[analyzer][Z3] Restore the original timeout of 15s (#118291)
[llvm-project.git] / llvm / lib / Transforms / Utils / UnifyLoopExits.cpp
blob856f3c3ed3e131a23bf12429b4a3d4fce9dfa3c7
1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // For each natural loop with multiple exit blocks, this pass creates a new
10 // block N such that all exiting blocks now branch to N, and then control flow
11 // is redistributed to all the original exit blocks.
13 // Limitation: This assumes that all terminators in the CFG are direct branches
14 // (the "br" instruction). The presence of any other control flow
15 // such as indirectbr, switch or callbr will cause an assert.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Utils/UnifyLoopExits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/Analysis/DomTreeUpdater.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Transforms/Utils.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include "llvm/Transforms/Utils/ControlFlowUtils.h"
31 #define DEBUG_TYPE "unify-loop-exits"
33 using namespace llvm;
35 static cl::opt<unsigned> MaxBooleansInControlFlowHub(
36 "max-booleans-in-control-flow-hub", cl::init(32), cl::Hidden,
37 cl::desc("Set the maximum number of outgoing blocks for using a boolean "
38 "value to record the exiting block in the ControlFlowHub."));
40 namespace {
41 struct UnifyLoopExitsLegacyPass : public FunctionPass {
42 static char ID;
43 UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
44 initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
47 void getAnalysisUsage(AnalysisUsage &AU) const override {
48 AU.addRequired<LoopInfoWrapperPass>();
49 AU.addRequired<DominatorTreeWrapperPass>();
50 AU.addPreserved<LoopInfoWrapperPass>();
51 AU.addPreserved<DominatorTreeWrapperPass>();
54 bool runOnFunction(Function &F) override;
56 } // namespace
58 char UnifyLoopExitsLegacyPass::ID = 0;
60 FunctionPass *llvm::createUnifyLoopExitsPass() {
61 return new UnifyLoopExitsLegacyPass();
64 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
65 "Fixup each natural loop to have a single exit block",
66 false /* Only looks at CFG */, false /* Analysis Pass */)
67 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
68 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
69 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
70 "Fixup each natural loop to have a single exit block",
71 false /* Only looks at CFG */, false /* Analysis Pass */)
73 // The current transform introduces new control flow paths which may break the
74 // SSA requirement that every def must dominate all its uses. For example,
75 // consider a value D defined inside the loop that is used by some instruction
76 // U outside the loop. It follows that D dominates U, since the original
77 // program has valid SSA form. After merging the exits, all paths from D to U
78 // now flow through the unified exit block. In addition, there may be other
79 // paths that do not pass through D, but now reach the unified exit
80 // block. Thus, D no longer dominates U.
82 // Restore the dominance by creating a phi for each such D at the new unified
83 // loop exit. But when doing this, ignore any uses U that are in the new unified
84 // loop exit, since those were introduced specially when the block was created.
86 // The use of SSAUpdater seems like overkill for this operation. The location
87 // for creating the new PHI is well-known, and also the set of incoming blocks
88 // to the new PHI.
89 static void restoreSSA(const DominatorTree &DT, const Loop *L,
90 SmallVectorImpl<BasicBlock *> &Incoming,
91 BasicBlock *LoopExitBlock) {
92 using InstVector = SmallVector<Instruction *, 8>;
93 using IIMap = MapVector<Instruction *, InstVector>;
94 IIMap ExternalUsers;
95 for (auto *BB : L->blocks()) {
96 for (auto &I : *BB) {
97 for (auto &U : I.uses()) {
98 auto UserInst = cast<Instruction>(U.getUser());
99 auto UserBlock = UserInst->getParent();
100 if (UserBlock == LoopExitBlock)
101 continue;
102 if (L->contains(UserBlock))
103 continue;
104 LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
105 << BB->getName() << ")"
106 << ": " << UserInst->getName() << "("
107 << UserBlock->getName() << ")"
108 << "\n");
109 ExternalUsers[&I].push_back(UserInst);
114 for (const auto &II : ExternalUsers) {
115 // For each Def used outside the loop, create NewPhi in
116 // LoopExitBlock. NewPhi receives Def only along exiting blocks that
117 // dominate it, while the remaining values are undefined since those paths
118 // didn't exist in the original CFG.
119 auto Def = II.first;
120 LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
121 auto NewPhi =
122 PHINode::Create(Def->getType(), Incoming.size(),
123 Def->getName() + ".moved", LoopExitBlock->begin());
124 for (auto *In : Incoming) {
125 LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
126 if (Def->getParent() == In || DT.dominates(Def, In)) {
127 LLVM_DEBUG(dbgs() << "dominated\n");
128 NewPhi->addIncoming(Def, In);
129 } else {
130 LLVM_DEBUG(dbgs() << "not dominated\n");
131 NewPhi->addIncoming(PoisonValue::get(Def->getType()), In);
135 LLVM_DEBUG(dbgs() << "external users:");
136 for (auto *U : II.second) {
137 LLVM_DEBUG(dbgs() << " " << U->getName());
138 U->replaceUsesOfWith(Def, NewPhi);
140 LLVM_DEBUG(dbgs() << "\n");
144 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
145 // To unify the loop exits, we need a list of the exiting blocks as
146 // well as exit blocks. The functions for locating these lists both
147 // traverse the entire loop body. It is more efficient to first
148 // locate the exiting blocks and then examine their successors to
149 // locate the exit blocks.
150 SmallVector<BasicBlock *, 8> ExitingBlocks;
151 L->getExitingBlocks(ExitingBlocks);
153 // Redirect exiting edges through a control flow hub.
154 ControlFlowHub CHub;
155 for (auto *BB : ExitingBlocks) {
156 auto *Branch = cast<BranchInst>(BB->getTerminator());
157 BasicBlock *Succ0 = Branch->getSuccessor(0);
158 Succ0 = L->contains(Succ0) ? nullptr : Succ0;
160 BasicBlock *Succ1 =
161 Branch->isUnconditional() ? nullptr : Branch->getSuccessor(1);
162 Succ1 = L->contains(Succ1) ? nullptr : Succ1;
163 CHub.addBranch(BB, Succ0, Succ1);
165 LLVM_DEBUG(dbgs() << "Added exiting branch: " << BB->getName() << " -> {"
166 << (Succ0 ? Succ0->getName() : "<none>") << ", "
167 << (Succ1 ? Succ1->getName() : "<none>") << "}\n");
170 SmallVector<BasicBlock *, 8> GuardBlocks;
171 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
172 BasicBlock *LoopExitBlock = CHub.finalize(
173 &DTU, GuardBlocks, "loop.exit", MaxBooleansInControlFlowHub.getValue());
175 restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
177 #if defined(EXPENSIVE_CHECKS)
178 assert(DT.verify(DominatorTree::VerificationLevel::Full));
179 #else
180 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
181 #endif // EXPENSIVE_CHECKS
182 L->verifyLoop();
184 // The guard blocks were created outside the loop, so they need to become
185 // members of the parent loop.
186 if (auto ParentLoop = L->getParentLoop()) {
187 for (auto *G : GuardBlocks) {
188 ParentLoop->addBasicBlockToLoop(G, LI);
190 ParentLoop->verifyLoop();
193 #if defined(EXPENSIVE_CHECKS)
194 LI.verify(DT);
195 #endif // EXPENSIVE_CHECKS
197 return true;
200 static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
202 bool Changed = false;
203 auto Loops = LI.getLoopsInPreorder();
204 for (auto *L : Loops) {
205 LLVM_DEBUG(dbgs() << "Processing loop:\n"; L->print(dbgs()));
206 Changed |= unifyLoopExits(DT, LI, L);
208 return Changed;
211 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
212 LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
213 << "\n");
214 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
215 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
217 assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator.");
219 return runImpl(LI, DT);
222 namespace llvm {
224 PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
225 FunctionAnalysisManager &AM) {
226 LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
227 << "\n");
228 auto &LI = AM.getResult<LoopAnalysis>(F);
229 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
231 if (!runImpl(LI, DT))
232 return PreservedAnalyses::all();
233 PreservedAnalyses PA;
234 PA.preserve<LoopAnalysis>();
235 PA.preserve<DominatorTreeAnalysis>();
236 return PA;
238 } // namespace llvm