Allow SymbolUserOpInterface operators to be used in RemoveDeadValues Pass (#117405)
[llvm-project.git] / llvm / tools / llvm-exegesis / lib / SchedClassResolution.cpp
blob0690c21220f8920979500efaa0c319c32f0c0743
1 //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "SchedClassResolution.h"
10 #include "BenchmarkResult.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/MC/MCAsmInfo.h"
13 #include "llvm/MCA/Support.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include <vector>
17 namespace llvm {
18 namespace exegesis {
20 // Return the non-redundant list of WriteProcRes used by the given sched class.
21 // The scheduling model for LLVM is such that each instruction has a certain
22 // number of uops which consume resources which are described by WriteProcRes
23 // entries. Each entry describe how many cycles are spent on a specific ProcRes
24 // kind.
25 // For example, an instruction might have 3 uOps, one dispatching on P0
26 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
27 // Note that LLVM additionally denormalizes resource consumption to include
28 // usage of super resources by subresources. So in practice if there exists a
29 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
30 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
31 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
32 // denote implied usage of superresources by subresources:
33 // P0 P06 P016
34 // uOp1 1 (1) (1)
35 // uOp2 1 (1)
36 // uOp3 1 (1)
37 // =============================
38 // 1 3 3
39 // Eventually we end up with three entries for the WriteProcRes of the
40 // instruction:
41 // {ProcResIdx=1, Cycles=1} // P0
42 // {ProcResIdx=7, Cycles=3} // P06
43 // {ProcResIdx=10, Cycles=3} // P016
45 // Note that in this case, P016 does not contribute any cycles, so it would
46 // be removed by this function.
47 // FIXME: Merge this with the equivalent in llvm-mca.
48 static SmallVector<MCWriteProcResEntry, 8>
49 getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc,
50 const MCSubtargetInfo &STI) {
51 SmallVector<MCWriteProcResEntry, 8> Result;
52 const auto &SM = STI.getSchedModel();
53 const unsigned NumProcRes = SM.getNumProcResourceKinds();
55 // Collect resource masks.
56 SmallVector<uint64_t> ProcResourceMasks(NumProcRes);
57 mca::computeProcResourceMasks(SM, ProcResourceMasks);
59 // Sort entries by smaller resources for (basic) topological ordering.
60 using ResourceMaskAndEntry = std::pair<uint64_t, const MCWriteProcResEntry *>;
61 SmallVector<ResourceMaskAndEntry, 8> ResourceMaskAndEntries;
62 for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
63 *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
64 WPR != WPREnd; ++WPR) {
65 uint64_t Mask = ProcResourceMasks[WPR->ProcResourceIdx];
66 ResourceMaskAndEntries.push_back({Mask, WPR});
68 sort(ResourceMaskAndEntries,
69 [](const ResourceMaskAndEntry &A, const ResourceMaskAndEntry &B) {
70 unsigned popcntA = popcount(A.first);
71 unsigned popcntB = popcount(B.first);
72 if (popcntA < popcntB)
73 return true;
74 if (popcntA > popcntB)
75 return false;
76 return A.first < B.first;
77 });
79 SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
80 for (const ResourceMaskAndEntry &Entry : ResourceMaskAndEntries) {
81 const MCWriteProcResEntry *WPR = Entry.second;
82 const MCProcResourceDesc *const ProcResDesc =
83 SM.getProcResource(WPR->ProcResourceIdx);
84 // TODO: Handle AcquireAtAtCycle in llvm-exegesis and llvm-mca. See
85 // https://github.com/llvm/llvm-project/issues/62680 and
86 // https://github.com/llvm/llvm-project/issues/62681
87 assert(WPR->AcquireAtCycle == 0 &&
88 "`llvm-exegesis` does not handle AcquireAtCycle > 0");
89 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
90 // This is a ProcResUnit.
91 Result.push_back(
92 {WPR->ProcResourceIdx, WPR->ReleaseAtCycle, WPR->AcquireAtCycle});
93 ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->ReleaseAtCycle;
94 } else {
95 // This is a ProcResGroup. First see if it contributes any cycles or if
96 // it has cycles just from subunits.
97 float RemainingCycles = WPR->ReleaseAtCycle;
98 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
99 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
100 ++SubResIdx) {
101 RemainingCycles -= ProcResUnitUsage[*SubResIdx];
103 if (RemainingCycles < 0.01f) {
104 // The ProcResGroup contributes no cycles of its own.
105 continue;
107 // The ProcResGroup contributes `RemainingCycles` cycles of its own.
108 Result.push_back({WPR->ProcResourceIdx,
109 static_cast<uint16_t>(std::round(RemainingCycles)),
110 WPR->AcquireAtCycle});
111 // Spread the remaining cycles over all subunits.
112 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
113 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
114 ++SubResIdx) {
115 ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
119 return Result;
122 // Distributes a pressure budget as evenly as possible on the provided subunits
123 // given the already existing port pressure distribution.
125 // The algorithm is as follows: while there is remaining pressure to
126 // distribute, find the subunits with minimal pressure, and distribute
127 // remaining pressure equally up to the pressure of the unit with
128 // second-to-minimal pressure.
129 // For example, let's assume we want to distribute 2*P1256
130 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
131 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
132 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
133 // RemainingPressure = 2.0
134 // We sort the subunits by pressure:
135 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
136 // We'll first start by the subunits with minimal pressure, which are at
137 // the beginning of the sorted array. In this example there is one (P2).
138 // The subunit with second-to-minimal pressure is the next one in the
139 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
140 // from the budget.
141 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
142 // RemainingPressure = 1.9
143 // We repeat this process: distribute 0.2 pressure on each of the minimal
144 // P2 and P1, decrease budget by 2*0.2:
145 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
146 // RemainingPressure = 1.5
147 // There are no second-to-minimal subunits so we just share the remaining
148 // budget (1.5 cycles) equally:
149 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
150 // RemainingPressure = 0.0
151 // We stop as there is no remaining budget to distribute.
152 static void distributePressure(float RemainingPressure,
153 SmallVector<uint16_t, 32> Subunits,
154 SmallVector<float, 32> &DensePressure) {
155 // Find the number of subunits with minimal pressure (they are at the
156 // front).
157 sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
158 return DensePressure[A] < DensePressure[B];
160 const auto getPressureForSubunit = [&DensePressure,
161 &Subunits](size_t I) -> float & {
162 return DensePressure[Subunits[I]];
164 size_t NumMinimalSU = 1;
165 while (NumMinimalSU < Subunits.size() &&
166 getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
167 ++NumMinimalSU;
169 while (RemainingPressure > 0.0f) {
170 if (NumMinimalSU == Subunits.size()) {
171 // All units are minimal, just distribute evenly and be done.
172 for (size_t I = 0; I < NumMinimalSU; ++I) {
173 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
175 return;
177 // Distribute the remaining pressure equally.
178 const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
179 const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
180 assert(MinimalPressure < SecondToMinimalPressure);
181 const float Increment = SecondToMinimalPressure - MinimalPressure;
182 if (RemainingPressure <= NumMinimalSU * Increment) {
183 // There is not enough remaining pressure.
184 for (size_t I = 0; I < NumMinimalSU; ++I) {
185 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
187 return;
189 // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
190 for (size_t I = 0; I < NumMinimalSU; ++I) {
191 getPressureForSubunit(I) = SecondToMinimalPressure;
192 RemainingPressure -= SecondToMinimalPressure;
194 while (NumMinimalSU < Subunits.size() &&
195 getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
196 ++NumMinimalSU;
201 std::vector<std::pair<uint16_t, float>>
202 computeIdealizedProcResPressure(const MCSchedModel &SM,
203 SmallVector<MCWriteProcResEntry, 8> WPRS) {
204 // DensePressure[I] is the port pressure for Proc Resource I.
205 SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
206 sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) {
207 return A.ProcResourceIdx < B.ProcResourceIdx;
209 for (const MCWriteProcResEntry &WPR : WPRS) {
210 // Get units for the entry.
211 const MCProcResourceDesc *const ProcResDesc =
212 SM.getProcResource(WPR.ProcResourceIdx);
213 if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
214 // This is a ProcResUnit.
215 DensePressure[WPR.ProcResourceIdx] += WPR.ReleaseAtCycle;
216 } else {
217 // This is a ProcResGroup.
218 SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
219 ProcResDesc->SubUnitsIdxBegin +
220 ProcResDesc->NumUnits);
221 distributePressure(WPR.ReleaseAtCycle, Subunits, DensePressure);
224 // Turn dense pressure into sparse pressure by removing zero entries.
225 std::vector<std::pair<uint16_t, float>> Pressure;
226 for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
227 if (DensePressure[I] > 0.0f)
228 Pressure.emplace_back(I, DensePressure[I]);
230 return Pressure;
233 ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI,
234 unsigned ResolvedSchedClassId,
235 bool WasVariant)
236 : SchedClassId(ResolvedSchedClassId),
237 SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
238 WasVariant(WasVariant),
239 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
240 IdealizedProcResPressure(computeIdealizedProcResPressure(
241 STI.getSchedModel(), NonRedundantWriteProcRes)) {
242 assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
243 "ResolvedSchedClass should never be variant");
246 static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI,
247 const MCInstrInfo &InstrInfo,
248 unsigned SchedClassId,
249 const MCInst &MCI) {
250 const auto &SM = STI.getSchedModel();
251 while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) {
252 SchedClassId = STI.resolveVariantSchedClass(SchedClassId, &MCI, &InstrInfo,
253 SM.getProcessorID());
255 return SchedClassId;
258 std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
259 ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo,
260 const MCInstrInfo &InstrInfo,
261 const MCInst &MCI) {
262 unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
263 const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
264 .getSchedClassDesc(SchedClassId)
265 ->isVariant();
266 SchedClassId =
267 ResolveVariantSchedClassId(SubtargetInfo, InstrInfo, SchedClassId, MCI);
268 return std::make_pair(SchedClassId, WasVariant);
271 // Returns a ProxResIdx by id or name.
272 static unsigned findProcResIdx(const MCSubtargetInfo &STI,
273 const StringRef NameOrId) {
274 // Interpret the key as an ProcResIdx.
275 unsigned ProcResIdx = 0;
276 if (to_integer(NameOrId, ProcResIdx, 10))
277 return ProcResIdx;
278 // Interpret the key as a ProcRes name.
279 const auto &SchedModel = STI.getSchedModel();
280 for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
281 if (NameOrId == SchedModel.getProcResource(I)->Name)
282 return I;
284 return 0;
287 std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint(
288 Benchmark::ModeE Mode, const MCSubtargetInfo &STI,
289 ArrayRef<PerInstructionStats> Representative) const {
290 const size_t NumMeasurements = Representative.size();
292 std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
294 if (Mode == Benchmark::Latency) {
295 assert(NumMeasurements == 1 && "Latency is a single measure.");
296 BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0];
298 // Find the latency.
299 LatencyMeasure.PerInstructionValue = 0.0;
301 for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) {
302 const MCWriteLatencyEntry *const WLE =
303 STI.getWriteLatencyEntry(SCDesc, I);
304 LatencyMeasure.PerInstructionValue =
305 std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles);
307 } else if (Mode == Benchmark::Uops) {
308 for (auto I : zip(SchedClassPoint, Representative)) {
309 BenchmarkMeasure &Measure = std::get<0>(I);
310 const PerInstructionStats &Stats = std::get<1>(I);
312 StringRef Key = Stats.key();
313 uint16_t ProcResIdx = findProcResIdx(STI, Key);
314 if (ProcResIdx > 0) {
315 // Find the pressure on ProcResIdx `Key`.
316 const auto ProcResPressureIt =
317 find_if(IdealizedProcResPressure,
318 [ProcResIdx](const std::pair<uint16_t, float> &WPR) {
319 return WPR.first == ProcResIdx;
321 Measure.PerInstructionValue =
322 ProcResPressureIt == IdealizedProcResPressure.end()
323 ? 0.0
324 : ProcResPressureIt->second;
325 } else if (Key == "NumMicroOps") {
326 Measure.PerInstructionValue = SCDesc->NumMicroOps;
327 } else {
328 errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
329 "name, got "
330 << Key << "\n";
331 return {};
334 } else if (Mode == Benchmark::InverseThroughput) {
335 assert(NumMeasurements == 1 && "Inverse Throughput is a single measure.");
336 BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0];
338 RThroughputMeasure.PerInstructionValue =
339 MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
340 } else {
341 llvm_unreachable("unimplemented measurement matching mode");
344 return SchedClassPoint;
347 } // namespace exegesis
348 } // namespace llvm