1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/CodeMetrics.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DiagnosticInfo.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Scalar/LoopPassManager.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopPeel.h"
58 #include "llvm/Transforms/Utils/LoopSimplify.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include "llvm/Transforms/Utils/UnrollLoop.h"
74 #define DEBUG_TYPE "loop-unroll"
76 cl::opt
<bool> llvm::ForgetSCEVInLoopUnroll(
77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden
,
78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79 " the current top-most loop. This is sometimes preferred to reduce"
82 static cl::opt
<unsigned>
83 UnrollThreshold("unroll-threshold", cl::Hidden
,
84 cl::desc("The cost threshold for loop unrolling"));
86 static cl::opt
<unsigned>
87 UnrollOptSizeThreshold(
88 "unroll-optsize-threshold", cl::init(0), cl::Hidden
,
89 cl::desc("The cost threshold for loop unrolling when optimizing for "
92 static cl::opt
<unsigned> UnrollPartialThreshold(
93 "unroll-partial-threshold", cl::Hidden
,
94 cl::desc("The cost threshold for partial loop unrolling"));
96 static cl::opt
<unsigned> UnrollMaxPercentThresholdBoost(
97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden
,
98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99 "to the threshold when aggressively unrolling a loop due to the "
100 "dynamic cost savings. If completely unrolling a loop will reduce "
101 "the total runtime from X to Y, we boost the loop unroll "
102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103 "X/Y). This limit avoids excessive code bloat."));
105 static cl::opt
<unsigned> UnrollMaxIterationsCountToAnalyze(
106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden
,
107 cl::desc("Don't allow loop unrolling to simulate more than this number of"
108 "iterations when checking full unroll profitability"));
110 static cl::opt
<unsigned> UnrollCount(
111 "unroll-count", cl::Hidden
,
112 cl::desc("Use this unroll count for all loops including those with "
113 "unroll_count pragma values, for testing purposes"));
115 static cl::opt
<unsigned> UnrollMaxCount(
116 "unroll-max-count", cl::Hidden
,
117 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118 "testing purposes"));
120 static cl::opt
<unsigned> UnrollFullMaxCount(
121 "unroll-full-max-count", cl::Hidden
,
123 "Set the max unroll count for full unrolling, for testing purposes"));
126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden
,
127 cl::desc("Allows loops to be partially unrolled until "
128 "-unroll-threshold loop size is reached."));
130 static cl::opt
<bool> UnrollAllowRemainder(
131 "unroll-allow-remainder", cl::Hidden
,
132 cl::desc("Allow generation of a loop remainder (extra iterations) "
133 "when unrolling a loop."));
136 UnrollRuntime("unroll-runtime", cl::Hidden
,
137 cl::desc("Unroll loops with run-time trip counts"));
139 static cl::opt
<unsigned> UnrollMaxUpperBound(
140 "unroll-max-upperbound", cl::init(8), cl::Hidden
,
142 "The max of trip count upper bound that is considered in unrolling"));
144 static cl::opt
<unsigned> PragmaUnrollThreshold(
145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden
,
146 cl::desc("Unrolled size limit for loops with an unroll(full) or "
147 "unroll_count pragma."));
149 static cl::opt
<unsigned> FlatLoopTripCountThreshold(
150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden
,
151 cl::desc("If the runtime tripcount for the loop is lower than the "
152 "threshold, the loop is considered as flat and will be less "
153 "aggressively unrolled."));
155 static cl::opt
<bool> UnrollUnrollRemainder(
156 "unroll-remainder", cl::Hidden
,
157 cl::desc("Allow the loop remainder to be unrolled."));
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
162 static cl::opt
<bool> UnrollRevisitChildLoops(
163 "unroll-revisit-child-loops", cl::Hidden
,
164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165 "This shouldn't typically be needed as child loops (or their "
166 "clones) were already visited."));
168 static cl::opt
<unsigned> UnrollThresholdAggressive(
169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden
,
170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
172 static cl::opt
<unsigned>
173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
175 cl::desc("Default threshold (max size of unrolled "
176 "loop), used in all but O3 optimizations"));
178 static cl::opt
<unsigned> PragmaUnrollFullMaxIterations(
179 "pragma-unroll-full-max-iterations", cl::init(1'000'000), cl::Hidden
,
180 cl::desc("Maximum allowed iterations to unroll under pragma unroll full."));
182 /// A magic value for use with the Threshold parameter to indicate
183 /// that the loop unroll should be performed regardless of how much
184 /// code expansion would result.
185 static const unsigned NoThreshold
= std::numeric_limits
<unsigned>::max();
187 /// Gather the various unrolling parameters based on the defaults, compiler
188 /// flags, TTI overrides and user specified parameters.
189 TargetTransformInfo::UnrollingPreferences
llvm::gatherUnrollingPreferences(
190 Loop
*L
, ScalarEvolution
&SE
, const TargetTransformInfo
&TTI
,
191 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
,
192 OptimizationRemarkEmitter
&ORE
, int OptLevel
,
193 std::optional
<unsigned> UserThreshold
, std::optional
<unsigned> UserCount
,
194 std::optional
<bool> UserAllowPartial
, std::optional
<bool> UserRuntime
,
195 std::optional
<bool> UserUpperBound
,
196 std::optional
<unsigned> UserFullUnrollMaxCount
) {
197 TargetTransformInfo::UnrollingPreferences UP
;
199 // Set up the defaults
201 OptLevel
> 2 ? UnrollThresholdAggressive
: UnrollThresholdDefault
;
202 UP
.MaxPercentThresholdBoost
= 400;
203 UP
.OptSizeThreshold
= UnrollOptSizeThreshold
;
204 UP
.PartialThreshold
= 150;
205 UP
.PartialOptSizeThreshold
= UnrollOptSizeThreshold
;
207 UP
.DefaultUnrollRuntimeCount
= 8;
208 UP
.MaxCount
= std::numeric_limits
<unsigned>::max();
209 UP
.MaxUpperBound
= UnrollMaxUpperBound
;
210 UP
.FullUnrollMaxCount
= std::numeric_limits
<unsigned>::max();
214 UP
.AllowRemainder
= true;
215 UP
.UnrollRemainder
= false;
216 UP
.AllowExpensiveTripCount
= false;
218 UP
.UpperBound
= false;
219 UP
.UnrollAndJam
= false;
220 UP
.UnrollAndJamInnerLoopThreshold
= 60;
221 UP
.MaxIterationsCountToAnalyze
= UnrollMaxIterationsCountToAnalyze
;
222 UP
.SCEVExpansionBudget
= SCEVCheapExpansionBudget
;
224 // Override with any target specific settings
225 TTI
.getUnrollingPreferences(L
, SE
, UP
, &ORE
);
227 // Apply size attributes
228 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize() ||
229 // Let unroll hints / pragmas take precedence over PGSO.
230 (hasUnrollTransformation(L
) != TM_ForcedByUser
&&
231 llvm::shouldOptimizeForSize(L
->getHeader(), PSI
, BFI
,
232 PGSOQueryType::IRPass
));
234 UP
.Threshold
= UP
.OptSizeThreshold
;
235 UP
.PartialThreshold
= UP
.PartialOptSizeThreshold
;
236 UP
.MaxPercentThresholdBoost
= 100;
239 // Apply any user values specified by cl::opt
240 if (UnrollThreshold
.getNumOccurrences() > 0)
241 UP
.Threshold
= UnrollThreshold
;
242 if (UnrollPartialThreshold
.getNumOccurrences() > 0)
243 UP
.PartialThreshold
= UnrollPartialThreshold
;
244 if (UnrollMaxPercentThresholdBoost
.getNumOccurrences() > 0)
245 UP
.MaxPercentThresholdBoost
= UnrollMaxPercentThresholdBoost
;
246 if (UnrollMaxCount
.getNumOccurrences() > 0)
247 UP
.MaxCount
= UnrollMaxCount
;
248 if (UnrollMaxUpperBound
.getNumOccurrences() > 0)
249 UP
.MaxUpperBound
= UnrollMaxUpperBound
;
250 if (UnrollFullMaxCount
.getNumOccurrences() > 0)
251 UP
.FullUnrollMaxCount
= UnrollFullMaxCount
;
252 if (UnrollAllowPartial
.getNumOccurrences() > 0)
253 UP
.Partial
= UnrollAllowPartial
;
254 if (UnrollAllowRemainder
.getNumOccurrences() > 0)
255 UP
.AllowRemainder
= UnrollAllowRemainder
;
256 if (UnrollRuntime
.getNumOccurrences() > 0)
257 UP
.Runtime
= UnrollRuntime
;
258 if (UnrollMaxUpperBound
== 0)
259 UP
.UpperBound
= false;
260 if (UnrollUnrollRemainder
.getNumOccurrences() > 0)
261 UP
.UnrollRemainder
= UnrollUnrollRemainder
;
262 if (UnrollMaxIterationsCountToAnalyze
.getNumOccurrences() > 0)
263 UP
.MaxIterationsCountToAnalyze
= UnrollMaxIterationsCountToAnalyze
;
265 // Apply user values provided by argument
267 UP
.Threshold
= *UserThreshold
;
268 UP
.PartialThreshold
= *UserThreshold
;
271 UP
.Count
= *UserCount
;
272 if (UserAllowPartial
)
273 UP
.Partial
= *UserAllowPartial
;
275 UP
.Runtime
= *UserRuntime
;
277 UP
.UpperBound
= *UserUpperBound
;
278 if (UserFullUnrollMaxCount
)
279 UP
.FullUnrollMaxCount
= *UserFullUnrollMaxCount
;
286 /// A struct to densely store the state of an instruction after unrolling at
289 /// This is designed to work like a tuple of <Instruction *, int> for the
290 /// purposes of hashing and lookup, but to be able to associate two boolean
291 /// states with each key.
292 struct UnrolledInstState
{
296 unsigned IsCounted
: 1;
299 /// Hashing and equality testing for a set of the instruction states.
300 struct UnrolledInstStateKeyInfo
{
301 using PtrInfo
= DenseMapInfo
<Instruction
*>;
302 using PairInfo
= DenseMapInfo
<std::pair
<Instruction
*, int>>;
304 static inline UnrolledInstState
getEmptyKey() {
305 return {PtrInfo::getEmptyKey(), 0, 0, 0};
308 static inline UnrolledInstState
getTombstoneKey() {
309 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
312 static inline unsigned getHashValue(const UnrolledInstState
&S
) {
313 return PairInfo::getHashValue({S
.I
, S
.Iteration
});
316 static inline bool isEqual(const UnrolledInstState
&LHS
,
317 const UnrolledInstState
&RHS
) {
318 return PairInfo::isEqual({LHS
.I
, LHS
.Iteration
}, {RHS
.I
, RHS
.Iteration
});
322 struct EstimatedUnrollCost
{
323 /// The estimated cost after unrolling.
324 unsigned UnrolledCost
;
326 /// The estimated dynamic cost of executing the instructions in the
328 unsigned RolledDynamicCost
;
332 PragmaInfo(bool UUC
, bool PFU
, unsigned PC
, bool PEU
)
333 : UserUnrollCount(UUC
), PragmaFullUnroll(PFU
), PragmaCount(PC
),
334 PragmaEnableUnroll(PEU
) {}
335 const bool UserUnrollCount
;
336 const bool PragmaFullUnroll
;
337 const unsigned PragmaCount
;
338 const bool PragmaEnableUnroll
;
341 } // end anonymous namespace
343 /// Figure out if the loop is worth full unrolling.
345 /// Complete loop unrolling can make some loads constant, and we need to know
346 /// if that would expose any further optimization opportunities. This routine
347 /// estimates this optimization. It computes cost of unrolled loop
348 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
349 /// dynamic cost we mean that we won't count costs of blocks that are known not
350 /// to be executed (i.e. if we have a branch in the loop and we know that at the
351 /// given iteration its condition would be resolved to true, we won't add up the
352 /// cost of the 'false'-block).
353 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
354 /// the analysis failed (no benefits expected from the unrolling, or the loop is
355 /// too big to analyze), the returned value is std::nullopt.
356 static std::optional
<EstimatedUnrollCost
> analyzeLoopUnrollCost(
357 const Loop
*L
, unsigned TripCount
, DominatorTree
&DT
, ScalarEvolution
&SE
,
358 const SmallPtrSetImpl
<const Value
*> &EphValues
,
359 const TargetTransformInfo
&TTI
, unsigned MaxUnrolledLoopSize
,
360 unsigned MaxIterationsCountToAnalyze
) {
361 // We want to be able to scale offsets by the trip count and add more offsets
362 // to them without checking for overflows, and we already don't want to
363 // analyze *massive* trip counts, so we force the max to be reasonably small.
364 assert(MaxIterationsCountToAnalyze
<
365 (unsigned)(std::numeric_limits
<int>::max() / 2) &&
366 "The unroll iterations max is too large!");
368 // Only analyze inner loops. We can't properly estimate cost of nested loops
369 // and we won't visit inner loops again anyway.
370 if (!L
->isInnermost())
373 // Don't simulate loops with a big or unknown tripcount
374 if (!TripCount
|| TripCount
> MaxIterationsCountToAnalyze
)
377 SmallSetVector
<BasicBlock
*, 16> BBWorklist
;
378 SmallSetVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 4> ExitWorklist
;
379 DenseMap
<Value
*, Value
*> SimplifiedValues
;
380 SmallVector
<std::pair
<Value
*, Value
*>, 4> SimplifiedInputValues
;
382 // The estimated cost of the unrolled form of the loop. We try to estimate
383 // this by simplifying as much as we can while computing the estimate.
384 InstructionCost UnrolledCost
= 0;
386 // We also track the estimated dynamic (that is, actually executed) cost in
387 // the rolled form. This helps identify cases when the savings from unrolling
388 // aren't just exposing dead control flows, but actual reduced dynamic
389 // instructions due to the simplifications which we expect to occur after
391 InstructionCost RolledDynamicCost
= 0;
393 // We track the simplification of each instruction in each iteration. We use
394 // this to recursively merge costs into the unrolled cost on-demand so that
395 // we don't count the cost of any dead code. This is essentially a map from
396 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
397 DenseSet
<UnrolledInstState
, UnrolledInstStateKeyInfo
> InstCostMap
;
399 // A small worklist used to accumulate cost of instructions from each
400 // observable and reached root in the loop.
401 SmallVector
<Instruction
*, 16> CostWorklist
;
403 // PHI-used worklist used between iterations while accumulating cost.
404 SmallVector
<Instruction
*, 4> PHIUsedList
;
406 // Helper function to accumulate cost for instructions in the loop.
407 auto AddCostRecursively
= [&](Instruction
&RootI
, int Iteration
) {
408 assert(Iteration
>= 0 && "Cannot have a negative iteration!");
409 assert(CostWorklist
.empty() && "Must start with an empty cost list");
410 assert(PHIUsedList
.empty() && "Must start with an empty phi used list");
411 CostWorklist
.push_back(&RootI
);
412 TargetTransformInfo::TargetCostKind CostKind
=
413 RootI
.getFunction()->hasMinSize() ?
414 TargetTransformInfo::TCK_CodeSize
:
415 TargetTransformInfo::TCK_SizeAndLatency
;
416 for (;; --Iteration
) {
418 Instruction
*I
= CostWorklist
.pop_back_val();
420 // InstCostMap only uses I and Iteration as a key, the other two values
421 // don't matter here.
422 auto CostIter
= InstCostMap
.find({I
, Iteration
, 0, 0});
423 if (CostIter
== InstCostMap
.end())
424 // If an input to a PHI node comes from a dead path through the loop
425 // we may have no cost data for it here. What that actually means is
428 auto &Cost
= *CostIter
;
430 // Already counted this instruction.
433 // Mark that we are counting the cost of this instruction now.
434 Cost
.IsCounted
= true;
436 // If this is a PHI node in the loop header, just add it to the PHI set.
437 if (auto *PhiI
= dyn_cast
<PHINode
>(I
))
438 if (PhiI
->getParent() == L
->getHeader()) {
439 assert(Cost
.IsFree
&& "Loop PHIs shouldn't be evaluated as they "
440 "inherently simplify during unrolling.");
444 // Push the incoming value from the backedge into the PHI used list
445 // if it is an in-loop instruction. We'll use this to populate the
446 // cost worklist for the next iteration (as we count backwards).
447 if (auto *OpI
= dyn_cast
<Instruction
>(
448 PhiI
->getIncomingValueForBlock(L
->getLoopLatch())))
449 if (L
->contains(OpI
))
450 PHIUsedList
.push_back(OpI
);
454 // First accumulate the cost of this instruction.
456 // Consider simplified operands in instruction cost.
457 SmallVector
<Value
*, 4> Operands
;
458 transform(I
->operands(), std::back_inserter(Operands
),
460 if (auto Res
= SimplifiedValues
.lookup(Op
))
464 UnrolledCost
+= TTI
.getInstructionCost(I
, Operands
, CostKind
);
465 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
466 << Iteration
<< "): ");
467 LLVM_DEBUG(I
->dump());
470 // We must count the cost of every operand which is not free,
471 // recursively. If we reach a loop PHI node, simply add it to the set
472 // to be considered on the next iteration (backwards!).
473 for (Value
*Op
: I
->operands()) {
474 // Check whether this operand is free due to being a constant or
476 auto *OpI
= dyn_cast
<Instruction
>(Op
);
477 if (!OpI
|| !L
->contains(OpI
))
480 // Otherwise accumulate its cost.
481 CostWorklist
.push_back(OpI
);
483 } while (!CostWorklist
.empty());
485 if (PHIUsedList
.empty())
486 // We've exhausted the search.
489 assert(Iteration
> 0 &&
490 "Cannot track PHI-used values past the first iteration!");
491 CostWorklist
.append(PHIUsedList
.begin(), PHIUsedList
.end());
496 // Ensure that we don't violate the loop structure invariants relied on by
498 assert(L
->isLoopSimplifyForm() && "Must put loop into normal form first.");
499 assert(L
->isLCSSAForm(DT
) &&
500 "Must have loops in LCSSA form to track live-out values.");
502 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
504 TargetTransformInfo::TargetCostKind CostKind
=
505 L
->getHeader()->getParent()->hasMinSize() ?
506 TargetTransformInfo::TCK_CodeSize
: TargetTransformInfo::TCK_SizeAndLatency
;
507 // Simulate execution of each iteration of the loop counting instructions,
508 // which would be simplified.
509 // Since the same load will take different values on different iterations,
510 // we literally have to go through all loop's iterations.
511 for (unsigned Iteration
= 0; Iteration
< TripCount
; ++Iteration
) {
512 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration
<< "\n");
514 // Prepare for the iteration by collecting any simplified entry or backedge
516 for (Instruction
&I
: *L
->getHeader()) {
517 auto *PHI
= dyn_cast
<PHINode
>(&I
);
521 // The loop header PHI nodes must have exactly two input: one from the
522 // loop preheader and one from the loop latch.
524 PHI
->getNumIncomingValues() == 2 &&
525 "Must have an incoming value only for the preheader and the latch.");
527 Value
*V
= PHI
->getIncomingValueForBlock(
528 Iteration
== 0 ? L
->getLoopPreheader() : L
->getLoopLatch());
529 if (Iteration
!= 0 && SimplifiedValues
.count(V
))
530 V
= SimplifiedValues
.lookup(V
);
531 SimplifiedInputValues
.push_back({PHI
, V
});
534 // Now clear and re-populate the map for the next iteration.
535 SimplifiedValues
.clear();
536 while (!SimplifiedInputValues
.empty())
537 SimplifiedValues
.insert(SimplifiedInputValues
.pop_back_val());
539 UnrolledInstAnalyzer
Analyzer(Iteration
, SimplifiedValues
, SE
, L
);
542 BBWorklist
.insert(L
->getHeader());
543 // Note that we *must not* cache the size, this loop grows the worklist.
544 for (unsigned Idx
= 0; Idx
!= BBWorklist
.size(); ++Idx
) {
545 BasicBlock
*BB
= BBWorklist
[Idx
];
547 // Visit all instructions in the given basic block and try to simplify
548 // it. We don't change the actual IR, just count optimization
550 for (Instruction
&I
: *BB
) {
551 // These won't get into the final code - don't even try calculating the
553 if (isa
<DbgInfoIntrinsic
>(I
) || EphValues
.count(&I
))
556 // Track this instruction's expected baseline cost when executing the
558 RolledDynamicCost
+= TTI
.getInstructionCost(&I
, CostKind
);
560 // Visit the instruction to analyze its loop cost after unrolling,
561 // and if the visitor returns true, mark the instruction as free after
562 // unrolling and continue.
563 bool IsFree
= Analyzer
.visit(I
);
564 bool Inserted
= InstCostMap
.insert({&I
, (int)Iteration
,
566 /*IsCounted*/ false}).second
;
568 assert(Inserted
&& "Cannot have a state for an unvisited instruction!");
573 // Can't properly model a cost of a call.
574 // FIXME: With a proper cost model we should be able to do it.
575 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
576 const Function
*Callee
= CI
->getCalledFunction();
577 if (!Callee
|| TTI
.isLoweredToCall(Callee
)) {
578 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
583 // If the instruction might have a side-effect recursively account for
584 // the cost of it and all the instructions leading up to it.
585 if (I
.mayHaveSideEffects())
586 AddCostRecursively(I
, Iteration
);
588 // If unrolled body turns out to be too big, bail out.
589 if (UnrolledCost
> MaxUnrolledLoopSize
) {
590 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
591 << " UnrolledCost: " << UnrolledCost
592 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
598 Instruction
*TI
= BB
->getTerminator();
600 auto getSimplifiedConstant
= [&](Value
*V
) -> Constant
* {
601 if (SimplifiedValues
.count(V
))
602 V
= SimplifiedValues
.lookup(V
);
603 return dyn_cast
<Constant
>(V
);
606 // Add in the live successors by first checking whether we have terminator
607 // that may be simplified based on the values simplified by this call.
608 BasicBlock
*KnownSucc
= nullptr;
609 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
610 if (BI
->isConditional()) {
611 if (auto *SimpleCond
= getSimplifiedConstant(BI
->getCondition())) {
612 // Just take the first successor if condition is undef
613 if (isa
<UndefValue
>(SimpleCond
))
614 KnownSucc
= BI
->getSuccessor(0);
615 else if (ConstantInt
*SimpleCondVal
=
616 dyn_cast
<ConstantInt
>(SimpleCond
))
617 KnownSucc
= BI
->getSuccessor(SimpleCondVal
->isZero() ? 1 : 0);
620 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
621 if (auto *SimpleCond
= getSimplifiedConstant(SI
->getCondition())) {
622 // Just take the first successor if condition is undef
623 if (isa
<UndefValue
>(SimpleCond
))
624 KnownSucc
= SI
->getSuccessor(0);
625 else if (ConstantInt
*SimpleCondVal
=
626 dyn_cast
<ConstantInt
>(SimpleCond
))
627 KnownSucc
= SI
->findCaseValue(SimpleCondVal
)->getCaseSuccessor();
631 if (L
->contains(KnownSucc
))
632 BBWorklist
.insert(KnownSucc
);
634 ExitWorklist
.insert({BB
, KnownSucc
});
638 // Add BB's successors to the worklist.
639 for (BasicBlock
*Succ
: successors(BB
))
640 if (L
->contains(Succ
))
641 BBWorklist
.insert(Succ
);
643 ExitWorklist
.insert({BB
, Succ
});
644 AddCostRecursively(*TI
, Iteration
);
647 // If we found no optimization opportunities on the first iteration, we
648 // won't find them on later ones too.
649 if (UnrolledCost
== RolledDynamicCost
) {
650 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
651 << " UnrolledCost: " << UnrolledCost
<< "\n");
656 while (!ExitWorklist
.empty()) {
657 BasicBlock
*ExitingBB
, *ExitBB
;
658 std::tie(ExitingBB
, ExitBB
) = ExitWorklist
.pop_back_val();
660 for (Instruction
&I
: *ExitBB
) {
661 auto *PN
= dyn_cast
<PHINode
>(&I
);
665 Value
*Op
= PN
->getIncomingValueForBlock(ExitingBB
);
666 if (auto *OpI
= dyn_cast
<Instruction
>(Op
))
667 if (L
->contains(OpI
))
668 AddCostRecursively(*OpI
, TripCount
- 1);
672 assert(UnrolledCost
.isValid() && RolledDynamicCost
.isValid() &&
673 "All instructions must have a valid cost, whether the "
674 "loop is rolled or unrolled.");
676 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
677 << "UnrolledCost: " << UnrolledCost
<< ", "
678 << "RolledDynamicCost: " << RolledDynamicCost
<< "\n");
679 return {{unsigned(*UnrolledCost
.getValue()),
680 unsigned(*RolledDynamicCost
.getValue())}};
683 UnrollCostEstimator::UnrollCostEstimator(
684 const Loop
*L
, const TargetTransformInfo
&TTI
,
685 const SmallPtrSetImpl
<const Value
*> &EphValues
, unsigned BEInsns
) {
687 for (BasicBlock
*BB
: L
->blocks())
688 Metrics
.analyzeBasicBlock(BB
, TTI
, EphValues
, /* PrepareForLTO= */ false,
690 NumInlineCandidates
= Metrics
.NumInlineCandidates
;
691 NotDuplicatable
= Metrics
.notDuplicatable
;
692 Convergence
= Metrics
.Convergence
;
693 LoopSize
= Metrics
.NumInsts
;
694 ConvergenceAllowsRuntime
=
695 Metrics
.Convergence
!= ConvergenceKind::Uncontrolled
&&
696 !getLoopConvergenceHeart(L
);
698 // Don't allow an estimate of size zero. This would allows unrolling of loops
699 // with huge iteration counts, which is a compile time problem even if it's
700 // not a problem for code quality. Also, the code using this size may assume
701 // that each loop has at least three instructions (likely a conditional
702 // branch, a comparison feeding that branch, and some kind of loop increment
703 // feeding that comparison instruction).
704 if (LoopSize
.isValid() && LoopSize
< BEInsns
+ 1)
705 // This is an open coded max() on InstructionCost
706 LoopSize
= BEInsns
+ 1;
709 bool UnrollCostEstimator::canUnroll() const {
710 switch (Convergence
) {
711 case ConvergenceKind::ExtendedLoop
:
712 LLVM_DEBUG(dbgs() << " Convergence prevents unrolling.\n");
717 if (!LoopSize
.isValid()) {
718 LLVM_DEBUG(dbgs() << " Invalid loop size prevents unrolling.\n");
721 if (NotDuplicatable
) {
722 LLVM_DEBUG(dbgs() << " Non-duplicatable blocks prevent unrolling.\n");
728 uint64_t UnrollCostEstimator::getUnrolledLoopSize(
729 const TargetTransformInfo::UnrollingPreferences
&UP
,
730 unsigned CountOverwrite
) const {
731 unsigned LS
= *LoopSize
.getValue();
732 assert(LS
>= UP
.BEInsns
&& "LoopSize should not be less than BEInsns!");
734 return static_cast<uint64_t>(LS
- UP
.BEInsns
) * CountOverwrite
+ UP
.BEInsns
;
736 return static_cast<uint64_t>(LS
- UP
.BEInsns
) * UP
.Count
+ UP
.BEInsns
;
739 // Returns the loop hint metadata node with the given name (for example,
740 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
742 static MDNode
*getUnrollMetadataForLoop(const Loop
*L
, StringRef Name
) {
743 if (MDNode
*LoopID
= L
->getLoopID())
744 return GetUnrollMetadata(LoopID
, Name
);
748 // Returns true if the loop has an unroll(full) pragma.
749 static bool hasUnrollFullPragma(const Loop
*L
) {
750 return getUnrollMetadataForLoop(L
, "llvm.loop.unroll.full");
753 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
754 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
755 static bool hasUnrollEnablePragma(const Loop
*L
) {
756 return getUnrollMetadataForLoop(L
, "llvm.loop.unroll.enable");
759 // Returns true if the loop has an runtime unroll(disable) pragma.
760 static bool hasRuntimeUnrollDisablePragma(const Loop
*L
) {
761 return getUnrollMetadataForLoop(L
, "llvm.loop.unroll.runtime.disable");
764 // If loop has an unroll_count pragma return the (necessarily
765 // positive) value from the pragma. Otherwise return 0.
766 static unsigned unrollCountPragmaValue(const Loop
*L
) {
767 MDNode
*MD
= getUnrollMetadataForLoop(L
, "llvm.loop.unroll.count");
769 assert(MD
->getNumOperands() == 2 &&
770 "Unroll count hint metadata should have two operands.");
772 mdconst::extract
<ConstantInt
>(MD
->getOperand(1))->getZExtValue();
773 assert(Count
>= 1 && "Unroll count must be positive.");
779 // Computes the boosting factor for complete unrolling.
780 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
781 // be beneficial to fully unroll the loop even if unrolledcost is large. We
782 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
783 // the unroll threshold.
784 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost
&Cost
,
785 unsigned MaxPercentThresholdBoost
) {
786 if (Cost
.RolledDynamicCost
>= std::numeric_limits
<unsigned>::max() / 100)
788 else if (Cost
.UnrolledCost
!= 0)
789 // The boosting factor is RolledDynamicCost / UnrolledCost
790 return std::min(100 * Cost
.RolledDynamicCost
/ Cost
.UnrolledCost
,
791 MaxPercentThresholdBoost
);
793 return MaxPercentThresholdBoost
;
796 static std::optional
<unsigned>
797 shouldPragmaUnroll(Loop
*L
, const PragmaInfo
&PInfo
,
798 const unsigned TripMultiple
, const unsigned TripCount
,
799 unsigned MaxTripCount
, const UnrollCostEstimator UCE
,
800 const TargetTransformInfo::UnrollingPreferences
&UP
) {
802 // Using unroll pragma
803 // 1st priority is unroll count set by "unroll-count" option.
805 if (PInfo
.UserUnrollCount
) {
806 if (UP
.AllowRemainder
&&
807 UCE
.getUnrolledLoopSize(UP
, (unsigned)UnrollCount
) < UP
.Threshold
)
808 return (unsigned)UnrollCount
;
811 // 2nd priority is unroll count set by pragma.
812 if (PInfo
.PragmaCount
> 0) {
813 if ((UP
.AllowRemainder
|| (TripMultiple
% PInfo
.PragmaCount
== 0)))
814 return PInfo
.PragmaCount
;
817 if (PInfo
.PragmaFullUnroll
&& TripCount
!= 0) {
818 // Certain cases with UBSAN can cause trip count to be calculated as
819 // INT_MAX, Block full unrolling at a reasonable limit so that the compiler
820 // doesn't hang trying to unroll the loop. See PR77842
821 if (TripCount
> PragmaUnrollFullMaxIterations
) {
822 LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n");
829 if (PInfo
.PragmaEnableUnroll
&& !TripCount
&& MaxTripCount
&&
830 MaxTripCount
<= UP
.MaxUpperBound
)
833 // if didn't return until here, should continue to other priorties
837 static std::optional
<unsigned> shouldFullUnroll(
838 Loop
*L
, const TargetTransformInfo
&TTI
, DominatorTree
&DT
,
839 ScalarEvolution
&SE
, const SmallPtrSetImpl
<const Value
*> &EphValues
,
840 const unsigned FullUnrollTripCount
, const UnrollCostEstimator UCE
,
841 const TargetTransformInfo::UnrollingPreferences
&UP
) {
842 assert(FullUnrollTripCount
&& "should be non-zero!");
844 if (FullUnrollTripCount
> UP
.FullUnrollMaxCount
)
847 // When computing the unrolled size, note that BEInsns are not replicated
848 // like the rest of the loop body.
849 if (UCE
.getUnrolledLoopSize(UP
) < UP
.Threshold
)
850 return FullUnrollTripCount
;
852 // The loop isn't that small, but we still can fully unroll it if that
853 // helps to remove a significant number of instructions.
854 // To check that, run additional analysis on the loop.
855 if (std::optional
<EstimatedUnrollCost
> Cost
= analyzeLoopUnrollCost(
856 L
, FullUnrollTripCount
, DT
, SE
, EphValues
, TTI
,
857 UP
.Threshold
* UP
.MaxPercentThresholdBoost
/ 100,
858 UP
.MaxIterationsCountToAnalyze
)) {
860 getFullUnrollBoostingFactor(*Cost
, UP
.MaxPercentThresholdBoost
);
861 if (Cost
->UnrolledCost
< UP
.Threshold
* Boost
/ 100)
862 return FullUnrollTripCount
;
867 static std::optional
<unsigned>
868 shouldPartialUnroll(const unsigned LoopSize
, const unsigned TripCount
,
869 const UnrollCostEstimator UCE
,
870 const TargetTransformInfo::UnrollingPreferences
&UP
) {
876 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
877 << "-unroll-allow-partial not given\n");
880 unsigned count
= UP
.Count
;
883 if (UP
.PartialThreshold
!= NoThreshold
) {
884 // Reduce unroll count to be modulo of TripCount for partial unrolling.
885 if (UCE
.getUnrolledLoopSize(UP
, count
) > UP
.PartialThreshold
)
886 count
= (std::max(UP
.PartialThreshold
, UP
.BEInsns
+ 1) - UP
.BEInsns
) /
887 (LoopSize
- UP
.BEInsns
);
888 if (count
> UP
.MaxCount
)
890 while (count
!= 0 && TripCount
% count
!= 0)
892 if (UP
.AllowRemainder
&& count
<= 1) {
893 // If there is no Count that is modulo of TripCount, set Count to
894 // largest power-of-two factor that satisfies the threshold limit.
895 // As we'll create fixup loop, do the type of unrolling only if
896 // remainder loop is allowed.
897 count
= UP
.DefaultUnrollRuntimeCount
;
899 UCE
.getUnrolledLoopSize(UP
, count
) > UP
.PartialThreshold
)
908 if (count
> UP
.MaxCount
)
911 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count
<< "\n");
915 // Returns true if unroll count was set explicitly.
916 // Calculates unroll count and writes it to UP.Count.
917 // Unless IgnoreUser is true, will also use metadata and command-line options
918 // that are specific to to the LoopUnroll pass (which, for instance, are
919 // irrelevant for the LoopUnrollAndJam pass).
920 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
921 // many LoopUnroll-specific options. The shared functionality should be
922 // refactored into it own function.
923 bool llvm::computeUnrollCount(
924 Loop
*L
, const TargetTransformInfo
&TTI
, DominatorTree
&DT
, LoopInfo
*LI
,
925 AssumptionCache
*AC
, ScalarEvolution
&SE
,
926 const SmallPtrSetImpl
<const Value
*> &EphValues
,
927 OptimizationRemarkEmitter
*ORE
, unsigned TripCount
, unsigned MaxTripCount
,
928 bool MaxOrZero
, unsigned TripMultiple
, const UnrollCostEstimator
&UCE
,
929 TargetTransformInfo::UnrollingPreferences
&UP
,
930 TargetTransformInfo::PeelingPreferences
&PP
, bool &UseUpperBound
) {
932 unsigned LoopSize
= UCE
.getRolledLoopSize();
934 const bool UserUnrollCount
= UnrollCount
.getNumOccurrences() > 0;
935 const bool PragmaFullUnroll
= hasUnrollFullPragma(L
);
936 const unsigned PragmaCount
= unrollCountPragmaValue(L
);
937 const bool PragmaEnableUnroll
= hasUnrollEnablePragma(L
);
939 const bool ExplicitUnroll
= PragmaCount
> 0 || PragmaFullUnroll
||
940 PragmaEnableUnroll
|| UserUnrollCount
;
942 PragmaInfo
PInfo(UserUnrollCount
, PragmaFullUnroll
, PragmaCount
,
944 // Use an explicit peel count that has been specified for testing. In this
945 // case it's not permitted to also specify an explicit unroll count.
947 if (UnrollCount
.getNumOccurrences() > 0) {
948 report_fatal_error("Cannot specify both explicit peel count and "
949 "explicit unroll count", /*GenCrashDiag=*/false);
955 // Check for explicit Count.
956 // 1st priority is unroll count set by "unroll-count" option.
957 // 2nd priority is unroll count set by pragma.
958 if (auto UnrollFactor
= shouldPragmaUnroll(L
, PInfo
, TripMultiple
, TripCount
,
959 MaxTripCount
, UCE
, UP
)) {
960 UP
.Count
= *UnrollFactor
;
962 if (UserUnrollCount
|| (PragmaCount
> 0)) {
963 UP
.AllowExpensiveTripCount
= true;
966 UP
.Runtime
|= (PragmaCount
> 0);
967 return ExplicitUnroll
;
969 if (ExplicitUnroll
&& TripCount
!= 0) {
970 // If the loop has an unrolling pragma, we want to be more aggressive with
971 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
972 // value which is larger than the default limits.
973 UP
.Threshold
= std::max
<unsigned>(UP
.Threshold
, PragmaUnrollThreshold
);
974 UP
.PartialThreshold
=
975 std::max
<unsigned>(UP
.PartialThreshold
, PragmaUnrollThreshold
);
979 // 3rd priority is exact full unrolling. This will eliminate all copies
980 // of some exit test.
983 UP
.Count
= TripCount
;
984 if (auto UnrollFactor
= shouldFullUnroll(L
, TTI
, DT
, SE
, EphValues
,
985 TripCount
, UCE
, UP
)) {
986 UP
.Count
= *UnrollFactor
;
987 UseUpperBound
= false;
988 return ExplicitUnroll
;
992 // 4th priority is bounded unrolling.
993 // We can unroll by the upper bound amount if it's generally allowed or if
994 // we know that the loop is executed either the upper bound or zero times.
995 // (MaxOrZero unrolling keeps only the first loop test, so the number of
996 // loop tests remains the same compared to the non-unrolled version, whereas
997 // the generic upper bound unrolling keeps all but the last loop test so the
998 // number of loop tests goes up which may end up being worse on targets with
999 // constrained branch predictor resources so is controlled by an option.)
1000 // In addition we only unroll small upper bounds.
1001 // Note that the cost of bounded unrolling is always strictly greater than
1002 // cost of exact full unrolling. As such, if we have an exact count and
1003 // found it unprofitable, we'll never chose to bounded unroll.
1004 if (!TripCount
&& MaxTripCount
&& (UP
.UpperBound
|| MaxOrZero
) &&
1005 MaxTripCount
<= UP
.MaxUpperBound
) {
1006 UP
.Count
= MaxTripCount
;
1007 if (auto UnrollFactor
= shouldFullUnroll(L
, TTI
, DT
, SE
, EphValues
,
1008 MaxTripCount
, UCE
, UP
)) {
1009 UP
.Count
= *UnrollFactor
;
1010 UseUpperBound
= true;
1011 return ExplicitUnroll
;
1015 // 5th priority is loop peeling.
1016 computePeelCount(L
, LoopSize
, PP
, TripCount
, DT
, SE
, AC
, UP
.Threshold
);
1020 return ExplicitUnroll
;
1023 // Before starting partial unrolling, set up.partial to true,
1024 // if user explicitly asked for unrolling
1026 UP
.Partial
|= ExplicitUnroll
;
1028 // 6th priority is partial unrolling.
1029 // Try partial unroll only when TripCount could be statically calculated.
1030 if (auto UnrollFactor
= shouldPartialUnroll(LoopSize
, TripCount
, UCE
, UP
)) {
1031 UP
.Count
= *UnrollFactor
;
1033 if ((PragmaFullUnroll
|| PragmaEnableUnroll
) && TripCount
&&
1034 UP
.Count
!= TripCount
)
1036 return OptimizationRemarkMissed(DEBUG_TYPE
,
1037 "FullUnrollAsDirectedTooLarge",
1038 L
->getStartLoc(), L
->getHeader())
1039 << "Unable to fully unroll loop as directed by unroll pragma "
1041 "unrolled size is too large.";
1044 if (UP
.PartialThreshold
!= NoThreshold
) {
1045 if (UP
.Count
== 0) {
1046 if (PragmaEnableUnroll
)
1048 return OptimizationRemarkMissed(DEBUG_TYPE
,
1049 "UnrollAsDirectedTooLarge",
1050 L
->getStartLoc(), L
->getHeader())
1051 << "Unable to unroll loop as directed by unroll(enable) "
1053 "because unrolled size is too large.";
1057 return ExplicitUnroll
;
1059 assert(TripCount
== 0 &&
1060 "All cases when TripCount is constant should be covered here.");
1061 if (PragmaFullUnroll
)
1063 return OptimizationRemarkMissed(
1064 DEBUG_TYPE
, "CantFullUnrollAsDirectedRuntimeTripCount",
1065 L
->getStartLoc(), L
->getHeader())
1066 << "Unable to fully unroll loop as directed by unroll(full) "
1068 "because loop has a runtime trip count.";
1071 // 7th priority is runtime unrolling.
1072 // Don't unroll a runtime trip count loop when it is disabled.
1073 if (hasRuntimeUnrollDisablePragma(L
)) {
1078 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1079 if (MaxTripCount
&& !UP
.Force
&& MaxTripCount
< UP
.MaxUpperBound
) {
1084 // Check if the runtime trip count is too small when profile is available.
1085 if (L
->getHeader()->getParent()->hasProfileData()) {
1086 if (auto ProfileTripCount
= getLoopEstimatedTripCount(L
)) {
1087 if (*ProfileTripCount
< FlatLoopTripCountThreshold
)
1090 UP
.AllowExpensiveTripCount
= true;
1093 UP
.Runtime
|= PragmaEnableUnroll
|| PragmaCount
> 0 || UserUnrollCount
;
1096 dbgs() << " will not try to unroll loop with runtime trip count "
1097 << "-unroll-runtime not given\n");
1102 UP
.Count
= UP
.DefaultUnrollRuntimeCount
;
1104 // Reduce unroll count to be the largest power-of-two factor of
1105 // the original count which satisfies the threshold limit.
1106 while (UP
.Count
!= 0 &&
1107 UCE
.getUnrolledLoopSize(UP
) > UP
.PartialThreshold
)
1111 unsigned OrigCount
= UP
.Count
;
1114 if (!UP
.AllowRemainder
&& UP
.Count
!= 0 && (TripMultiple
% UP
.Count
) != 0) {
1115 while (UP
.Count
!= 0 && TripMultiple
% UP
.Count
!= 0)
1118 dbgs() << "Remainder loop is restricted (that could architecture "
1119 "specific or because the loop contains a convergent "
1120 "instruction), so unroll count must divide the trip "
1122 << TripMultiple
<< ". Reducing unroll count from " << OrigCount
1123 << " to " << UP
.Count
<< ".\n");
1125 using namespace ore
;
1127 if (unrollCountPragmaValue(L
) > 0 && !UP
.AllowRemainder
)
1129 return OptimizationRemarkMissed(DEBUG_TYPE
,
1130 "DifferentUnrollCountFromDirected",
1131 L
->getStartLoc(), L
->getHeader())
1132 << "Unable to unroll loop the number of times directed by "
1133 "unroll_count pragma because remainder loop is restricted "
1134 "(that could architecture specific or because the loop "
1135 "contains a convergent instruction) and so must have an "
1137 "count that divides the loop trip multiple of "
1138 << NV("TripMultiple", TripMultiple
) << ". Unrolling instead "
1139 << NV("UnrollCount", UP
.Count
) << " time(s).";
1143 if (UP
.Count
> UP
.MaxCount
)
1144 UP
.Count
= UP
.MaxCount
;
1146 if (MaxTripCount
&& UP
.Count
> MaxTripCount
)
1147 UP
.Count
= MaxTripCount
;
1149 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP
.Count
1153 return ExplicitUnroll
;
1156 static LoopUnrollResult
1157 tryToUnrollLoop(Loop
*L
, DominatorTree
&DT
, LoopInfo
*LI
, ScalarEvolution
&SE
,
1158 const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
1159 OptimizationRemarkEmitter
&ORE
, BlockFrequencyInfo
*BFI
,
1160 ProfileSummaryInfo
*PSI
, bool PreserveLCSSA
, int OptLevel
,
1161 bool OnlyFullUnroll
, bool OnlyWhenForced
, bool ForgetAllSCEV
,
1162 std::optional
<unsigned> ProvidedCount
,
1163 std::optional
<unsigned> ProvidedThreshold
,
1164 std::optional
<bool> ProvidedAllowPartial
,
1165 std::optional
<bool> ProvidedRuntime
,
1166 std::optional
<bool> ProvidedUpperBound
,
1167 std::optional
<bool> ProvidedAllowPeeling
,
1168 std::optional
<bool> ProvidedAllowProfileBasedPeeling
,
1169 std::optional
<unsigned> ProvidedFullUnrollMaxCount
,
1170 AAResults
*AA
= nullptr) {
1172 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1173 << L
->getHeader()->getParent()->getName() << "] Loop %"
1174 << L
->getHeader()->getName() << "\n");
1175 TransformationMode TM
= hasUnrollTransformation(L
);
1176 if (TM
& TM_Disable
)
1177 return LoopUnrollResult::Unmodified
;
1179 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1180 // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1181 // automatic unrolling from interfering with the user requested
1183 Loop
*ParentL
= L
->getParentLoop();
1184 if (ParentL
!= nullptr &&
1185 hasUnrollAndJamTransformation(ParentL
) == TM_ForcedByUser
&&
1186 hasUnrollTransformation(L
) != TM_ForcedByUser
) {
1187 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1188 << " llvm.loop.unroll_and_jam.\n");
1189 return LoopUnrollResult::Unmodified
;
1192 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1193 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1194 // unrolling from interfering with the user requested transformation.
1195 if (hasUnrollAndJamTransformation(L
) == TM_ForcedByUser
&&
1196 hasUnrollTransformation(L
) != TM_ForcedByUser
) {
1199 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1200 return LoopUnrollResult::Unmodified
;
1203 if (!L
->isLoopSimplifyForm()) {
1205 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1206 return LoopUnrollResult::Unmodified
;
1209 // When automatic unrolling is disabled, do not unroll unless overridden for
1211 if (OnlyWhenForced
&& !(TM
& TM_Enable
))
1212 return LoopUnrollResult::Unmodified
;
1214 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize();
1215 TargetTransformInfo::UnrollingPreferences UP
= gatherUnrollingPreferences(
1216 L
, SE
, TTI
, BFI
, PSI
, ORE
, OptLevel
, ProvidedThreshold
, ProvidedCount
,
1217 ProvidedAllowPartial
, ProvidedRuntime
, ProvidedUpperBound
,
1218 ProvidedFullUnrollMaxCount
);
1219 TargetTransformInfo::PeelingPreferences PP
= gatherPeelingPreferences(
1220 L
, SE
, TTI
, ProvidedAllowPeeling
, ProvidedAllowProfileBasedPeeling
, true);
1222 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1223 // as threshold later on.
1224 if (UP
.Threshold
== 0 && (!UP
.Partial
|| UP
.PartialThreshold
== 0) &&
1226 return LoopUnrollResult::Unmodified
;
1228 SmallPtrSet
<const Value
*, 32> EphValues
;
1229 CodeMetrics::collectEphemeralValues(L
, &AC
, EphValues
);
1231 UnrollCostEstimator
UCE(L
, TTI
, EphValues
, UP
.BEInsns
);
1232 if (!UCE
.canUnroll()) {
1233 LLVM_DEBUG(dbgs() << " Loop not considered unrollable.\n");
1234 return LoopUnrollResult::Unmodified
;
1237 unsigned LoopSize
= UCE
.getRolledLoopSize();
1238 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize
<< "\n");
1240 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1241 // later), to (fully) unroll loops, if it does not increase code size.
1243 UP
.Threshold
= std::max(UP
.Threshold
, LoopSize
+ 1);
1245 if (UCE
.NumInlineCandidates
!= 0) {
1246 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1247 return LoopUnrollResult::Unmodified
;
1250 // Find the smallest exact trip count for any exit. This is an upper bound
1251 // on the loop trip count, but an exit at an earlier iteration is still
1252 // possible. An unroll by the smallest exact trip count guarantees that all
1253 // branches relating to at least one exit can be eliminated. This is unlike
1254 // the max trip count, which only guarantees that the backedge can be broken.
1255 unsigned TripCount
= 0;
1256 unsigned TripMultiple
= 1;
1257 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
1258 L
->getExitingBlocks(ExitingBlocks
);
1259 for (BasicBlock
*ExitingBlock
: ExitingBlocks
)
1260 if (unsigned TC
= SE
.getSmallConstantTripCount(L
, ExitingBlock
))
1261 if (!TripCount
|| TC
< TripCount
)
1262 TripCount
= TripMultiple
= TC
;
1265 // If no exact trip count is known, determine the trip multiple of either
1266 // the loop latch or the single exiting block.
1267 // TODO: Relax for multiple exits.
1268 BasicBlock
*ExitingBlock
= L
->getLoopLatch();
1269 if (!ExitingBlock
|| !L
->isLoopExiting(ExitingBlock
))
1270 ExitingBlock
= L
->getExitingBlock();
1272 TripMultiple
= SE
.getSmallConstantTripMultiple(L
, ExitingBlock
);
1275 // If the loop contains a convergent operation, the prelude we'd add
1276 // to do the first few instructions before we hit the unrolled loop
1277 // is unsafe -- it adds a control-flow dependency to the convergent
1278 // operation. Therefore restrict remainder loop (try unrolling without).
1280 // TODO: This is somewhat conservative; we could allow the remainder if the
1281 // trip count is uniform.
1282 UP
.AllowRemainder
&= UCE
.ConvergenceAllowsRuntime
;
1284 // Try to find the trip count upper bound if we cannot find the exact trip
1286 unsigned MaxTripCount
= 0;
1287 bool MaxOrZero
= false;
1289 MaxTripCount
= SE
.getSmallConstantMaxTripCount(L
);
1290 MaxOrZero
= SE
.isBackedgeTakenCountMaxOrZero(L
);
1293 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1294 // fully unroll the loop.
1295 bool UseUpperBound
= false;
1296 bool IsCountSetExplicitly
= computeUnrollCount(
1297 L
, TTI
, DT
, LI
, &AC
, SE
, EphValues
, &ORE
, TripCount
, MaxTripCount
,
1298 MaxOrZero
, TripMultiple
, UCE
, UP
, PP
, UseUpperBound
);
1300 return LoopUnrollResult::Unmodified
;
1302 UP
.Runtime
&= UCE
.ConvergenceAllowsRuntime
;
1305 assert(UP
.Count
== 1 && "Cannot perform peel and unroll in the same step");
1306 LLVM_DEBUG(dbgs() << "PEELING loop %" << L
->getHeader()->getName()
1307 << " with iteration count " << PP
.PeelCount
<< "!\n");
1309 return OptimizationRemark(DEBUG_TYPE
, "Peeled", L
->getStartLoc(),
1311 << " peeled loop by " << ore::NV("PeelCount", PP
.PeelCount
)
1315 ValueToValueMapTy VMap
;
1316 if (peelLoop(L
, PP
.PeelCount
, LI
, &SE
, DT
, &AC
, PreserveLCSSA
, VMap
)) {
1317 simplifyLoopAfterUnroll(L
, true, LI
, &SE
, &DT
, &AC
, &TTI
, nullptr);
1318 // If the loop was peeled, we already "used up" the profile information
1319 // we had, so we don't want to unroll or peel again.
1320 if (PP
.PeelProfiledIterations
)
1321 L
->setLoopAlreadyUnrolled();
1322 return LoopUnrollResult::PartiallyUnrolled
;
1324 return LoopUnrollResult::Unmodified
;
1327 // Do not attempt partial/runtime unrolling in FullLoopUnrolling
1328 if (OnlyFullUnroll
&& (UP
.Count
< TripCount
|| UP
.Count
< MaxTripCount
)) {
1330 dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n");
1331 return LoopUnrollResult::Unmodified
;
1334 // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1335 // However, we only want to actually perform it if we don't know the trip
1336 // count and the unroll count doesn't divide the known trip multiple.
1337 // TODO: This decision should probably be pushed up into
1338 // computeUnrollCount().
1339 UP
.Runtime
&= TripCount
== 0 && TripMultiple
% UP
.Count
!= 0;
1341 // Save loop properties before it is transformed.
1342 MDNode
*OrigLoopID
= L
->getLoopID();
1345 Loop
*RemainderLoop
= nullptr;
1346 UnrollLoopOptions ULO
;
1347 ULO
.Count
= UP
.Count
;
1348 ULO
.Force
= UP
.Force
;
1349 ULO
.AllowExpensiveTripCount
= UP
.AllowExpensiveTripCount
;
1350 ULO
.UnrollRemainder
= UP
.UnrollRemainder
;
1351 ULO
.Runtime
= UP
.Runtime
;
1352 ULO
.ForgetAllSCEV
= ForgetAllSCEV
;
1353 ULO
.Heart
= getLoopConvergenceHeart(L
);
1354 ULO
.SCEVExpansionBudget
= UP
.SCEVExpansionBudget
;
1355 LoopUnrollResult UnrollResult
= UnrollLoop(
1356 L
, ULO
, LI
, &SE
, &DT
, &AC
, &TTI
, &ORE
, PreserveLCSSA
, &RemainderLoop
, AA
);
1357 if (UnrollResult
== LoopUnrollResult::Unmodified
)
1358 return LoopUnrollResult::Unmodified
;
1360 if (RemainderLoop
) {
1361 std::optional
<MDNode
*> RemainderLoopID
=
1362 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1363 LLVMLoopUnrollFollowupRemainder
});
1364 if (RemainderLoopID
)
1365 RemainderLoop
->setLoopID(*RemainderLoopID
);
1368 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
) {
1369 std::optional
<MDNode
*> NewLoopID
=
1370 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1371 LLVMLoopUnrollFollowupUnrolled
});
1373 L
->setLoopID(*NewLoopID
);
1375 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1377 return UnrollResult
;
1381 // If loop has an unroll count pragma or unrolled by explicitly set count
1382 // mark loop as unrolled to prevent unrolling beyond that requested.
1383 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
&& IsCountSetExplicitly
)
1384 L
->setLoopAlreadyUnrolled();
1386 return UnrollResult
;
1391 class LoopUnroll
: public LoopPass
{
1393 static char ID
; // Pass ID, replacement for typeid
1397 /// If false, use a cost model to determine whether unrolling of a loop is
1398 /// profitable. If true, only loops that explicitly request unrolling via
1399 /// metadata are considered. All other loops are skipped.
1400 bool OnlyWhenForced
;
1402 /// If false, when SCEV is invalidated, only forget everything in the
1403 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1404 /// Otherwise, forgetAllLoops and rebuild when needed next.
1407 std::optional
<unsigned> ProvidedCount
;
1408 std::optional
<unsigned> ProvidedThreshold
;
1409 std::optional
<bool> ProvidedAllowPartial
;
1410 std::optional
<bool> ProvidedRuntime
;
1411 std::optional
<bool> ProvidedUpperBound
;
1412 std::optional
<bool> ProvidedAllowPeeling
;
1413 std::optional
<bool> ProvidedAllowProfileBasedPeeling
;
1414 std::optional
<unsigned> ProvidedFullUnrollMaxCount
;
1416 LoopUnroll(int OptLevel
= 2, bool OnlyWhenForced
= false,
1417 bool ForgetAllSCEV
= false,
1418 std::optional
<unsigned> Threshold
= std::nullopt
,
1419 std::optional
<unsigned> Count
= std::nullopt
,
1420 std::optional
<bool> AllowPartial
= std::nullopt
,
1421 std::optional
<bool> Runtime
= std::nullopt
,
1422 std::optional
<bool> UpperBound
= std::nullopt
,
1423 std::optional
<bool> AllowPeeling
= std::nullopt
,
1424 std::optional
<bool> AllowProfileBasedPeeling
= std::nullopt
,
1425 std::optional
<unsigned> ProvidedFullUnrollMaxCount
= std::nullopt
)
1426 : LoopPass(ID
), OptLevel(OptLevel
), OnlyWhenForced(OnlyWhenForced
),
1427 ForgetAllSCEV(ForgetAllSCEV
), ProvidedCount(std::move(Count
)),
1428 ProvidedThreshold(Threshold
), ProvidedAllowPartial(AllowPartial
),
1429 ProvidedRuntime(Runtime
), ProvidedUpperBound(UpperBound
),
1430 ProvidedAllowPeeling(AllowPeeling
),
1431 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling
),
1432 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount
) {
1433 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1436 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
1440 Function
&F
= *L
->getHeader()->getParent();
1442 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1443 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1444 ScalarEvolution
&SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1445 const TargetTransformInfo
&TTI
=
1446 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
1447 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1448 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1449 // pass. Function analyses need to be preserved across loop transformations
1450 // but ORE cannot be preserved (see comment before the pass definition).
1451 OptimizationRemarkEmitter
ORE(&F
);
1452 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
1454 LoopUnrollResult Result
= tryToUnrollLoop(
1455 L
, DT
, LI
, SE
, TTI
, AC
, ORE
, nullptr, nullptr, PreserveLCSSA
, OptLevel
,
1456 /*OnlyFullUnroll*/ false, OnlyWhenForced
, ForgetAllSCEV
, ProvidedCount
,
1457 ProvidedThreshold
, ProvidedAllowPartial
, ProvidedRuntime
,
1458 ProvidedUpperBound
, ProvidedAllowPeeling
,
1459 ProvidedAllowProfileBasedPeeling
, ProvidedFullUnrollMaxCount
);
1461 if (Result
== LoopUnrollResult::FullyUnrolled
)
1462 LPM
.markLoopAsDeleted(*L
);
1464 return Result
!= LoopUnrollResult::Unmodified
;
1467 /// This transformation requires natural loop information & requires that
1468 /// loop preheaders be inserted into the CFG...
1469 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1470 AU
.addRequired
<AssumptionCacheTracker
>();
1471 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
1472 // FIXME: Loop passes are required to preserve domtree, and for now we just
1473 // recreate dom info if anything gets unrolled.
1474 getLoopAnalysisUsage(AU
);
1478 } // end anonymous namespace
1480 char LoopUnroll::ID
= 0;
1482 INITIALIZE_PASS_BEGIN(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1483 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1484 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
1485 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1486 INITIALIZE_PASS_END(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1488 Pass
*llvm::createLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
,
1489 bool ForgetAllSCEV
, int Threshold
, int Count
,
1490 int AllowPartial
, int Runtime
, int UpperBound
,
1492 // TODO: It would make more sense for this function to take the optionals
1493 // directly, but that's dangerous since it would silently break out of tree
1495 return new LoopUnroll(
1496 OptLevel
, OnlyWhenForced
, ForgetAllSCEV
,
1497 Threshold
== -1 ? std::nullopt
: std::optional
<unsigned>(Threshold
),
1498 Count
== -1 ? std::nullopt
: std::optional
<unsigned>(Count
),
1499 AllowPartial
== -1 ? std::nullopt
: std::optional
<bool>(AllowPartial
),
1500 Runtime
== -1 ? std::nullopt
: std::optional
<bool>(Runtime
),
1501 UpperBound
== -1 ? std::nullopt
: std::optional
<bool>(UpperBound
),
1502 AllowPeeling
== -1 ? std::nullopt
: std::optional
<bool>(AllowPeeling
));
1505 PreservedAnalyses
LoopFullUnrollPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
1506 LoopStandardAnalysisResults
&AR
,
1507 LPMUpdater
&Updater
) {
1508 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1509 // pass. Function analyses need to be preserved across loop transformations
1510 // but ORE cannot be preserved (see comment before the pass definition).
1511 OptimizationRemarkEmitter
ORE(L
.getHeader()->getParent());
1513 // Keep track of the previous loop structure so we can identify new loops
1514 // created by unrolling.
1515 Loop
*ParentL
= L
.getParentLoop();
1516 SmallPtrSet
<Loop
*, 4> OldLoops
;
1518 OldLoops
.insert(ParentL
->begin(), ParentL
->end());
1520 OldLoops
.insert(AR
.LI
.begin(), AR
.LI
.end());
1522 std::string LoopName
= std::string(L
.getName());
1525 tryToUnrollLoop(&L
, AR
.DT
, &AR
.LI
, AR
.SE
, AR
.TTI
, AR
.AC
, ORE
,
1526 /*BFI*/ nullptr, /*PSI*/ nullptr,
1527 /*PreserveLCSSA*/ true, OptLevel
, /*OnlyFullUnroll*/ true,
1528 OnlyWhenForced
, ForgetSCEV
, /*Count*/ std::nullopt
,
1529 /*Threshold*/ std::nullopt
, /*AllowPartial*/ false,
1530 /*Runtime*/ false, /*UpperBound*/ false,
1531 /*AllowPeeling*/ true,
1532 /*AllowProfileBasedPeeling*/ false,
1533 /*FullUnrollMaxCount*/ std::nullopt
) !=
1534 LoopUnrollResult::Unmodified
;
1536 return PreservedAnalyses::all();
1538 // The parent must not be damaged by unrolling!
1541 ParentL
->verifyLoop();
1544 // Unrolling can do several things to introduce new loops into a loop nest:
1545 // - Full unrolling clones child loops within the current loop but then
1546 // removes the current loop making all of the children appear to be new
1549 // When a new loop appears as a sibling loop after fully unrolling,
1550 // its nesting structure has fundamentally changed and we want to revisit
1551 // it to reflect that.
1553 // When unrolling has removed the current loop, we need to tell the
1554 // infrastructure that it is gone.
1556 // Finally, we support a debugging/testing mode where we revisit child loops
1557 // as well. These are not expected to require further optimizations as either
1558 // they or the loop they were cloned from have been directly visited already.
1559 // But the debugging mode allows us to check this assumption.
1560 bool IsCurrentLoopValid
= false;
1561 SmallVector
<Loop
*, 4> SibLoops
;
1563 SibLoops
.append(ParentL
->begin(), ParentL
->end());
1565 SibLoops
.append(AR
.LI
.begin(), AR
.LI
.end());
1566 erase_if(SibLoops
, [&](Loop
*SibLoop
) {
1567 if (SibLoop
== &L
) {
1568 IsCurrentLoopValid
= true;
1572 // Otherwise erase the loop from the list if it was in the old loops.
1573 return OldLoops
.contains(SibLoop
);
1575 Updater
.addSiblingLoops(SibLoops
);
1577 if (!IsCurrentLoopValid
) {
1578 Updater
.markLoopAsDeleted(L
, LoopName
);
1580 // We can only walk child loops if the current loop remained valid.
1581 if (UnrollRevisitChildLoops
) {
1582 // Walk *all* of the child loops.
1583 SmallVector
<Loop
*, 4> ChildLoops(L
.begin(), L
.end());
1584 Updater
.addChildLoops(ChildLoops
);
1588 return getLoopPassPreservedAnalyses();
1591 PreservedAnalyses
LoopUnrollPass::run(Function
&F
,
1592 FunctionAnalysisManager
&AM
) {
1593 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
1594 // There are no loops in the function. Return before computing other expensive
1597 return PreservedAnalyses::all();
1598 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
1599 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
1600 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1601 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
1602 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1603 AAResults
&AA
= AM
.getResult
<AAManager
>(F
);
1605 LoopAnalysisManager
*LAM
= nullptr;
1606 if (auto *LAMProxy
= AM
.getCachedResult
<LoopAnalysisManagerFunctionProxy
>(F
))
1607 LAM
= &LAMProxy
->getManager();
1609 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
1610 ProfileSummaryInfo
*PSI
=
1611 MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
1612 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
1613 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
1615 bool Changed
= false;
1617 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1618 // Since simplification may add new inner loops, it has to run before the
1619 // legality and profitability checks. This means running the loop unroller
1620 // will simplify all loops, regardless of whether anything end up being
1622 for (const auto &L
: LI
) {
1624 simplifyLoop(L
, &DT
, &LI
, &SE
, &AC
, nullptr, false /* PreserveLCSSA */);
1625 Changed
|= formLCSSARecursively(*L
, DT
, &LI
, &SE
);
1628 // Add the loop nests in the reverse order of LoopInfo. See method
1630 SmallPriorityWorklist
<Loop
*, 4> Worklist
;
1631 appendLoopsToWorklist(LI
, Worklist
);
1633 while (!Worklist
.empty()) {
1634 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1635 // from back to front so that we work forward across the CFG, which
1636 // for unrolling is only needed to get optimization remarks emitted in
1638 Loop
&L
= *Worklist
.pop_back_val();
1640 Loop
*ParentL
= L
.getParentLoop();
1643 // Check if the profile summary indicates that the profiled application
1644 // has a huge working set size, in which case we disable peeling to avoid
1645 // bloating it further.
1646 std::optional
<bool> LocalAllowPeeling
= UnrollOpts
.AllowPeeling
;
1647 if (PSI
&& PSI
->hasHugeWorkingSetSize())
1648 LocalAllowPeeling
= false;
1649 std::string LoopName
= std::string(L
.getName());
1650 // The API here is quite complex to call and we allow to select some
1651 // flavors of unrolling during construction time (by setting UnrollOpts).
1652 LoopUnrollResult Result
= tryToUnrollLoop(
1653 &L
, DT
, &LI
, SE
, TTI
, AC
, ORE
, BFI
, PSI
,
1654 /*PreserveLCSSA*/ true, UnrollOpts
.OptLevel
, /*OnlyFullUnroll*/ false,
1655 UnrollOpts
.OnlyWhenForced
, UnrollOpts
.ForgetSCEV
,
1656 /*Count*/ std::nullopt
,
1657 /*Threshold*/ std::nullopt
, UnrollOpts
.AllowPartial
,
1658 UnrollOpts
.AllowRuntime
, UnrollOpts
.AllowUpperBound
, LocalAllowPeeling
,
1659 UnrollOpts
.AllowProfileBasedPeeling
, UnrollOpts
.FullUnrollMaxCount
,
1661 Changed
|= Result
!= LoopUnrollResult::Unmodified
;
1663 // The parent must not be damaged by unrolling!
1665 if (Result
!= LoopUnrollResult::Unmodified
&& ParentL
)
1666 ParentL
->verifyLoop();
1669 // Clear any cached analysis results for L if we removed it completely.
1670 if (LAM
&& Result
== LoopUnrollResult::FullyUnrolled
)
1671 LAM
->clear(L
, LoopName
);
1675 return PreservedAnalyses::all();
1677 return getLoopPassPreservedAnalyses();
1680 void LoopUnrollPass::printPipeline(
1681 raw_ostream
&OS
, function_ref
<StringRef(StringRef
)> MapClassName2PassName
) {
1682 static_cast<PassInfoMixin
<LoopUnrollPass
> *>(this)->printPipeline(
1683 OS
, MapClassName2PassName
);
1685 if (UnrollOpts
.AllowPartial
!= std::nullopt
)
1686 OS
<< (*UnrollOpts
.AllowPartial
? "" : "no-") << "partial;";
1687 if (UnrollOpts
.AllowPeeling
!= std::nullopt
)
1688 OS
<< (*UnrollOpts
.AllowPeeling
? "" : "no-") << "peeling;";
1689 if (UnrollOpts
.AllowRuntime
!= std::nullopt
)
1690 OS
<< (*UnrollOpts
.AllowRuntime
? "" : "no-") << "runtime;";
1691 if (UnrollOpts
.AllowUpperBound
!= std::nullopt
)
1692 OS
<< (*UnrollOpts
.AllowUpperBound
? "" : "no-") << "upperbound;";
1693 if (UnrollOpts
.AllowProfileBasedPeeling
!= std::nullopt
)
1694 OS
<< (*UnrollOpts
.AllowProfileBasedPeeling
? "" : "no-")
1695 << "profile-peeling;";
1696 if (UnrollOpts
.FullUnrollMaxCount
!= std::nullopt
)
1697 OS
<< "full-unroll-max=" << UnrollOpts
.FullUnrollMaxCount
<< ';';
1698 OS
<< 'O' << UnrollOpts
.OptLevel
;