[debug] Use poison instead of undef to set a killed dbg.assign address [NFC] (#119760)
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopUnrollPass.cpp
blob260cc72c3188d2db8ad866dd8914becc681dd7e6
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/CodeMetrics.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
30 #include "llvm/Analysis/MemorySSA.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DiagnosticInfo.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Scalar/LoopPassManager.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopPeel.h"
58 #include "llvm/Transforms/Utils/LoopSimplify.h"
59 #include "llvm/Transforms/Utils/LoopUtils.h"
60 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
61 #include "llvm/Transforms/Utils/SizeOpts.h"
62 #include "llvm/Transforms/Utils/UnrollLoop.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <limits>
67 #include <optional>
68 #include <string>
69 #include <tuple>
70 #include <utility>
72 using namespace llvm;
74 #define DEBUG_TYPE "loop-unroll"
76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
79 " the current top-most loop. This is sometimes preferred to reduce"
80 " compile time."));
82 static cl::opt<unsigned>
83 UnrollThreshold("unroll-threshold", cl::Hidden,
84 cl::desc("The cost threshold for loop unrolling"));
86 static cl::opt<unsigned>
87 UnrollOptSizeThreshold(
88 "unroll-optsize-threshold", cl::init(0), cl::Hidden,
89 cl::desc("The cost threshold for loop unrolling when optimizing for "
90 "size"));
92 static cl::opt<unsigned> UnrollPartialThreshold(
93 "unroll-partial-threshold", cl::Hidden,
94 cl::desc("The cost threshold for partial loop unrolling"));
96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
99 "to the threshold when aggressively unrolling a loop due to the "
100 "dynamic cost savings. If completely unrolling a loop will reduce "
101 "the total runtime from X to Y, we boost the loop unroll "
102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
103 "X/Y). This limit avoids excessive code bloat."));
105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
107 cl::desc("Don't allow loop unrolling to simulate more than this number of"
108 "iterations when checking full unroll profitability"));
110 static cl::opt<unsigned> UnrollCount(
111 "unroll-count", cl::Hidden,
112 cl::desc("Use this unroll count for all loops including those with "
113 "unroll_count pragma values, for testing purposes"));
115 static cl::opt<unsigned> UnrollMaxCount(
116 "unroll-max-count", cl::Hidden,
117 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
118 "testing purposes"));
120 static cl::opt<unsigned> UnrollFullMaxCount(
121 "unroll-full-max-count", cl::Hidden,
122 cl::desc(
123 "Set the max unroll count for full unrolling, for testing purposes"));
125 static cl::opt<bool>
126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
127 cl::desc("Allows loops to be partially unrolled until "
128 "-unroll-threshold loop size is reached."));
130 static cl::opt<bool> UnrollAllowRemainder(
131 "unroll-allow-remainder", cl::Hidden,
132 cl::desc("Allow generation of a loop remainder (extra iterations) "
133 "when unrolling a loop."));
135 static cl::opt<bool>
136 UnrollRuntime("unroll-runtime", cl::Hidden,
137 cl::desc("Unroll loops with run-time trip counts"));
139 static cl::opt<unsigned> UnrollMaxUpperBound(
140 "unroll-max-upperbound", cl::init(8), cl::Hidden,
141 cl::desc(
142 "The max of trip count upper bound that is considered in unrolling"));
144 static cl::opt<unsigned> PragmaUnrollThreshold(
145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
146 cl::desc("Unrolled size limit for loops with an unroll(full) or "
147 "unroll_count pragma."));
149 static cl::opt<unsigned> FlatLoopTripCountThreshold(
150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
151 cl::desc("If the runtime tripcount for the loop is lower than the "
152 "threshold, the loop is considered as flat and will be less "
153 "aggressively unrolled."));
155 static cl::opt<bool> UnrollUnrollRemainder(
156 "unroll-remainder", cl::Hidden,
157 cl::desc("Allow the loop remainder to be unrolled."));
159 // This option isn't ever intended to be enabled, it serves to allow
160 // experiments to check the assumptions about when this kind of revisit is
161 // necessary.
162 static cl::opt<bool> UnrollRevisitChildLoops(
163 "unroll-revisit-child-loops", cl::Hidden,
164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
165 "This shouldn't typically be needed as child loops (or their "
166 "clones) were already visited."));
168 static cl::opt<unsigned> UnrollThresholdAggressive(
169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
171 "optimizations"));
172 static cl::opt<unsigned>
173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
174 cl::Hidden,
175 cl::desc("Default threshold (max size of unrolled "
176 "loop), used in all but O3 optimizations"));
178 static cl::opt<unsigned> PragmaUnrollFullMaxIterations(
179 "pragma-unroll-full-max-iterations", cl::init(1'000'000), cl::Hidden,
180 cl::desc("Maximum allowed iterations to unroll under pragma unroll full."));
182 /// A magic value for use with the Threshold parameter to indicate
183 /// that the loop unroll should be performed regardless of how much
184 /// code expansion would result.
185 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
187 /// Gather the various unrolling parameters based on the defaults, compiler
188 /// flags, TTI overrides and user specified parameters.
189 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
190 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
191 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
192 OptimizationRemarkEmitter &ORE, int OptLevel,
193 std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount,
194 std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime,
195 std::optional<bool> UserUpperBound,
196 std::optional<unsigned> UserFullUnrollMaxCount) {
197 TargetTransformInfo::UnrollingPreferences UP;
199 // Set up the defaults
200 UP.Threshold =
201 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
202 UP.MaxPercentThresholdBoost = 400;
203 UP.OptSizeThreshold = UnrollOptSizeThreshold;
204 UP.PartialThreshold = 150;
205 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
206 UP.Count = 0;
207 UP.DefaultUnrollRuntimeCount = 8;
208 UP.MaxCount = std::numeric_limits<unsigned>::max();
209 UP.MaxUpperBound = UnrollMaxUpperBound;
210 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
211 UP.BEInsns = 2;
212 UP.Partial = false;
213 UP.Runtime = false;
214 UP.AllowRemainder = true;
215 UP.UnrollRemainder = false;
216 UP.AllowExpensiveTripCount = false;
217 UP.Force = false;
218 UP.UpperBound = false;
219 UP.UnrollAndJam = false;
220 UP.UnrollAndJamInnerLoopThreshold = 60;
221 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
222 UP.SCEVExpansionBudget = SCEVCheapExpansionBudget;
224 // Override with any target specific settings
225 TTI.getUnrollingPreferences(L, SE, UP, &ORE);
227 // Apply size attributes
228 bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
229 // Let unroll hints / pragmas take precedence over PGSO.
230 (hasUnrollTransformation(L) != TM_ForcedByUser &&
231 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
232 PGSOQueryType::IRPass));
233 if (OptForSize) {
234 UP.Threshold = UP.OptSizeThreshold;
235 UP.PartialThreshold = UP.PartialOptSizeThreshold;
236 UP.MaxPercentThresholdBoost = 100;
239 // Apply any user values specified by cl::opt
240 if (UnrollThreshold.getNumOccurrences() > 0)
241 UP.Threshold = UnrollThreshold;
242 if (UnrollPartialThreshold.getNumOccurrences() > 0)
243 UP.PartialThreshold = UnrollPartialThreshold;
244 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
245 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
246 if (UnrollMaxCount.getNumOccurrences() > 0)
247 UP.MaxCount = UnrollMaxCount;
248 if (UnrollMaxUpperBound.getNumOccurrences() > 0)
249 UP.MaxUpperBound = UnrollMaxUpperBound;
250 if (UnrollFullMaxCount.getNumOccurrences() > 0)
251 UP.FullUnrollMaxCount = UnrollFullMaxCount;
252 if (UnrollAllowPartial.getNumOccurrences() > 0)
253 UP.Partial = UnrollAllowPartial;
254 if (UnrollAllowRemainder.getNumOccurrences() > 0)
255 UP.AllowRemainder = UnrollAllowRemainder;
256 if (UnrollRuntime.getNumOccurrences() > 0)
257 UP.Runtime = UnrollRuntime;
258 if (UnrollMaxUpperBound == 0)
259 UP.UpperBound = false;
260 if (UnrollUnrollRemainder.getNumOccurrences() > 0)
261 UP.UnrollRemainder = UnrollUnrollRemainder;
262 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
263 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
265 // Apply user values provided by argument
266 if (UserThreshold) {
267 UP.Threshold = *UserThreshold;
268 UP.PartialThreshold = *UserThreshold;
270 if (UserCount)
271 UP.Count = *UserCount;
272 if (UserAllowPartial)
273 UP.Partial = *UserAllowPartial;
274 if (UserRuntime)
275 UP.Runtime = *UserRuntime;
276 if (UserUpperBound)
277 UP.UpperBound = *UserUpperBound;
278 if (UserFullUnrollMaxCount)
279 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
281 return UP;
284 namespace {
286 /// A struct to densely store the state of an instruction after unrolling at
287 /// each iteration.
289 /// This is designed to work like a tuple of <Instruction *, int> for the
290 /// purposes of hashing and lookup, but to be able to associate two boolean
291 /// states with each key.
292 struct UnrolledInstState {
293 Instruction *I;
294 int Iteration : 30;
295 unsigned IsFree : 1;
296 unsigned IsCounted : 1;
299 /// Hashing and equality testing for a set of the instruction states.
300 struct UnrolledInstStateKeyInfo {
301 using PtrInfo = DenseMapInfo<Instruction *>;
302 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
304 static inline UnrolledInstState getEmptyKey() {
305 return {PtrInfo::getEmptyKey(), 0, 0, 0};
308 static inline UnrolledInstState getTombstoneKey() {
309 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
312 static inline unsigned getHashValue(const UnrolledInstState &S) {
313 return PairInfo::getHashValue({S.I, S.Iteration});
316 static inline bool isEqual(const UnrolledInstState &LHS,
317 const UnrolledInstState &RHS) {
318 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
322 struct EstimatedUnrollCost {
323 /// The estimated cost after unrolling.
324 unsigned UnrolledCost;
326 /// The estimated dynamic cost of executing the instructions in the
327 /// rolled form.
328 unsigned RolledDynamicCost;
331 struct PragmaInfo {
332 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
333 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
334 PragmaEnableUnroll(PEU) {}
335 const bool UserUnrollCount;
336 const bool PragmaFullUnroll;
337 const unsigned PragmaCount;
338 const bool PragmaEnableUnroll;
341 } // end anonymous namespace
343 /// Figure out if the loop is worth full unrolling.
345 /// Complete loop unrolling can make some loads constant, and we need to know
346 /// if that would expose any further optimization opportunities. This routine
347 /// estimates this optimization. It computes cost of unrolled loop
348 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
349 /// dynamic cost we mean that we won't count costs of blocks that are known not
350 /// to be executed (i.e. if we have a branch in the loop and we know that at the
351 /// given iteration its condition would be resolved to true, we won't add up the
352 /// cost of the 'false'-block).
353 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
354 /// the analysis failed (no benefits expected from the unrolling, or the loop is
355 /// too big to analyze), the returned value is std::nullopt.
356 static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
357 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
358 const SmallPtrSetImpl<const Value *> &EphValues,
359 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
360 unsigned MaxIterationsCountToAnalyze) {
361 // We want to be able to scale offsets by the trip count and add more offsets
362 // to them without checking for overflows, and we already don't want to
363 // analyze *massive* trip counts, so we force the max to be reasonably small.
364 assert(MaxIterationsCountToAnalyze <
365 (unsigned)(std::numeric_limits<int>::max() / 2) &&
366 "The unroll iterations max is too large!");
368 // Only analyze inner loops. We can't properly estimate cost of nested loops
369 // and we won't visit inner loops again anyway.
370 if (!L->isInnermost())
371 return std::nullopt;
373 // Don't simulate loops with a big or unknown tripcount
374 if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
375 return std::nullopt;
377 SmallSetVector<BasicBlock *, 16> BBWorklist;
378 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
379 DenseMap<Value *, Value *> SimplifiedValues;
380 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
382 // The estimated cost of the unrolled form of the loop. We try to estimate
383 // this by simplifying as much as we can while computing the estimate.
384 InstructionCost UnrolledCost = 0;
386 // We also track the estimated dynamic (that is, actually executed) cost in
387 // the rolled form. This helps identify cases when the savings from unrolling
388 // aren't just exposing dead control flows, but actual reduced dynamic
389 // instructions due to the simplifications which we expect to occur after
390 // unrolling.
391 InstructionCost RolledDynamicCost = 0;
393 // We track the simplification of each instruction in each iteration. We use
394 // this to recursively merge costs into the unrolled cost on-demand so that
395 // we don't count the cost of any dead code. This is essentially a map from
396 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
397 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
399 // A small worklist used to accumulate cost of instructions from each
400 // observable and reached root in the loop.
401 SmallVector<Instruction *, 16> CostWorklist;
403 // PHI-used worklist used between iterations while accumulating cost.
404 SmallVector<Instruction *, 4> PHIUsedList;
406 // Helper function to accumulate cost for instructions in the loop.
407 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
408 assert(Iteration >= 0 && "Cannot have a negative iteration!");
409 assert(CostWorklist.empty() && "Must start with an empty cost list");
410 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
411 CostWorklist.push_back(&RootI);
412 TargetTransformInfo::TargetCostKind CostKind =
413 RootI.getFunction()->hasMinSize() ?
414 TargetTransformInfo::TCK_CodeSize :
415 TargetTransformInfo::TCK_SizeAndLatency;
416 for (;; --Iteration) {
417 do {
418 Instruction *I = CostWorklist.pop_back_val();
420 // InstCostMap only uses I and Iteration as a key, the other two values
421 // don't matter here.
422 auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
423 if (CostIter == InstCostMap.end())
424 // If an input to a PHI node comes from a dead path through the loop
425 // we may have no cost data for it here. What that actually means is
426 // that it is free.
427 continue;
428 auto &Cost = *CostIter;
429 if (Cost.IsCounted)
430 // Already counted this instruction.
431 continue;
433 // Mark that we are counting the cost of this instruction now.
434 Cost.IsCounted = true;
436 // If this is a PHI node in the loop header, just add it to the PHI set.
437 if (auto *PhiI = dyn_cast<PHINode>(I))
438 if (PhiI->getParent() == L->getHeader()) {
439 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
440 "inherently simplify during unrolling.");
441 if (Iteration == 0)
442 continue;
444 // Push the incoming value from the backedge into the PHI used list
445 // if it is an in-loop instruction. We'll use this to populate the
446 // cost worklist for the next iteration (as we count backwards).
447 if (auto *OpI = dyn_cast<Instruction>(
448 PhiI->getIncomingValueForBlock(L->getLoopLatch())))
449 if (L->contains(OpI))
450 PHIUsedList.push_back(OpI);
451 continue;
454 // First accumulate the cost of this instruction.
455 if (!Cost.IsFree) {
456 // Consider simplified operands in instruction cost.
457 SmallVector<Value *, 4> Operands;
458 transform(I->operands(), std::back_inserter(Operands),
459 [&](Value *Op) {
460 if (auto Res = SimplifiedValues.lookup(Op))
461 return Res;
462 return Op;
464 UnrolledCost += TTI.getInstructionCost(I, Operands, CostKind);
465 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
466 << Iteration << "): ");
467 LLVM_DEBUG(I->dump());
470 // We must count the cost of every operand which is not free,
471 // recursively. If we reach a loop PHI node, simply add it to the set
472 // to be considered on the next iteration (backwards!).
473 for (Value *Op : I->operands()) {
474 // Check whether this operand is free due to being a constant or
475 // outside the loop.
476 auto *OpI = dyn_cast<Instruction>(Op);
477 if (!OpI || !L->contains(OpI))
478 continue;
480 // Otherwise accumulate its cost.
481 CostWorklist.push_back(OpI);
483 } while (!CostWorklist.empty());
485 if (PHIUsedList.empty())
486 // We've exhausted the search.
487 break;
489 assert(Iteration > 0 &&
490 "Cannot track PHI-used values past the first iteration!");
491 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
492 PHIUsedList.clear();
496 // Ensure that we don't violate the loop structure invariants relied on by
497 // this analysis.
498 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
499 assert(L->isLCSSAForm(DT) &&
500 "Must have loops in LCSSA form to track live-out values.");
502 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
504 TargetTransformInfo::TargetCostKind CostKind =
505 L->getHeader()->getParent()->hasMinSize() ?
506 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
507 // Simulate execution of each iteration of the loop counting instructions,
508 // which would be simplified.
509 // Since the same load will take different values on different iterations,
510 // we literally have to go through all loop's iterations.
511 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
512 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
514 // Prepare for the iteration by collecting any simplified entry or backedge
515 // inputs.
516 for (Instruction &I : *L->getHeader()) {
517 auto *PHI = dyn_cast<PHINode>(&I);
518 if (!PHI)
519 break;
521 // The loop header PHI nodes must have exactly two input: one from the
522 // loop preheader and one from the loop latch.
523 assert(
524 PHI->getNumIncomingValues() == 2 &&
525 "Must have an incoming value only for the preheader and the latch.");
527 Value *V = PHI->getIncomingValueForBlock(
528 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
529 if (Iteration != 0 && SimplifiedValues.count(V))
530 V = SimplifiedValues.lookup(V);
531 SimplifiedInputValues.push_back({PHI, V});
534 // Now clear and re-populate the map for the next iteration.
535 SimplifiedValues.clear();
536 while (!SimplifiedInputValues.empty())
537 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
539 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
541 BBWorklist.clear();
542 BBWorklist.insert(L->getHeader());
543 // Note that we *must not* cache the size, this loop grows the worklist.
544 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
545 BasicBlock *BB = BBWorklist[Idx];
547 // Visit all instructions in the given basic block and try to simplify
548 // it. We don't change the actual IR, just count optimization
549 // opportunities.
550 for (Instruction &I : *BB) {
551 // These won't get into the final code - don't even try calculating the
552 // cost for them.
553 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
554 continue;
556 // Track this instruction's expected baseline cost when executing the
557 // rolled loop form.
558 RolledDynamicCost += TTI.getInstructionCost(&I, CostKind);
560 // Visit the instruction to analyze its loop cost after unrolling,
561 // and if the visitor returns true, mark the instruction as free after
562 // unrolling and continue.
563 bool IsFree = Analyzer.visit(I);
564 bool Inserted = InstCostMap.insert({&I, (int)Iteration,
565 (unsigned)IsFree,
566 /*IsCounted*/ false}).second;
567 (void)Inserted;
568 assert(Inserted && "Cannot have a state for an unvisited instruction!");
570 if (IsFree)
571 continue;
573 // Can't properly model a cost of a call.
574 // FIXME: With a proper cost model we should be able to do it.
575 if (auto *CI = dyn_cast<CallInst>(&I)) {
576 const Function *Callee = CI->getCalledFunction();
577 if (!Callee || TTI.isLoweredToCall(Callee)) {
578 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
579 return std::nullopt;
583 // If the instruction might have a side-effect recursively account for
584 // the cost of it and all the instructions leading up to it.
585 if (I.mayHaveSideEffects())
586 AddCostRecursively(I, Iteration);
588 // If unrolled body turns out to be too big, bail out.
589 if (UnrolledCost > MaxUnrolledLoopSize) {
590 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
591 << " UnrolledCost: " << UnrolledCost
592 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
593 << "\n");
594 return std::nullopt;
598 Instruction *TI = BB->getTerminator();
600 auto getSimplifiedConstant = [&](Value *V) -> Constant * {
601 if (SimplifiedValues.count(V))
602 V = SimplifiedValues.lookup(V);
603 return dyn_cast<Constant>(V);
606 // Add in the live successors by first checking whether we have terminator
607 // that may be simplified based on the values simplified by this call.
608 BasicBlock *KnownSucc = nullptr;
609 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
610 if (BI->isConditional()) {
611 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
612 // Just take the first successor if condition is undef
613 if (isa<UndefValue>(SimpleCond))
614 KnownSucc = BI->getSuccessor(0);
615 else if (ConstantInt *SimpleCondVal =
616 dyn_cast<ConstantInt>(SimpleCond))
617 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
620 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
621 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
622 // Just take the first successor if condition is undef
623 if (isa<UndefValue>(SimpleCond))
624 KnownSucc = SI->getSuccessor(0);
625 else if (ConstantInt *SimpleCondVal =
626 dyn_cast<ConstantInt>(SimpleCond))
627 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
630 if (KnownSucc) {
631 if (L->contains(KnownSucc))
632 BBWorklist.insert(KnownSucc);
633 else
634 ExitWorklist.insert({BB, KnownSucc});
635 continue;
638 // Add BB's successors to the worklist.
639 for (BasicBlock *Succ : successors(BB))
640 if (L->contains(Succ))
641 BBWorklist.insert(Succ);
642 else
643 ExitWorklist.insert({BB, Succ});
644 AddCostRecursively(*TI, Iteration);
647 // If we found no optimization opportunities on the first iteration, we
648 // won't find them on later ones too.
649 if (UnrolledCost == RolledDynamicCost) {
650 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
651 << " UnrolledCost: " << UnrolledCost << "\n");
652 return std::nullopt;
656 while (!ExitWorklist.empty()) {
657 BasicBlock *ExitingBB, *ExitBB;
658 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
660 for (Instruction &I : *ExitBB) {
661 auto *PN = dyn_cast<PHINode>(&I);
662 if (!PN)
663 break;
665 Value *Op = PN->getIncomingValueForBlock(ExitingBB);
666 if (auto *OpI = dyn_cast<Instruction>(Op))
667 if (L->contains(OpI))
668 AddCostRecursively(*OpI, TripCount - 1);
672 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
673 "All instructions must have a valid cost, whether the "
674 "loop is rolled or unrolled.");
676 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
677 << "UnrolledCost: " << UnrolledCost << ", "
678 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
679 return {{unsigned(*UnrolledCost.getValue()),
680 unsigned(*RolledDynamicCost.getValue())}};
683 UnrollCostEstimator::UnrollCostEstimator(
684 const Loop *L, const TargetTransformInfo &TTI,
685 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
686 CodeMetrics Metrics;
687 for (BasicBlock *BB : L->blocks())
688 Metrics.analyzeBasicBlock(BB, TTI, EphValues, /* PrepareForLTO= */ false,
690 NumInlineCandidates = Metrics.NumInlineCandidates;
691 NotDuplicatable = Metrics.notDuplicatable;
692 Convergence = Metrics.Convergence;
693 LoopSize = Metrics.NumInsts;
694 ConvergenceAllowsRuntime =
695 Metrics.Convergence != ConvergenceKind::Uncontrolled &&
696 !getLoopConvergenceHeart(L);
698 // Don't allow an estimate of size zero. This would allows unrolling of loops
699 // with huge iteration counts, which is a compile time problem even if it's
700 // not a problem for code quality. Also, the code using this size may assume
701 // that each loop has at least three instructions (likely a conditional
702 // branch, a comparison feeding that branch, and some kind of loop increment
703 // feeding that comparison instruction).
704 if (LoopSize.isValid() && LoopSize < BEInsns + 1)
705 // This is an open coded max() on InstructionCost
706 LoopSize = BEInsns + 1;
709 bool UnrollCostEstimator::canUnroll() const {
710 switch (Convergence) {
711 case ConvergenceKind::ExtendedLoop:
712 LLVM_DEBUG(dbgs() << " Convergence prevents unrolling.\n");
713 return false;
714 default:
715 break;
717 if (!LoopSize.isValid()) {
718 LLVM_DEBUG(dbgs() << " Invalid loop size prevents unrolling.\n");
719 return false;
721 if (NotDuplicatable) {
722 LLVM_DEBUG(dbgs() << " Non-duplicatable blocks prevent unrolling.\n");
723 return false;
725 return true;
728 uint64_t UnrollCostEstimator::getUnrolledLoopSize(
729 const TargetTransformInfo::UnrollingPreferences &UP,
730 unsigned CountOverwrite) const {
731 unsigned LS = *LoopSize.getValue();
732 assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
733 if (CountOverwrite)
734 return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns;
735 else
736 return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns;
739 // Returns the loop hint metadata node with the given name (for example,
740 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
741 // returned.
742 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
743 if (MDNode *LoopID = L->getLoopID())
744 return GetUnrollMetadata(LoopID, Name);
745 return nullptr;
748 // Returns true if the loop has an unroll(full) pragma.
749 static bool hasUnrollFullPragma(const Loop *L) {
750 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
753 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
754 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
755 static bool hasUnrollEnablePragma(const Loop *L) {
756 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
759 // Returns true if the loop has an runtime unroll(disable) pragma.
760 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
761 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
764 // If loop has an unroll_count pragma return the (necessarily
765 // positive) value from the pragma. Otherwise return 0.
766 static unsigned unrollCountPragmaValue(const Loop *L) {
767 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
768 if (MD) {
769 assert(MD->getNumOperands() == 2 &&
770 "Unroll count hint metadata should have two operands.");
771 unsigned Count =
772 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
773 assert(Count >= 1 && "Unroll count must be positive.");
774 return Count;
776 return 0;
779 // Computes the boosting factor for complete unrolling.
780 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
781 // be beneficial to fully unroll the loop even if unrolledcost is large. We
782 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
783 // the unroll threshold.
784 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
785 unsigned MaxPercentThresholdBoost) {
786 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
787 return 100;
788 else if (Cost.UnrolledCost != 0)
789 // The boosting factor is RolledDynamicCost / UnrolledCost
790 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
791 MaxPercentThresholdBoost);
792 else
793 return MaxPercentThresholdBoost;
796 static std::optional<unsigned>
797 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
798 const unsigned TripMultiple, const unsigned TripCount,
799 unsigned MaxTripCount, const UnrollCostEstimator UCE,
800 const TargetTransformInfo::UnrollingPreferences &UP) {
802 // Using unroll pragma
803 // 1st priority is unroll count set by "unroll-count" option.
805 if (PInfo.UserUnrollCount) {
806 if (UP.AllowRemainder &&
807 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
808 return (unsigned)UnrollCount;
811 // 2nd priority is unroll count set by pragma.
812 if (PInfo.PragmaCount > 0) {
813 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)))
814 return PInfo.PragmaCount;
817 if (PInfo.PragmaFullUnroll && TripCount != 0) {
818 // Certain cases with UBSAN can cause trip count to be calculated as
819 // INT_MAX, Block full unrolling at a reasonable limit so that the compiler
820 // doesn't hang trying to unroll the loop. See PR77842
821 if (TripCount > PragmaUnrollFullMaxIterations) {
822 LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n");
823 return std::nullopt;
826 return TripCount;
829 if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount &&
830 MaxTripCount <= UP.MaxUpperBound)
831 return MaxTripCount;
833 // if didn't return until here, should continue to other priorties
834 return std::nullopt;
837 static std::optional<unsigned> shouldFullUnroll(
838 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
839 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
840 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
841 const TargetTransformInfo::UnrollingPreferences &UP) {
842 assert(FullUnrollTripCount && "should be non-zero!");
844 if (FullUnrollTripCount > UP.FullUnrollMaxCount)
845 return std::nullopt;
847 // When computing the unrolled size, note that BEInsns are not replicated
848 // like the rest of the loop body.
849 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
850 return FullUnrollTripCount;
852 // The loop isn't that small, but we still can fully unroll it if that
853 // helps to remove a significant number of instructions.
854 // To check that, run additional analysis on the loop.
855 if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
856 L, FullUnrollTripCount, DT, SE, EphValues, TTI,
857 UP.Threshold * UP.MaxPercentThresholdBoost / 100,
858 UP.MaxIterationsCountToAnalyze)) {
859 unsigned Boost =
860 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
861 if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
862 return FullUnrollTripCount;
864 return std::nullopt;
867 static std::optional<unsigned>
868 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
869 const UnrollCostEstimator UCE,
870 const TargetTransformInfo::UnrollingPreferences &UP) {
872 if (!TripCount)
873 return std::nullopt;
875 if (!UP.Partial) {
876 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
877 << "-unroll-allow-partial not given\n");
878 return 0;
880 unsigned count = UP.Count;
881 if (count == 0)
882 count = TripCount;
883 if (UP.PartialThreshold != NoThreshold) {
884 // Reduce unroll count to be modulo of TripCount for partial unrolling.
885 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
886 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
887 (LoopSize - UP.BEInsns);
888 if (count > UP.MaxCount)
889 count = UP.MaxCount;
890 while (count != 0 && TripCount % count != 0)
891 count--;
892 if (UP.AllowRemainder && count <= 1) {
893 // If there is no Count that is modulo of TripCount, set Count to
894 // largest power-of-two factor that satisfies the threshold limit.
895 // As we'll create fixup loop, do the type of unrolling only if
896 // remainder loop is allowed.
897 count = UP.DefaultUnrollRuntimeCount;
898 while (count != 0 &&
899 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
900 count >>= 1;
902 if (count < 2) {
903 count = 0;
905 } else {
906 count = TripCount;
908 if (count > UP.MaxCount)
909 count = UP.MaxCount;
911 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n");
913 return count;
915 // Returns true if unroll count was set explicitly.
916 // Calculates unroll count and writes it to UP.Count.
917 // Unless IgnoreUser is true, will also use metadata and command-line options
918 // that are specific to to the LoopUnroll pass (which, for instance, are
919 // irrelevant for the LoopUnrollAndJam pass).
920 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
921 // many LoopUnroll-specific options. The shared functionality should be
922 // refactored into it own function.
923 bool llvm::computeUnrollCount(
924 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
925 AssumptionCache *AC, ScalarEvolution &SE,
926 const SmallPtrSetImpl<const Value *> &EphValues,
927 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
928 bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE,
929 TargetTransformInfo::UnrollingPreferences &UP,
930 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
932 unsigned LoopSize = UCE.getRolledLoopSize();
934 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
935 const bool PragmaFullUnroll = hasUnrollFullPragma(L);
936 const unsigned PragmaCount = unrollCountPragmaValue(L);
937 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
939 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
940 PragmaEnableUnroll || UserUnrollCount;
942 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
943 PragmaEnableUnroll);
944 // Use an explicit peel count that has been specified for testing. In this
945 // case it's not permitted to also specify an explicit unroll count.
946 if (PP.PeelCount) {
947 if (UnrollCount.getNumOccurrences() > 0) {
948 report_fatal_error("Cannot specify both explicit peel count and "
949 "explicit unroll count", /*GenCrashDiag=*/false);
951 UP.Count = 1;
952 UP.Runtime = false;
953 return true;
955 // Check for explicit Count.
956 // 1st priority is unroll count set by "unroll-count" option.
957 // 2nd priority is unroll count set by pragma.
958 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
959 MaxTripCount, UCE, UP)) {
960 UP.Count = *UnrollFactor;
962 if (UserUnrollCount || (PragmaCount > 0)) {
963 UP.AllowExpensiveTripCount = true;
964 UP.Force = true;
966 UP.Runtime |= (PragmaCount > 0);
967 return ExplicitUnroll;
968 } else {
969 if (ExplicitUnroll && TripCount != 0) {
970 // If the loop has an unrolling pragma, we want to be more aggressive with
971 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
972 // value which is larger than the default limits.
973 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
974 UP.PartialThreshold =
975 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
979 // 3rd priority is exact full unrolling. This will eliminate all copies
980 // of some exit test.
981 UP.Count = 0;
982 if (TripCount) {
983 UP.Count = TripCount;
984 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
985 TripCount, UCE, UP)) {
986 UP.Count = *UnrollFactor;
987 UseUpperBound = false;
988 return ExplicitUnroll;
992 // 4th priority is bounded unrolling.
993 // We can unroll by the upper bound amount if it's generally allowed or if
994 // we know that the loop is executed either the upper bound or zero times.
995 // (MaxOrZero unrolling keeps only the first loop test, so the number of
996 // loop tests remains the same compared to the non-unrolled version, whereas
997 // the generic upper bound unrolling keeps all but the last loop test so the
998 // number of loop tests goes up which may end up being worse on targets with
999 // constrained branch predictor resources so is controlled by an option.)
1000 // In addition we only unroll small upper bounds.
1001 // Note that the cost of bounded unrolling is always strictly greater than
1002 // cost of exact full unrolling. As such, if we have an exact count and
1003 // found it unprofitable, we'll never chose to bounded unroll.
1004 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
1005 MaxTripCount <= UP.MaxUpperBound) {
1006 UP.Count = MaxTripCount;
1007 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
1008 MaxTripCount, UCE, UP)) {
1009 UP.Count = *UnrollFactor;
1010 UseUpperBound = true;
1011 return ExplicitUnroll;
1015 // 5th priority is loop peeling.
1016 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold);
1017 if (PP.PeelCount) {
1018 UP.Runtime = false;
1019 UP.Count = 1;
1020 return ExplicitUnroll;
1023 // Before starting partial unrolling, set up.partial to true,
1024 // if user explicitly asked for unrolling
1025 if (TripCount)
1026 UP.Partial |= ExplicitUnroll;
1028 // 6th priority is partial unrolling.
1029 // Try partial unroll only when TripCount could be statically calculated.
1030 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
1031 UP.Count = *UnrollFactor;
1033 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
1034 UP.Count != TripCount)
1035 ORE->emit([&]() {
1036 return OptimizationRemarkMissed(DEBUG_TYPE,
1037 "FullUnrollAsDirectedTooLarge",
1038 L->getStartLoc(), L->getHeader())
1039 << "Unable to fully unroll loop as directed by unroll pragma "
1040 "because "
1041 "unrolled size is too large.";
1044 if (UP.PartialThreshold != NoThreshold) {
1045 if (UP.Count == 0) {
1046 if (PragmaEnableUnroll)
1047 ORE->emit([&]() {
1048 return OptimizationRemarkMissed(DEBUG_TYPE,
1049 "UnrollAsDirectedTooLarge",
1050 L->getStartLoc(), L->getHeader())
1051 << "Unable to unroll loop as directed by unroll(enable) "
1052 "pragma "
1053 "because unrolled size is too large.";
1057 return ExplicitUnroll;
1059 assert(TripCount == 0 &&
1060 "All cases when TripCount is constant should be covered here.");
1061 if (PragmaFullUnroll)
1062 ORE->emit([&]() {
1063 return OptimizationRemarkMissed(
1064 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
1065 L->getStartLoc(), L->getHeader())
1066 << "Unable to fully unroll loop as directed by unroll(full) "
1067 "pragma "
1068 "because loop has a runtime trip count.";
1071 // 7th priority is runtime unrolling.
1072 // Don't unroll a runtime trip count loop when it is disabled.
1073 if (hasRuntimeUnrollDisablePragma(L)) {
1074 UP.Count = 0;
1075 return false;
1078 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1079 if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) {
1080 UP.Count = 0;
1081 return false;
1084 // Check if the runtime trip count is too small when profile is available.
1085 if (L->getHeader()->getParent()->hasProfileData()) {
1086 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
1087 if (*ProfileTripCount < FlatLoopTripCountThreshold)
1088 return false;
1089 else
1090 UP.AllowExpensiveTripCount = true;
1093 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
1094 if (!UP.Runtime) {
1095 LLVM_DEBUG(
1096 dbgs() << " will not try to unroll loop with runtime trip count "
1097 << "-unroll-runtime not given\n");
1098 UP.Count = 0;
1099 return false;
1101 if (UP.Count == 0)
1102 UP.Count = UP.DefaultUnrollRuntimeCount;
1104 // Reduce unroll count to be the largest power-of-two factor of
1105 // the original count which satisfies the threshold limit.
1106 while (UP.Count != 0 &&
1107 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1108 UP.Count >>= 1;
1110 #ifndef NDEBUG
1111 unsigned OrigCount = UP.Count;
1112 #endif
1114 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1115 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1116 UP.Count >>= 1;
1117 LLVM_DEBUG(
1118 dbgs() << "Remainder loop is restricted (that could architecture "
1119 "specific or because the loop contains a convergent "
1120 "instruction), so unroll count must divide the trip "
1121 "multiple, "
1122 << TripMultiple << ". Reducing unroll count from " << OrigCount
1123 << " to " << UP.Count << ".\n");
1125 using namespace ore;
1127 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
1128 ORE->emit([&]() {
1129 return OptimizationRemarkMissed(DEBUG_TYPE,
1130 "DifferentUnrollCountFromDirected",
1131 L->getStartLoc(), L->getHeader())
1132 << "Unable to unroll loop the number of times directed by "
1133 "unroll_count pragma because remainder loop is restricted "
1134 "(that could architecture specific or because the loop "
1135 "contains a convergent instruction) and so must have an "
1136 "unroll "
1137 "count that divides the loop trip multiple of "
1138 << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
1139 << NV("UnrollCount", UP.Count) << " time(s).";
1143 if (UP.Count > UP.MaxCount)
1144 UP.Count = UP.MaxCount;
1146 if (MaxTripCount && UP.Count > MaxTripCount)
1147 UP.Count = MaxTripCount;
1149 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
1150 << "\n");
1151 if (UP.Count < 2)
1152 UP.Count = 0;
1153 return ExplicitUnroll;
1156 static LoopUnrollResult
1157 tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1158 const TargetTransformInfo &TTI, AssumptionCache &AC,
1159 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1160 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1161 bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV,
1162 std::optional<unsigned> ProvidedCount,
1163 std::optional<unsigned> ProvidedThreshold,
1164 std::optional<bool> ProvidedAllowPartial,
1165 std::optional<bool> ProvidedRuntime,
1166 std::optional<bool> ProvidedUpperBound,
1167 std::optional<bool> ProvidedAllowPeeling,
1168 std::optional<bool> ProvidedAllowProfileBasedPeeling,
1169 std::optional<unsigned> ProvidedFullUnrollMaxCount,
1170 AAResults *AA = nullptr) {
1172 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1173 << L->getHeader()->getParent()->getName() << "] Loop %"
1174 << L->getHeader()->getName() << "\n");
1175 TransformationMode TM = hasUnrollTransformation(L);
1176 if (TM & TM_Disable)
1177 return LoopUnrollResult::Unmodified;
1179 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1180 // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1181 // automatic unrolling from interfering with the user requested
1182 // transformation.
1183 Loop *ParentL = L->getParentLoop();
1184 if (ParentL != nullptr &&
1185 hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser &&
1186 hasUnrollTransformation(L) != TM_ForcedByUser) {
1187 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1188 << " llvm.loop.unroll_and_jam.\n");
1189 return LoopUnrollResult::Unmodified;
1192 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1193 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1194 // unrolling from interfering with the user requested transformation.
1195 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
1196 hasUnrollTransformation(L) != TM_ForcedByUser) {
1197 LLVM_DEBUG(
1198 dbgs()
1199 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1200 return LoopUnrollResult::Unmodified;
1203 if (!L->isLoopSimplifyForm()) {
1204 LLVM_DEBUG(
1205 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1206 return LoopUnrollResult::Unmodified;
1209 // When automatic unrolling is disabled, do not unroll unless overridden for
1210 // this loop.
1211 if (OnlyWhenForced && !(TM & TM_Enable))
1212 return LoopUnrollResult::Unmodified;
1214 bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1215 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1216 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
1217 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1218 ProvidedFullUnrollMaxCount);
1219 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1220 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1222 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1223 // as threshold later on.
1224 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1225 !OptForSize)
1226 return LoopUnrollResult::Unmodified;
1228 SmallPtrSet<const Value *, 32> EphValues;
1229 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1231 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns);
1232 if (!UCE.canUnroll()) {
1233 LLVM_DEBUG(dbgs() << " Loop not considered unrollable.\n");
1234 return LoopUnrollResult::Unmodified;
1237 unsigned LoopSize = UCE.getRolledLoopSize();
1238 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
1240 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1241 // later), to (fully) unroll loops, if it does not increase code size.
1242 if (OptForSize)
1243 UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1245 if (UCE.NumInlineCandidates != 0) {
1246 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1247 return LoopUnrollResult::Unmodified;
1250 // Find the smallest exact trip count for any exit. This is an upper bound
1251 // on the loop trip count, but an exit at an earlier iteration is still
1252 // possible. An unroll by the smallest exact trip count guarantees that all
1253 // branches relating to at least one exit can be eliminated. This is unlike
1254 // the max trip count, which only guarantees that the backedge can be broken.
1255 unsigned TripCount = 0;
1256 unsigned TripMultiple = 1;
1257 SmallVector<BasicBlock *, 8> ExitingBlocks;
1258 L->getExitingBlocks(ExitingBlocks);
1259 for (BasicBlock *ExitingBlock : ExitingBlocks)
1260 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1261 if (!TripCount || TC < TripCount)
1262 TripCount = TripMultiple = TC;
1264 if (!TripCount) {
1265 // If no exact trip count is known, determine the trip multiple of either
1266 // the loop latch or the single exiting block.
1267 // TODO: Relax for multiple exits.
1268 BasicBlock *ExitingBlock = L->getLoopLatch();
1269 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1270 ExitingBlock = L->getExitingBlock();
1271 if (ExitingBlock)
1272 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1275 // If the loop contains a convergent operation, the prelude we'd add
1276 // to do the first few instructions before we hit the unrolled loop
1277 // is unsafe -- it adds a control-flow dependency to the convergent
1278 // operation. Therefore restrict remainder loop (try unrolling without).
1280 // TODO: This is somewhat conservative; we could allow the remainder if the
1281 // trip count is uniform.
1282 UP.AllowRemainder &= UCE.ConvergenceAllowsRuntime;
1284 // Try to find the trip count upper bound if we cannot find the exact trip
1285 // count.
1286 unsigned MaxTripCount = 0;
1287 bool MaxOrZero = false;
1288 if (!TripCount) {
1289 MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1290 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1293 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1294 // fully unroll the loop.
1295 bool UseUpperBound = false;
1296 bool IsCountSetExplicitly = computeUnrollCount(
1297 L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount,
1298 MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound);
1299 if (!UP.Count)
1300 return LoopUnrollResult::Unmodified;
1302 UP.Runtime &= UCE.ConvergenceAllowsRuntime;
1304 if (PP.PeelCount) {
1305 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1306 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1307 << " with iteration count " << PP.PeelCount << "!\n");
1308 ORE.emit([&]() {
1309 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1310 L->getHeader())
1311 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1312 << " iterations";
1315 ValueToValueMapTy VMap;
1316 if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA, VMap)) {
1317 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI, nullptr);
1318 // If the loop was peeled, we already "used up" the profile information
1319 // we had, so we don't want to unroll or peel again.
1320 if (PP.PeelProfiledIterations)
1321 L->setLoopAlreadyUnrolled();
1322 return LoopUnrollResult::PartiallyUnrolled;
1324 return LoopUnrollResult::Unmodified;
1327 // Do not attempt partial/runtime unrolling in FullLoopUnrolling
1328 if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) {
1329 LLVM_DEBUG(
1330 dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n");
1331 return LoopUnrollResult::Unmodified;
1334 // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1335 // However, we only want to actually perform it if we don't know the trip
1336 // count and the unroll count doesn't divide the known trip multiple.
1337 // TODO: This decision should probably be pushed up into
1338 // computeUnrollCount().
1339 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1341 // Save loop properties before it is transformed.
1342 MDNode *OrigLoopID = L->getLoopID();
1344 // Unroll the loop.
1345 Loop *RemainderLoop = nullptr;
1346 UnrollLoopOptions ULO;
1347 ULO.Count = UP.Count;
1348 ULO.Force = UP.Force;
1349 ULO.AllowExpensiveTripCount = UP.AllowExpensiveTripCount;
1350 ULO.UnrollRemainder = UP.UnrollRemainder;
1351 ULO.Runtime = UP.Runtime;
1352 ULO.ForgetAllSCEV = ForgetAllSCEV;
1353 ULO.Heart = getLoopConvergenceHeart(L);
1354 ULO.SCEVExpansionBudget = UP.SCEVExpansionBudget;
1355 LoopUnrollResult UnrollResult = UnrollLoop(
1356 L, ULO, LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop, AA);
1357 if (UnrollResult == LoopUnrollResult::Unmodified)
1358 return LoopUnrollResult::Unmodified;
1360 if (RemainderLoop) {
1361 std::optional<MDNode *> RemainderLoopID =
1362 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1363 LLVMLoopUnrollFollowupRemainder});
1364 if (RemainderLoopID)
1365 RemainderLoop->setLoopID(*RemainderLoopID);
1368 if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1369 std::optional<MDNode *> NewLoopID =
1370 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1371 LLVMLoopUnrollFollowupUnrolled});
1372 if (NewLoopID) {
1373 L->setLoopID(*NewLoopID);
1375 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1376 // explicitly.
1377 return UnrollResult;
1381 // If loop has an unroll count pragma or unrolled by explicitly set count
1382 // mark loop as unrolled to prevent unrolling beyond that requested.
1383 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1384 L->setLoopAlreadyUnrolled();
1386 return UnrollResult;
1389 namespace {
1391 class LoopUnroll : public LoopPass {
1392 public:
1393 static char ID; // Pass ID, replacement for typeid
1395 int OptLevel;
1397 /// If false, use a cost model to determine whether unrolling of a loop is
1398 /// profitable. If true, only loops that explicitly request unrolling via
1399 /// metadata are considered. All other loops are skipped.
1400 bool OnlyWhenForced;
1402 /// If false, when SCEV is invalidated, only forget everything in the
1403 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1404 /// Otherwise, forgetAllLoops and rebuild when needed next.
1405 bool ForgetAllSCEV;
1407 std::optional<unsigned> ProvidedCount;
1408 std::optional<unsigned> ProvidedThreshold;
1409 std::optional<bool> ProvidedAllowPartial;
1410 std::optional<bool> ProvidedRuntime;
1411 std::optional<bool> ProvidedUpperBound;
1412 std::optional<bool> ProvidedAllowPeeling;
1413 std::optional<bool> ProvidedAllowProfileBasedPeeling;
1414 std::optional<unsigned> ProvidedFullUnrollMaxCount;
1416 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1417 bool ForgetAllSCEV = false,
1418 std::optional<unsigned> Threshold = std::nullopt,
1419 std::optional<unsigned> Count = std::nullopt,
1420 std::optional<bool> AllowPartial = std::nullopt,
1421 std::optional<bool> Runtime = std::nullopt,
1422 std::optional<bool> UpperBound = std::nullopt,
1423 std::optional<bool> AllowPeeling = std::nullopt,
1424 std::optional<bool> AllowProfileBasedPeeling = std::nullopt,
1425 std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt)
1426 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1427 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1428 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1429 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1430 ProvidedAllowPeeling(AllowPeeling),
1431 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1432 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1433 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1436 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1437 if (skipLoop(L))
1438 return false;
1440 Function &F = *L->getHeader()->getParent();
1442 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1443 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1444 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1445 const TargetTransformInfo &TTI =
1446 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1447 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1448 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1449 // pass. Function analyses need to be preserved across loop transformations
1450 // but ORE cannot be preserved (see comment before the pass definition).
1451 OptimizationRemarkEmitter ORE(&F);
1452 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1454 LoopUnrollResult Result = tryToUnrollLoop(
1455 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1456 /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount,
1457 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1458 ProvidedUpperBound, ProvidedAllowPeeling,
1459 ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount);
1461 if (Result == LoopUnrollResult::FullyUnrolled)
1462 LPM.markLoopAsDeleted(*L);
1464 return Result != LoopUnrollResult::Unmodified;
1467 /// This transformation requires natural loop information & requires that
1468 /// loop preheaders be inserted into the CFG...
1469 void getAnalysisUsage(AnalysisUsage &AU) const override {
1470 AU.addRequired<AssumptionCacheTracker>();
1471 AU.addRequired<TargetTransformInfoWrapperPass>();
1472 // FIXME: Loop passes are required to preserve domtree, and for now we just
1473 // recreate dom info if anything gets unrolled.
1474 getLoopAnalysisUsage(AU);
1478 } // end anonymous namespace
1480 char LoopUnroll::ID = 0;
1482 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1483 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1484 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1485 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1486 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1488 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1489 bool ForgetAllSCEV, int Threshold, int Count,
1490 int AllowPartial, int Runtime, int UpperBound,
1491 int AllowPeeling) {
1492 // TODO: It would make more sense for this function to take the optionals
1493 // directly, but that's dangerous since it would silently break out of tree
1494 // callers.
1495 return new LoopUnroll(
1496 OptLevel, OnlyWhenForced, ForgetAllSCEV,
1497 Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold),
1498 Count == -1 ? std::nullopt : std::optional<unsigned>(Count),
1499 AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial),
1500 Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime),
1501 UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound),
1502 AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling));
1505 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1506 LoopStandardAnalysisResults &AR,
1507 LPMUpdater &Updater) {
1508 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1509 // pass. Function analyses need to be preserved across loop transformations
1510 // but ORE cannot be preserved (see comment before the pass definition).
1511 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1513 // Keep track of the previous loop structure so we can identify new loops
1514 // created by unrolling.
1515 Loop *ParentL = L.getParentLoop();
1516 SmallPtrSet<Loop *, 4> OldLoops;
1517 if (ParentL)
1518 OldLoops.insert(ParentL->begin(), ParentL->end());
1519 else
1520 OldLoops.insert(AR.LI.begin(), AR.LI.end());
1522 std::string LoopName = std::string(L.getName());
1524 bool Changed =
1525 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1526 /*BFI*/ nullptr, /*PSI*/ nullptr,
1527 /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true,
1528 OnlyWhenForced, ForgetSCEV, /*Count*/ std::nullopt,
1529 /*Threshold*/ std::nullopt, /*AllowPartial*/ false,
1530 /*Runtime*/ false, /*UpperBound*/ false,
1531 /*AllowPeeling*/ true,
1532 /*AllowProfileBasedPeeling*/ false,
1533 /*FullUnrollMaxCount*/ std::nullopt) !=
1534 LoopUnrollResult::Unmodified;
1535 if (!Changed)
1536 return PreservedAnalyses::all();
1538 // The parent must not be damaged by unrolling!
1539 #ifndef NDEBUG
1540 if (ParentL)
1541 ParentL->verifyLoop();
1542 #endif
1544 // Unrolling can do several things to introduce new loops into a loop nest:
1545 // - Full unrolling clones child loops within the current loop but then
1546 // removes the current loop making all of the children appear to be new
1547 // sibling loops.
1549 // When a new loop appears as a sibling loop after fully unrolling,
1550 // its nesting structure has fundamentally changed and we want to revisit
1551 // it to reflect that.
1553 // When unrolling has removed the current loop, we need to tell the
1554 // infrastructure that it is gone.
1556 // Finally, we support a debugging/testing mode where we revisit child loops
1557 // as well. These are not expected to require further optimizations as either
1558 // they or the loop they were cloned from have been directly visited already.
1559 // But the debugging mode allows us to check this assumption.
1560 bool IsCurrentLoopValid = false;
1561 SmallVector<Loop *, 4> SibLoops;
1562 if (ParentL)
1563 SibLoops.append(ParentL->begin(), ParentL->end());
1564 else
1565 SibLoops.append(AR.LI.begin(), AR.LI.end());
1566 erase_if(SibLoops, [&](Loop *SibLoop) {
1567 if (SibLoop == &L) {
1568 IsCurrentLoopValid = true;
1569 return true;
1572 // Otherwise erase the loop from the list if it was in the old loops.
1573 return OldLoops.contains(SibLoop);
1575 Updater.addSiblingLoops(SibLoops);
1577 if (!IsCurrentLoopValid) {
1578 Updater.markLoopAsDeleted(L, LoopName);
1579 } else {
1580 // We can only walk child loops if the current loop remained valid.
1581 if (UnrollRevisitChildLoops) {
1582 // Walk *all* of the child loops.
1583 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1584 Updater.addChildLoops(ChildLoops);
1588 return getLoopPassPreservedAnalyses();
1591 PreservedAnalyses LoopUnrollPass::run(Function &F,
1592 FunctionAnalysisManager &AM) {
1593 auto &LI = AM.getResult<LoopAnalysis>(F);
1594 // There are no loops in the function. Return before computing other expensive
1595 // analyses.
1596 if (LI.empty())
1597 return PreservedAnalyses::all();
1598 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1599 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1600 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1601 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1602 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1603 AAResults &AA = AM.getResult<AAManager>(F);
1605 LoopAnalysisManager *LAM = nullptr;
1606 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1607 LAM = &LAMProxy->getManager();
1609 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1610 ProfileSummaryInfo *PSI =
1611 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1612 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1613 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1615 bool Changed = false;
1617 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1618 // Since simplification may add new inner loops, it has to run before the
1619 // legality and profitability checks. This means running the loop unroller
1620 // will simplify all loops, regardless of whether anything end up being
1621 // unrolled.
1622 for (const auto &L : LI) {
1623 Changed |=
1624 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1625 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1628 // Add the loop nests in the reverse order of LoopInfo. See method
1629 // declaration.
1630 SmallPriorityWorklist<Loop *, 4> Worklist;
1631 appendLoopsToWorklist(LI, Worklist);
1633 while (!Worklist.empty()) {
1634 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1635 // from back to front so that we work forward across the CFG, which
1636 // for unrolling is only needed to get optimization remarks emitted in
1637 // a forward order.
1638 Loop &L = *Worklist.pop_back_val();
1639 #ifndef NDEBUG
1640 Loop *ParentL = L.getParentLoop();
1641 #endif
1643 // Check if the profile summary indicates that the profiled application
1644 // has a huge working set size, in which case we disable peeling to avoid
1645 // bloating it further.
1646 std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1647 if (PSI && PSI->hasHugeWorkingSetSize())
1648 LocalAllowPeeling = false;
1649 std::string LoopName = std::string(L.getName());
1650 // The API here is quite complex to call and we allow to select some
1651 // flavors of unrolling during construction time (by setting UnrollOpts).
1652 LoopUnrollResult Result = tryToUnrollLoop(
1653 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1654 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false,
1655 UnrollOpts.OnlyWhenForced, UnrollOpts.ForgetSCEV,
1656 /*Count*/ std::nullopt,
1657 /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial,
1658 UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1659 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount,
1660 &AA);
1661 Changed |= Result != LoopUnrollResult::Unmodified;
1663 // The parent must not be damaged by unrolling!
1664 #ifndef NDEBUG
1665 if (Result != LoopUnrollResult::Unmodified && ParentL)
1666 ParentL->verifyLoop();
1667 #endif
1669 // Clear any cached analysis results for L if we removed it completely.
1670 if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1671 LAM->clear(L, LoopName);
1674 if (!Changed)
1675 return PreservedAnalyses::all();
1677 return getLoopPassPreservedAnalyses();
1680 void LoopUnrollPass::printPipeline(
1681 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1682 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
1683 OS, MapClassName2PassName);
1684 OS << '<';
1685 if (UnrollOpts.AllowPartial != std::nullopt)
1686 OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;";
1687 if (UnrollOpts.AllowPeeling != std::nullopt)
1688 OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;";
1689 if (UnrollOpts.AllowRuntime != std::nullopt)
1690 OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;";
1691 if (UnrollOpts.AllowUpperBound != std::nullopt)
1692 OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;";
1693 if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt)
1694 OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-")
1695 << "profile-peeling;";
1696 if (UnrollOpts.FullUnrollMaxCount != std::nullopt)
1697 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';';
1698 OS << 'O' << UnrollOpts.OptLevel;
1699 OS << '>';