForSelectAndPHI
)
1494 for (int I
= NV
, E
= Values
.size(); I
< E
; ++I
) {
1495 Value
*V
= Values
[I
].getValue();
1496 if (!isa
<PHINode
>(V
) && !isa
<SelectInst
>(V
))
1498 if (!Seen
.insert(V
).second
)
1500 // Move the last element to this slot.
1501 Values
[I
] = Values
[E
- 1];
1502 // Eliminate the last slot, adjust the indices.
1506 // Add a new value (select or phi) to the worklist.
1507 Worklist
.push_back(IRPosition::value(*V
));
1513 std::optional
<Value
*> Attributor::translateArgumentToCallSiteContent(
1514 std::optional
<Value
*> V
, CallBase
&CB
, const AbstractAttribute
&AA
,
1515 bool &UsedAssumedInformation
) {
1518 if (*V
== nullptr || isa
<Constant
>(*V
))
1520 if (auto *Arg
= dyn_cast
<Argument
>(*V
))
1521 if (CB
.getCalledOperand() == Arg
->getParent() &&
1522 CB
.arg_size() > Arg
->getArgNo())
1523 if (!Arg
->hasPointeeInMemoryValueAttr())
1524 return getAssumedSimplified(
1525 IRPosition::callsite_argument(CB
, Arg
->getArgNo()), AA
,
1526 UsedAssumedInformation
, AA::Intraprocedural
);
1530 Attributor::~Attributor() {
1531 // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
1532 // thus we cannot delete them. We can, and want to, destruct them though.
1533 for (auto &It
: AAMap
) {
1534 AbstractAttribute
*AA
= It
.getSecond();
1535 AA
->~AbstractAttribute();
1539 bool Attributor::isAssumedDead(const AbstractAttribute
&AA
,
1540 const AAIsDead
*FnLivenessAA
,
1541 bool &UsedAssumedInformation
,
1542 bool CheckBBLivenessOnly
, DepClassTy DepClass
) {
1543 if (!Configuration
.UseLiveness
)
1545 const IRPosition
&IRP
= AA
.getIRPosition();
1546 if (!Functions
.count(IRP
.getAnchorScope()))
1548 return isAssumedDead(IRP
, &AA
, FnLivenessAA
, UsedAssumedInformation
,
1549 CheckBBLivenessOnly
, DepClass
);
1552 bool Attributor::isAssumedDead(const Use
&U
,
1553 const AbstractAttribute
*QueryingAA
,
1554 const AAIsDead
*FnLivenessAA
,
1555 bool &UsedAssumedInformation
,
1556 bool CheckBBLivenessOnly
, DepClassTy DepClass
) {
1557 if (!Configuration
.UseLiveness
)
1559 Instruction
*UserI
= dyn_cast
<Instruction
>(U
.getUser());
1561 return isAssumedDead(IRPosition::value(*U
.get()), QueryingAA
, FnLivenessAA
,
1562 UsedAssumedInformation
, CheckBBLivenessOnly
, DepClass
);
1564 if (auto *CB
= dyn_cast
<CallBase
>(UserI
)) {
1565 // For call site argument uses we can check if the argument is
1567 if (CB
->isArgOperand(&U
)) {
1568 const IRPosition
&CSArgPos
=
1569 IRPosition::callsite_argument(*CB
, CB
->getArgOperandNo(&U
));
1570 return isAssumedDead(CSArgPos
, QueryingAA
, FnLivenessAA
,
1571 UsedAssumedInformation
, CheckBBLivenessOnly
,
1574 } else if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(UserI
)) {
1575 const IRPosition
&RetPos
= IRPosition::returned(*RI
->getFunction());
1576 return isAssumedDead(RetPos
, QueryingAA
, FnLivenessAA
,
1577 UsedAssumedInformation
, CheckBBLivenessOnly
, DepClass
);
1578 } else if (PHINode
*PHI
= dyn_cast
<PHINode
>(UserI
)) {
1579 BasicBlock
*IncomingBB
= PHI
->getIncomingBlock(U
);
1580 return isAssumedDead(*IncomingBB
->getTerminator(), QueryingAA
, FnLivenessAA
,
1581 UsedAssumedInformation
, CheckBBLivenessOnly
, DepClass
);
1582 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UserI
)) {
1583 if (!CheckBBLivenessOnly
&& SI
->getPointerOperand() != U
.get()) {
1584 const IRPosition IRP
= IRPosition::inst(*SI
);
1585 const AAIsDead
*IsDeadAA
=
1586 getOrCreateAAFor
<AAIsDead
>(IRP
, QueryingAA
, DepClassTy::NONE
);
1587 if (IsDeadAA
&& IsDeadAA
->isRemovableStore()) {
1589 recordDependence(*IsDeadAA
, *QueryingAA
, DepClass
);
1590 if (!IsDeadAA
->isKnown(AAIsDead::IS_REMOVABLE
))
1591 UsedAssumedInformation
= true;
1597 return isAssumedDead(IRPosition::inst(*UserI
), QueryingAA
, FnLivenessAA
,
1598 UsedAssumedInformation
, CheckBBLivenessOnly
, DepClass
);
1601 bool Attributor::isAssumedDead(const Instruction
&I
,
1602 const AbstractAttribute
*QueryingAA
,
1603 const AAIsDead
*FnLivenessAA
,
1604 bool &UsedAssumedInformation
,
1605 bool CheckBBLivenessOnly
, DepClassTy DepClass
,
1606 bool CheckForDeadStore
) {
1607 if (!Configuration
.UseLiveness
)
1609 const IRPosition::CallBaseContext
*CBCtx
=
1610 QueryingAA
? QueryingAA
->getCallBaseContext() : nullptr;
1612 if (ManifestAddedBlocks
.contains(I
.getParent()))
1615 const Function
&F
= *I
.getFunction();
1616 if (!FnLivenessAA
|| FnLivenessAA
->getAnchorScope() != &F
)
1617 FnLivenessAA
= getOrCreateAAFor
<AAIsDead
>(IRPosition::function(F
, CBCtx
),
1618 QueryingAA
, DepClassTy::NONE
);
1620 // Don't use recursive reasoning.
1621 if (!FnLivenessAA
|| QueryingAA
== FnLivenessAA
)
1624 // If we have a context instruction and a liveness AA we use it.
1625 if (CheckBBLivenessOnly
? FnLivenessAA
->isAssumedDead(I
.getParent())
1626 : FnLivenessAA
->isAssumedDead(&I
)) {
1628 recordDependence(*FnLivenessAA
, *QueryingAA
, DepClass
);
1629 if (!FnLivenessAA
->isKnownDead(&I
))
1630 UsedAssumedInformation
= true;
1634 if (CheckBBLivenessOnly
)
1637 const IRPosition IRP
= IRPosition::inst(I
, CBCtx
);
1638 const AAIsDead
*IsDeadAA
=
1639 getOrCreateAAFor
<AAIsDead
>(IRP
, QueryingAA
, DepClassTy::NONE
);
1641 // Don't use recursive reasoning.
1642 if (!IsDeadAA
|| QueryingAA
== IsDeadAA
)
1645 if (IsDeadAA
->isAssumedDead()) {
1647 recordDependence(*IsDeadAA
, *QueryingAA
, DepClass
);
1648 if (!IsDeadAA
->isKnownDead())
1649 UsedAssumedInformation
= true;
1653 if (CheckForDeadStore
&& isa
<StoreInst
>(I
) && IsDeadAA
->isRemovableStore()) {
1655 recordDependence(*IsDeadAA
, *QueryingAA
, DepClass
);
1656 if (!IsDeadAA
->isKnownDead())
1657 UsedAssumedInformation
= true;
1664 bool Attributor::isAssumedDead(const IRPosition
&IRP
,
1665 const AbstractAttribute
*QueryingAA
,
1666 const AAIsDead
*FnLivenessAA
,
1667 bool &UsedAssumedInformation
,
1668 bool CheckBBLivenessOnly
, DepClassTy DepClass
) {
1669 if (!Configuration
.UseLiveness
)
1671 // Don't check liveness for constants, e.g. functions, used as (floating)
1672 // values since the context instruction and such is here meaningless.
1673 if (IRP
.getPositionKind() == IRPosition::IRP_FLOAT
&&
1674 isa
<Constant
>(IRP
.getAssociatedValue())) {
1678 Instruction
*CtxI
= IRP
.getCtxI();
1680 isAssumedDead(*CtxI
, QueryingAA
, FnLivenessAA
, UsedAssumedInformation
,
1681 /* CheckBBLivenessOnly */ true,
1682 CheckBBLivenessOnly
? DepClass
: DepClassTy::OPTIONAL
))
1685 if (CheckBBLivenessOnly
)
1688 // If we haven't succeeded we query the specific liveness info for the IRP.
1689 const AAIsDead
*IsDeadAA
;
1690 if (IRP
.getPositionKind() == IRPosition::IRP_CALL_SITE
)
1691 IsDeadAA
= getOrCreateAAFor
<AAIsDead
>(
1692 IRPosition::callsite_returned(cast
<CallBase
>(IRP
.getAssociatedValue())),
1693 QueryingAA
, DepClassTy::NONE
);
1695 IsDeadAA
= getOrCreateAAFor
<AAIsDead
>(IRP
, QueryingAA
, DepClassTy::NONE
);
1697 // Don't use recursive reasoning.
1698 if (!IsDeadAA
|| QueryingAA
== IsDeadAA
)
1701 if (IsDeadAA
->isAssumedDead()) {
1703 recordDependence(*IsDeadAA
, *QueryingAA
, DepClass
);
1704 if (!IsDeadAA
->isKnownDead())
1705 UsedAssumedInformation
= true;
1712 bool Attributor::isAssumedDead(const BasicBlock
&BB
,
1713 const AbstractAttribute
*QueryingAA
,
1714 const AAIsDead
*FnLivenessAA
,
1715 DepClassTy DepClass
) {
1716 if (!Configuration
.UseLiveness
)
1718 const Function
&F
= *BB
.getParent();
1719 if (!FnLivenessAA
|| FnLivenessAA
->getAnchorScope() != &F
)
1720 FnLivenessAA
= getOrCreateAAFor
<AAIsDead
>(IRPosition::function(F
),
1721 QueryingAA
, DepClassTy::NONE
);
1723 // Don't use recursive reasoning.
1724 if (!FnLivenessAA
|| QueryingAA
== FnLivenessAA
)
1727 if (FnLivenessAA
->isAssumedDead(&BB
)) {
1729 recordDependence(*FnLivenessAA
, *QueryingAA
, DepClass
);
1736 bool Attributor::checkForAllCallees(
1737 function_ref
<bool(ArrayRef
<const Function
*>)> Pred
,
1738 const AbstractAttribute
&QueryingAA
, const CallBase
&CB
) {
1739 if (const Function
*Callee
= dyn_cast
<Function
>(CB
.getCalledOperand()))
1740 return Pred(Callee
);
1742 const auto *CallEdgesAA
= getAAFor
<AACallEdges
>(
1743 QueryingAA
, IRPosition::callsite_function(CB
), DepClassTy::OPTIONAL
);
1744 if (!CallEdgesAA
|| CallEdgesAA
->hasUnknownCallee())
1747 const auto &Callees
= CallEdgesAA
->getOptimisticEdges();
1748 return Pred(Callees
.getArrayRef());
1751 bool canMarkAsVisited(const User
*Usr
) {
1752 return isa
<PHINode
>(Usr
) || !isa
<Instruction
>(Usr
);
1755 bool Attributor::checkForAllUses(
1756 function_ref
<bool(const Use
&, bool &)> Pred
,
1757 const AbstractAttribute
&QueryingAA
, const Value
&V
,
1758 bool CheckBBLivenessOnly
, DepClassTy LivenessDepClass
,
1759 bool IgnoreDroppableUses
,
1760 function_ref
<bool(const Use
&OldU
, const Use
&NewU
)> EquivalentUseCB
) {
1762 // Check virtual uses first.
1763 for (VirtualUseCallbackTy
&CB
: VirtualUseCallbacks
.lookup(&V
))
1764 if (!CB(*this, &QueryingAA
))
1767 // Check the trivial case first as it catches void values.
1771 const IRPosition
&IRP
= QueryingAA
.getIRPosition();
1772 SmallVector
<const Use
*, 16> Worklist
;
1773 SmallPtrSet
<const Use
*, 16> Visited
;
1775 auto AddUsers
= [&](const Value
&V
, const Use
*OldUse
) {
1776 for (const Use
&UU
: V
.uses()) {
1777 if (OldUse
&& EquivalentUseCB
&& !EquivalentUseCB(*OldUse
, UU
)) {
1778 LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was "
1779 "rejected by the equivalence call back: "
1784 Worklist
.push_back(&UU
);
1789 AddUsers(V
, /* OldUse */ nullptr);
1791 LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist
.size()
1792 << " initial uses to check\n");
1794 const Function
*ScopeFn
= IRP
.getAnchorScope();
1795 const auto *LivenessAA
=
1796 ScopeFn
? getAAFor
<AAIsDead
>(QueryingAA
, IRPosition::function(*ScopeFn
),
1800 while (!Worklist
.empty()) {
1801 const Use
*U
= Worklist
.pop_back_val();
1802 if (canMarkAsVisited(U
->getUser()) && !Visited
.insert(U
).second
)
1804 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
, {
1805 if (auto *Fn
= dyn_cast
<Function
>(U
->getUser()))
1806 dbgs() << "[Attributor] Check use: " << **U
<< " in " << Fn
->getName()
1809 dbgs() << "[Attributor] Check use: " << **U
<< " in " << *U
->getUser()
1812 bool UsedAssumedInformation
= false;
1813 if (isAssumedDead(*U
, &QueryingAA
, LivenessAA
, UsedAssumedInformation
,
1814 CheckBBLivenessOnly
, LivenessDepClass
)) {
1815 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
,
1816 dbgs() << "[Attributor] Dead use, skip!\n");
1819 if (IgnoreDroppableUses
&& U
->getUser()->isDroppable()) {
1820 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
,
1821 dbgs() << "[Attributor] Droppable user, skip!\n");
1825 if (auto *SI
= dyn_cast
<StoreInst
>(U
->getUser())) {
1826 if (&SI
->getOperandUse(0) == U
) {
1827 if (!Visited
.insert(U
).second
)
1829 SmallSetVector
<Value
*, 4> PotentialCopies
;
1830 if (AA::getPotentialCopiesOfStoredValue(
1831 *this, *SI
, PotentialCopies
, QueryingAA
, UsedAssumedInformation
,
1832 /* OnlyExact */ true)) {
1833 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
,
1835 << "[Attributor] Value is stored, continue with "
1836 << PotentialCopies
.size()
1837 << " potential copies instead!\n");
1838 for (Value
*PotentialCopy
: PotentialCopies
)
1839 if (!AddUsers(*PotentialCopy
, U
))
1846 bool Follow
= false;
1847 if (!Pred(*U
, Follow
))
1852 User
&Usr
= *U
->getUser();
1853 AddUsers(Usr
, /* OldUse */ nullptr);
1859 bool Attributor::checkForAllCallSites(function_ref
<bool(AbstractCallSite
)> Pred
,
1860 const AbstractAttribute
&QueryingAA
,
1861 bool RequireAllCallSites
,
1862 bool &UsedAssumedInformation
) {
1863 // We can try to determine information from
1864 // the call sites. However, this is only possible all call sites are known,
1865 // hence the function has internal linkage.
1866 const IRPosition
&IRP
= QueryingAA
.getIRPosition();
1867 const Function
*AssociatedFunction
= IRP
.getAssociatedFunction();
1868 if (!AssociatedFunction
) {
1869 LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1874 return checkForAllCallSites(Pred
, *AssociatedFunction
, RequireAllCallSites
,
1875 &QueryingAA
, UsedAssumedInformation
);
1878 bool Attributor::checkForAllCallSites(function_ref
<bool(AbstractCallSite
)> Pred
,
1880 bool RequireAllCallSites
,
1881 const AbstractAttribute
*QueryingAA
,
1882 bool &UsedAssumedInformation
,
1883 bool CheckPotentiallyDead
) {
1884 if (RequireAllCallSites
&& !Fn
.hasLocalLinkage()) {
1887 << "[Attributor] Function " << Fn
.getName()
1888 << " has no internal linkage, hence not all call sites are known\n");
1891 // Check virtual uses first.
1892 for (VirtualUseCallbackTy
&CB
: VirtualUseCallbacks
.lookup(&Fn
))
1893 if (!CB(*this, QueryingAA
))
1896 SmallVector
<const Use
*, 8> Uses(make_pointer_range(Fn
.uses()));
1897 for (unsigned u
= 0; u
< Uses
.size(); ++u
) {
1898 const Use
&U
= *Uses
[u
];
1899 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
, {
1900 if (auto *Fn
= dyn_cast
<Function
>(U
))
1901 dbgs() << "[Attributor] Check use: " << Fn
->getName() << " in "
1902 << *U
.getUser() << "\n";
1904 dbgs() << "[Attributor] Check use: " << *U
<< " in " << *U
.getUser()
1907 if (!CheckPotentiallyDead
&&
1908 isAssumedDead(U
, QueryingAA
, nullptr, UsedAssumedInformation
,
1909 /* CheckBBLivenessOnly */ true)) {
1910 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
,
1911 dbgs() << "[Attributor] Dead use, skip!\n");
1914 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
.getUser())) {
1915 if (CE
->isCast() && CE
->getType()->isPointerTy()) {
1916 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
, {
1917 dbgs() << "[Attributor] Use, is constant cast expression, add "
1918 << CE
->getNumUses() << " uses of that expression instead!\n";
1920 for (const Use
&CEU
: CE
->uses())
1921 Uses
.push_back(&CEU
);
1926 AbstractCallSite
ACS(&U
);
1928 LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn
.getName()
1929 << " has non call site use " << *U
.get() << " in "
1930 << *U
.getUser() << "\n");
1931 // BlockAddress users are allowed.
1932 if (isa
<BlockAddress
>(U
.getUser()))
1937 const Use
*EffectiveUse
=
1938 ACS
.isCallbackCall() ? &ACS
.getCalleeUseForCallback() : &U
;
1939 if (!ACS
.isCallee(EffectiveUse
)) {
1940 if (!RequireAllCallSites
) {
1941 LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse
->getUser()
1942 << " is not a call of " << Fn
.getName()
1946 LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse
->getUser()
1947 << " is an invalid use of " << Fn
.getName() << "\n");
1951 // Make sure the arguments that can be matched between the call site and the
1952 // callee argee on their type. It is unlikely they do not and it doesn't
1953 // make sense for all attributes to know/care about this.
1954 assert(&Fn
== ACS
.getCalledFunction() && "Expected known callee");
1955 unsigned MinArgsParams
=
1956 std::min(size_t(ACS
.getNumArgOperands()), Fn
.arg_size());
1957 for (unsigned u
= 0; u
< MinArgsParams
; ++u
) {
1958 Value
*CSArgOp
= ACS
.getCallArgOperand(u
);
1959 if (CSArgOp
&& Fn
.getArg(u
)->getType() != CSArgOp
->getType()) {
1961 dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1962 << u
<< "@" << Fn
.getName() << ": "
1963 << *Fn
.getArg(u
)->getType() << " vs. "
1964 << *ACS
.getCallArgOperand(u
)->getType() << "\n");
1972 LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1973 << *ACS
.getInstruction() << "\n");
1980 bool Attributor::shouldPropagateCallBaseContext(const IRPosition
&IRP
) {
1981 // TODO: Maintain a cache of Values that are
1982 // on the pathway from a Argument to a Instruction that would effect the
1983 // liveness/return state etc.
1984 return EnableCallSiteSpecific
;
1987 bool Attributor::checkForAllReturnedValues(function_ref
<bool(Value
&)> Pred
,
1988 const AbstractAttribute
&QueryingAA
,
1990 bool RecurseForSelectAndPHI
) {
1992 const IRPosition
&IRP
= QueryingAA
.getIRPosition();
1993 const Function
*AssociatedFunction
= IRP
.getAssociatedFunction();
1994 if (!AssociatedFunction
)
1997 bool UsedAssumedInformation
= false;
1998 SmallVector
<AA::ValueAndContext
> Values
;
1999 if (!getAssumedSimplifiedValues(
2000 IRPosition::returned(*AssociatedFunction
), &QueryingAA
, Values
, S
,
2001 UsedAssumedInformation
, RecurseForSelectAndPHI
))
2004 return llvm::all_of(Values
, [&](const AA::ValueAndContext
&VAC
) {
2005 return Pred(*VAC
.getValue());
2009 static bool checkForAllInstructionsImpl(
2010 Attributor
*A
, InformationCache::OpcodeInstMapTy
&OpcodeInstMap
,
2011 function_ref
<bool(Instruction
&)> Pred
, const AbstractAttribute
*QueryingAA
,
2012 const AAIsDead
*LivenessAA
, ArrayRef
<unsigned> Opcodes
,
2013 bool &UsedAssumedInformation
, bool CheckBBLivenessOnly
= false,
2014 bool CheckPotentiallyDead
= false) {
2015 for (unsigned Opcode
: Opcodes
) {
2016 // Check if we have instructions with this opcode at all first.
2017 auto *Insts
= OpcodeInstMap
.lookup(Opcode
);
2021 for (Instruction
*I
: *Insts
) {
2022 // Skip dead instructions.
2023 if (A
&& !CheckPotentiallyDead
&&
2024 A
->isAssumedDead(IRPosition::inst(*I
), QueryingAA
, LivenessAA
,
2025 UsedAssumedInformation
, CheckBBLivenessOnly
)) {
2026 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
,
2027 dbgs() << "[Attributor] Instruction " << *I
2028 << " is potentially dead, skip!\n";);
2039 bool Attributor::checkForAllInstructions(function_ref
<bool(Instruction
&)> Pred
,
2041 const AbstractAttribute
*QueryingAA
,
2042 ArrayRef
<unsigned> Opcodes
,
2043 bool &UsedAssumedInformation
,
2044 bool CheckBBLivenessOnly
,
2045 bool CheckPotentiallyDead
) {
2046 // Since we need to provide instructions we have to have an exact definition.
2047 if (!Fn
|| Fn
->isDeclaration())
2050 const IRPosition
&QueryIRP
= IRPosition::function(*Fn
);
2051 const auto *LivenessAA
=
2052 CheckPotentiallyDead
&& QueryingAA
2053 ? (getAAFor
<AAIsDead
>(*QueryingAA
, QueryIRP
, DepClassTy::NONE
))
2056 auto &OpcodeInstMap
= InfoCache
.getOpcodeInstMapForFunction(*Fn
);
2057 if (!checkForAllInstructionsImpl(this, OpcodeInstMap
, Pred
, QueryingAA
,
2058 LivenessAA
, Opcodes
, UsedAssumedInformation
,
2059 CheckBBLivenessOnly
, CheckPotentiallyDead
))
2065 bool Attributor::checkForAllInstructions(function_ref
<bool(Instruction
&)> Pred
,
2066 const AbstractAttribute
&QueryingAA
,
2067 ArrayRef
<unsigned> Opcodes
,
2068 bool &UsedAssumedInformation
,
2069 bool CheckBBLivenessOnly
,
2070 bool CheckPotentiallyDead
) {
2071 const IRPosition
&IRP
= QueryingAA
.getIRPosition();
2072 const Function
*AssociatedFunction
= IRP
.getAssociatedFunction();
2073 return checkForAllInstructions(Pred
, AssociatedFunction
, &QueryingAA
, Opcodes
,
2074 UsedAssumedInformation
, CheckBBLivenessOnly
,
2075 CheckPotentiallyDead
);
2078 bool Attributor::checkForAllReadWriteInstructions(
2079 function_ref
<bool(Instruction
&)> Pred
, AbstractAttribute
&QueryingAA
,
2080 bool &UsedAssumedInformation
) {
2081 TimeTraceScope
TS("checkForAllReadWriteInstructions");
2083 const Function
*AssociatedFunction
=
2084 QueryingAA
.getIRPosition().getAssociatedFunction();
2085 if (!AssociatedFunction
)
2088 const IRPosition
&QueryIRP
= IRPosition::function(*AssociatedFunction
);
2089 const auto *LivenessAA
=
2090 getAAFor
<AAIsDead
>(QueryingAA
, QueryIRP
, DepClassTy::NONE
);
2092 for (Instruction
*I
:
2093 InfoCache
.getReadOrWriteInstsForFunction(*AssociatedFunction
)) {
2094 // Skip dead instructions.
2095 if (isAssumedDead(IRPosition::inst(*I
), &QueryingAA
, LivenessAA
,
2096 UsedAssumedInformation
))
2106 void Attributor::runTillFixpoint() {
2107 TimeTraceScope
TimeScope("Attributor::runTillFixpoint");
2108 LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
2109 << DG
.SyntheticRoot
.Deps
.size()
2110 << " abstract attributes.\n");
2112 // Now that all abstract attributes are collected and initialized we start
2113 // the abstract analysis.
2115 unsigned IterationCounter
= 1;
2116 unsigned MaxIterations
=
2117 Configuration
.MaxFixpointIterations
.value_or(SetFixpointIterations
);
2119 SmallVector
<AbstractAttribute
*, 32> ChangedAAs
;
2120 SetVector
<AbstractAttribute
*> Worklist
, InvalidAAs
;
2121 Worklist
.insert(DG
.SyntheticRoot
.begin(), DG
.SyntheticRoot
.end());
2124 // Remember the size to determine new attributes.
2125 size_t NumAAs
= DG
.SyntheticRoot
.Deps
.size();
2126 LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
2127 << ", Worklist size: " << Worklist
.size() << "\n");
2129 // For invalid AAs we can fix dependent AAs that have a required dependence,
2130 // thereby folding long dependence chains in a single step without the need
2132 for (unsigned u
= 0; u
< InvalidAAs
.size(); ++u
) {
2133 AbstractAttribute
*InvalidAA
= InvalidAAs
[u
];
2135 // Check the dependences to fast track invalidation.
2136 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
,
2137 dbgs() << "[Attributor] InvalidAA: " << *InvalidAA
2138 << " has " << InvalidAA
->Deps
.size()
2139 << " required & optional dependences\n");
2140 for (auto &DepIt
: InvalidAA
->Deps
) {
2141 AbstractAttribute
*DepAA
= cast
<AbstractAttribute
>(DepIt
.getPointer());
2142 if (DepIt
.getInt() == unsigned(DepClassTy::OPTIONAL
)) {
2143 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
,
2144 dbgs() << " - recompute: " << *DepAA
);
2145 Worklist
.insert(DepAA
);
2148 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE
, dbgs()
2149 << " - invalidate: " << *DepAA
);
2150 DepAA
->getState().indicatePessimisticFixpoint();
2151 assert(DepAA
->getState().isAtFixpoint() && "Expected fixpoint state!");
2152 if (!DepAA
->getState().isValidState())
2153 InvalidAAs
.insert(DepAA
);
2155 ChangedAAs
.push_back(DepAA
);
2157 InvalidAA
->Deps
.clear();
2160 // Add all abstract attributes that are potentially dependent on one that
2161 // changed to the work list.
2162 for (AbstractAttribute
*ChangedAA
: ChangedAAs
) {
2163 for (auto &DepIt
: ChangedAA
->Deps
)
2164 Worklist
.insert(cast
<AbstractAttribute
>(DepIt
.getPointer()));
2165 ChangedAA
->Deps
.clear();
2168 LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
2169 << ", Worklist+Dependent size: " << Worklist
.size()
2172 // Reset the changed and invalid set.
2176 // Update all abstract attribute in the work list and record the ones that
2178 for (AbstractAttribute
*AA
: Worklist
) {
2179 const auto &AAState
= AA
->getState();
2180 if (!AAState
.isAtFixpoint())
2181 if (updateAA(*AA
) == ChangeStatus::CHANGED
)
2182 ChangedAAs
.push_back(AA
);
2184 // Use the InvalidAAs vector to propagate invalid states fast transitively
2185 // without requiring updates.
2186 if (!AAState
.isValidState())
2187 InvalidAAs
.insert(AA
);
2190 // Add attributes to the changed set if they have been created in the last
2192 ChangedAAs
.append(DG
.SyntheticRoot
.begin() + NumAAs
,
2193 DG
.SyntheticRoot
.end());
2195 // Reset the work list and repopulate with the changed abstract attributes.
2196 // Note that dependent ones are added above.
2198 Worklist
.insert(ChangedAAs
.begin(), ChangedAAs
.end());
2199 Worklist
.insert(QueryAAsAwaitingUpdate
.begin(),
2200 QueryAAsAwaitingUpdate
.end());
2201 QueryAAsAwaitingUpdate
.clear();
2203 } while (!Worklist
.empty() && (IterationCounter
++ < MaxIterations
));
2205 if (IterationCounter
> MaxIterations
&& !Functions
.empty()) {
2206 auto Remark
= [&](OptimizationRemarkMissed ORM
) {
2207 return ORM
<< "Attributor did not reach a fixpoint after "
2208 << ore::NV("Iterations", MaxIterations
) << " iterations.";
2210 Function
*F
= Functions
.front();
2211 emitRemark
<OptimizationRemarkMissed
>(F
, "FixedPoint", Remark
);
2214 LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
2215 << IterationCounter
<< "/" << MaxIterations
2216 << " iterations\n");
2218 // Reset abstract arguments not settled in a sound fixpoint by now. This
2219 // happens when we stopped the fixpoint iteration early. Note that only the
2220 // ones marked as "changed" *and* the ones transitively depending on them
2221 // need to be reverted to a pessimistic state. Others might not be in a
2222 // fixpoint state but we can use the optimistic results for them anyway.
2223 SmallPtrSet
<AbstractAttribute
*, 32> Visited
;
2224 for (unsigned u
= 0; u
< ChangedAAs
.size(); u
++) {
2225 AbstractAttribute
*ChangedAA
= ChangedAAs
[u
];
2226 if (!Visited
.insert(ChangedAA
).second
)
2229 AbstractState
&State
= ChangedAA
->getState();
2230 if (!State
.isAtFixpoint()) {
2231 State
.indicatePessimisticFixpoint();
2233 NumAttributesTimedOut
++;
2236 for (auto &DepIt
: ChangedAA
->Deps
)
2237 ChangedAAs
.push_back(cast
<AbstractAttribute
>(DepIt
.getPointer()));
2238 ChangedAA
->Deps
.clear();
2242 if (!Visited
.empty())
2243 dbgs() << "\n[Attributor] Finalized " << Visited
.size()
2244 << " abstract attributes.\n";
2248 void Attributor::registerForUpdate(AbstractAttribute
&AA
) {
2249 assert(AA
.isQueryAA() &&
2250 "Non-query AAs should not be required to register for updates!");
2251 QueryAAsAwaitingUpdate
.insert(&AA
);
2254 ChangeStatus
Attributor::manifestAttributes() {
2255 TimeTraceScope
TimeScope("Attributor::manifestAttributes");
2256 size_t NumFinalAAs
= DG
.SyntheticRoot
.Deps
.size();
2258 unsigned NumManifested
= 0;
2259 unsigned NumAtFixpoint
= 0;
2260 ChangeStatus ManifestChange
= ChangeStatus::UNCHANGED
;
2261 for (auto &DepAA
: DG
.SyntheticRoot
.Deps
) {
2262 AbstractAttribute
*AA
= cast
<AbstractAttribute
>(DepAA
.getPointer());
2263 AbstractState
&State
= AA
->getState();
2265 // If there is not already a fixpoint reached, we can now take the
2266 // optimistic state. This is correct because we enforced a pessimistic one
2267 // on abstract attributes that were transitively dependent on a changed one
2269 if (!State
.isAtFixpoint())
2270 State
.indicateOptimisticFixpoint();
2272 // We must not manifest Attributes that use Callbase info.
2273 if (AA
->hasCallBaseContext())
2275 // If the state is invalid, we do not try to manifest it.
2276 if (!State
.isValidState())
2279 if (AA
->getCtxI() && !isRunOn(*AA
->getAnchorScope()))
2283 bool UsedAssumedInformation
= false;
2284 if (isAssumedDead(*AA
, nullptr, UsedAssumedInformation
,
2285 /* CheckBBLivenessOnly */ true))
2287 // Check if the manifest debug counter that allows skipping manifestation of
2289 if (!DebugCounter::shouldExecute(ManifestDBGCounter
))
2291 // Manifest the state and record if we changed the IR.
2292 ChangeStatus LocalChange
= AA
->manifest(*this);
2293 if (LocalChange
== ChangeStatus::CHANGED
&& AreStatisticsEnabled())
2294 AA
->trackStatistics();
2295 LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange
<< " : " << *AA
2298 ManifestChange
= ManifestChange
| LocalChange
;
2301 NumManifested
+= (LocalChange
== ChangeStatus::CHANGED
);
2304 (void)NumManifested
;
2305 (void)NumAtFixpoint
;
2306 LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
2307 << " arguments while " << NumAtFixpoint
2308 << " were in a valid fixpoint state\n");
2310 NumAttributesManifested
+= NumManifested
;
2311 NumAttributesValidFixpoint
+= NumAtFixpoint
;
2314 if (NumFinalAAs
!= DG
.SyntheticRoot
.Deps
.size()) {
2315 auto DepIt
= DG
.SyntheticRoot
.Deps
.begin();
2316 for (unsigned u
= 0; u
< NumFinalAAs
; ++u
)
2318 for (unsigned u
= NumFinalAAs
; u
< DG
.SyntheticRoot
.Deps
.size();
2320 errs() << "Unexpected abstract attribute: "
2321 << cast
<AbstractAttribute
>(DepIt
->getPointer()) << " :: "
2322 << cast
<AbstractAttribute
>(DepIt
->getPointer())
2324 .getAssociatedValue()
2327 llvm_unreachable("Expected the final number of abstract attributes to "
2328 "remain unchanged!");
2331 for (auto &It
: AttrsMap
) {
2332 AttributeList
&AL
= It
.getSecond();
2333 const IRPosition
&IRP
=
2334 isa
<Function
>(It
.getFirst())
2335 ? IRPosition::function(*cast
<Function
>(It
.getFirst()))
2336 : IRPosition::callsite_function(*cast
<CallBase
>(It
.getFirst()));
2337 IRP
.setAttrList(AL
);
2340 return ManifestChange
;
2343 void Attributor::identifyDeadInternalFunctions() {
2344 // Early exit if we don't intend to delete functions.
2345 if (!Configuration
.DeleteFns
)
2348 // To avoid triggering an assertion in the lazy call graph we will not delete
2349 // any internal library functions. We should modify the assertion though and
2350 // allow internals to be deleted.
2354 : getInfoCache().getTargetLibraryInfoForFunction(*Functions
.back());
2357 // Identify dead internal functions and delete them. This happens outside
2358 // the other fixpoint analysis as we might treat potentially dead functions
2359 // as live to lower the number of iterations. If they happen to be dead, the
2360 // below fixpoint loop will identify and eliminate them.
2362 SmallVector
<Function
*, 8> InternalFns
;
2363 for (Function
*F
: Functions
)
2364 if (F
->hasLocalLinkage() && (isModulePass() || !TLI
->getLibFunc(*F
, LF
)))
2365 InternalFns
.push_back(F
);
2367 SmallPtrSet
<Function
*, 8> LiveInternalFns
;
2368 bool FoundLiveInternal
= true;
2369 while (FoundLiveInternal
) {
2370 FoundLiveInternal
= false;
2371 for (Function
*&F
: InternalFns
) {
2375 bool UsedAssumedInformation
= false;
2376 if (checkForAllCallSites(
2377 [&](AbstractCallSite ACS
) {
2378 Function
*Callee
= ACS
.getInstruction()->getFunction();
2379 return ToBeDeletedFunctions
.count(Callee
) ||
2380 (Functions
.count(Callee
) && Callee
->hasLocalLinkage() &&
2381 !LiveInternalFns
.count(Callee
));
2383 *F
, true, nullptr, UsedAssumedInformation
)) {
2387 LiveInternalFns
.insert(F
);
2389 FoundLiveInternal
= true;
2393 for (Function
*F
: InternalFns
)
2395 ToBeDeletedFunctions
.insert(F
);
2398 ChangeStatus
Attributor::cleanupIR() {
2399 TimeTraceScope
TimeScope("Attributor::cleanupIR");
2400 // Delete stuff at the end to avoid invalid references and a nice order.
2401 LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
2402 << ToBeDeletedFunctions
.size() << " functions and "
2403 << ToBeDeletedBlocks
.size() << " blocks and "
2404 << ToBeDeletedInsts
.size() << " instructions and "
2405 << ToBeChangedValues
.size() << " values and "
2406 << ToBeChangedUses
.size() << " uses. To insert "
2407 << ToBeChangedToUnreachableInsts
.size()
2408 << " unreachables.\n"
2409 << "Preserve manifest added " << ManifestAddedBlocks
.size()
2412 SmallVector
<WeakTrackingVH
, 32> DeadInsts
;
2413 SmallVector
<Instruction
*, 32> TerminatorsToFold
;
2415 auto ReplaceUse
= [&](Use
*U
, Value
*NewV
) {
2416 Value
*OldV
= U
->get();
2418 // If we plan to replace NewV we need to update it at this point.
2420 const auto &Entry
= ToBeChangedValues
.lookup(NewV
);
2423 NewV
= get
<0>(Entry
);
2426 Instruction
*I
= dyn_cast
<Instruction
>(U
->getUser());
2427 assert((!I
|| isRunOn(*I
->getFunction())) &&
2428 "Cannot replace an instruction outside the current SCC!");
2430 // Do not replace uses in returns if the value is a must-tail call we will
2432 if (auto *RI
= dyn_cast_or_null
<ReturnInst
>(I
)) {
2433 if (auto *CI
= dyn_cast
<CallInst
>(OldV
->stripPointerCasts()))
2434 if (CI
->isMustTailCall() && !ToBeDeletedInsts
.count(CI
))
2436 // If we rewrite a return and the new value is not an argument, strip the
2437 // `returned` attribute as it is wrong now.
2438 if (!isa
<Argument
>(NewV
))
2439 for (auto &Arg
: RI
->getFunction()->args())
2440 Arg
.removeAttr(Attribute::Returned
);
2443 LLVM_DEBUG(dbgs() << "Use " << *NewV
<< " in " << *U
->getUser()
2444 << " instead of " << *OldV
<< "\n");
2447 if (Instruction
*I
= dyn_cast
<Instruction
>(OldV
)) {
2448 CGModifiedFunctions
.insert(I
->getFunction());
2449 if (!isa
<PHINode
>(I
) && !ToBeDeletedInsts
.count(I
) &&
2450 isInstructionTriviallyDead(I
))
2451 DeadInsts
.push_back(I
);
2453 if (isa
<UndefValue
>(NewV
) && isa
<CallBase
>(U
->getUser())) {
2454 auto *CB
= cast
<CallBase
>(U
->getUser());
2455 if (CB
->isArgOperand(U
)) {
2456 unsigned Idx
= CB
->getArgOperandNo(U
);
2457 CB
->removeParamAttr(Idx
, Attribute::NoUndef
);
2458 auto *Callee
= dyn_cast_if_present
<Function
>(CB
->getCalledOperand());
2459 if (Callee
&& Callee
->arg_size() > Idx
)
2460 Callee
->removeParamAttr(Idx
, Attribute::NoUndef
);
2463 if (isa
<Constant
>(NewV
) && isa
<BranchInst
>(U
->getUser())) {
2464 Instruction
*UserI
= cast
<Instruction
>(U
->getUser());
2465 if (isa
<UndefValue
>(NewV
)) {
2466 ToBeChangedToUnreachableInsts
.insert(UserI
);
2468 TerminatorsToFold
.push_back(UserI
);
2473 for (auto &It
: ToBeChangedUses
) {
2475 Value
*NewV
= It
.second
;
2476 ReplaceUse(U
, NewV
);
2479 SmallVector
<Use
*, 4> Uses
;
2480 for (auto &It
: ToBeChangedValues
) {
2481 Value
*OldV
= It
.first
;
2482 auto [NewV
, Done
] = It
.second
;
2484 for (auto &U
: OldV
->uses())
2485 if (Done
|| !U
.getUser()->isDroppable())
2487 for (Use
*U
: Uses
) {
2488 if (auto *I
= dyn_cast
<Instruction
>(U
->getUser()))
2489 if (!isRunOn(*I
->getFunction()))
2491 ReplaceUse(U
, NewV
);
2495 for (const auto &V
: InvokeWithDeadSuccessor
)
2496 if (InvokeInst
*II
= dyn_cast_or_null
<InvokeInst
>(V
)) {
2497 assert(isRunOn(*II
->getFunction()) &&
2498 "Cannot replace an invoke outside the current SCC!");
2499 bool UnwindBBIsDead
= II
->hasFnAttr(Attribute::NoUnwind
);
2500 bool NormalBBIsDead
= II
->hasFnAttr(Attribute::NoReturn
);
2501 bool Invoke2CallAllowed
=
2502 !AAIsDead::mayCatchAsynchronousExceptions(*II
->getFunction());
2503 assert((UnwindBBIsDead
|| NormalBBIsDead
) &&
2504 "Invoke does not have dead successors!");
2505 BasicBlock
*BB
= II
->getParent();
2506 BasicBlock
*NormalDestBB
= II
->getNormalDest();
2507 if (UnwindBBIsDead
) {
2508 Instruction
*NormalNextIP
= &NormalDestBB
->front();
2509 if (Invoke2CallAllowed
) {
2511 NormalNextIP
= BB
->getTerminator();
2514 ToBeChangedToUnreachableInsts
.insert(NormalNextIP
);
2516 assert(NormalBBIsDead
&& "Broken invariant!");
2517 if (!NormalDestBB
->getUniquePredecessor())
2518 NormalDestBB
= SplitBlockPredecessors(NormalDestBB
, {BB
}, ".dead");
2519 ToBeChangedToUnreachableInsts
.insert(&NormalDestBB
->front());
2522 for (Instruction
*I
: TerminatorsToFold
) {
2523 assert(isRunOn(*I
->getFunction()) &&
2524 "Cannot replace a terminator outside the current SCC!");
2525 CGModifiedFunctions
.insert(I
->getFunction());
2526 ConstantFoldTerminator(I
->getParent());
2528 for (const auto &V
: ToBeChangedToUnreachableInsts
)
2529 if (Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
)) {
2530 LLVM_DEBUG(dbgs() << "[Attributor] Change to unreachable: " << *I
2532 assert(isRunOn(*I
->getFunction()) &&
2533 "Cannot replace an instruction outside the current SCC!");
2534 CGModifiedFunctions
.insert(I
->getFunction());
2535 changeToUnreachable(I
);
2538 for (const auto &V
: ToBeDeletedInsts
) {
2539 if (Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
)) {
2540 assert((!isa
<CallBase
>(I
) || isa
<IntrinsicInst
>(I
) ||
2541 isRunOn(*I
->getFunction())) &&
2542 "Cannot delete an instruction outside the current SCC!");
2543 I
->dropDroppableUses();
2544 CGModifiedFunctions
.insert(I
->getFunction());
2545 if (!I
->getType()->isVoidTy())
2546 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
2547 if (!isa
<PHINode
>(I
) && isInstructionTriviallyDead(I
))
2548 DeadInsts
.push_back(I
);
2550 I
->eraseFromParent();
2554 llvm::erase_if(DeadInsts
, [&](WeakTrackingVH I
) { return !I
; });
2557 dbgs() << "[Attributor] DeadInsts size: " << DeadInsts
.size() << "\n";
2558 for (auto &I
: DeadInsts
)
2560 dbgs() << " - " << *I
<< "\n";
2563 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts
);
2565 if (unsigned NumDeadBlocks
= ToBeDeletedBlocks
.size()) {
2566 SmallVector
<BasicBlock
*, 8> ToBeDeletedBBs
;
2567 ToBeDeletedBBs
.reserve(NumDeadBlocks
);
2568 for (BasicBlock
*BB
: ToBeDeletedBlocks
) {
2569 assert(isRunOn(*BB
->getParent()) &&
2570 "Cannot delete a block outside the current SCC!");
2571 CGModifiedFunctions
.insert(BB
->getParent());
2572 // Do not delete BBs added during manifests of AAs.
2573 if (ManifestAddedBlocks
.contains(BB
))
2575 ToBeDeletedBBs
.push_back(BB
);
2577 // Actually we do not delete the blocks but squash them into a single
2578 // unreachable but untangling branches that jump here is something we need
2579 // to do in a more generic way.
2580 detachDeadBlocks(ToBeDeletedBBs
, nullptr);
2583 identifyDeadInternalFunctions();
2585 // Rewrite the functions as requested during manifest.
2586 ChangeStatus ManifestChange
= rewriteFunctionSignatures(CGModifiedFunctions
);
2588 for (Function
*Fn
: CGModifiedFunctions
)
2589 if (!ToBeDeletedFunctions
.count(Fn
) && Functions
.count(Fn
))
2590 Configuration
.CGUpdater
.reanalyzeFunction(*Fn
);
2592 for (Function
*Fn
: ToBeDeletedFunctions
) {
2593 if (!Functions
.count(Fn
))
2595 Configuration
.CGUpdater
.removeFunction(*Fn
);
2598 if (!ToBeChangedUses
.empty())
2599 ManifestChange
= ChangeStatus::CHANGED
;
2601 if (!ToBeChangedToUnreachableInsts
.empty())
2602 ManifestChange
= ChangeStatus::CHANGED
;
2604 if (!ToBeDeletedFunctions
.empty())
2605 ManifestChange
= ChangeStatus::CHANGED
;
2607 if (!ToBeDeletedBlocks
.empty())
2608 ManifestChange
= ChangeStatus::CHANGED
;
2610 if (!ToBeDeletedInsts
.empty())
2611 ManifestChange
= ChangeStatus::CHANGED
;
2613 if (!InvokeWithDeadSuccessor
.empty())
2614 ManifestChange
= ChangeStatus::CHANGED
;
2616 if (!DeadInsts
.empty())
2617 ManifestChange
= ChangeStatus::CHANGED
;
2619 NumFnDeleted
+= ToBeDeletedFunctions
.size();
2621 LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions
.size()
2622 << " functions after manifest.\n");
2624 #ifdef EXPENSIVE_CHECKS
2625 for (Function
*F
: Functions
) {
2626 if (ToBeDeletedFunctions
.count(F
))
2628 assert(!verifyFunction(*F
, &errs()) && "Module verification failed!");
2632 return ManifestChange
;
2635 ChangeStatus
Attributor::run() {
2636 TimeTraceScope
TimeScope("Attributor::run");
2637 AttributorCallGraph
ACallGraph(*this);
2640 ACallGraph
.populateAll();
2642 Phase
= AttributorPhase::UPDATE
;
2645 // dump graphs on demand
2652 if (PrintDependencies
)
2655 Phase
= AttributorPhase::MANIFEST
;
2656 ChangeStatus ManifestChange
= manifestAttributes();
2658 Phase
= AttributorPhase::CLEANUP
;
2659 ChangeStatus CleanupChange
= cleanupIR();
2664 return ManifestChange
| CleanupChange
;
2667 ChangeStatus
Attributor::updateAA(AbstractAttribute
&AA
) {
2668 TimeTraceScope
TimeScope("updateAA", [&]() {
2669 return AA
.getName() + std::to_string(AA
.getIRPosition().getPositionKind());
2671 assert(Phase
== AttributorPhase::UPDATE
&&
2672 "We can update AA only in the update stage!");
2674 // Use a new dependence vector for this update.
2675 DependenceVector DV
;
2676 DependenceStack
.push_back(&DV
);
2678 auto &AAState
= AA
.getState();
2679 ChangeStatus CS
= ChangeStatus::UNCHANGED
;
2680 bool UsedAssumedInformation
= false;
2681 if (!isAssumedDead(AA
, nullptr, UsedAssumedInformation
,
2682 /* CheckBBLivenessOnly */ true))
2683 CS
= AA
.update(*this);
2685 if (!AA
.isQueryAA() && DV
.empty() && !AA
.getState().isAtFixpoint()) {
2686 // If the AA did not rely on outside information but changed, we run it
2687 // again to see if it found a fixpoint. Most AAs do but we don't require
2688 // them to. Hence, it might take the AA multiple iterations to get to a
2689 // fixpoint even if it does not rely on outside information, which is fine.
2690 ChangeStatus RerunCS
= ChangeStatus::UNCHANGED
;
2691 if (CS
== ChangeStatus::CHANGED
)
2692 RerunCS
= AA
.update(*this);
2694 // If the attribute did not change during the run or rerun, and it still did
2695 // not query any non-fix information, the state will not change and we can
2696 // indicate that right at this point.
2697 if (RerunCS
== ChangeStatus::UNCHANGED
&& !AA
.isQueryAA() && DV
.empty())
2698 AAState
.indicateOptimisticFixpoint();
2701 if (!AAState
.isAtFixpoint())
2702 rememberDependences();
2704 // Verify the stack was used properly, that is we pop the dependence vector we
2705 // put there earlier.
2706 DependenceVector
*PoppedDV
= DependenceStack
.pop_back_val();
2708 assert(PoppedDV
== &DV
&& "Inconsistent usage of the dependence stack!");
2713 void Attributor::createShallowWrapper(Function
&F
) {
2714 assert(!F
.isDeclaration() && "Cannot create a wrapper around a declaration!");
2716 Module
&M
= *F
.getParent();
2717 LLVMContext
&Ctx
= M
.getContext();
2718 FunctionType
*FnTy
= F
.getFunctionType();
2721 Function::Create(FnTy
, F
.getLinkage(), F
.getAddressSpace(), F
.getName());
2722 F
.setName(""); // set the inside function anonymous
2723 M
.getFunctionList().insert(F
.getIterator(), Wrapper
);
2724 // Flag whether the function is using new-debug-info or not.
2725 Wrapper
->IsNewDbgInfoFormat
= M
.IsNewDbgInfoFormat
;
2727 F
.setLinkage(GlobalValue::InternalLinkage
);
2729 F
.replaceAllUsesWith(Wrapper
);
2730 assert(F
.use_empty() && "Uses remained after wrapper was created!");
2732 // Move the COMDAT section to the wrapper.
2733 // TODO: Check if we need to keep it for F as well.
2734 Wrapper
->setComdat(F
.getComdat());
2735 F
.setComdat(nullptr);
2737 // Copy all metadata and attributes but keep them on F as well.
2738 SmallVector
<std::pair
<unsigned, MDNode
*>, 1> MDs
;
2739 F
.getAllMetadata(MDs
);
2740 for (auto MDIt
: MDs
)
2741 Wrapper
->addMetadata(MDIt
.first
, *MDIt
.second
);
2742 Wrapper
->setAttributes(F
.getAttributes());
2744 // Create the call in the wrapper.
2745 BasicBlock
*EntryBB
= BasicBlock::Create(Ctx
, "entry", Wrapper
);
2747 SmallVector
<Value
*, 8> Args
;
2748 Argument
*FArgIt
= F
.arg_begin();
2749 for (Argument
&Arg
: Wrapper
->args()) {
2750 Args
.push_back(&Arg
);
2751 Arg
.setName((FArgIt
++)->getName());
2754 CallInst
*CI
= CallInst::Create(&F
, Args
, "", EntryBB
);
2755 CI
->setTailCall(true);
2756 CI
->addFnAttr(Attribute::NoInline
);
2757 ReturnInst::Create(Ctx
, CI
->getType()->isVoidTy() ? nullptr : CI
, EntryBB
);
2759 NumFnShallowWrappersCreated
++;
2762 bool Attributor::isInternalizable(Function
&F
) {
2763 if (F
.isDeclaration() || F
.hasLocalLinkage() ||
2764 GlobalValue::isInterposableLinkage(F
.getLinkage()))
2769 Function
*Attributor::internalizeFunction(Function
&F
, bool Force
) {
2770 if (!AllowDeepWrapper
&& !Force
)
2772 if (!isInternalizable(F
))
2775 SmallPtrSet
<Function
*, 2> FnSet
= {&F
};
2776 DenseMap
<Function
*, Function
*> InternalizedFns
;
2777 internalizeFunctions(FnSet
, InternalizedFns
);
2779 return InternalizedFns
[&F
];
2782 bool Attributor::internalizeFunctions(SmallPtrSetImpl
<Function
*> &FnSet
,
2783 DenseMap
<Function
*, Function
*> &FnMap
) {
2784 for (Function
*F
: FnSet
)
2785 if (!Attributor::isInternalizable(*F
))
2789 // Generate the internalized version of each function.
2790 for (Function
*F
: FnSet
) {
2791 Module
&M
= *F
->getParent();
2792 FunctionType
*FnTy
= F
->getFunctionType();
2794 // Create a copy of the current function
2796 Function::Create(FnTy
, F
->getLinkage(), F
->getAddressSpace(),
2797 F
->getName() + ".internalized");
2798 ValueToValueMapTy VMap
;
2799 auto *NewFArgIt
= Copied
->arg_begin();
2800 for (auto &Arg
: F
->args()) {
2801 auto ArgName
= Arg
.getName();
2802 NewFArgIt
->setName(ArgName
);
2803 VMap
[&Arg
] = &(*NewFArgIt
++);
2805 SmallVector
<ReturnInst
*, 8> Returns
;
2806 // Flag whether the function is using new-debug-info or not.
2807 Copied
->IsNewDbgInfoFormat
= F
->IsNewDbgInfoFormat
;
2809 // Copy the body of the original function to the new one
2810 CloneFunctionInto(Copied
, F
, VMap
,
2811 CloneFunctionChangeType::LocalChangesOnly
, Returns
);
2813 // Set the linakage and visibility late as CloneFunctionInto has some
2814 // implicit requirements.
2815 Copied
->setVisibility(GlobalValue::DefaultVisibility
);
2816 Copied
->setLinkage(GlobalValue::PrivateLinkage
);
2819 SmallVector
<std::pair
<unsigned, MDNode
*>, 1> MDs
;
2820 F
->getAllMetadata(MDs
);
2821 for (auto MDIt
: MDs
)
2822 if (!Copied
->hasMetadata())
2823 Copied
->addMetadata(MDIt
.first
, *MDIt
.second
);
2825 M
.getFunctionList().insert(F
->getIterator(), Copied
);
2826 Copied
->setDSOLocal(true);
2830 // Replace all uses of the old function with the new internalized function
2831 // unless the caller is a function that was just internalized.
2832 for (Function
*F
: FnSet
) {
2833 auto &InternalizedFn
= FnMap
[F
];
2834 auto IsNotInternalized
= [&](Use
&U
) -> bool {
2835 if (auto *CB
= dyn_cast
<CallBase
>(U
.getUser()))
2836 return !FnMap
.lookup(CB
->getCaller());
2839 F
->replaceUsesWithIf(InternalizedFn
, IsNotInternalized
);
2845 bool Attributor::isValidFunctionSignatureRewrite(
2846 Argument
&Arg
, ArrayRef
<Type
*> ReplacementTypes
) {
2848 if (!Configuration
.RewriteSignatures
)
2851 Function
*Fn
= Arg
.getParent();
2852 auto CallSiteCanBeChanged
= [Fn
](AbstractCallSite ACS
) {
2853 // Forbid the call site to cast the function return type. If we need to
2854 // rewrite these functions we need to re-create a cast for the new call site
2855 // (if the old had uses).
2856 if (!ACS
.getCalledFunction() ||
2857 ACS
.getInstruction()->getType() !=
2858 ACS
.getCalledFunction()->getReturnType())
2860 if (cast
<CallBase
>(ACS
.getInstruction())->getCalledOperand()->getType() !=
2863 if (ACS
.getNumArgOperands() != Fn
->arg_size())
2865 // Forbid must-tail calls for now.
2866 return !ACS
.isCallbackCall() && !ACS
.getInstruction()->isMustTailCall();
2869 // Avoid var-arg functions for now.
2870 if (Fn
->isVarArg()) {
2871 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2875 // Avoid functions with complicated argument passing semantics.
2876 AttributeList FnAttributeList
= Fn
->getAttributes();
2877 if (FnAttributeList
.hasAttrSomewhere(Attribute::Nest
) ||
2878 FnAttributeList
.hasAttrSomewhere(Attribute::StructRet
) ||
2879 FnAttributeList
.hasAttrSomewhere(Attribute::InAlloca
) ||
2880 FnAttributeList
.hasAttrSomewhere(Attribute::Preallocated
)) {
2882 dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2886 // Avoid callbacks for now.
2887 bool UsedAssumedInformation
= false;
2888 if (!checkForAllCallSites(CallSiteCanBeChanged
, *Fn
, true, nullptr,
2889 UsedAssumedInformation
,
2890 /* CheckPotentiallyDead */ true)) {
2891 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2895 auto InstPred
= [](Instruction
&I
) {
2896 if (auto *CI
= dyn_cast
<CallInst
>(&I
))
2897 return !CI
->isMustTailCall();
2901 // Forbid must-tail calls for now.
2903 auto &OpcodeInstMap
= InfoCache
.getOpcodeInstMapForFunction(*Fn
);
2904 if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap
, InstPred
, nullptr,
2905 nullptr, {Instruction::Call
},
2906 UsedAssumedInformation
)) {
2907 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2914 bool Attributor::registerFunctionSignatureRewrite(
2915 Argument
&Arg
, ArrayRef
<Type
*> ReplacementTypes
,
2916 ArgumentReplacementInfo::CalleeRepairCBTy
&&CalleeRepairCB
,
2917 ArgumentReplacementInfo::ACSRepairCBTy
&&ACSRepairCB
) {
2918 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg
<< " in "
2919 << Arg
.getParent()->getName() << " with "
2920 << ReplacementTypes
.size() << " replacements\n");
2921 assert(isValidFunctionSignatureRewrite(Arg
, ReplacementTypes
) &&
2922 "Cannot register an invalid rewrite");
2924 Function
*Fn
= Arg
.getParent();
2925 SmallVectorImpl
<std::unique_ptr
<ArgumentReplacementInfo
>> &ARIs
=
2926 ArgumentReplacementMap
[Fn
];
2928 ARIs
.resize(Fn
->arg_size());
2930 // If we have a replacement already with less than or equal new arguments,
2931 // ignore this request.
2932 std::unique_ptr
<ArgumentReplacementInfo
> &ARI
= ARIs
[Arg
.getArgNo()];
2933 if (ARI
&& ARI
->getNumReplacementArgs() <= ReplacementTypes
.size()) {
2934 LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2938 // If we have a replacement already but we like the new one better, delete
2942 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg
<< " in "
2943 << Arg
.getParent()->getName() << " with "
2944 << ReplacementTypes
.size() << " replacements\n");
2946 // Remember the replacement.
2947 ARI
.reset(new ArgumentReplacementInfo(*this, Arg
, ReplacementTypes
,
2948 std::move(CalleeRepairCB
),
2949 std::move(ACSRepairCB
)));
2954 bool Attributor::shouldSeedAttribute(AbstractAttribute
&AA
) {
2957 if (SeedAllowList
.size() != 0)
2958 Result
= llvm::is_contained(SeedAllowList
, AA
.getName());
2959 Function
*Fn
= AA
.getAnchorScope();
2960 if (FunctionSeedAllowList
.size() != 0 && Fn
)
2961 Result
&= llvm::is_contained(FunctionSeedAllowList
, Fn
->getName());
2966 ChangeStatus
Attributor::rewriteFunctionSignatures(
2967 SmallSetVector
<Function
*, 8> &ModifiedFns
) {
2968 ChangeStatus Changed
= ChangeStatus::UNCHANGED
;
2970 for (auto &It
: ArgumentReplacementMap
) {
2971 Function
*OldFn
= It
.getFirst();
2973 // Deleted functions do not require rewrites.
2974 if (!Functions
.count(OldFn
) || ToBeDeletedFunctions
.count(OldFn
))
2977 const SmallVectorImpl
<std::unique_ptr
<ArgumentReplacementInfo
>> &ARIs
=
2979 assert(ARIs
.size() == OldFn
->arg_size() && "Inconsistent state!");
2981 SmallVector
<Type
*, 16> NewArgumentTypes
;
2982 SmallVector
<AttributeSet
, 16> NewArgumentAttributes
;
2984 // Collect replacement argument types and copy over existing attributes.
2985 AttributeList OldFnAttributeList
= OldFn
->getAttributes();
2986 for (Argument
&Arg
: OldFn
->args()) {
2987 if (const std::unique_ptr
<ArgumentReplacementInfo
> &ARI
=
2988 ARIs
[Arg
.getArgNo()]) {
2989 NewArgumentTypes
.append(ARI
->ReplacementTypes
.begin(),
2990 ARI
->ReplacementTypes
.end());
2991 NewArgumentAttributes
.append(ARI
->getNumReplacementArgs(),
2994 NewArgumentTypes
.push_back(Arg
.getType());
2995 NewArgumentAttributes
.push_back(
2996 OldFnAttributeList
.getParamAttrs(Arg
.getArgNo()));
3000 uint64_t LargestVectorWidth
= 0;
3001 for (auto *I
: NewArgumentTypes
)
3002 if (auto *VT
= dyn_cast
<llvm::VectorType
>(I
))
3003 LargestVectorWidth
=
3004 std::max(LargestVectorWidth
,
3005 VT
->getPrimitiveSizeInBits().getKnownMinValue());
3007 FunctionType
*OldFnTy
= OldFn
->getFunctionType();
3008 Type
*RetTy
= OldFnTy
->getReturnType();
3010 // Construct the new function type using the new arguments types.
3011 FunctionType
*NewFnTy
=
3012 FunctionType::get(RetTy
, NewArgumentTypes
, OldFnTy
->isVarArg());
3014 LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn
->getName()
3015 << "' from " << *OldFn
->getFunctionType() << " to "
3016 << *NewFnTy
<< "\n");
3018 // Create the new function body and insert it into the module.
3019 Function
*NewFn
= Function::Create(NewFnTy
, OldFn
->getLinkage(),
3020 OldFn
->getAddressSpace(), "");
3021 Functions
.insert(NewFn
);
3022 OldFn
->getParent()->getFunctionList().insert(OldFn
->getIterator(), NewFn
);
3023 NewFn
->takeName(OldFn
);
3024 NewFn
->copyAttributesFrom(OldFn
);
3025 // Flag whether the function is using new-debug-info or not.
3026 NewFn
->IsNewDbgInfoFormat
= OldFn
->IsNewDbgInfoFormat
;
3028 // Patch the pointer to LLVM function in debug info descriptor.
3029 NewFn
->setSubprogram(OldFn
->getSubprogram());
3030 OldFn
->setSubprogram(nullptr);
3032 // Recompute the parameter attributes list based on the new arguments for
3034 LLVMContext
&Ctx
= OldFn
->getContext();
3035 NewFn
->setAttributes(AttributeList::get(
3036 Ctx
, OldFnAttributeList
.getFnAttrs(), OldFnAttributeList
.getRetAttrs(),
3037 NewArgumentAttributes
));
3038 AttributeFuncs::updateMinLegalVectorWidthAttr(*NewFn
, LargestVectorWidth
);
3040 // Remove argmem from the memory effects if we have no more pointer
3041 // arguments, or they are readnone.
3042 MemoryEffects ME
= NewFn
->getMemoryEffects();
3044 if (ME
.doesAccessArgPointees() && all_of(NewArgumentTypes
, [&](Type
*T
) {
3046 return !T
->isPtrOrPtrVectorTy() ||
3047 NewFn
->hasParamAttribute(ArgNo
, Attribute::ReadNone
);
3049 NewFn
->setMemoryEffects(ME
- MemoryEffects::argMemOnly());
3052 // Since we have now created the new function, splice the body of the old
3053 // function right into the new function, leaving the old rotting hulk of the
3055 NewFn
->splice(NewFn
->begin(), OldFn
);
3057 // Fixup block addresses to reference new function.
3058 SmallVector
<BlockAddress
*, 8u> BlockAddresses
;
3059 for (User
*U
: OldFn
->users())
3060 if (auto *BA
= dyn_cast
<BlockAddress
>(U
))
3061 BlockAddresses
.push_back(BA
);
3062 for (auto *BA
: BlockAddresses
)
3063 BA
->replaceAllUsesWith(BlockAddress::get(NewFn
, BA
->getBasicBlock()));
3065 // Set of all "call-like" instructions that invoke the old function mapped
3066 // to their new replacements.
3067 SmallVector
<std::pair
<CallBase
*, CallBase
*>, 8> CallSitePairs
;
3069 // Callback to create a new "call-like" instruction for a given one.
3070 auto CallSiteReplacementCreator
= [&](AbstractCallSite ACS
) {
3071 CallBase
*OldCB
= cast
<CallBase
>(ACS
.getInstruction());
3072 const AttributeList
&OldCallAttributeList
= OldCB
->getAttributes();
3074 // Collect the new argument operands for the replacement call site.
3075 SmallVector
<Value
*, 16> NewArgOperands
;
3076 SmallVector
<AttributeSet
, 16> NewArgOperandAttributes
;
3077 for (unsigned OldArgNum
= 0; OldArgNum
< ARIs
.size(); ++OldArgNum
) {
3078 unsigned NewFirstArgNum
= NewArgOperands
.size();
3079 (void)NewFirstArgNum
; // only used inside assert.
3080 if (const std::unique_ptr
<ArgumentReplacementInfo
> &ARI
=
3082 if (ARI
->ACSRepairCB
)
3083 ARI
->ACSRepairCB(*ARI
, ACS
, NewArgOperands
);
3084 assert(ARI
->getNumReplacementArgs() + NewFirstArgNum
==
3085 NewArgOperands
.size() &&
3086 "ACS repair callback did not provide as many operand as new "
3087 "types were registered!");
3088 // TODO: Exose the attribute set to the ACS repair callback
3089 NewArgOperandAttributes
.append(ARI
->ReplacementTypes
.size(),
3092 NewArgOperands
.push_back(ACS
.getCallArgOperand(OldArgNum
));
3093 NewArgOperandAttributes
.push_back(
3094 OldCallAttributeList
.getParamAttrs(OldArgNum
));
3098 assert(NewArgOperands
.size() == NewArgOperandAttributes
.size() &&
3099 "Mismatch # argument operands vs. # argument operand attributes!");
3100 assert(NewArgOperands
.size() == NewFn
->arg_size() &&
3101 "Mismatch # argument operands vs. # function arguments!");
3103 SmallVector
<OperandBundleDef
, 4> OperandBundleDefs
;
3104 OldCB
->getOperandBundlesAsDefs(OperandBundleDefs
);
3106 // Create a new call or invoke instruction to replace the old one.
3108 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(OldCB
)) {
3109 NewCB
= InvokeInst::Create(NewFn
, II
->getNormalDest(),
3110 II
->getUnwindDest(), NewArgOperands
,
3111 OperandBundleDefs
, "", OldCB
->getIterator());
3113 auto *NewCI
= CallInst::Create(NewFn
, NewArgOperands
, OperandBundleDefs
,
3114 "", OldCB
->getIterator());
3115 NewCI
->setTailCallKind(cast
<CallInst
>(OldCB
)->getTailCallKind());
3119 // Copy over various properties and the new attributes.
3120 NewCB
->copyMetadata(*OldCB
, {LLVMContext::MD_prof
, LLVMContext::MD_dbg
});
3121 NewCB
->setCallingConv(OldCB
->getCallingConv());
3122 NewCB
->takeName(OldCB
);
3123 NewCB
->setAttributes(AttributeList::get(
3124 Ctx
, OldCallAttributeList
.getFnAttrs(),
3125 OldCallAttributeList
.getRetAttrs(), NewArgOperandAttributes
));
3127 AttributeFuncs::updateMinLegalVectorWidthAttr(*NewCB
->getCaller(),
3128 LargestVectorWidth
);
3130 CallSitePairs
.push_back({OldCB
, NewCB
});
3134 // Use the CallSiteReplacementCreator to create replacement call sites.
3135 bool UsedAssumedInformation
= false;
3136 bool Success
= checkForAllCallSites(CallSiteReplacementCreator
, *OldFn
,
3137 true, nullptr, UsedAssumedInformation
,
3138 /* CheckPotentiallyDead */ true);
3140 assert(Success
&& "Assumed call site replacement to succeed!");
3142 // Rewire the arguments.
3143 Argument
*OldFnArgIt
= OldFn
->arg_begin();
3144 Argument
*NewFnArgIt
= NewFn
->arg_begin();
3145 for (unsigned OldArgNum
= 0; OldArgNum
< ARIs
.size();
3146 ++OldArgNum
, ++OldFnArgIt
) {
3147 if (const std::unique_ptr
<ArgumentReplacementInfo
> &ARI
=
3149 if (ARI
->CalleeRepairCB
)
3150 ARI
->CalleeRepairCB(*ARI
, *NewFn
, NewFnArgIt
);
3151 if (ARI
->ReplacementTypes
.empty())
3152 OldFnArgIt
->replaceAllUsesWith(
3153 PoisonValue::get(OldFnArgIt
->getType()));
3154 NewFnArgIt
+= ARI
->ReplacementTypes
.size();
3156 NewFnArgIt
->takeName(&*OldFnArgIt
);
3157 OldFnArgIt
->replaceAllUsesWith(&*NewFnArgIt
);
3162 // Eliminate the instructions *after* we visited all of them.
3163 for (auto &CallSitePair
: CallSitePairs
) {
3164 CallBase
&OldCB
= *CallSitePair
.first
;
3165 CallBase
&NewCB
= *CallSitePair
.second
;
3166 assert(OldCB
.getType() == NewCB
.getType() &&
3167 "Cannot handle call sites with different types!");
3168 ModifiedFns
.insert(OldCB
.getFunction());
3169 OldCB
.replaceAllUsesWith(&NewCB
);
3170 OldCB
.eraseFromParent();
3173 // Replace the function in the call graph (if any).
3174 Configuration
.CGUpdater
.replaceFunctionWith(*OldFn
, *NewFn
);
3176 // If the old function was modified and needed to be reanalyzed, the new one
3178 if (ModifiedFns
.remove(OldFn
))
3179 ModifiedFns
.insert(NewFn
);
3181 Changed
= ChangeStatus::CHANGED
;
3187 void InformationCache::initializeInformationCache(const Function
&CF
,
3189 // As we do not modify the function here we can remove the const
3190 // withouth breaking implicit assumptions. At the end of the day, we could
3191 // initialize the cache eagerly which would look the same to the users.
3192 Function
&F
= const_cast<Function
&>(CF
);
3194 // Walk all instructions to find interesting instructions that might be
3195 // queried by abstract attributes during their initialization or update.
3196 // This has to happen before we create attributes.
3198 DenseMap
<const Value
*, std::optional
<short>> AssumeUsesMap
;
3200 // Add \p V to the assume uses map which track the number of uses outside of
3201 // "visited" assumes. If no outside uses are left the value is added to the
3202 // assume only use vector.
3203 auto AddToAssumeUsesMap
= [&](const Value
&V
) -> void {
3204 SmallVector
<const Instruction
*> Worklist
;
3205 if (auto *I
= dyn_cast
<Instruction
>(&V
))
3206 Worklist
.push_back(I
);
3207 while (!Worklist
.empty()) {
3208 const Instruction
*I
= Worklist
.pop_back_val();
3209 std::optional
<short> &NumUses
= AssumeUsesMap
[I
];
3211 NumUses
= I
->getNumUses();
3212 NumUses
= *NumUses
- /* this assume */ 1;
3215 AssumeOnlyValues
.insert(I
);
3216 for (const Value
*Op
: I
->operands())
3217 if (auto *OpI
= dyn_cast
<Instruction
>(Op
))
3218 Worklist
.push_back(OpI
);
3222 for (Instruction
&I
: instructions(&F
)) {
3223 bool IsInterestingOpcode
= false;
3225 // To allow easy access to all instructions in a function with a given
3226 // opcode we store them in the InfoCache. As not all opcodes are interesting
3227 // to concrete attributes we only cache the ones that are as identified in
3228 // the following switch.
3229 // Note: There are no concrete attributes now so this is initially empty.
3230 switch (I
.getOpcode()) {
3232 assert(!isa
<CallBase
>(&I
) &&
3233 "New call base instruction type needs to be known in the "
3236 case Instruction::Call
:
3237 // Calls are interesting on their own, additionally:
3238 // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
3239 // For `must-tail` calls we remember the caller and callee.
3240 if (auto *Assume
= dyn_cast
<AssumeInst
>(&I
)) {
3241 AssumeOnlyValues
.insert(Assume
);
3242 fillMapFromAssume(*Assume
, KnowledgeMap
);
3243 AddToAssumeUsesMap(*Assume
->getArgOperand(0));
3244 } else if (cast
<CallInst
>(I
).isMustTailCall()) {
3245 FI
.ContainsMustTailCall
= true;
3246 if (auto *Callee
= dyn_cast_if_present
<Function
>(
3247 cast
<CallInst
>(I
).getCalledOperand()))
3248 getFunctionInfo(*Callee
).CalledViaMustTail
= true;
3251 case Instruction::CallBr
:
3252 case Instruction::Invoke
:
3253 case Instruction::CleanupRet
:
3254 case Instruction::CatchSwitch
:
3255 case Instruction::AtomicRMW
:
3256 case Instruction::AtomicCmpXchg
:
3257 case Instruction::Br
:
3258 case Instruction::Resume
:
3259 case Instruction::Ret
:
3260 case Instruction::Load
:
3261 // The alignment of a pointer is interesting for loads.
3262 case Instruction::Store
:
3263 // The alignment of a pointer is interesting for stores.
3264 case Instruction::Alloca
:
3265 case Instruction::AddrSpaceCast
:
3266 IsInterestingOpcode
= true;
3268 if (IsInterestingOpcode
) {
3269 auto *&Insts
= FI
.OpcodeInstMap
[I
.getOpcode()];
3271 Insts
= new (Allocator
) InstructionVectorTy();
3272 Insts
->push_back(&I
);
3274 if (I
.mayReadOrWriteMemory())
3275 FI
.RWInsts
.push_back(&I
);
3278 if (F
.hasFnAttribute(Attribute::AlwaysInline
) &&
3279 isInlineViable(F
).isSuccess())
3280 InlineableFunctions
.insert(&F
);
3283 InformationCache::FunctionInfo::~FunctionInfo() {
3284 // The instruction vectors are allocated using a BumpPtrAllocator, we need to
3285 // manually destroy them.
3286 for (auto &It
: OpcodeInstMap
)
3287 It
.getSecond()->~InstructionVectorTy();
3290 const ArrayRef
<Function
*>
3291 InformationCache::getIndirectlyCallableFunctions(Attributor
&A
) const {
3292 assert(A
.isClosedWorldModule() && "Cannot see all indirect callees!");
3293 return IndirectlyCallableFunctions
;
3296 std::optional
<unsigned> InformationCache::getFlatAddressSpace() const {
3297 if (TargetTriple
.isAMDGPU() || TargetTriple
.isNVPTX())
3299 return std::nullopt
;
3302 void Attributor::recordDependence(const AbstractAttribute
&FromAA
,
3303 const AbstractAttribute
&ToAA
,
3304 DepClassTy DepClass
) {
3305 if (DepClass
== DepClassTy::NONE
)
3307 // If we are outside of an update, thus before the actual fixpoint iteration
3308 // started (= when we create AAs), we do not track dependences because we will
3309 // put all AAs into the initial worklist anyway.
3310 if (DependenceStack
.empty())
3312 if (FromAA
.getState().isAtFixpoint())
3314 DependenceStack
.back()->push_back({&FromAA
, &ToAA
, DepClass
});
3317 void Attributor::rememberDependences() {
3318 assert(!DependenceStack
.empty() && "No dependences to remember!");
3320 for (DepInfo
&DI
: *DependenceStack
.back()) {
3321 assert((DI
.DepClass
== DepClassTy::REQUIRED
||
3322 DI
.DepClass
== DepClassTy::OPTIONAL
) &&
3323 "Expected required or optional dependence (1 bit)!");
3324 auto &DepAAs
= const_cast<AbstractAttribute
&>(*DI
.FromAA
).Deps
;
3325 DepAAs
.insert(AbstractAttribute::DepTy(
3326 const_cast<AbstractAttribute
*>(DI
.ToAA
), unsigned(DI
.DepClass
)));
3330 template <Attribute::AttrKind AK
, typename AAType
>
3331 void Attributor::checkAndQueryIRAttr(const IRPosition
&IRP
,
3332 AttributeSet Attrs
) {
3334 if (!Attrs
.hasAttribute(AK
))
3335 if (!Configuration
.Allowed
|| Configuration
.Allowed
->count(&AAType::ID
))
3336 if (!AA::hasAssumedIRAttr
<AK
>(*this, nullptr, IRP
, DepClassTy::NONE
,
3338 getOrCreateAAFor
<AAType
>(IRP
);
3341 void Attributor::identifyDefaultAbstractAttributes(Function
&F
) {
3342 if (!VisitedFunctions
.insert(&F
).second
)
3344 if (F
.isDeclaration())
3347 // In non-module runs we need to look at the call sites of a function to
3348 // determine if it is part of a must-tail call edge. This will influence what
3349 // attributes we can derive.
3350 InformationCache::FunctionInfo
&FI
= InfoCache
.getFunctionInfo(F
);
3351 if (!isModulePass() && !FI
.CalledViaMustTail
) {
3352 for (const Use
&U
: F
.uses())
3353 if (const auto *CB
= dyn_cast
<CallBase
>(U
.getUser()))
3354 if (CB
->isCallee(&U
) && CB
->isMustTailCall())
3355 FI
.CalledViaMustTail
= true;
3358 IRPosition FPos
= IRPosition::function(F
);
3359 bool IsIPOAmendable
= isFunctionIPOAmendable(F
);
3360 auto Attrs
= F
.getAttributes();
3361 auto FnAttrs
= Attrs
.getFnAttrs();
3363 // Check for dead BasicBlocks in every function.
3364 // We need dead instruction detection because we do not want to deal with
3365 // broken IR in which SSA rules do not apply.
3366 getOrCreateAAFor
<AAIsDead
>(FPos
);
3368 // Every function might contain instructions that cause "undefined
3370 getOrCreateAAFor
<AAUndefinedBehavior
>(FPos
);
3372 // Every function might be applicable for Heap-To-Stack conversion.
3373 if (EnableHeapToStack
)
3374 getOrCreateAAFor
<AAHeapToStack
>(FPos
);
3376 // Every function might be "must-progress".
3377 checkAndQueryIRAttr
<Attribute::MustProgress
, AAMustProgress
>(FPos
, FnAttrs
);
3379 // Every function might be "no-free".
3380 checkAndQueryIRAttr
<Attribute::NoFree
, AANoFree
>(FPos
, FnAttrs
);
3382 // Every function might be "will-return".
3383 checkAndQueryIRAttr
<Attribute::WillReturn
, AAWillReturn
>(FPos
, FnAttrs
);
3385 // Every function might be marked "nosync"
3386 checkAndQueryIRAttr
<Attribute::NoSync
, AANoSync
>(FPos
, FnAttrs
);
3388 // Everything that is visible from the outside (=function, argument, return
3389 // positions), cannot be changed if the function is not IPO amendable. We can
3390 // however analyse the code inside.
3391 if (IsIPOAmendable
) {
3393 // Every function can be nounwind.
3394 checkAndQueryIRAttr
<Attribute::NoUnwind
, AANoUnwind
>(FPos
, FnAttrs
);
3396 // Every function might be "no-return".
3397 checkAndQueryIRAttr
<Attribute::NoReturn
, AANoReturn
>(FPos
, FnAttrs
);
3399 // Every function might be "no-recurse".
3400 checkAndQueryIRAttr
<Attribute::NoRecurse
, AANoRecurse
>(FPos
, FnAttrs
);
3402 // Every function can be "non-convergent".
3403 if (Attrs
.hasFnAttr(Attribute::Convergent
))
3404 getOrCreateAAFor
<AANonConvergent
>(FPos
);
3406 // Every function might be "readnone/readonly/writeonly/...".
3407 getOrCreateAAFor
<AAMemoryBehavior
>(FPos
);
3409 // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
3410 getOrCreateAAFor
<AAMemoryLocation
>(FPos
);
3412 // Every function can track active assumptions.
3413 getOrCreateAAFor
<AAAssumptionInfo
>(FPos
);
3415 // If we're not using a dynamic mode for float, there's nothing worthwhile
3416 // to infer. This misses the edge case denormal-fp-math="dynamic" and
3417 // denormal-fp-math-f32=something, but that likely has no real world use.
3418 DenormalMode Mode
= F
.getDenormalMode(APFloat::IEEEsingle());
3419 if (Mode
.Input
== DenormalMode::Dynamic
||
3420 Mode
.Output
== DenormalMode::Dynamic
)
3421 getOrCreateAAFor
<AADenormalFPMath
>(FPos
);
3423 // Return attributes are only appropriate if the return type is non void.
3424 Type
*ReturnType
= F
.getReturnType();
3425 if (!ReturnType
->isVoidTy()) {
3426 IRPosition RetPos
= IRPosition::returned(F
);
3427 AttributeSet RetAttrs
= Attrs
.getRetAttrs();
3429 // Every returned value might be dead.
3430 getOrCreateAAFor
<AAIsDead
>(RetPos
);
3432 // Every function might be simplified.
3433 bool UsedAssumedInformation
= false;
3434 getAssumedSimplified(RetPos
, nullptr, UsedAssumedInformation
,
3435 AA::Intraprocedural
);
3437 // Every returned value might be marked noundef.
3438 checkAndQueryIRAttr
<Attribute::NoUndef
, AANoUndef
>(RetPos
, RetAttrs
);
3440 if (ReturnType
->isPointerTy()) {
3442 // Every function with pointer return type might be marked align.
3443 getOrCreateAAFor
<AAAlign
>(RetPos
);
3445 // Every function with pointer return type might be marked nonnull.
3446 checkAndQueryIRAttr
<Attribute::NonNull
, AANonNull
>(RetPos
, RetAttrs
);
3448 // Every function with pointer return type might be marked noalias.
3449 checkAndQueryIRAttr
<Attribute::NoAlias
, AANoAlias
>(RetPos
, RetAttrs
);
3451 // Every function with pointer return type might be marked
3453 getOrCreateAAFor
<AADereferenceable
>(RetPos
);
3454 } else if (AttributeFuncs::isNoFPClassCompatibleType(ReturnType
)) {
3455 getOrCreateAAFor
<AANoFPClass
>(RetPos
);
3460 for (Argument
&Arg
: F
.args()) {
3461 IRPosition ArgPos
= IRPosition::argument(Arg
);
3462 auto ArgNo
= Arg
.getArgNo();
3463 AttributeSet ArgAttrs
= Attrs
.getParamAttrs(ArgNo
);
3465 if (!IsIPOAmendable
) {
3466 if (Arg
.getType()->isPointerTy())
3467 // Every argument with pointer type might be marked nofree.
3468 checkAndQueryIRAttr
<Attribute::NoFree
, AANoFree
>(ArgPos
, ArgAttrs
);
3472 // Every argument might be simplified. We have to go through the
3473 // Attributor interface though as outside AAs can register custom
3474 // simplification callbacks.
3475 bool UsedAssumedInformation
= false;
3476 getAssumedSimplified(ArgPos
, /* AA */ nullptr, UsedAssumedInformation
,
3477 AA::Intraprocedural
);
3479 // Every argument might be dead.
3480 getOrCreateAAFor
<AAIsDead
>(ArgPos
);
3482 // Every argument might be marked noundef.
3483 checkAndQueryIRAttr
<Attribute::NoUndef
, AANoUndef
>(ArgPos
, ArgAttrs
);
3485 if (Arg
.getType()->isPointerTy()) {
3486 // Every argument with pointer type might be marked nonnull.
3487 checkAndQueryIRAttr
<Attribute::NonNull
, AANonNull
>(ArgPos
, ArgAttrs
);
3489 // Every argument with pointer type might be marked noalias.
3490 checkAndQueryIRAttr
<Attribute::NoAlias
, AANoAlias
>(ArgPos
, ArgAttrs
);
3492 // Every argument with pointer type might be marked dereferenceable.
3493 getOrCreateAAFor
<AADereferenceable
>(ArgPos
);
3495 // Every argument with pointer type might be marked align.
3496 getOrCreateAAFor
<AAAlign
>(ArgPos
);
3498 // Every argument with pointer type might be marked nocapture.
3499 checkAndQueryIRAttr
<Attribute::NoCapture
, AANoCapture
>(ArgPos
, ArgAttrs
);
3501 // Every argument with pointer type might be marked
3502 // "readnone/readonly/writeonly/..."
3503 getOrCreateAAFor
<AAMemoryBehavior
>(ArgPos
);
3505 // Every argument with pointer type might be marked nofree.
3506 checkAndQueryIRAttr
<Attribute::NoFree
, AANoFree
>(ArgPos
, ArgAttrs
);
3508 // Every argument with pointer type might be privatizable (or
3510 getOrCreateAAFor
<AAPrivatizablePtr
>(ArgPos
);
3511 } else if (AttributeFuncs::isNoFPClassCompatibleType(Arg
.getType())) {
3512 getOrCreateAAFor
<AANoFPClass
>(ArgPos
);
3516 auto CallSitePred
= [&](Instruction
&I
) -> bool {
3517 auto &CB
= cast
<CallBase
>(I
);
3518 IRPosition CBInstPos
= IRPosition::inst(CB
);
3519 IRPosition CBFnPos
= IRPosition::callsite_function(CB
);
3521 // Call sites might be dead if they do not have side effects and no live
3522 // users. The return value might be dead if there are no live users.
3523 getOrCreateAAFor
<AAIsDead
>(CBInstPos
);
3525 Function
*Callee
= dyn_cast_if_present
<Function
>(CB
.getCalledOperand());
3526 // TODO: Even if the callee is not known now we might be able to simplify
3529 getOrCreateAAFor
<AAIndirectCallInfo
>(CBFnPos
);
3533 // Every call site can track active assumptions.
3534 getOrCreateAAFor
<AAAssumptionInfo
>(CBFnPos
);
3536 // Skip declarations except if annotations on their call sites were
3537 // explicitly requested.
3538 if (!AnnotateDeclarationCallSites
&& Callee
->isDeclaration() &&
3539 !Callee
->hasMetadata(LLVMContext::MD_callback
))
3542 if (!Callee
->getReturnType()->isVoidTy() && !CB
.use_empty()) {
3543 IRPosition CBRetPos
= IRPosition::callsite_returned(CB
);
3544 bool UsedAssumedInformation
= false;
3545 getAssumedSimplified(CBRetPos
, nullptr, UsedAssumedInformation
,
3546 AA::Intraprocedural
);
3548 if (AttributeFuncs::isNoFPClassCompatibleType(Callee
->getReturnType()))
3549 getOrCreateAAFor
<AANoFPClass
>(CBInstPos
);
3552 const AttributeList
&CBAttrs
= CBFnPos
.getAttrList();
3553 for (int I
= 0, E
= CB
.arg_size(); I
< E
; ++I
) {
3555 IRPosition CBArgPos
= IRPosition::callsite_argument(CB
, I
);
3556 AttributeSet CBArgAttrs
= CBAttrs
.getParamAttrs(I
);
3558 // Every call site argument might be dead.
3559 getOrCreateAAFor
<AAIsDead
>(CBArgPos
);
3561 // Call site argument might be simplified. We have to go through the
3562 // Attributor interface though as outside AAs can register custom
3563 // simplification callbacks.
3564 bool UsedAssumedInformation
= false;
3565 getAssumedSimplified(CBArgPos
, /* AA */ nullptr, UsedAssumedInformation
,
3566 AA::Intraprocedural
);
3568 // Every call site argument might be marked "noundef".
3569 checkAndQueryIRAttr
<Attribute::NoUndef
, AANoUndef
>(CBArgPos
, CBArgAttrs
);
3571 Type
*ArgTy
= CB
.getArgOperand(I
)->getType();
3573 if (!ArgTy
->isPointerTy()) {
3574 if (AttributeFuncs::isNoFPClassCompatibleType(ArgTy
))
3575 getOrCreateAAFor
<AANoFPClass
>(CBArgPos
);
3580 // Call site argument attribute "non-null".
3581 checkAndQueryIRAttr
<Attribute::NonNull
, AANonNull
>(CBArgPos
, CBArgAttrs
);
3583 // Call site argument attribute "nocapture".
3584 checkAndQueryIRAttr
<Attribute::NoCapture
, AANoCapture
>(CBArgPos
,
3587 // Call site argument attribute "no-alias".
3588 checkAndQueryIRAttr
<Attribute::NoAlias
, AANoAlias
>(CBArgPos
, CBArgAttrs
);
3590 // Call site argument attribute "dereferenceable".
3591 getOrCreateAAFor
<AADereferenceable
>(CBArgPos
);
3593 // Call site argument attribute "align".
3594 getOrCreateAAFor
<AAAlign
>(CBArgPos
);
3596 // Call site argument attribute
3597 // "readnone/readonly/writeonly/..."
3598 if (!CBAttrs
.hasParamAttr(I
, Attribute::ReadNone
))
3599 getOrCreateAAFor
<AAMemoryBehavior
>(CBArgPos
);
3601 // Call site argument attribute "nofree".
3602 checkAndQueryIRAttr
<Attribute::NoFree
, AANoFree
>(CBArgPos
, CBArgAttrs
);
3607 auto &OpcodeInstMap
= InfoCache
.getOpcodeInstMapForFunction(F
);
3608 [[maybe_unused
]] bool Success
;
3609 bool UsedAssumedInformation
= false;
3610 Success
= checkForAllInstructionsImpl(
3611 nullptr, OpcodeInstMap
, CallSitePred
, nullptr, nullptr,
3612 {(unsigned)Instruction::Invoke
, (unsigned)Instruction::CallBr
,
3613 (unsigned)Instruction::Call
},
3614 UsedAssumedInformation
);
3615 assert(Success
&& "Expected the check call to be successful!");
3617 auto LoadStorePred
= [&](Instruction
&I
) -> bool {
3618 if (auto *LI
= dyn_cast
<LoadInst
>(&I
)) {
3619 getOrCreateAAFor
<AAAlign
>(IRPosition::value(*LI
->getPointerOperand()));
3620 if (SimplifyAllLoads
)
3621 getAssumedSimplified(IRPosition::value(I
), nullptr,
3622 UsedAssumedInformation
, AA::Intraprocedural
);
3623 getOrCreateAAFor
<AAAddressSpace
>(
3624 IRPosition::value(*LI
->getPointerOperand()));
3626 auto &SI
= cast
<StoreInst
>(I
);
3627 getOrCreateAAFor
<AAIsDead
>(IRPosition::inst(I
));
3628 getAssumedSimplified(IRPosition::value(*SI
.getValueOperand()), nullptr,
3629 UsedAssumedInformation
, AA::Intraprocedural
);
3630 getOrCreateAAFor
<AAAlign
>(IRPosition::value(*SI
.getPointerOperand()));
3631 getOrCreateAAFor
<AAAddressSpace
>(
3632 IRPosition::value(*SI
.getPointerOperand()));
3636 Success
= checkForAllInstructionsImpl(
3637 nullptr, OpcodeInstMap
, LoadStorePred
, nullptr, nullptr,
3638 {(unsigned)Instruction::Load
, (unsigned)Instruction::Store
},
3639 UsedAssumedInformation
);
3640 assert(Success
&& "Expected the check call to be successful!");
3642 // AllocaInstPredicate
3643 auto AAAllocationInfoPred
= [&](Instruction
&I
) -> bool {
3644 getOrCreateAAFor
<AAAllocationInfo
>(IRPosition::value(I
));
3648 Success
= checkForAllInstructionsImpl(
3649 nullptr, OpcodeInstMap
, AAAllocationInfoPred
, nullptr, nullptr,
3650 {(unsigned)Instruction::Alloca
}, UsedAssumedInformation
);
3651 assert(Success
&& "Expected the check call to be successful!");
3654 bool Attributor::isClosedWorldModule() const {
3655 if (CloseWorldAssumption
.getNumOccurrences())
3656 return CloseWorldAssumption
;
3657 return isModulePass() && Configuration
.IsClosedWorldModule
;
3660 /// Helpers to ease debugging through output streams and print calls.
3663 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, ChangeStatus S
) {
3664 return OS
<< (S
== ChangeStatus::CHANGED
? "changed" : "unchanged");
3667 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, IRPosition::Kind AP
) {
3669 case IRPosition::IRP_INVALID
:
3671 case IRPosition::IRP_FLOAT
:
3673 case IRPosition::IRP_RETURNED
:
3674 return OS
<< "fn_ret";
3675 case IRPosition::IRP_CALL_SITE_RETURNED
:
3676 return OS
<< "cs_ret";
3677 case IRPosition::IRP_FUNCTION
:
3679 case IRPosition::IRP_CALL_SITE
:
3681 case IRPosition::IRP_ARGUMENT
:
3683 case IRPosition::IRP_CALL_SITE_ARGUMENT
:
3684 return OS
<< "cs_arg";
3686 llvm_unreachable("Unknown attribute position!");
3689 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const IRPosition
&Pos
) {
3690 const Value
&AV
= Pos
.getAssociatedValue();
3691 OS
<< "{" << Pos
.getPositionKind() << ":" << AV
.getName() << " ["
3692 << Pos
.getAnchorValue().getName() << "@" << Pos
.getCallSiteArgNo() << "]";
3694 if (Pos
.hasCallBaseContext())
3695 OS
<< "[cb_context:" << *Pos
.getCallBaseContext() << "]";
3699 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const IntegerRangeState
&S
) {
3700 OS
<< "range-state(" << S
.getBitWidth() << ")<";
3701 S
.getKnown().print(OS
);
3703 S
.getAssumed().print(OS
);
3706 return OS
<< static_cast<const AbstractState
&>(S
);
3709 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const AbstractState
&S
) {
3710 return OS
<< (!S
.isValidState() ? "top" : (S
.isAtFixpoint() ? "fix" : ""));
3713 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const AbstractAttribute
&AA
) {
3718 raw_ostream
&llvm::operator<<(raw_ostream
&OS
,
3719 const PotentialConstantIntValuesState
&S
) {
3720 OS
<< "set-state(< {";
3721 if (!S
.isValidState())
3724 for (const auto &It
: S
.getAssumedSet())
3726 if (S
.undefIsContained())
3734 raw_ostream
&llvm::operator<<(raw_ostream
&OS
,
3735 const PotentialLLVMValuesState
&S
) {
3736 OS
<< "set-state(< {";
3737 if (!S
.isValidState())
3740 for (const auto &It
: S
.getAssumedSet()) {
3741 if (auto *F
= dyn_cast
<Function
>(It
.first
.getValue()))
3742 OS
<< "@" << F
->getName() << "[" << int(It
.second
) << "], ";
3744 OS
<< *It
.first
.getValue() << "[" << int(It
.second
) << "], ";
3746 if (S
.undefIsContained())
3754 void AbstractAttribute::print(Attributor
*A
, raw_ostream
&OS
) const {
3757 OS
<< "] for CtxI ";
3759 if (auto *I
= getCtxI()) {
3764 OS
<< "<<null inst>>";
3766 OS
<< " at position " << getIRPosition() << " with state " << getAsStr(A
)
3770 void AbstractAttribute::printWithDeps(raw_ostream
&OS
) const {
3773 for (const auto &DepAA
: Deps
) {
3774 auto *AA
= DepAA
.getPointer();
3782 raw_ostream
&llvm::operator<<(raw_ostream
&OS
,
3783 const AAPointerInfo::Access
&Acc
) {
3784 OS
<< " [" << Acc
.getKind() << "] " << *Acc
.getRemoteInst();
3785 if (Acc
.getLocalInst() != Acc
.getRemoteInst())
3786 OS
<< " via " << *Acc
.getLocalInst();
3787 if (Acc
.getContent()) {
3788 if (*Acc
.getContent())
3789 OS
<< " [" << **Acc
.getContent() << "]";
3791 OS
<< " [ <unknown> ]";
3797 /// ----------------------------------------------------------------------------
3798 /// Pass (Manager) Boilerplate
3799 /// ----------------------------------------------------------------------------
3801 static bool runAttributorOnFunctions(InformationCache
&InfoCache
,
3802 SetVector
<Function
*> &Functions
,
3804 CallGraphUpdater
&CGUpdater
,
3805 bool DeleteFns
, bool IsModulePass
) {
3806 if (Functions
.empty())
3810 dbgs() << "[Attributor] Run on module with " << Functions
.size()
3812 for (Function
*Fn
: Functions
)
3813 dbgs() << " - " << Fn
->getName() << "\n";
3816 // Create an Attributor and initially empty information cache that is filled
3817 // while we identify default attribute opportunities.
3818 AttributorConfig
AC(CGUpdater
);
3819 AC
.IsModulePass
= IsModulePass
;
3820 AC
.DeleteFns
= DeleteFns
;
3822 /// Tracking callback for specialization of indirect calls.
3823 DenseMap
<CallBase
*, std::unique_ptr
<SmallPtrSet
<Function
*, 8>>>
3824 IndirectCalleeTrackingMap
;
3825 if (MaxSpecializationPerCB
.getNumOccurrences()) {
3826 AC
.IndirectCalleeSpecializationCallback
=
3827 [&](Attributor
&, const AbstractAttribute
&AA
, CallBase
&CB
,
3828 Function
&Callee
, unsigned) {
3829 if (MaxSpecializationPerCB
== 0)
3831 auto &Set
= IndirectCalleeTrackingMap
[&CB
];
3833 Set
= std::make_unique
<SmallPtrSet
<Function
*, 8>>();
3834 if (Set
->size() >= MaxSpecializationPerCB
)
3835 return Set
->contains(&Callee
);
3836 Set
->insert(&Callee
);
3841 Attributor
A(Functions
, InfoCache
, AC
);
3843 // Create shallow wrappers for all functions that are not IPO amendable
3844 if (AllowShallowWrappers
)
3845 for (Function
*F
: Functions
)
3846 if (!A
.isFunctionIPOAmendable(*F
))
3847 Attributor::createShallowWrapper(*F
);
3849 // Internalize non-exact functions
3850 // TODO: for now we eagerly internalize functions without calculating the
3851 // cost, we need a cost interface to determine whether internalizing
3852 // a function is "beneficial"
3853 if (AllowDeepWrapper
) {
3854 unsigned FunSize
= Functions
.size();
3855 for (unsigned u
= 0; u
< FunSize
; u
++) {
3856 Function
*F
= Functions
[u
];
3857 if (!F
->isDeclaration() && !F
->isDefinitionExact() && F
->getNumUses() &&
3858 !GlobalValue::isInterposableLinkage(F
->getLinkage())) {
3859 Function
*NewF
= Attributor::internalizeFunction(*F
);
3860 assert(NewF
&& "Could not internalize function.");
3861 Functions
.insert(NewF
);
3863 // Update call graph
3864 CGUpdater
.replaceFunctionWith(*F
, *NewF
);
3865 for (const Use
&U
: NewF
->uses())
3866 if (CallBase
*CB
= dyn_cast
<CallBase
>(U
.getUser())) {
3867 auto *CallerF
= CB
->getCaller();
3868 CGUpdater
.reanalyzeFunction(*CallerF
);
3874 for (Function
*F
: Functions
) {
3875 if (F
->hasExactDefinition())
3876 NumFnWithExactDefinition
++;
3878 NumFnWithoutExactDefinition
++;
3880 // We look at internal functions only on-demand but if any use is not a
3881 // direct call or outside the current set of analyzed functions, we have
3882 // to do it eagerly.
3883 if (F
->hasLocalLinkage()) {
3884 if (llvm::all_of(F
->uses(), [&Functions
](const Use
&U
) {
3885 const auto *CB
= dyn_cast
<CallBase
>(U
.getUser());
3886 return CB
&& CB
->isCallee(&U
) &&
3887 Functions
.count(const_cast<Function
*>(CB
->getCaller()));
3892 // Populate the Attributor with abstract attribute opportunities in the
3893 // function and the information cache with IR information.
3894 A
.identifyDefaultAbstractAttributes(*F
);
3897 ChangeStatus Changed
= A
.run();
3899 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions
.size()
3900 << " functions, result: " << Changed
<< ".\n");
3901 return Changed
== ChangeStatus::CHANGED
;
3904 static bool runAttributorLightOnFunctions(InformationCache
&InfoCache
,
3905 SetVector
<Function
*> &Functions
,
3907 CallGraphUpdater
&CGUpdater
,
3908 FunctionAnalysisManager
&FAM
,
3909 bool IsModulePass
) {
3910 if (Functions
.empty())
3914 dbgs() << "[AttributorLight] Run on module with " << Functions
.size()
3916 for (Function
*Fn
: Functions
)
3917 dbgs() << " - " << Fn
->getName() << "\n";
3920 // Create an Attributor and initially empty information cache that is filled
3921 // while we identify default attribute opportunities.
3922 AttributorConfig
AC(CGUpdater
);
3923 AC
.IsModulePass
= IsModulePass
;
3924 AC
.DeleteFns
= false;
3925 DenseSet
<const char *> Allowed(
3926 {&AAWillReturn::ID
, &AANoUnwind::ID
, &AANoRecurse::ID
, &AANoSync::ID
,
3927 &AANoFree::ID
, &AANoReturn::ID
, &AAMemoryLocation::ID
,
3928 &AAMemoryBehavior::ID
, &AAUnderlyingObjects::ID
, &AANoCapture::ID
,
3929 &AAInterFnReachability::ID
, &AAIntraFnReachability::ID
, &AACallEdges::ID
,
3930 &AANoFPClass::ID
, &AAMustProgress::ID
, &AANonNull::ID
});
3931 AC
.Allowed
= &Allowed
;
3932 AC
.UseLiveness
= false;
3934 Attributor
A(Functions
, InfoCache
, AC
);
3936 for (Function
*F
: Functions
) {
3937 if (F
->hasExactDefinition())
3938 NumFnWithExactDefinition
++;
3940 NumFnWithoutExactDefinition
++;
3942 // We look at internal functions only on-demand but if any use is not a
3943 // direct call or outside the current set of analyzed functions, we have
3944 // to do it eagerly.
3945 if (AC
.UseLiveness
&& F
->hasLocalLinkage()) {
3946 if (llvm::all_of(F
->uses(), [&Functions
](const Use
&U
) {
3947 const auto *CB
= dyn_cast
<CallBase
>(U
.getUser());
3948 return CB
&& CB
->isCallee(&U
) &&
3949 Functions
.count(const_cast<Function
*>(CB
->getCaller()));
3954 // Populate the Attributor with abstract attribute opportunities in the
3955 // function and the information cache with IR information.
3956 A
.identifyDefaultAbstractAttributes(*F
);
3959 ChangeStatus Changed
= A
.run();
3961 if (Changed
== ChangeStatus::CHANGED
) {
3962 // Invalidate analyses for modified functions so that we don't have to
3963 // invalidate all analyses for all functions in this SCC.
3964 PreservedAnalyses FuncPA
;
3965 // We haven't changed the CFG for modified functions.
3966 FuncPA
.preserveSet
<CFGAnalyses
>();
3967 for (Function
*Changed
: A
.getModifiedFunctions()) {
3968 FAM
.invalidate(*Changed
, FuncPA
);
3969 // Also invalidate any direct callers of changed functions since analyses
3970 // may care about attributes of direct callees. For example, MemorySSA
3971 // cares about whether or not a call's callee modifies memory and queries
3972 // that through function attributes.
3973 for (auto *U
: Changed
->users()) {
3974 if (auto *Call
= dyn_cast
<CallBase
>(U
)) {
3975 if (Call
->getCalledFunction() == Changed
)
3976 FAM
.invalidate(*Call
->getFunction(), FuncPA
);
3981 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions
.size()
3982 << " functions, result: " << Changed
<< ".\n");
3983 return Changed
== ChangeStatus::CHANGED
;
3986 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
3988 void AADepGraph::dumpGraph() {
3989 static std::atomic
<int> CallTimes
;
3992 if (!DepGraphDotFileNamePrefix
.empty())
3993 Prefix
= DepGraphDotFileNamePrefix
;
3995 Prefix
= "dep_graph";
3996 std::string Filename
=
3997 Prefix
+ "_" + std::to_string(CallTimes
.load()) + ".dot";
3999 outs() << "Dependency graph dump to " << Filename
<< ".\n";
4003 raw_fd_ostream
File(Filename
, EC
, sys::fs::OF_TextWithCRLF
);
4005 llvm::WriteGraph(File
, this);
4010 void AADepGraph::print() {
4011 for (auto DepAA
: SyntheticRoot
.Deps
)
4012 cast
<AbstractAttribute
>(DepAA
.getPointer())->printWithDeps(outs());
4015 PreservedAnalyses
AttributorPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
4016 FunctionAnalysisManager
&FAM
=
4017 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
4018 AnalysisGetter
AG(FAM
);
4020 SetVector
<Function
*> Functions
;
4021 for (Function
&F
: M
)
4022 Functions
.insert(&F
);
4024 CallGraphUpdater CGUpdater
;
4025 BumpPtrAllocator Allocator
;
4026 InformationCache
InfoCache(M
, AG
, Allocator
, /* CGSCC */ nullptr);
4027 if (runAttributorOnFunctions(InfoCache
, Functions
, AG
, CGUpdater
,
4028 /* DeleteFns */ true, /* IsModulePass */ true)) {
4029 // FIXME: Think about passes we will preserve and add them here.
4030 return PreservedAnalyses::none();
4032 return PreservedAnalyses::all();
4035 PreservedAnalyses
AttributorCGSCCPass::run(LazyCallGraph::SCC
&C
,
4036 CGSCCAnalysisManager
&AM
,
4038 CGSCCUpdateResult
&UR
) {
4039 FunctionAnalysisManager
&FAM
=
4040 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
4041 AnalysisGetter
AG(FAM
);
4043 SetVector
<Function
*> Functions
;
4044 for (LazyCallGraph::Node
&N
: C
)
4045 Functions
.insert(&N
.getFunction());
4047 if (Functions
.empty())
4048 return PreservedAnalyses::all();
4050 Module
&M
= *Functions
.back()->getParent();
4051 CallGraphUpdater CGUpdater
;
4052 CGUpdater
.initialize(CG
, C
, AM
, UR
);
4053 BumpPtrAllocator Allocator
;
4054 InformationCache
InfoCache(M
, AG
, Allocator
, /* CGSCC */ &Functions
);
4055 if (runAttributorOnFunctions(InfoCache
, Functions
, AG
, CGUpdater
,
4056 /* DeleteFns */ false,
4057 /* IsModulePass */ false)) {
4058 // FIXME: Think about passes we will preserve and add them here.
4059 PreservedAnalyses PA
;
4060 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
4063 return PreservedAnalyses::all();
4066 PreservedAnalyses
AttributorLightPass::run(Module
&M
,
4067 ModuleAnalysisManager
&AM
) {
4068 FunctionAnalysisManager
&FAM
=
4069 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
4070 AnalysisGetter
AG(FAM
, /* CachedOnly */ true);
4072 SetVector
<Function
*> Functions
;
4073 for (Function
&F
: M
)
4074 Functions
.insert(&F
);
4076 CallGraphUpdater CGUpdater
;
4077 BumpPtrAllocator Allocator
;
4078 InformationCache
InfoCache(M
, AG
, Allocator
, /* CGSCC */ nullptr);
4079 if (runAttributorLightOnFunctions(InfoCache
, Functions
, AG
, CGUpdater
, FAM
,
4080 /* IsModulePass */ true)) {
4081 PreservedAnalyses PA
;
4082 // We have not added or removed functions.
4083 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
4084 // We already invalidated all relevant function analyses above.
4085 PA
.preserveSet
<AllAnalysesOn
<Function
>>();
4088 return PreservedAnalyses::all();
4091 PreservedAnalyses
AttributorLightCGSCCPass::run(LazyCallGraph::SCC
&C
,
4092 CGSCCAnalysisManager
&AM
,
4094 CGSCCUpdateResult
&UR
) {
4095 FunctionAnalysisManager
&FAM
=
4096 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
4097 AnalysisGetter
AG(FAM
);
4099 SetVector
<Function
*> Functions
;
4100 for (LazyCallGraph::Node
&N
: C
)
4101 Functions
.insert(&N
.getFunction());
4103 if (Functions
.empty())
4104 return PreservedAnalyses::all();
4106 Module
&M
= *Functions
.back()->getParent();
4107 CallGraphUpdater CGUpdater
;
4108 CGUpdater
.initialize(CG
, C
, AM
, UR
);
4109 BumpPtrAllocator Allocator
;
4110 InformationCache
InfoCache(M
, AG
, Allocator
, /* CGSCC */ &Functions
);
4111 if (runAttributorLightOnFunctions(InfoCache
, Functions
, AG
, CGUpdater
, FAM
,
4112 /* IsModulePass */ false)) {
4113 PreservedAnalyses PA
;
4114 // We have not added or removed functions.
4115 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
4116 // We already invalidated all relevant function analyses above.
4117 PA
.preserveSet
<AllAnalysesOn
<Function
>>();
4120 return PreservedAnalyses::all();
4124 template <> struct GraphTraits
<AADepGraphNode
*> {
4125 using NodeRef
= AADepGraphNode
*;
4126 using DepTy
= PointerIntPair
<AADepGraphNode
*, 1>;
4127 using EdgeRef
= PointerIntPair
<AADepGraphNode
*, 1>;
4129 static NodeRef
getEntryNode(AADepGraphNode
*DGN
) { return DGN
; }
4130 static NodeRef
DepGetVal(const DepTy
&DT
) { return DT
.getPointer(); }
4132 using ChildIteratorType
=
4133 mapped_iterator
<AADepGraphNode::DepSetTy::iterator
, decltype(&DepGetVal
)>;
4134 using ChildEdgeIteratorType
= AADepGraphNode::DepSetTy::iterator
;
4136 static ChildIteratorType
child_begin(NodeRef N
) { return N
->child_begin(); }
4138 static ChildIteratorType
child_end(NodeRef N
) { return N
->child_end(); }
4142 struct GraphTraits
<AADepGraph
*> : public GraphTraits
<AADepGraphNode
*> {
4143 static NodeRef
getEntryNode(AADepGraph
*DG
) { return DG
->GetEntryNode(); }
4145 using nodes_iterator
=
4146 mapped_iterator
<AADepGraphNode::DepSetTy::iterator
, decltype(&DepGetVal
)>;
4148 static nodes_iterator
nodes_begin(AADepGraph
*DG
) { return DG
->begin(); }
4150 static nodes_iterator
nodes_end(AADepGraph
*DG
) { return DG
->end(); }
4153 template <> struct DOTGraphTraits
<AADepGraph
*> : public DefaultDOTGraphTraits
{
4154 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
4156 static std::string
getNodeLabel(const AADepGraphNode
*Node
,
4157 const AADepGraph
*DG
) {
4158 std::string AAString
;
4159 raw_string_ostream
O(AAString
);
4165 } // end namespace llvm