1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/Float2Int.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
28 #define DEBUG_TYPE "float2int"
32 // The algorithm is simple. Start at instructions that convert from the
33 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
34 // graph, using an equivalence datastructure to unify graphs that interfere.
36 // Mappable instructions are those with an integer corrollary that, given
37 // integer domain inputs, produce an integer output; fadd, for example.
39 // If a non-mappable instruction is seen, this entire def-use graph is marked
40 // as non-transformable. If we see an instruction that converts from the
41 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
43 /// The largest integer type worth dealing with.
44 static cl::opt
<unsigned>
45 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden
,
46 cl::desc("Max integer bitwidth to consider in float2int"
49 // Given a FCmp predicate, return a matching ICmp predicate if one
50 // exists, otherwise return BAD_ICMP_PREDICATE.
51 static CmpInst::Predicate
mapFCmpPred(CmpInst::Predicate P
) {
53 case CmpInst::FCMP_OEQ
:
54 case CmpInst::FCMP_UEQ
:
55 return CmpInst::ICMP_EQ
;
56 case CmpInst::FCMP_OGT
:
57 case CmpInst::FCMP_UGT
:
58 return CmpInst::ICMP_SGT
;
59 case CmpInst::FCMP_OGE
:
60 case CmpInst::FCMP_UGE
:
61 return CmpInst::ICMP_SGE
;
62 case CmpInst::FCMP_OLT
:
63 case CmpInst::FCMP_ULT
:
64 return CmpInst::ICMP_SLT
;
65 case CmpInst::FCMP_OLE
:
66 case CmpInst::FCMP_ULE
:
67 return CmpInst::ICMP_SLE
;
68 case CmpInst::FCMP_ONE
:
69 case CmpInst::FCMP_UNE
:
70 return CmpInst::ICMP_NE
;
72 return CmpInst::BAD_ICMP_PREDICATE
;
76 // Given a floating point binary operator, return the matching
78 static Instruction::BinaryOps
mapBinOpcode(unsigned Opcode
) {
80 default: llvm_unreachable("Unhandled opcode!");
81 case Instruction::FAdd
: return Instruction::Add
;
82 case Instruction::FSub
: return Instruction::Sub
;
83 case Instruction::FMul
: return Instruction::Mul
;
87 // Find the roots - instructions that convert from the FP domain to
89 void Float2IntPass::findRoots(Function
&F
, const DominatorTree
&DT
) {
90 for (BasicBlock
&BB
: F
) {
91 // Unreachable code can take on strange forms that we are not prepared to
92 // handle. For example, an instruction may have itself as an operand.
93 if (!DT
.isReachableFromEntry(&BB
))
96 for (Instruction
&I
: BB
) {
97 if (isa
<VectorType
>(I
.getType()))
99 switch (I
.getOpcode()) {
101 case Instruction::FPToUI
:
102 case Instruction::FPToSI
:
105 case Instruction::FCmp
:
106 if (mapFCmpPred(cast
<CmpInst
>(&I
)->getPredicate()) !=
107 CmpInst::BAD_ICMP_PREDICATE
)
115 // Helper - mark I as having been traversed, having range R.
116 void Float2IntPass::seen(Instruction
*I
, ConstantRange R
) {
117 LLVM_DEBUG(dbgs() << "F2I: " << *I
<< ":" << R
<< "\n");
118 SeenInsts
.insert_or_assign(I
, std::move(R
));
121 // Helper - get a range representing a poison value.
122 ConstantRange
Float2IntPass::badRange() {
123 return ConstantRange::getFull(MaxIntegerBW
+ 1);
125 ConstantRange
Float2IntPass::unknownRange() {
126 return ConstantRange::getEmpty(MaxIntegerBW
+ 1);
128 ConstantRange
Float2IntPass::validateRange(ConstantRange R
) {
129 if (R
.getBitWidth() > MaxIntegerBW
+ 1)
134 // The most obvious way to structure the search is a depth-first, eager
135 // search from each root. However, that require direct recursion and so
136 // can only handle small instruction sequences. Instead, we split the search
137 // up into two phases:
138 // - walkBackwards: A breadth-first walk of the use-def graph starting from
139 // the roots. Populate "SeenInsts" with interesting
140 // instructions and poison values if they're obvious and
141 // cheap to compute. Calculate the equivalance set structure
142 // while we're here too.
143 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit
144 // defs before their uses. Calculate the real range info.
146 // Breadth-first walk of the use-def graph; determine the set of nodes
147 // we care about and eagerly determine if some of them are poisonous.
148 void Float2IntPass::walkBackwards() {
149 std::deque
<Instruction
*> Worklist(Roots
.begin(), Roots
.end());
150 while (!Worklist
.empty()) {
151 Instruction
*I
= Worklist
.back();
154 if (SeenInsts
.contains(I
))
158 switch (I
->getOpcode()) {
159 // FIXME: Handle select and phi nodes.
161 // Path terminated uncleanly.
165 case Instruction::UIToFP
:
166 case Instruction::SIToFP
: {
167 // Path terminated cleanly - use the type of the integer input to seed
169 unsigned BW
= I
->getOperand(0)->getType()->getPrimitiveSizeInBits();
170 auto Input
= ConstantRange::getFull(BW
);
171 auto CastOp
= (Instruction::CastOps
)I
->getOpcode();
172 seen(I
, validateRange(Input
.castOp(CastOp
, MaxIntegerBW
+1)));
176 case Instruction::FNeg
:
177 case Instruction::FAdd
:
178 case Instruction::FSub
:
179 case Instruction::FMul
:
180 case Instruction::FPToUI
:
181 case Instruction::FPToSI
:
182 case Instruction::FCmp
:
183 seen(I
, unknownRange());
187 for (Value
*O
: I
->operands()) {
188 if (Instruction
*OI
= dyn_cast
<Instruction
>(O
)) {
189 // Unify def-use chains if they interfere.
190 ECs
.unionSets(I
, OI
);
191 if (SeenInsts
.find(I
)->second
!= badRange())
192 Worklist
.push_back(OI
);
193 } else if (!isa
<ConstantFP
>(O
)) {
194 // Not an instruction or ConstantFP? we can't do anything.
201 // Calculate result range from operand ranges.
202 // Return std::nullopt if the range cannot be calculated yet.
203 std::optional
<ConstantRange
> Float2IntPass::calcRange(Instruction
*I
) {
204 SmallVector
<ConstantRange
, 4> OpRanges
;
205 for (Value
*O
: I
->operands()) {
206 if (Instruction
*OI
= dyn_cast
<Instruction
>(O
)) {
207 auto OpIt
= SeenInsts
.find(OI
);
208 assert(OpIt
!= SeenInsts
.end() && "def not seen before use!");
209 if (OpIt
->second
== unknownRange())
210 return std::nullopt
; // Wait until operand range has been calculated.
211 OpRanges
.push_back(OpIt
->second
);
212 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(O
)) {
213 // Work out if the floating point number can be losslessly represented
215 // APFloat::convertToInteger(&Exact) purports to do what we want, but
216 // the exactness can be too precise. For example, negative zero can
217 // never be exactly converted to an integer.
219 // Instead, we ask APFloat to round itself to an integral value - this
220 // preserves sign-of-zero - then compare the result with the original.
222 const APFloat
&F
= CF
->getValueAPF();
224 // First, weed out obviously incorrect values. Non-finite numbers
225 // can't be represented and neither can negative zero, unless
226 // we're in fast math mode.
228 (F
.isZero() && F
.isNegative() && isa
<FPMathOperator
>(I
) &&
229 !I
->hasNoSignedZeros()))
233 auto Res
= NewF
.roundToIntegral(APFloat::rmNearestTiesToEven
);
234 if (Res
!= APFloat::opOK
|| NewF
!= F
)
237 // OK, it's representable. Now get it.
238 APSInt
Int(MaxIntegerBW
+1, false);
240 CF
->getValueAPF().convertToInteger(Int
,
241 APFloat::rmNearestTiesToEven
,
243 OpRanges
.push_back(ConstantRange(Int
));
245 llvm_unreachable("Should have already marked this as badRange!");
249 switch (I
->getOpcode()) {
250 // FIXME: Handle select and phi nodes.
252 case Instruction::UIToFP
:
253 case Instruction::SIToFP
:
254 llvm_unreachable("Should have been handled in walkForwards!");
256 case Instruction::FNeg
: {
257 assert(OpRanges
.size() == 1 && "FNeg is a unary operator!");
258 unsigned Size
= OpRanges
[0].getBitWidth();
259 auto Zero
= ConstantRange(APInt::getZero(Size
));
260 return Zero
.sub(OpRanges
[0]);
263 case Instruction::FAdd
:
264 case Instruction::FSub
:
265 case Instruction::FMul
: {
266 assert(OpRanges
.size() == 2 && "its a binary operator!");
267 auto BinOp
= (Instruction::BinaryOps
) I
->getOpcode();
268 return OpRanges
[0].binaryOp(BinOp
, OpRanges
[1]);
272 // Root-only instructions - we'll only see these if they're the
273 // first node in a walk.
275 case Instruction::FPToUI
:
276 case Instruction::FPToSI
: {
277 assert(OpRanges
.size() == 1 && "FPTo[US]I is a unary operator!");
278 // Note: We're ignoring the casts output size here as that's what the
280 auto CastOp
= (Instruction::CastOps
)I
->getOpcode();
281 return OpRanges
[0].castOp(CastOp
, MaxIntegerBW
+1);
284 case Instruction::FCmp
:
285 assert(OpRanges
.size() == 2 && "FCmp is a binary operator!");
286 return OpRanges
[0].unionWith(OpRanges
[1]);
290 // Walk forwards down the list of seen instructions, so we visit defs before
292 void Float2IntPass::walkForwards() {
293 std::deque
<Instruction
*> Worklist
;
294 for (const auto &Pair
: SeenInsts
)
295 if (Pair
.second
== unknownRange())
296 Worklist
.push_back(Pair
.first
);
298 while (!Worklist
.empty()) {
299 Instruction
*I
= Worklist
.back();
302 if (std::optional
<ConstantRange
> Range
= calcRange(I
))
305 Worklist
.push_front(I
); // Reprocess later.
309 // If there is a valid transform to be done, do it.
310 bool Float2IntPass::validateAndTransform(const DataLayout
&DL
) {
311 bool MadeChange
= false;
313 // Iterate over every disjoint partition of the def-use graph.
314 for (auto It
= ECs
.begin(), E
= ECs
.end(); It
!= E
; ++It
) {
315 ConstantRange
R(MaxIntegerBW
+ 1, false);
317 Type
*ConvertedToTy
= nullptr;
319 // For every member of the partition, union all the ranges together.
320 for (auto MI
= ECs
.member_begin(It
), ME
= ECs
.member_end();
322 Instruction
*I
= *MI
;
323 auto SeenI
= SeenInsts
.find(I
);
324 if (SeenI
== SeenInsts
.end())
327 R
= R
.unionWith(SeenI
->second
);
328 // We need to ensure I has no users that have not been seen.
329 // If it does, transformation would be illegal.
331 // Don't count the roots, as they terminate the graphs.
332 if (!Roots
.contains(I
)) {
333 // Set the type of the conversion while we're here.
335 ConvertedToTy
= I
->getType();
336 for (User
*U
: I
->users()) {
337 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
338 if (!UI
|| !SeenInsts
.contains(UI
)) {
339 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U
<< "\n");
349 // If the set was empty, or we failed, or the range is poisonous,
351 if (ECs
.member_begin(It
) == ECs
.member_end() || Fail
||
352 R
.isFullSet() || R
.isSignWrappedSet())
354 assert(ConvertedToTy
&& "Must have set the convertedtoty by this point!");
356 // The number of bits required is the maximum of the upper and
357 // lower limits, plus one so it can be signed.
358 unsigned MinBW
= R
.getMinSignedBits() + 1;
359 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW
<< ", R: " << R
<< "\n");
361 // If we've run off the realms of the exactly representable integers,
362 // the floating point result will differ from an integer approximation.
364 // Do we need more bits than are in the mantissa of the type we converted
365 // to? semanticsPrecision returns the number of mantissa bits plus one
367 unsigned MaxRepresentableBits
368 = APFloat::semanticsPrecision(ConvertedToTy
->getFltSemantics()) - 1;
369 if (MinBW
> MaxRepresentableBits
) {
370 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
374 // OK, R is known to be representable.
375 // Pick the smallest legal type that will fit.
376 Type
*Ty
= DL
.getSmallestLegalIntType(*Ctx
, MinBW
);
378 // Every supported target supports 64-bit and 32-bit integers,
379 // so fallback to a 32 or 64-bit integer if the value fits.
381 Ty
= Type::getInt32Ty(*Ctx
);
382 } else if (MinBW
<= 64) {
383 Ty
= Type::getInt64Ty(*Ctx
);
385 LLVM_DEBUG(dbgs() << "F2I: Value requires more bits to represent than "
386 "the target supports!\n");
391 for (auto MI
= ECs
.member_begin(It
), ME
= ECs
.member_end();
400 Value
*Float2IntPass::convert(Instruction
*I
, Type
*ToTy
) {
401 if (auto It
= ConvertedInsts
.find(I
); It
!= ConvertedInsts
.end())
402 // Already converted this instruction.
405 SmallVector
<Value
*,4> NewOperands
;
406 for (Value
*V
: I
->operands()) {
407 // Don't recurse if we're an instruction that terminates the path.
408 if (I
->getOpcode() == Instruction::UIToFP
||
409 I
->getOpcode() == Instruction::SIToFP
) {
410 NewOperands
.push_back(V
);
411 } else if (Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
412 NewOperands
.push_back(convert(VI
, ToTy
));
413 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
414 APSInt
Val(ToTy
->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
416 CF
->getValueAPF().convertToInteger(Val
,
417 APFloat::rmNearestTiesToEven
,
419 NewOperands
.push_back(ConstantInt::get(ToTy
, Val
));
421 llvm_unreachable("Unhandled operand type?");
425 // Now create a new instruction.
427 Value
*NewV
= nullptr;
428 switch (I
->getOpcode()) {
429 default: llvm_unreachable("Unhandled instruction!");
431 case Instruction::FPToUI
:
432 NewV
= IRB
.CreateZExtOrTrunc(NewOperands
[0], I
->getType());
435 case Instruction::FPToSI
:
436 NewV
= IRB
.CreateSExtOrTrunc(NewOperands
[0], I
->getType());
439 case Instruction::FCmp
: {
440 CmpInst::Predicate P
= mapFCmpPred(cast
<CmpInst
>(I
)->getPredicate());
441 assert(P
!= CmpInst::BAD_ICMP_PREDICATE
&& "Unhandled predicate!");
442 NewV
= IRB
.CreateICmp(P
, NewOperands
[0], NewOperands
[1], I
->getName());
446 case Instruction::UIToFP
:
447 NewV
= IRB
.CreateZExtOrTrunc(NewOperands
[0], ToTy
);
450 case Instruction::SIToFP
:
451 NewV
= IRB
.CreateSExtOrTrunc(NewOperands
[0], ToTy
);
454 case Instruction::FNeg
:
455 NewV
= IRB
.CreateNeg(NewOperands
[0], I
->getName());
458 case Instruction::FAdd
:
459 case Instruction::FSub
:
460 case Instruction::FMul
:
461 NewV
= IRB
.CreateBinOp(mapBinOpcode(I
->getOpcode()),
462 NewOperands
[0], NewOperands
[1],
467 // If we're a root instruction, RAUW.
469 I
->replaceAllUsesWith(NewV
);
471 ConvertedInsts
[I
] = NewV
;
475 // Perform dead code elimination on the instructions we just modified.
476 void Float2IntPass::cleanup() {
477 for (auto &I
: reverse(ConvertedInsts
))
478 I
.first
->eraseFromParent();
481 bool Float2IntPass::runImpl(Function
&F
, const DominatorTree
&DT
) {
482 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F
.getName() << "\n");
483 // Clear out all state.
484 ECs
= EquivalenceClasses
<Instruction
*>();
486 ConvertedInsts
.clear();
489 Ctx
= &F
.getParent()->getContext();
496 const DataLayout
&DL
= F
.getDataLayout();
497 bool Modified
= validateAndTransform(DL
);
503 PreservedAnalyses
Float2IntPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
504 const DominatorTree
&DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
506 return PreservedAnalyses::all();
508 PreservedAnalyses PA
;
509 PA
.preserveSet
<CFGAnalyses
>();