1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This tablegen backend emits subtarget enumerations.
11 //===----------------------------------------------------------------------===//
13 #include "Common/CodeGenHwModes.h"
14 #include "Common/CodeGenSchedule.h"
15 #include "Common/CodeGenTarget.h"
16 #include "Common/PredicateExpander.h"
17 #include "Common/Utils.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/MC/MCSchedule.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Format.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/TableGen/Error.h"
31 #include "llvm/TableGen/Record.h"
32 #include "llvm/TableGen/TableGenBackend.h"
33 #include "llvm/TargetParser/SubtargetFeature.h"
43 #define DEBUG_TYPE "subtarget-emitter"
47 using FeatureMapTy
= DenseMap
<const Record
*, unsigned>;
49 /// Sorting predicate to sort record pointers by their
51 struct LessRecordFieldFieldName
{
52 bool operator()(const Record
*Rec1
, const Record
*Rec2
) const {
53 return Rec1
->getValueAsString("FieldName") <
54 Rec2
->getValueAsString("FieldName");
58 class SubtargetEmitter
{
59 // Each processor has a SchedClassDesc table with an entry for each
60 // SchedClass. The SchedClassDesc table indexes into a global write resource
61 // table, write latency table, and read advance table.
62 struct SchedClassTables
{
63 std::vector
<std::vector
<MCSchedClassDesc
>> ProcSchedClasses
;
64 std::vector
<MCWriteProcResEntry
> WriteProcResources
;
65 std::vector
<MCWriteLatencyEntry
> WriteLatencies
;
66 std::vector
<std::string
> WriterNames
;
67 std::vector
<MCReadAdvanceEntry
> ReadAdvanceEntries
;
69 // Reserve an invalid entry at index 0
71 ProcSchedClasses
.resize(1);
72 WriteProcResources
.resize(1);
73 WriteLatencies
.resize(1);
74 WriterNames
.push_back("InvalidWrite");
75 ReadAdvanceEntries
.resize(1);
79 struct LessWriteProcResources
{
80 bool operator()(const MCWriteProcResEntry
&LHS
,
81 const MCWriteProcResEntry
&RHS
) {
82 return LHS
.ProcResourceIdx
< RHS
.ProcResourceIdx
;
87 const RecordKeeper
&Records
;
88 CodeGenSchedModels
&SchedModels
;
91 FeatureMapTy
enumeration(raw_ostream
&OS
);
92 void emitSubtargetInfoMacroCalls(raw_ostream
&OS
);
93 unsigned featureKeyValues(raw_ostream
&OS
, const FeatureMapTy
&FeatureMap
);
94 unsigned cpuKeyValues(raw_ostream
&OS
, const FeatureMapTy
&FeatureMap
);
95 unsigned cpuNames(raw_ostream
&OS
);
96 void formItineraryStageString(const std::string
&Names
,
97 const Record
*ItinData
, std::string
&ItinString
,
99 void formItineraryOperandCycleString(const Record
*ItinData
,
100 std::string
&ItinString
,
101 unsigned &NOperandCycles
);
102 void formItineraryBypassString(const std::string
&Names
,
103 const Record
*ItinData
,
104 std::string
&ItinString
,
105 unsigned NOperandCycles
);
106 void emitStageAndOperandCycleData(
107 raw_ostream
&OS
, std::vector
<std::vector
<InstrItinerary
>> &ProcItinLists
);
108 void emitItineraries(raw_ostream
&OS
,
109 std::vector
<std::vector
<InstrItinerary
>> &ProcItinLists
);
110 unsigned emitRegisterFileTables(const CodeGenProcModel
&ProcModel
,
112 void emitLoadStoreQueueInfo(const CodeGenProcModel
&ProcModel
,
114 void emitExtraProcessorInfo(const CodeGenProcModel
&ProcModel
,
116 void emitProcessorProp(raw_ostream
&OS
, const Record
*R
, StringRef Name
,
118 void emitProcessorResourceSubUnits(const CodeGenProcModel
&ProcModel
,
120 void emitProcessorResources(const CodeGenProcModel
&ProcModel
,
122 const Record
*findWriteResources(const CodeGenSchedRW
&SchedWrite
,
123 const CodeGenProcModel
&ProcModel
);
124 const Record
*findReadAdvance(const CodeGenSchedRW
&SchedRead
,
125 const CodeGenProcModel
&ProcModel
);
126 void expandProcResources(ConstRecVec
&PRVec
,
127 std::vector
<int64_t> &ReleaseAtCycles
,
128 std::vector
<int64_t> &AcquireAtCycles
,
129 const CodeGenProcModel
&ProcModel
);
130 void genSchedClassTables(const CodeGenProcModel
&ProcModel
,
131 SchedClassTables
&SchedTables
);
132 void emitSchedClassTables(SchedClassTables
&SchedTables
, raw_ostream
&OS
);
133 void emitProcessorModels(raw_ostream
&OS
);
134 void emitSchedModelHelpers(const std::string
&ClassName
, raw_ostream
&OS
);
135 void emitSchedModelHelpersImpl(raw_ostream
&OS
,
136 bool OnlyExpandMCInstPredicates
= false);
137 void emitGenMCSubtargetInfo(raw_ostream
&OS
);
138 void emitMcInstrAnalysisPredicateFunctions(raw_ostream
&OS
);
140 void emitSchedModel(raw_ostream
&OS
);
141 void emitGetMacroFusions(const std::string
&ClassName
, raw_ostream
&OS
);
142 void emitHwModeCheck(const std::string
&ClassName
, raw_ostream
&OS
);
143 void parseFeaturesFunction(raw_ostream
&OS
);
146 SubtargetEmitter(const RecordKeeper
&R
)
147 : TGT(R
), Records(R
), SchedModels(TGT
.getSchedModels()),
148 Target(TGT
.getName()) {}
150 void run(raw_ostream
&O
);
153 } // end anonymous namespace
156 // Enumeration - Emit the specified class as an enumeration.
158 FeatureMapTy
SubtargetEmitter::enumeration(raw_ostream
&OS
) {
159 ArrayRef
<const Record
*> DefList
=
160 Records
.getAllDerivedDefinitions("SubtargetFeature");
162 unsigned N
= DefList
.size();
164 return FeatureMapTy();
165 if (N
+ 1 > MAX_SUBTARGET_FEATURES
)
167 "Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
169 OS
<< "namespace " << Target
<< " {\n";
174 FeatureMapTy FeatureMap
;
176 for (unsigned I
= 0; I
< N
; ++I
) {
178 const Record
*Def
= DefList
[I
];
181 OS
<< " " << Def
->getName() << " = " << I
<< ",\n";
183 // Save the index for this feature.
188 << "NumSubtargetFeatures = " << N
<< "\n";
190 // Close enumeration and namespace
192 OS
<< "} // end namespace " << Target
<< "\n";
196 static void printFeatureMask(raw_ostream
&OS
,
197 ArrayRef
<const Record
*> FeatureList
,
198 const FeatureMapTy
&FeatureMap
) {
199 std::array
<uint64_t, MAX_SUBTARGET_WORDS
> Mask
= {};
200 for (const Record
*Feature
: FeatureList
) {
201 unsigned Bit
= FeatureMap
.lookup(Feature
);
202 Mask
[Bit
/ 64] |= 1ULL << (Bit
% 64);
206 for (unsigned I
= 0; I
!= Mask
.size(); ++I
) {
208 OS
.write_hex(Mask
[I
]);
214 /// Emit some information about the SubtargetFeature as calls to a macro so
215 /// that they can be used from C++.
216 void SubtargetEmitter::emitSubtargetInfoMacroCalls(raw_ostream
&OS
) {
217 OS
<< "\n#ifdef GET_SUBTARGETINFO_MACRO\n";
219 std::vector
<const Record
*> FeatureList
=
220 Records
.getAllDerivedDefinitions("SubtargetFeature");
221 llvm::sort(FeatureList
, LessRecordFieldFieldName());
223 for (const Record
*Feature
: FeatureList
) {
224 const StringRef FieldName
= Feature
->getValueAsString("FieldName");
225 const StringRef Value
= Feature
->getValueAsString("Value");
227 // Only handle boolean features for now, excluding BitVectors and enums.
228 const bool IsBool
= (Value
== "false" || Value
== "true") &&
229 !StringRef(FieldName
).contains('[');
233 // Some features default to true, with values set to false if enabled.
234 const char *Default
= Value
== "false" ? "true" : "false";
236 // Define the getter with lowercased first char: xxxYyy() { return XxxYyy; }
237 const std::string Getter
=
238 FieldName
.substr(0, 1).lower() + FieldName
.substr(1).str();
240 OS
<< "GET_SUBTARGETINFO_MACRO(" << FieldName
<< ", " << Default
<< ", "
243 OS
<< "#undef GET_SUBTARGETINFO_MACRO\n";
244 OS
<< "#endif // GET_SUBTARGETINFO_MACRO\n\n";
246 OS
<< "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
247 OS
<< "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
249 if (Target
== "AArch64")
250 OS
<< "#include \"llvm/TargetParser/AArch64TargetParser.h\"\n\n";
254 // FeatureKeyValues - Emit data of all the subtarget features. Used by the
257 unsigned SubtargetEmitter::featureKeyValues(raw_ostream
&OS
,
258 const FeatureMapTy
&FeatureMap
) {
259 std::vector
<const Record
*> FeatureList
=
260 Records
.getAllDerivedDefinitions("SubtargetFeature");
262 // Remove features with empty name.
263 llvm::erase_if(FeatureList
, [](const Record
*Rec
) {
264 return Rec
->getValueAsString("Name").empty();
266 if (FeatureList
.empty())
269 // Sort and check duplicate Feature name.
270 sortAndReportDuplicates(FeatureList
, "Feature");
272 // Begin feature table.
273 OS
<< "// Sorted (by key) array of values for CPU features.\n"
274 << "extern const llvm::SubtargetFeatureKV " << Target
275 << "FeatureKV[] = {\n";
277 for (const Record
*Feature
: FeatureList
) {
279 StringRef Name
= Feature
->getName();
280 StringRef CommandLineName
= Feature
->getValueAsString("Name");
281 StringRef Desc
= Feature
->getValueAsString("Desc");
283 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in
286 << "\"" << CommandLineName
<< "\", "
287 << "\"" << Desc
<< "\", " << Target
<< "::" << Name
<< ", ";
289 ConstRecVec ImpliesList
= Feature
->getValueAsListOfDefs("Implies");
291 printFeatureMask(OS
, ImpliesList
, FeatureMap
);
296 // End feature table.
299 return FeatureList
.size();
302 unsigned SubtargetEmitter::cpuNames(raw_ostream
&OS
) {
303 // Begin processor name table.
304 OS
<< "// Sorted array of names of CPU subtypes, including aliases.\n"
305 << "extern const llvm::StringRef " << Target
<< "Names[] = {\n";
307 std::vector
<const Record
*> ProcessorList
=
308 Records
.getAllDerivedDefinitions("Processor");
310 std::vector
<const Record
*> ProcessorAliasList
=
311 Records
.getAllDerivedDefinitionsIfDefined("ProcessorAlias");
313 SmallVector
<StringRef
> Names
;
314 Names
.reserve(ProcessorList
.size() + ProcessorAliasList
.size());
316 for (const Record
*Processor
: ProcessorList
) {
317 StringRef Name
= Processor
->getValueAsString("Name");
318 Names
.push_back(Name
);
321 for (const Record
*Rec
: ProcessorAliasList
) {
322 auto Name
= Rec
->getValueAsString("Name");
323 Names
.push_back(Name
);
328 Names
, OS
, [&](StringRef Name
) { OS
<< '"' << Name
<< '"'; }, ",\n");
330 // End processor name table.
337 // CPUKeyValues - Emit data of all the subtarget processors. Used by command
340 unsigned SubtargetEmitter::cpuKeyValues(raw_ostream
&OS
,
341 const FeatureMapTy
&FeatureMap
) {
342 // Gather and sort processor information
343 std::vector
<const Record
*> ProcessorList
=
344 Records
.getAllDerivedDefinitions("Processor");
345 llvm::sort(ProcessorList
, LessRecordFieldName());
347 // Note that unlike `FeatureKeyValues`, here we do not need to check for
348 // duplicate processors, since that is already done when the SubtargetEmitter
349 // constructor calls `getSchedModels` to build a `CodeGenSchedModels` object,
350 // which does the duplicate processor check.
352 // Begin processor table.
353 OS
<< "// Sorted (by key) array of values for CPU subtype.\n"
354 << "extern const llvm::SubtargetSubTypeKV " << Target
355 << "SubTypeKV[] = {\n";
357 for (const Record
*Processor
: ProcessorList
) {
358 StringRef Name
= Processor
->getValueAsString("Name");
359 ConstRecVec FeatureList
= Processor
->getValueAsListOfDefs("Features");
360 ConstRecVec TuneFeatureList
=
361 Processor
->getValueAsListOfDefs("TuneFeatures");
363 // Emit as "{ "cpu", "description", 0, { f1 , f2 , ... fn } },".
365 << "\"" << Name
<< "\", ";
367 printFeatureMask(OS
, FeatureList
, FeatureMap
);
369 printFeatureMask(OS
, TuneFeatureList
, FeatureMap
);
371 // Emit the scheduler model pointer.
372 const std::string
&ProcModelName
=
373 SchedModels
.getModelForProc(Processor
).ModelName
;
374 OS
<< ", &" << ProcModelName
<< " },\n";
377 // End processor table.
380 return ProcessorList
.size();
384 // FormItineraryStageString - Compose a string containing the stage
385 // data initialization for the specified itinerary. N is the number
388 void SubtargetEmitter::formItineraryStageString(const std::string
&Name
,
389 const Record
*ItinData
,
390 std::string
&ItinString
,
393 ConstRecVec StageList
= ItinData
->getValueAsListOfDefs("Stages");
396 unsigned N
= NStages
= StageList
.size();
397 for (unsigned I
= 0; I
< N
;) {
399 const Record
*Stage
= StageList
[I
];
401 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
402 int Cycles
= Stage
->getValueAsInt("Cycles");
403 ItinString
+= " { " + itostr(Cycles
) + ", ";
406 ConstRecVec UnitList
= Stage
->getValueAsListOfDefs("Units");
409 for (unsigned J
= 0, M
= UnitList
.size(); J
< M
;) {
410 // Add name and bitwise or
411 ItinString
+= Name
+ "FU::" + UnitList
[J
]->getName().str();
416 int TimeInc
= Stage
->getValueAsInt("TimeInc");
417 ItinString
+= ", " + itostr(TimeInc
);
419 int Kind
= Stage
->getValueAsInt("Kind");
420 ItinString
+= ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind
);
430 // FormItineraryOperandCycleString - Compose a string containing the
431 // operand cycle initialization for the specified itinerary. N is the
432 // number of operands that has cycles specified.
434 void SubtargetEmitter::formItineraryOperandCycleString(
435 const Record
*ItinData
, std::string
&ItinString
, unsigned &NOperandCycles
) {
436 // Get operand cycle list
437 std::vector
<int64_t> OperandCycleList
=
438 ItinData
->getValueAsListOfInts("OperandCycles");
440 // For each operand cycle
441 NOperandCycles
= OperandCycleList
.size();
443 for (int OCycle
: OperandCycleList
) {
444 // Next operand cycle
446 ItinString
+= " " + itostr(OCycle
);
450 void SubtargetEmitter::formItineraryBypassString(const std::string
&Name
,
451 const Record
*ItinData
,
452 std::string
&ItinString
,
453 unsigned NOperandCycles
) {
454 ConstRecVec BypassList
= ItinData
->getValueAsListOfDefs("Bypasses");
455 unsigned N
= BypassList
.size();
460 ItinString
+= Name
+ "Bypass::" + BypassList
[I
]->getName().str();
462 for (; I
< NOperandCycles
; ++I
) {
469 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
470 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
471 // by CodeGenSchedClass::Index.
473 void SubtargetEmitter::emitStageAndOperandCycleData(
474 raw_ostream
&OS
, std::vector
<std::vector
<InstrItinerary
>> &ProcItinLists
) {
475 // Multiple processor models may share an itinerary record. Emit it once.
476 SmallPtrSet
<const Record
*, 8> ItinsDefSet
;
478 // Emit functional units for all the itineraries.
479 for (const CodeGenProcModel
&ProcModel
: SchedModels
.procModels()) {
481 if (!ItinsDefSet
.insert(ProcModel
.ItinsDef
).second
)
484 ConstRecVec FUs
= ProcModel
.ItinsDef
->getValueAsListOfDefs("FU");
488 StringRef Name
= ProcModel
.ItinsDef
->getName();
489 OS
<< "\n// Functional units for \"" << Name
<< "\"\n"
490 << "namespace " << Name
<< "FU {\n";
492 for (unsigned J
= 0, FUN
= FUs
.size(); J
< FUN
; ++J
)
493 OS
<< " const InstrStage::FuncUnits " << FUs
[J
]->getName()
494 << " = 1ULL << " << J
<< ";\n";
496 OS
<< "} // end namespace " << Name
<< "FU\n";
498 ConstRecVec BPs
= ProcModel
.ItinsDef
->getValueAsListOfDefs("BP");
500 OS
<< "\n// Pipeline forwarding paths for itineraries \"" << Name
502 << "namespace " << Name
<< "Bypass {\n";
504 OS
<< " const unsigned NoBypass = 0;\n";
505 for (unsigned J
= 0, BPN
= BPs
.size(); J
< BPN
; ++J
)
506 OS
<< " const unsigned " << BPs
[J
]->getName() << " = 1 << " << J
509 OS
<< "} // end namespace " << Name
<< "Bypass\n";
513 // Begin stages table
514 std::string StageTable
=
515 "\nextern const llvm::InstrStage " + Target
+ "Stages[] = {\n";
516 StageTable
+= " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
518 // Begin operand cycle table
519 std::string OperandCycleTable
=
520 "extern const unsigned " + Target
+ "OperandCycles[] = {\n";
521 OperandCycleTable
+= " 0, // No itinerary\n";
523 // Begin pipeline bypass table
524 std::string BypassTable
=
525 "extern const unsigned " + Target
+ "ForwardingPaths[] = {\n";
526 BypassTable
+= " 0, // No itinerary\n";
528 // For each Itinerary across all processors, add a unique entry to the stages,
529 // operand cycles, and pipeline bypass tables. Then add the new Itinerary
530 // object with computed offsets to the ProcItinLists result.
531 unsigned StageCount
= 1, OperandCycleCount
= 1;
532 StringMap
<unsigned> ItinStageMap
, ItinOperandMap
;
533 for (const CodeGenProcModel
&ProcModel
: SchedModels
.procModels()) {
534 // Add process itinerary to the list.
535 std::vector
<InstrItinerary
> &ItinList
= ProcItinLists
.emplace_back();
537 // If this processor defines no itineraries, then leave the itinerary list
539 if (!ProcModel
.hasItineraries())
542 StringRef Name
= ProcModel
.ItinsDef
->getName();
544 ItinList
.resize(SchedModels
.numInstrSchedClasses());
545 assert(ProcModel
.ItinDefList
.size() == ItinList
.size() && "bad Itins");
547 for (unsigned SchedClassIdx
= 0, SchedClassEnd
= ItinList
.size();
548 SchedClassIdx
< SchedClassEnd
; ++SchedClassIdx
) {
550 // Next itinerary data
551 const Record
*ItinData
= ProcModel
.ItinDefList
[SchedClassIdx
];
553 // Get string and stage count
554 std::string ItinStageString
;
555 unsigned NStages
= 0;
557 formItineraryStageString(std::string(Name
), ItinData
, ItinStageString
,
560 // Get string and operand cycle count
561 std::string ItinOperandCycleString
;
562 unsigned NOperandCycles
= 0;
563 std::string ItinBypassString
;
565 formItineraryOperandCycleString(ItinData
, ItinOperandCycleString
,
568 formItineraryBypassString(std::string(Name
), ItinData
, ItinBypassString
,
572 // Check to see if stage already exists and create if it doesn't
573 uint16_t FindStage
= 0;
575 FindStage
= ItinStageMap
[ItinStageString
];
576 if (FindStage
== 0) {
577 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
578 StageTable
+= ItinStageString
+ ", // " + itostr(StageCount
);
580 StageTable
+= "-" + itostr(StageCount
+ NStages
- 1);
582 // Record Itin class number.
583 ItinStageMap
[ItinStageString
] = FindStage
= StageCount
;
584 StageCount
+= NStages
;
588 // Check to see if operand cycle already exists and create if it doesn't
589 uint16_t FindOperandCycle
= 0;
590 if (NOperandCycles
> 0) {
591 std::string ItinOperandString
=
592 ItinOperandCycleString
+ ItinBypassString
;
593 FindOperandCycle
= ItinOperandMap
[ItinOperandString
];
594 if (FindOperandCycle
== 0) {
595 // Emit as cycle, // index
596 OperandCycleTable
+= ItinOperandCycleString
+ ", // ";
597 std::string OperandIdxComment
= itostr(OperandCycleCount
);
598 if (NOperandCycles
> 1)
600 "-" + itostr(OperandCycleCount
+ NOperandCycles
- 1);
601 OperandCycleTable
+= OperandIdxComment
+ "\n";
602 // Record Itin class number.
603 ItinOperandMap
[ItinOperandCycleString
] = FindOperandCycle
=
605 // Emit as bypass, // index
606 BypassTable
+= ItinBypassString
+ ", // " + OperandIdxComment
+ "\n";
607 OperandCycleCount
+= NOperandCycles
;
611 // Set up itinerary as location and location + stage count
612 int16_t NumUOps
= ItinData
? ItinData
->getValueAsInt("NumMicroOps") : 0;
613 InstrItinerary Intinerary
= {
616 uint16_t(FindStage
+ NStages
),
618 uint16_t(FindOperandCycle
+ NOperandCycles
),
621 // Inject - empty slots will be 0, 0
622 ItinList
[SchedClassIdx
] = Intinerary
;
627 StageTable
+= " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
628 StageTable
+= "};\n";
630 // Closing operand cycles
631 OperandCycleTable
+= " 0 // End operand cycles\n";
632 OperandCycleTable
+= "};\n";
634 BypassTable
+= " 0 // End bypass tables\n";
635 BypassTable
+= "};\n";
639 OS
<< OperandCycleTable
;
644 // EmitProcessorData - Generate data for processor itineraries that were
645 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
646 // Itineraries for each processor. The Itinerary lists are indexed on
647 // CodeGenSchedClass::Index.
649 void SubtargetEmitter::emitItineraries(
650 raw_ostream
&OS
, std::vector
<std::vector
<InstrItinerary
>> &ProcItinLists
) {
651 // Multiple processor models may share an itinerary record. Emit it once.
652 SmallPtrSet
<const Record
*, 8> ItinsDefSet
;
654 // For each processor's machine model
655 std::vector
<std::vector
<InstrItinerary
>>::iterator ProcItinListsIter
=
656 ProcItinLists
.begin();
657 for (CodeGenSchedModels::ProcIter PI
= SchedModels
.procModelBegin(),
658 PE
= SchedModels
.procModelEnd();
659 PI
!= PE
; ++PI
, ++ProcItinListsIter
) {
661 const Record
*ItinsDef
= PI
->ItinsDef
;
662 if (!ItinsDefSet
.insert(ItinsDef
).second
)
665 // Get the itinerary list for the processor.
666 assert(ProcItinListsIter
!= ProcItinLists
.end() && "bad iterator");
667 std::vector
<InstrItinerary
> &ItinList
= *ProcItinListsIter
;
669 // Empty itineraries aren't referenced anywhere in the tablegen output
670 // so don't emit them.
671 if (ItinList
.empty())
675 OS
<< "static const llvm::InstrItinerary ";
677 // Begin processor itinerary table
678 OS
<< ItinsDef
->getName() << "[] = {\n";
680 // For each itinerary class in CodeGenSchedClass::Index order.
681 for (unsigned J
= 0, M
= ItinList
.size(); J
< M
; ++J
) {
682 InstrItinerary
&Intinerary
= ItinList
[J
];
684 // Emit Itinerary in the form of
685 // { firstStage, lastStage, firstCycle, lastCycle } // index
686 OS
<< " { " << Intinerary
.NumMicroOps
<< ", " << Intinerary
.FirstStage
687 << ", " << Intinerary
.LastStage
<< ", " << Intinerary
.FirstOperandCycle
688 << ", " << Intinerary
.LastOperandCycle
<< " }"
689 << ", // " << J
<< " " << SchedModels
.getSchedClass(J
).Name
<< "\n";
691 // End processor itinerary table
692 OS
<< " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
698 // Emit either the value defined in the TableGen Record, or the default
699 // value defined in the C++ header. The Record is null if the processor does not
701 void SubtargetEmitter::emitProcessorProp(raw_ostream
&OS
, const Record
*R
,
702 StringRef Name
, char Separator
) {
704 int V
= R
? R
->getValueAsInt(Name
) : -1;
706 OS
<< V
<< Separator
<< " // " << Name
;
708 OS
<< "MCSchedModel::Default" << Name
<< Separator
;
712 void SubtargetEmitter::emitProcessorResourceSubUnits(
713 const CodeGenProcModel
&ProcModel
, raw_ostream
&OS
) {
714 OS
<< "\nstatic const unsigned " << ProcModel
.ModelName
715 << "ProcResourceSubUnits[] = {\n"
716 << " 0, // Invalid\n";
718 for (unsigned I
= 0, E
= ProcModel
.ProcResourceDefs
.size(); I
< E
; ++I
) {
719 const Record
*PRDef
= ProcModel
.ProcResourceDefs
[I
];
720 if (!PRDef
->isSubClassOf("ProcResGroup"))
722 for (const Record
*RUDef
: PRDef
->getValueAsListOfDefs("Resources")) {
724 SchedModels
.findProcResUnits(RUDef
, ProcModel
, PRDef
->getLoc());
725 for (unsigned J
= 0; J
< RU
->getValueAsInt("NumUnits"); ++J
) {
726 OS
<< " " << ProcModel
.getProcResourceIdx(RU
) << ", ";
729 OS
<< " // " << PRDef
->getName() << "\n";
734 static void emitRetireControlUnitInfo(const CodeGenProcModel
&ProcModel
,
736 int64_t ReorderBufferSize
= 0, MaxRetirePerCycle
= 0;
737 if (const Record
*RCU
= ProcModel
.RetireControlUnit
) {
739 std::max(ReorderBufferSize
, RCU
->getValueAsInt("ReorderBufferSize"));
741 std::max(MaxRetirePerCycle
, RCU
->getValueAsInt("MaxRetirePerCycle"));
744 OS
<< ReorderBufferSize
<< ", // ReorderBufferSize\n ";
745 OS
<< MaxRetirePerCycle
<< ", // MaxRetirePerCycle\n ";
748 static void emitRegisterFileInfo(const CodeGenProcModel
&ProcModel
,
749 unsigned NumRegisterFiles
,
750 unsigned NumCostEntries
, raw_ostream
&OS
) {
751 if (NumRegisterFiles
)
752 OS
<< ProcModel
.ModelName
<< "RegisterFiles,\n " << (1 + NumRegisterFiles
);
754 OS
<< "nullptr,\n 0";
756 OS
<< ", // Number of register files.\n ";
758 OS
<< ProcModel
.ModelName
<< "RegisterCosts,\n ";
761 OS
<< NumCostEntries
<< ", // Number of register cost entries.\n";
765 SubtargetEmitter::emitRegisterFileTables(const CodeGenProcModel
&ProcModel
,
767 if (llvm::all_of(ProcModel
.RegisterFiles
, [](const CodeGenRegisterFile
&RF
) {
768 return RF
.hasDefaultCosts();
772 // Print the RegisterCost table first.
773 OS
<< "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
774 OS
<< "static const llvm::MCRegisterCostEntry " << ProcModel
.ModelName
778 for (const CodeGenRegisterFile
&RF
: ProcModel
.RegisterFiles
) {
779 // Skip register files with a default cost table.
780 if (RF
.hasDefaultCosts())
782 // Add entries to the cost table.
783 for (const CodeGenRegisterCost
&RC
: RF
.Costs
) {
785 const Record
*Rec
= RC
.RCDef
;
786 if (Rec
->getValue("Namespace"))
787 OS
<< Rec
->getValueAsString("Namespace") << "::";
788 OS
<< Rec
->getName() << "RegClassID, " << RC
.Cost
<< ", "
789 << RC
.AllowMoveElimination
<< "},\n";
794 // Now generate a table with register file info.
795 OS
<< "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
796 << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
797 OS
<< "static const llvm::MCRegisterFileDesc " << ProcModel
.ModelName
800 << " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
801 unsigned CostTblIndex
= 0;
803 for (const CodeGenRegisterFile
&RD
: ProcModel
.RegisterFiles
) {
805 OS
<< '"' << RD
.Name
<< '"' << ", " << RD
.NumPhysRegs
<< ", ";
806 unsigned NumCostEntries
= RD
.Costs
.size();
807 OS
<< NumCostEntries
<< ", " << CostTblIndex
<< ", "
808 << RD
.MaxMovesEliminatedPerCycle
<< ", "
809 << RD
.AllowZeroMoveEliminationOnly
<< "},\n";
810 CostTblIndex
+= NumCostEntries
;
817 void SubtargetEmitter::emitLoadStoreQueueInfo(const CodeGenProcModel
&ProcModel
,
819 unsigned QueueID
= 0;
820 if (ProcModel
.LoadQueue
) {
821 const Record
*Queue
= ProcModel
.LoadQueue
->getValueAsDef("QueueDescriptor");
822 QueueID
= 1 + std::distance(ProcModel
.ProcResourceDefs
.begin(),
823 find(ProcModel
.ProcResourceDefs
, Queue
));
825 OS
<< " " << QueueID
<< ", // Resource Descriptor for the Load Queue\n";
828 if (ProcModel
.StoreQueue
) {
829 const Record
*Queue
=
830 ProcModel
.StoreQueue
->getValueAsDef("QueueDescriptor");
831 QueueID
= 1 + std::distance(ProcModel
.ProcResourceDefs
.begin(),
832 find(ProcModel
.ProcResourceDefs
, Queue
));
834 OS
<< " " << QueueID
<< ", // Resource Descriptor for the Store Queue\n";
837 void SubtargetEmitter::emitExtraProcessorInfo(const CodeGenProcModel
&ProcModel
,
839 // Generate a table of register file descriptors (one entry per each user
840 // defined register file), and a table of register costs.
841 unsigned NumCostEntries
= emitRegisterFileTables(ProcModel
, OS
);
843 // Now generate a table for the extra processor info.
844 OS
<< "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel
.ModelName
845 << "ExtraInfo = {\n ";
847 // Add information related to the retire control unit.
848 emitRetireControlUnitInfo(ProcModel
, OS
);
850 // Add information related to the register files (i.e. where to find register
851 // file descriptors and register costs).
852 emitRegisterFileInfo(ProcModel
, ProcModel
.RegisterFiles
.size(),
855 // Add information about load/store queues.
856 emitLoadStoreQueueInfo(ProcModel
, OS
);
861 void SubtargetEmitter::emitProcessorResources(const CodeGenProcModel
&ProcModel
,
863 emitProcessorResourceSubUnits(ProcModel
, OS
);
865 OS
<< "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
866 OS
<< "static const llvm::MCProcResourceDesc " << ProcModel
.ModelName
869 << " {\"InvalidUnit\", 0, 0, 0, 0},\n";
871 unsigned SubUnitsOffset
= 1;
872 for (unsigned I
= 0, E
= ProcModel
.ProcResourceDefs
.size(); I
< E
; ++I
) {
873 const Record
*PRDef
= ProcModel
.ProcResourceDefs
[I
];
875 const Record
*SuperDef
= nullptr;
876 unsigned SuperIdx
= 0;
877 unsigned NumUnits
= 0;
878 const unsigned SubUnitsBeginOffset
= SubUnitsOffset
;
879 int BufferSize
= PRDef
->getValueAsInt("BufferSize");
880 if (PRDef
->isSubClassOf("ProcResGroup")) {
881 for (const Record
*RU
: PRDef
->getValueAsListOfDefs("Resources")) {
882 NumUnits
+= RU
->getValueAsInt("NumUnits");
883 SubUnitsOffset
+= RU
->getValueAsInt("NumUnits");
887 if (PRDef
->getValueInit("Super")->isComplete()) {
888 SuperDef
= SchedModels
.findProcResUnits(PRDef
->getValueAsDef("Super"),
889 ProcModel
, PRDef
->getLoc());
890 SuperIdx
= ProcModel
.getProcResourceIdx(SuperDef
);
892 NumUnits
= PRDef
->getValueAsInt("NumUnits");
894 // Emit the ProcResourceDesc
895 OS
<< " {\"" << PRDef
->getName() << "\", ";
896 if (PRDef
->getName().size() < 15)
897 OS
.indent(15 - PRDef
->getName().size());
898 OS
<< NumUnits
<< ", " << SuperIdx
<< ", " << BufferSize
<< ", ";
899 if (SubUnitsBeginOffset
!= SubUnitsOffset
) {
900 OS
<< ProcModel
.ModelName
<< "ProcResourceSubUnits + "
901 << SubUnitsBeginOffset
;
905 OS
<< "}, // #" << I
+ 1;
907 OS
<< ", Super=" << SuperDef
->getName();
913 // Find the WriteRes Record that defines processor resources for this
916 SubtargetEmitter::findWriteResources(const CodeGenSchedRW
&SchedWrite
,
917 const CodeGenProcModel
&ProcModel
) {
919 // Check if the SchedWrite is already subtarget-specific and directly
920 // specifies a set of processor resources.
921 if (SchedWrite
.TheDef
->isSubClassOf("SchedWriteRes"))
922 return SchedWrite
.TheDef
;
924 const Record
*AliasDef
= nullptr;
925 for (const Record
*A
: SchedWrite
.Aliases
) {
926 const CodeGenSchedRW
&AliasRW
=
927 SchedModels
.getSchedRW(A
->getValueAsDef("AliasRW"));
928 if (AliasRW
.TheDef
->getValueInit("SchedModel")->isComplete()) {
929 const Record
*ModelDef
= AliasRW
.TheDef
->getValueAsDef("SchedModel");
930 if (&SchedModels
.getProcModel(ModelDef
) != &ProcModel
)
934 PrintFatalError(AliasRW
.TheDef
->getLoc(),
936 "defined for processor " +
937 ProcModel
.ModelName
+
938 " Ensure only one SchedAlias exists per RW.");
939 AliasDef
= AliasRW
.TheDef
;
941 if (AliasDef
&& AliasDef
->isSubClassOf("SchedWriteRes"))
944 // Check this processor's list of write resources.
945 const Record
*ResDef
= nullptr;
946 for (const Record
*WR
: ProcModel
.WriteResDefs
) {
947 if (!WR
->isSubClassOf("WriteRes"))
949 const Record
*WRDef
= WR
->getValueAsDef("WriteType");
950 if (AliasDef
== WRDef
|| SchedWrite
.TheDef
== WRDef
) {
952 PrintFatalError(WR
->getLoc(), "Resources are defined for both "
953 "SchedWrite and its alias on processor " +
954 ProcModel
.ModelName
);
957 // If there is no AliasDef and we find a match, we can early exit since
958 // there is no need to verify whether there are resources defined for both
959 // SchedWrite and its alias.
964 // TODO: If ProcModel has a base model (previous generation processor),
965 // then call FindWriteResources recursively with that model here.
967 PrintFatalError(ProcModel
.ModelDef
->getLoc(),
968 Twine("Processor does not define resources for ") +
969 SchedWrite
.TheDef
->getName());
974 /// Find the ReadAdvance record for the given SchedRead on this processor or
977 SubtargetEmitter::findReadAdvance(const CodeGenSchedRW
&SchedRead
,
978 const CodeGenProcModel
&ProcModel
) {
979 // Check for SchedReads that directly specify a ReadAdvance.
980 if (SchedRead
.TheDef
->isSubClassOf("SchedReadAdvance"))
981 return SchedRead
.TheDef
;
983 // Check this processor's list of aliases for SchedRead.
984 const Record
*AliasDef
= nullptr;
985 for (const Record
*A
: SchedRead
.Aliases
) {
986 const CodeGenSchedRW
&AliasRW
=
987 SchedModels
.getSchedRW(A
->getValueAsDef("AliasRW"));
988 if (AliasRW
.TheDef
->getValueInit("SchedModel")->isComplete()) {
989 const Record
*ModelDef
= AliasRW
.TheDef
->getValueAsDef("SchedModel");
990 if (&SchedModels
.getProcModel(ModelDef
) != &ProcModel
)
994 PrintFatalError(AliasRW
.TheDef
->getLoc(),
996 "defined for processor " +
997 ProcModel
.ModelName
+
998 " Ensure only one SchedAlias exists per RW.");
999 AliasDef
= AliasRW
.TheDef
;
1001 if (AliasDef
&& AliasDef
->isSubClassOf("SchedReadAdvance"))
1004 // Check this processor's ReadAdvanceList.
1005 const Record
*ResDef
= nullptr;
1006 for (const Record
*RA
: ProcModel
.ReadAdvanceDefs
) {
1007 if (!RA
->isSubClassOf("ReadAdvance"))
1009 const Record
*RADef
= RA
->getValueAsDef("ReadType");
1010 if (AliasDef
== RADef
|| SchedRead
.TheDef
== RADef
) {
1012 PrintFatalError(RA
->getLoc(), "Resources are defined for both "
1013 "SchedRead and its alias on processor " +
1014 ProcModel
.ModelName
);
1017 // If there is no AliasDef and we find a match, we can early exit since
1018 // there is no need to verify whether there are resources defined for both
1019 // SchedRead and its alias.
1024 // TODO: If ProcModel has a base model (previous generation processor),
1025 // then call FindReadAdvance recursively with that model here.
1026 if (!ResDef
&& SchedRead
.TheDef
->getName() != "ReadDefault") {
1027 PrintFatalError(ProcModel
.ModelDef
->getLoc(),
1028 Twine("Processor does not define resources for ") +
1029 SchedRead
.TheDef
->getName());
1034 // Expand an explicit list of processor resources into a full list of implied
1035 // resource groups and super resources that cover them.
1036 void SubtargetEmitter::expandProcResources(
1037 ConstRecVec
&PRVec
, std::vector
<int64_t> &ReleaseAtCycles
,
1038 std::vector
<int64_t> &AcquireAtCycles
, const CodeGenProcModel
&PM
) {
1039 assert(PRVec
.size() == ReleaseAtCycles
.size() && "failed precondition");
1040 for (unsigned I
= 0, E
= PRVec
.size(); I
!= E
; ++I
) {
1041 const Record
*PRDef
= PRVec
[I
];
1042 ConstRecVec SubResources
;
1043 if (PRDef
->isSubClassOf("ProcResGroup"))
1044 SubResources
= PRDef
->getValueAsListOfDefs("Resources");
1046 SubResources
.push_back(PRDef
);
1047 PRDef
= SchedModels
.findProcResUnits(PRDef
, PM
, PRDef
->getLoc());
1048 for (const Record
*SubDef
= PRDef
;
1049 SubDef
->getValueInit("Super")->isComplete();) {
1050 if (SubDef
->isSubClassOf("ProcResGroup")) {
1051 // Disallow this for simplicitly.
1052 PrintFatalError(SubDef
->getLoc(), "Processor resource group "
1053 " cannot be a super resources.");
1055 const Record
*SuperDef
= SchedModels
.findProcResUnits(
1056 SubDef
->getValueAsDef("Super"), PM
, SubDef
->getLoc());
1057 PRVec
.push_back(SuperDef
);
1058 ReleaseAtCycles
.push_back(ReleaseAtCycles
[I
]);
1059 AcquireAtCycles
.push_back(AcquireAtCycles
[I
]);
1063 for (const Record
*PR
: PM
.ProcResourceDefs
) {
1064 if (PR
== PRDef
|| !PR
->isSubClassOf("ProcResGroup"))
1066 ConstRecVec SuperResources
= PR
->getValueAsListOfDefs("Resources");
1067 ConstRecIter SubI
= SubResources
.begin(), SubE
= SubResources
.end();
1068 for (; SubI
!= SubE
; ++SubI
) {
1069 if (!is_contained(SuperResources
, *SubI
)) {
1074 PRVec
.push_back(PR
);
1075 ReleaseAtCycles
.push_back(ReleaseAtCycles
[I
]);
1076 AcquireAtCycles
.push_back(AcquireAtCycles
[I
]);
1082 // Generate the SchedClass table for this processor and update global
1083 // tables. Must be called for each processor in order.
1084 void SubtargetEmitter::genSchedClassTables(const CodeGenProcModel
&ProcModel
,
1085 SchedClassTables
&SchedTables
) {
1086 std::vector
<MCSchedClassDesc
> &SCTab
=
1087 SchedTables
.ProcSchedClasses
.emplace_back();
1088 if (!ProcModel
.hasInstrSchedModel())
1091 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
1092 for (const CodeGenSchedClass
&SC
: SchedModels
.schedClasses()) {
1093 LLVM_DEBUG(SC
.dump(&SchedModels
));
1095 MCSchedClassDesc
&SCDesc
= SCTab
.emplace_back();
1096 // SCDesc.Name is guarded by NDEBUG
1097 SCDesc
.NumMicroOps
= 0;
1098 SCDesc
.BeginGroup
= false;
1099 SCDesc
.EndGroup
= false;
1100 SCDesc
.RetireOOO
= false;
1101 SCDesc
.WriteProcResIdx
= 0;
1102 SCDesc
.WriteLatencyIdx
= 0;
1103 SCDesc
.ReadAdvanceIdx
= 0;
1105 // A Variant SchedClass has no resources of its own.
1106 bool HasVariants
= false;
1107 for (const CodeGenSchedTransition
&CGT
:
1108 make_range(SC
.Transitions
.begin(), SC
.Transitions
.end())) {
1109 if (CGT
.ProcIndex
== ProcModel
.Index
) {
1115 SCDesc
.NumMicroOps
= MCSchedClassDesc::VariantNumMicroOps
;
1119 // Determine if the SchedClass is actually reachable on this processor. If
1120 // not don't try to locate the processor resources, it will fail.
1121 // If ProcIndices contains 0, this class applies to all processors.
1122 assert(!SC
.ProcIndices
.empty() && "expect at least one procidx");
1123 if (SC
.ProcIndices
[0] != 0) {
1124 if (!is_contained(SC
.ProcIndices
, ProcModel
.Index
))
1127 IdxVec Writes
= SC
.Writes
;
1128 IdxVec Reads
= SC
.Reads
;
1129 if (!SC
.InstRWs
.empty()) {
1130 // This class has a default ReadWrite list which can be overridden by
1131 // InstRW definitions.
1132 const Record
*RWDef
= nullptr;
1133 for (const Record
*RW
: SC
.InstRWs
) {
1134 const Record
*RWModelDef
= RW
->getValueAsDef("SchedModel");
1135 if (&ProcModel
== &SchedModels
.getProcModel(RWModelDef
)) {
1143 SchedModels
.findRWs(RWDef
->getValueAsListOfDefs("OperandReadWrites"),
1147 if (Writes
.empty()) {
1148 // Check this processor's itinerary class resources.
1149 for (const Record
*I
: ProcModel
.ItinRWDefs
) {
1150 ConstRecVec Matched
= I
->getValueAsListOfDefs("MatchedItinClasses");
1151 if (is_contained(Matched
, SC
.ItinClassDef
)) {
1152 SchedModels
.findRWs(I
->getValueAsListOfDefs("OperandReadWrites"),
1157 if (Writes
.empty()) {
1158 LLVM_DEBUG(dbgs() << ProcModel
.ModelName
1159 << " does not have resources for class " << SC
.Name
1161 SCDesc
.NumMicroOps
= MCSchedClassDesc::InvalidNumMicroOps
;
1164 // Sum resources across all operand writes.
1165 std::vector
<MCWriteProcResEntry
> WriteProcResources
;
1166 std::vector
<MCWriteLatencyEntry
> WriteLatencies
;
1167 std::vector
<std::string
> WriterNames
;
1168 std::vector
<MCReadAdvanceEntry
> ReadAdvanceEntries
;
1169 for (unsigned W
: Writes
) {
1171 SchedModels
.expandRWSeqForProc(W
, WriteSeq
, /*IsRead=*/false, ProcModel
);
1173 // For each operand, create a latency entry.
1174 MCWriteLatencyEntry WLEntry
;
1176 unsigned WriteID
= WriteSeq
.back();
1177 WriterNames
.push_back(SchedModels
.getSchedWrite(WriteID
).Name
);
1178 // If this Write is not referenced by a ReadAdvance, don't distinguish it
1179 // from other WriteLatency entries.
1180 if (!ProcModel
.hasReadOfWrite(SchedModels
.getSchedWrite(WriteID
).TheDef
))
1182 WLEntry
.WriteResourceID
= WriteID
;
1184 for (unsigned WS
: WriteSeq
) {
1185 const Record
*WriteRes
=
1186 findWriteResources(SchedModels
.getSchedWrite(WS
), ProcModel
);
1188 // Mark the parent class as invalid for unsupported write types.
1189 if (WriteRes
->getValueAsBit("Unsupported")) {
1190 SCDesc
.NumMicroOps
= MCSchedClassDesc::InvalidNumMicroOps
;
1193 WLEntry
.Cycles
+= WriteRes
->getValueAsInt("Latency");
1194 SCDesc
.NumMicroOps
+= WriteRes
->getValueAsInt("NumMicroOps");
1195 SCDesc
.BeginGroup
|= WriteRes
->getValueAsBit("BeginGroup");
1196 SCDesc
.EndGroup
|= WriteRes
->getValueAsBit("EndGroup");
1197 SCDesc
.BeginGroup
|= WriteRes
->getValueAsBit("SingleIssue");
1198 SCDesc
.EndGroup
|= WriteRes
->getValueAsBit("SingleIssue");
1199 SCDesc
.RetireOOO
|= WriteRes
->getValueAsBit("RetireOOO");
1201 // Create an entry for each ProcResource listed in WriteRes.
1202 ConstRecVec PRVec
= WriteRes
->getValueAsListOfDefs("ProcResources");
1203 std::vector
<int64_t> ReleaseAtCycles
=
1204 WriteRes
->getValueAsListOfInts("ReleaseAtCycles");
1206 std::vector
<int64_t> AcquireAtCycles
=
1207 WriteRes
->getValueAsListOfInts("AcquireAtCycles");
1209 // Check consistency of the two vectors carrying the start and
1210 // stop cycles of the resources.
1211 if (!ReleaseAtCycles
.empty() &&
1212 ReleaseAtCycles
.size() != PRVec
.size()) {
1213 // If ReleaseAtCycles is provided, check consistency.
1216 Twine("Inconsistent release at cycles: size(ReleaseAtCycles) != "
1217 "size(ProcResources): ")
1218 .concat(Twine(PRVec
.size()))
1220 .concat(Twine(ReleaseAtCycles
.size())));
1223 if (!AcquireAtCycles
.empty() &&
1224 AcquireAtCycles
.size() != PRVec
.size()) {
1227 Twine("Inconsistent resource cycles: size(AcquireAtCycles) != "
1228 "size(ProcResources): ")
1229 .concat(Twine(AcquireAtCycles
.size()))
1231 .concat(Twine(PRVec
.size())));
1234 if (ReleaseAtCycles
.empty()) {
1235 // If ReleaseAtCycles is not provided, default to one cycle
1237 ReleaseAtCycles
.resize(PRVec
.size(), 1);
1240 if (AcquireAtCycles
.empty()) {
1241 // If AcquireAtCycles is not provided, reserve the resource
1242 // starting from cycle 0.
1243 AcquireAtCycles
.resize(PRVec
.size(), 0);
1246 assert(AcquireAtCycles
.size() == ReleaseAtCycles
.size());
1248 expandProcResources(PRVec
, ReleaseAtCycles
, AcquireAtCycles
, ProcModel
);
1249 assert(AcquireAtCycles
.size() == ReleaseAtCycles
.size());
1251 for (unsigned PRIdx
= 0, PREnd
= PRVec
.size(); PRIdx
!= PREnd
;
1253 MCWriteProcResEntry WPREntry
;
1254 WPREntry
.ProcResourceIdx
= ProcModel
.getProcResourceIdx(PRVec
[PRIdx
]);
1255 assert(WPREntry
.ProcResourceIdx
&& "Bad ProcResourceIdx");
1256 WPREntry
.ReleaseAtCycle
= ReleaseAtCycles
[PRIdx
];
1257 WPREntry
.AcquireAtCycle
= AcquireAtCycles
[PRIdx
];
1258 if (AcquireAtCycles
[PRIdx
] > ReleaseAtCycles
[PRIdx
]) {
1261 Twine("Inconsistent resource cycles: AcquireAtCycles "
1262 "< ReleaseAtCycles must hold."));
1264 if (AcquireAtCycles
[PRIdx
] < 0) {
1265 PrintFatalError(WriteRes
->getLoc(),
1266 Twine("Invalid value: AcquireAtCycle "
1267 "must be a non-negative value."));
1269 // If this resource is already used in this sequence, add the current
1270 // entry's cycles so that the same resource appears to be used
1271 // serially, rather than multiple parallel uses. This is important for
1272 // in-order machine where the resource consumption is a hazard.
1273 unsigned WPRIdx
= 0, WPREnd
= WriteProcResources
.size();
1274 for (; WPRIdx
!= WPREnd
; ++WPRIdx
) {
1275 if (WriteProcResources
[WPRIdx
].ProcResourceIdx
==
1276 WPREntry
.ProcResourceIdx
) {
1277 // TODO: multiple use of the same resources would
1278 // require either 1. thinking of how to handle multiple
1279 // intervals for the same resource in
1280 // `<Target>WriteProcResTable` (see
1281 // `SubtargetEmitter::EmitSchedClassTables`), or
1282 // 2. thinking how to merge multiple intervals into a
1284 assert(WPREntry
.AcquireAtCycle
== 0 &&
1285 "multiple use ofthe same resource is not yet handled");
1286 WriteProcResources
[WPRIdx
].ReleaseAtCycle
+=
1287 WPREntry
.ReleaseAtCycle
;
1291 if (WPRIdx
== WPREnd
)
1292 WriteProcResources
.push_back(WPREntry
);
1295 WriteLatencies
.push_back(WLEntry
);
1297 // Create an entry for each operand Read in this SchedClass.
1298 // Entries must be sorted first by UseIdx then by WriteResourceID.
1299 for (unsigned UseIdx
= 0, EndIdx
= Reads
.size(); UseIdx
!= EndIdx
;
1301 const Record
*ReadAdvance
=
1302 findReadAdvance(SchedModels
.getSchedRead(Reads
[UseIdx
]), ProcModel
);
1306 // Mark the parent class as invalid for unsupported write types.
1307 if (ReadAdvance
->getValueAsBit("Unsupported")) {
1308 SCDesc
.NumMicroOps
= MCSchedClassDesc::InvalidNumMicroOps
;
1311 ConstRecVec ValidWrites
=
1312 ReadAdvance
->getValueAsListOfDefs("ValidWrites");
1314 if (ValidWrites
.empty())
1315 WriteIDs
.push_back(0);
1317 for (const Record
*VW
: ValidWrites
) {
1318 unsigned WriteID
= SchedModels
.getSchedRWIdx(VW
, /*IsRead=*/false);
1319 assert(WriteID
!= 0 &&
1320 "Expected a valid SchedRW in the list of ValidWrites");
1321 WriteIDs
.push_back(WriteID
);
1324 llvm::sort(WriteIDs
);
1325 for (unsigned W
: WriteIDs
) {
1326 MCReadAdvanceEntry RAEntry
;
1327 RAEntry
.UseIdx
= UseIdx
;
1328 RAEntry
.WriteResourceID
= W
;
1329 RAEntry
.Cycles
= ReadAdvance
->getValueAsInt("Cycles");
1330 ReadAdvanceEntries
.push_back(RAEntry
);
1333 if (SCDesc
.NumMicroOps
== MCSchedClassDesc::InvalidNumMicroOps
) {
1334 WriteProcResources
.clear();
1335 WriteLatencies
.clear();
1336 ReadAdvanceEntries
.clear();
1338 // Add the information for this SchedClass to the global tables using basic
1341 // WritePrecRes entries are sorted by ProcResIdx.
1342 llvm::sort(WriteProcResources
, LessWriteProcResources());
1344 SCDesc
.NumWriteProcResEntries
= WriteProcResources
.size();
1345 std::vector
<MCWriteProcResEntry
>::iterator WPRPos
=
1346 std::search(SchedTables
.WriteProcResources
.begin(),
1347 SchedTables
.WriteProcResources
.end(),
1348 WriteProcResources
.begin(), WriteProcResources
.end());
1349 if (WPRPos
!= SchedTables
.WriteProcResources
.end())
1350 SCDesc
.WriteProcResIdx
= WPRPos
- SchedTables
.WriteProcResources
.begin();
1352 SCDesc
.WriteProcResIdx
= SchedTables
.WriteProcResources
.size();
1353 SchedTables
.WriteProcResources
.insert(WPRPos
, WriteProcResources
.begin(),
1354 WriteProcResources
.end());
1356 // Latency entries must remain in operand order.
1357 SCDesc
.NumWriteLatencyEntries
= WriteLatencies
.size();
1358 std::vector
<MCWriteLatencyEntry
>::iterator WLPos
= std::search(
1359 SchedTables
.WriteLatencies
.begin(), SchedTables
.WriteLatencies
.end(),
1360 WriteLatencies
.begin(), WriteLatencies
.end());
1361 if (WLPos
!= SchedTables
.WriteLatencies
.end()) {
1362 unsigned Idx
= WLPos
- SchedTables
.WriteLatencies
.begin();
1363 SCDesc
.WriteLatencyIdx
= Idx
;
1364 for (unsigned I
= 0, E
= WriteLatencies
.size(); I
< E
; ++I
)
1365 if (SchedTables
.WriterNames
[Idx
+ I
].find(WriterNames
[I
]) ==
1366 std::string::npos
) {
1367 SchedTables
.WriterNames
[Idx
+ I
] += std::string("_") + WriterNames
[I
];
1370 SCDesc
.WriteLatencyIdx
= SchedTables
.WriteLatencies
.size();
1371 llvm::append_range(SchedTables
.WriteLatencies
, WriteLatencies
);
1372 llvm::append_range(SchedTables
.WriterNames
, WriterNames
);
1374 // ReadAdvanceEntries must remain in operand order.
1375 SCDesc
.NumReadAdvanceEntries
= ReadAdvanceEntries
.size();
1376 std::vector
<MCReadAdvanceEntry
>::iterator RAPos
=
1377 std::search(SchedTables
.ReadAdvanceEntries
.begin(),
1378 SchedTables
.ReadAdvanceEntries
.end(),
1379 ReadAdvanceEntries
.begin(), ReadAdvanceEntries
.end());
1380 if (RAPos
!= SchedTables
.ReadAdvanceEntries
.end())
1381 SCDesc
.ReadAdvanceIdx
= RAPos
- SchedTables
.ReadAdvanceEntries
.begin();
1383 SCDesc
.ReadAdvanceIdx
= SchedTables
.ReadAdvanceEntries
.size();
1384 llvm::append_range(SchedTables
.ReadAdvanceEntries
, ReadAdvanceEntries
);
1389 // Emit SchedClass tables for all processors and associated global tables.
1390 void SubtargetEmitter::emitSchedClassTables(SchedClassTables
&SchedTables
,
1392 // Emit global WriteProcResTable.
1393 OS
<< "\n// {ProcResourceIdx, ReleaseAtCycle, AcquireAtCycle}\n"
1394 << "extern const llvm::MCWriteProcResEntry " << Target
1395 << "WriteProcResTable[] = {\n"
1396 << " { 0, 0, 0 }, // Invalid\n";
1397 for (unsigned WPRIdx
= 1, WPREnd
= SchedTables
.WriteProcResources
.size();
1398 WPRIdx
!= WPREnd
; ++WPRIdx
) {
1399 MCWriteProcResEntry
&WPREntry
= SchedTables
.WriteProcResources
[WPRIdx
];
1400 OS
<< " {" << format("%2d", WPREntry
.ProcResourceIdx
) << ", "
1401 << format("%2d", WPREntry
.ReleaseAtCycle
) << ", "
1402 << format("%2d", WPREntry
.AcquireAtCycle
) << "}";
1403 if (WPRIdx
+ 1 < WPREnd
)
1405 OS
<< " // #" << WPRIdx
<< '\n';
1407 OS
<< "}; // " << Target
<< "WriteProcResTable\n";
1409 // Emit global WriteLatencyTable.
1410 OS
<< "\n// {Cycles, WriteResourceID}\n"
1411 << "extern const llvm::MCWriteLatencyEntry " << Target
1412 << "WriteLatencyTable[] = {\n"
1413 << " { 0, 0}, // Invalid\n";
1414 for (unsigned WLIdx
= 1, WLEnd
= SchedTables
.WriteLatencies
.size();
1415 WLIdx
!= WLEnd
; ++WLIdx
) {
1416 MCWriteLatencyEntry
&WLEntry
= SchedTables
.WriteLatencies
[WLIdx
];
1417 OS
<< " {" << format("%2d", WLEntry
.Cycles
) << ", "
1418 << format("%2d", WLEntry
.WriteResourceID
) << "}";
1419 if (WLIdx
+ 1 < WLEnd
)
1421 OS
<< " // #" << WLIdx
<< " " << SchedTables
.WriterNames
[WLIdx
] << '\n';
1423 OS
<< "}; // " << Target
<< "WriteLatencyTable\n";
1425 // Emit global ReadAdvanceTable.
1426 OS
<< "\n// {UseIdx, WriteResourceID, Cycles}\n"
1427 << "extern const llvm::MCReadAdvanceEntry " << Target
1428 << "ReadAdvanceTable[] = {\n"
1429 << " {0, 0, 0}, // Invalid\n";
1430 for (unsigned RAIdx
= 1, RAEnd
= SchedTables
.ReadAdvanceEntries
.size();
1431 RAIdx
!= RAEnd
; ++RAIdx
) {
1432 MCReadAdvanceEntry
&RAEntry
= SchedTables
.ReadAdvanceEntries
[RAIdx
];
1433 OS
<< " {" << RAEntry
.UseIdx
<< ", "
1434 << format("%2d", RAEntry
.WriteResourceID
) << ", "
1435 << format("%2d", RAEntry
.Cycles
) << "}";
1436 if (RAIdx
+ 1 < RAEnd
)
1438 OS
<< " // #" << RAIdx
<< '\n';
1440 OS
<< "}; // " << Target
<< "ReadAdvanceTable\n";
1442 // Emit a SchedClass table for each processor.
1443 for (CodeGenSchedModels::ProcIter PI
= SchedModels
.procModelBegin(),
1444 PE
= SchedModels
.procModelEnd();
1446 if (!PI
->hasInstrSchedModel())
1449 std::vector
<MCSchedClassDesc
> &SCTab
=
1450 SchedTables
.ProcSchedClasses
[1 + (PI
- SchedModels
.procModelBegin())];
1452 OS
<< "\n// {Name, NumMicroOps, BeginGroup, EndGroup, RetireOOO,"
1453 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1454 OS
<< "static const llvm::MCSchedClassDesc " << PI
->ModelName
1455 << "SchedClasses[] = {\n";
1457 // The first class is always invalid. We no way to distinguish it except by
1458 // name and position.
1459 assert(SchedModels
.getSchedClass(0).Name
== "NoInstrModel" &&
1460 "invalid class not first");
1461 OS
<< " {DBGFIELD(\"InvalidSchedClass\") "
1462 << MCSchedClassDesc::InvalidNumMicroOps
1463 << ", false, false, false, 0, 0, 0, 0, 0, 0},\n";
1465 for (unsigned SCIdx
= 1, SCEnd
= SCTab
.size(); SCIdx
!= SCEnd
; ++SCIdx
) {
1466 MCSchedClassDesc
&MCDesc
= SCTab
[SCIdx
];
1467 const CodeGenSchedClass
&SchedClass
= SchedModels
.getSchedClass(SCIdx
);
1468 OS
<< " {DBGFIELD(\"" << SchedClass
.Name
<< "\") ";
1469 if (SchedClass
.Name
.size() < 18)
1470 OS
.indent(18 - SchedClass
.Name
.size());
1471 OS
<< MCDesc
.NumMicroOps
<< ", " << (MCDesc
.BeginGroup
? "true" : "false")
1472 << ", " << (MCDesc
.EndGroup
? "true" : "false") << ", "
1473 << (MCDesc
.RetireOOO
? "true" : "false") << ", "
1474 << format("%2d", MCDesc
.WriteProcResIdx
) << ", "
1475 << MCDesc
.NumWriteProcResEntries
<< ", "
1476 << format("%2d", MCDesc
.WriteLatencyIdx
) << ", "
1477 << MCDesc
.NumWriteLatencyEntries
<< ", "
1478 << format("%2d", MCDesc
.ReadAdvanceIdx
) << ", "
1479 << MCDesc
.NumReadAdvanceEntries
<< "}, // #" << SCIdx
<< '\n';
1481 OS
<< "}; // " << PI
->ModelName
<< "SchedClasses\n";
1485 void SubtargetEmitter::emitProcessorModels(raw_ostream
&OS
) {
1486 // For each processor model.
1487 for (const CodeGenProcModel
&PM
: SchedModels
.procModels()) {
1488 // Emit extra processor info if available.
1489 if (PM
.hasExtraProcessorInfo())
1490 emitExtraProcessorInfo(PM
, OS
);
1491 // Emit processor resource table.
1492 if (PM
.hasInstrSchedModel())
1493 emitProcessorResources(PM
, OS
);
1494 else if (!PM
.ProcResourceDefs
.empty())
1495 PrintFatalError(PM
.ModelDef
->getLoc(),
1496 "SchedMachineModel defines "
1497 "ProcResources without defining WriteRes SchedWriteRes");
1499 // Begin processor itinerary properties
1501 OS
<< "static const llvm::MCSchedModel " << PM
.ModelName
<< " = {\n";
1502 emitProcessorProp(OS
, PM
.ModelDef
, "IssueWidth", ',');
1503 emitProcessorProp(OS
, PM
.ModelDef
, "MicroOpBufferSize", ',');
1504 emitProcessorProp(OS
, PM
.ModelDef
, "LoopMicroOpBufferSize", ',');
1505 emitProcessorProp(OS
, PM
.ModelDef
, "LoadLatency", ',');
1506 emitProcessorProp(OS
, PM
.ModelDef
, "HighLatency", ',');
1507 emitProcessorProp(OS
, PM
.ModelDef
, "MispredictPenalty", ',');
1509 bool PostRAScheduler
=
1510 (PM
.ModelDef
? PM
.ModelDef
->getValueAsBit("PostRAScheduler") : false);
1512 OS
<< " " << (PostRAScheduler
? "true" : "false") << ", // "
1513 << "PostRAScheduler\n";
1515 bool CompleteModel
=
1516 (PM
.ModelDef
? PM
.ModelDef
->getValueAsBit("CompleteModel") : false);
1518 OS
<< " " << (CompleteModel
? "true" : "false") << ", // "
1519 << "CompleteModel\n";
1521 bool EnableIntervals
=
1522 (PM
.ModelDef
? PM
.ModelDef
->getValueAsBit("EnableIntervals") : false);
1524 OS
<< " " << (EnableIntervals
? "true" : "false") << ", // "
1525 << "EnableIntervals\n";
1527 OS
<< " " << PM
.Index
<< ", // Processor ID\n";
1528 if (PM
.hasInstrSchedModel())
1529 OS
<< " " << PM
.ModelName
<< "ProcResources"
1531 << " " << PM
.ModelName
<< "SchedClasses"
1533 << " " << PM
.ProcResourceDefs
.size() + 1 << ",\n"
1535 << (SchedModels
.schedClassEnd() - SchedModels
.schedClassBegin())
1538 OS
<< " nullptr, nullptr, 0, 0,"
1539 << " // No instruction-level machine model.\n";
1540 if (PM
.hasItineraries())
1541 OS
<< " " << PM
.ItinsDef
->getName() << ",\n";
1543 OS
<< " nullptr, // No Itinerary\n";
1544 if (PM
.hasExtraProcessorInfo())
1545 OS
<< " &" << PM
.ModelName
<< "ExtraInfo,\n";
1547 OS
<< " nullptr // No extra processor descriptor\n";
1553 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1555 void SubtargetEmitter::emitSchedModel(raw_ostream
&OS
) {
1556 OS
<< "#ifdef DBGFIELD\n"
1557 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1559 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1560 << "#define DBGFIELD(x) x,\n"
1562 << "#define DBGFIELD(x)\n"
1565 if (SchedModels
.hasItineraries()) {
1566 std::vector
<std::vector
<InstrItinerary
>> ProcItinLists
;
1567 // Emit the stage data
1568 emitStageAndOperandCycleData(OS
, ProcItinLists
);
1569 emitItineraries(OS
, ProcItinLists
);
1571 OS
<< "\n// ===============================================================\n"
1572 << "// Data tables for the new per-operand machine model.\n";
1574 SchedClassTables SchedTables
;
1575 for (const CodeGenProcModel
&ProcModel
: SchedModels
.procModels()) {
1576 genSchedClassTables(ProcModel
, SchedTables
);
1578 emitSchedClassTables(SchedTables
, OS
);
1580 OS
<< "\n#undef DBGFIELD\n";
1582 // Emit the processor machine model
1583 emitProcessorModels(OS
);
1586 static void emitPredicateProlog(const RecordKeeper
&Records
, raw_ostream
&OS
) {
1588 raw_string_ostream
Stream(Buffer
);
1590 // Print all PredicateProlog records to the output stream.
1591 for (const Record
*P
: Records
.getAllDerivedDefinitions("PredicateProlog"))
1592 Stream
<< P
->getValueAsString("Code") << '\n';
1597 static bool isTruePredicate(const Record
*Rec
) {
1598 return Rec
->isSubClassOf("MCSchedPredicate") &&
1599 Rec
->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1602 static void emitPredicates(const CodeGenSchedTransition
&T
,
1603 const CodeGenSchedClass
&SC
, PredicateExpander
&PE
,
1606 raw_string_ostream
SS(Buffer
);
1608 // If not all predicates are MCTrue, then we need an if-stmt.
1609 unsigned NumNonTruePreds
=
1610 T
.PredTerm
.size() - count_if(T
.PredTerm
, isTruePredicate
);
1612 SS
<< PE
.getIndent();
1614 if (NumNonTruePreds
) {
1615 bool FirstNonTruePredicate
= true;
1618 PE
.getIndent() += 2;
1620 for (const Record
*Rec
: T
.PredTerm
) {
1621 // Skip predicates that evaluate to "true".
1622 if (isTruePredicate(Rec
))
1625 if (FirstNonTruePredicate
) {
1626 FirstNonTruePredicate
= false;
1629 SS
<< PE
.getIndent();
1633 if (Rec
->isSubClassOf("MCSchedPredicate")) {
1634 PE
.expandPredicate(SS
, Rec
->getValueAsDef("Pred"));
1638 // Expand this legacy predicate and wrap it around braces if there is more
1639 // than one predicate to expand.
1640 SS
<< ((NumNonTruePreds
> 1) ? "(" : "")
1641 << Rec
->getValueAsString("Predicate")
1642 << ((NumNonTruePreds
> 1) ? ")" : "");
1645 SS
<< ")\n"; // end of if-stmt
1647 SS
<< PE
.getIndent();
1651 SS
<< "return " << T
.ToClassIdx
<< "; // " << SC
.Name
<< '\n';
1655 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1656 // epilogue code for the auto-generated helper.
1657 static void emitSchedModelHelperEpilogue(raw_ostream
&OS
,
1658 bool ShouldReturnZero
) {
1659 if (ShouldReturnZero
) {
1660 OS
<< " // Don't know how to resolve this scheduling class.\n"
1665 OS
<< " report_fatal_error(\"Expected a variant SchedClass\");\n";
1668 static bool hasMCSchedPredicates(const CodeGenSchedTransition
&T
) {
1669 return all_of(T
.PredTerm
, [](const Record
*Rec
) {
1670 return Rec
->isSubClassOf("MCSchedPredicate");
1674 static void collectVariantClasses(const CodeGenSchedModels
&SchedModels
,
1675 IdxVec
&VariantClasses
,
1676 bool OnlyExpandMCInstPredicates
) {
1677 for (const CodeGenSchedClass
&SC
: SchedModels
.schedClasses()) {
1678 // Ignore non-variant scheduling classes.
1679 if (SC
.Transitions
.empty())
1682 if (OnlyExpandMCInstPredicates
) {
1683 // Ignore this variant scheduling class no transitions use any meaningful
1684 // MCSchedPredicate definitions.
1685 if (llvm::none_of(SC
.Transitions
, hasMCSchedPredicates
))
1689 VariantClasses
.push_back(SC
.Index
);
1693 static void collectProcessorIndices(const CodeGenSchedClass
&SC
,
1694 IdxVec
&ProcIndices
) {
1695 // A variant scheduling class may define transitions for multiple
1696 // processors. This function identifies wich processors are associated with
1697 // transition rules specified by variant class `SC`.
1698 for (const CodeGenSchedTransition
&T
: SC
.Transitions
) {
1700 std::set_union(&T
.ProcIndex
, &T
.ProcIndex
+ 1, ProcIndices
.begin(),
1701 ProcIndices
.end(), std::back_inserter(PI
));
1702 ProcIndices
= std::move(PI
);
1706 static bool isAlwaysTrue(const CodeGenSchedTransition
&T
) {
1707 return llvm::all_of(T
.PredTerm
, isTruePredicate
);
1710 void SubtargetEmitter::emitSchedModelHelpersImpl(
1711 raw_ostream
&OS
, bool OnlyExpandMCInstPredicates
) {
1712 IdxVec VariantClasses
;
1713 collectVariantClasses(SchedModels
, VariantClasses
,
1714 OnlyExpandMCInstPredicates
);
1716 if (VariantClasses
.empty()) {
1717 emitSchedModelHelperEpilogue(OS
, OnlyExpandMCInstPredicates
);
1721 // Construct a switch statement where the condition is a check on the
1722 // scheduling class identifier. There is a `case` for every variant class
1723 // defined by the processor models of this target.
1724 // Each `case` implements a number of rules to resolve (i.e. to transition
1725 // from) a variant scheduling class to another scheduling class. Rules are
1726 // described by instances of CodeGenSchedTransition. Note that transitions may
1727 // not be valid for all processors.
1728 OS
<< " switch (SchedClass) {\n";
1729 for (unsigned VC
: VariantClasses
) {
1731 const CodeGenSchedClass
&SC
= SchedModels
.getSchedClass(VC
);
1732 collectProcessorIndices(SC
, ProcIndices
);
1734 OS
<< " case " << VC
<< ": // " << SC
.Name
<< '\n';
1736 PredicateExpander
PE(Target
);
1738 PE
.setExpandForMC(OnlyExpandMCInstPredicates
);
1739 for (unsigned PI
: ProcIndices
) {
1742 // Emit a guard on the processor ID.
1744 OS
<< (OnlyExpandMCInstPredicates
1746 : "if (SchedModel->getProcessorID() == ");
1748 OS
<< "{ // " << (SchedModels
.procModelBegin() + PI
)->ModelName
<< '\n';
1751 // Now emit transitions associated with processor PI.
1752 const CodeGenSchedTransition
*FinalT
= nullptr;
1753 for (const CodeGenSchedTransition
&T
: SC
.Transitions
) {
1754 if (PI
!= 0 && T
.ProcIndex
!= PI
)
1757 // Emit only transitions based on MCSchedPredicate, if it's the case.
1758 // At least the transition specified by NoSchedPred is emitted,
1759 // which becomes the default transition for those variants otherwise
1760 // not based on MCSchedPredicate.
1761 // FIXME: preferably, llvm-mca should instead assume a reasonable
1762 // default when a variant transition is not based on MCSchedPredicate
1763 // for a given processor.
1764 if (OnlyExpandMCInstPredicates
&& !hasMCSchedPredicates(T
))
1767 // If transition is folded to 'return X' it should be the last one.
1768 if (isAlwaysTrue(T
)) {
1773 emitPredicates(T
, SchedModels
.getSchedClass(T
.ToClassIdx
), PE
, OS
);
1776 emitPredicates(*FinalT
, SchedModels
.getSchedClass(FinalT
->ToClassIdx
),
1785 if (SC
.isInferred())
1786 OS
<< " return " << SC
.Index
<< ";\n";
1792 emitSchedModelHelperEpilogue(OS
, OnlyExpandMCInstPredicates
);
1795 void SubtargetEmitter::emitSchedModelHelpers(const std::string
&ClassName
,
1797 OS
<< "unsigned " << ClassName
1798 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1799 << " const TargetSchedModel *SchedModel) const {\n";
1801 // Emit the predicate prolog code.
1802 emitPredicateProlog(Records
, OS
);
1804 // Emit target predicates.
1805 emitSchedModelHelpersImpl(OS
);
1807 OS
<< "} // " << ClassName
<< "::resolveSchedClass\n\n";
1809 OS
<< "unsigned " << ClassName
1810 << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1811 << " const MCInstrInfo *MCII, unsigned CPUID) const {\n"
1812 << " return " << Target
<< "_MC"
1813 << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"
1814 << "} // " << ClassName
<< "::resolveVariantSchedClass\n\n";
1816 STIPredicateExpander
PE(Target
, /*Indent=*/0);
1817 PE
.setClassPrefix(ClassName
);
1818 PE
.setExpandDefinition(true);
1821 for (const STIPredicateFunction
&Fn
: SchedModels
.getSTIPredicates())
1822 PE
.expandSTIPredicate(OS
, Fn
);
1825 void SubtargetEmitter::emitHwModeCheck(const std::string
&ClassName
,
1827 const CodeGenHwModes
&CGH
= TGT
.getHwModes();
1828 assert(CGH
.getNumModeIds() > 0);
1829 if (CGH
.getNumModeIds() == 1)
1832 // Collect all HwModes and related features defined in the TD files,
1833 // and store them as a bit set.
1834 unsigned ValueTypeModes
= 0;
1835 unsigned RegInfoModes
= 0;
1836 unsigned EncodingInfoModes
= 0;
1837 for (const auto &MS
: CGH
.getHwModeSelects()) {
1838 for (const HwModeSelect::PairType
&P
: MS
.second
.Items
) {
1839 if (P
.first
== DefaultMode
)
1841 if (P
.second
->isSubClassOf("ValueType")) {
1842 ValueTypeModes
|= (1 << (P
.first
- 1));
1843 } else if (P
.second
->isSubClassOf("RegInfo") ||
1844 P
.second
->isSubClassOf("SubRegRange")) {
1845 RegInfoModes
|= (1 << (P
.first
- 1));
1846 } else if (P
.second
->isSubClassOf("InstructionEncoding")) {
1847 EncodingInfoModes
|= (1 << (P
.first
- 1));
1852 // Start emitting for getHwModeSet().
1853 OS
<< "unsigned " << ClassName
<< "::getHwModeSet() const {\n";
1854 OS
<< " // Collect HwModes and store them as a bit set.\n";
1855 OS
<< " unsigned Modes = 0;\n";
1856 for (unsigned M
= 1, NumModes
= CGH
.getNumModeIds(); M
!= NumModes
; ++M
) {
1857 const HwMode
&HM
= CGH
.getMode(M
);
1858 OS
<< " if (checkFeatures(\"" << HM
.Features
<< "\")) Modes |= (1 << "
1859 << (M
- 1) << ");\n";
1861 OS
<< " return Modes;\n}\n";
1862 // End emitting for getHwModeSet().
1864 auto HandlePerMode
= [&](std::string ModeType
, unsigned ModeInBitSet
) {
1865 OS
<< " case HwMode_" << ModeType
<< ":\n"
1866 << " Modes &= " << ModeInBitSet
<< ";\n"
1867 << " if (!Modes)\n return Modes;\n"
1868 << " if (!llvm::has_single_bit<unsigned>(Modes))\n"
1869 << " llvm_unreachable(\"Two or more HwModes for " << ModeType
1870 << " were found!\");\n"
1871 << " return llvm::countr_zero(Modes) + 1;\n";
1874 // Start emitting for getHwMode().
1875 OS
<< "unsigned " << ClassName
1876 << "::getHwMode(enum HwModeType type) const {\n";
1877 OS
<< " unsigned Modes = getHwModeSet();\n\n";
1878 OS
<< " if (!Modes)\n return Modes;\n\n";
1879 OS
<< " switch (type) {\n";
1880 OS
<< " case HwMode_Default:\n return llvm::countr_zero(Modes) + 1;\n";
1881 HandlePerMode("ValueType", ValueTypeModes
);
1882 HandlePerMode("RegInfo", RegInfoModes
);
1883 HandlePerMode("EncodingInfo", EncodingInfoModes
);
1885 OS
<< " llvm_unreachable(\"unexpected HwModeType\");\n"
1886 << " return 0; // should not get here\n}\n";
1887 // End emitting for getHwMode().
1890 void SubtargetEmitter::emitGetMacroFusions(const std::string
&ClassName
,
1892 if (!TGT
.hasMacroFusion())
1895 OS
<< "std::vector<MacroFusionPredTy> " << ClassName
1896 << "::getMacroFusions() const {\n";
1897 OS
.indent(2) << "std::vector<MacroFusionPredTy> Fusions;\n";
1898 for (auto *Fusion
: TGT
.getMacroFusions()) {
1899 std::string Name
= Fusion
->getNameInitAsString();
1900 OS
.indent(2) << "if (hasFeature(" << Target
<< "::" << Name
1901 << ")) Fusions.push_back(llvm::is" << Name
<< ");\n";
1904 OS
.indent(2) << "return Fusions;\n";
1908 // Produces a subtarget specific function for parsing
1909 // the subtarget features string.
1910 void SubtargetEmitter::parseFeaturesFunction(raw_ostream
&OS
) {
1911 ArrayRef
<const Record
*> Features
=
1912 Records
.getAllDerivedDefinitions("SubtargetFeature");
1914 OS
<< "// ParseSubtargetFeatures - Parses features string setting specified\n"
1915 << "// subtarget options.\n"
1918 OS
<< "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, "
1919 << "StringRef FS) {\n"
1920 << " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1921 << " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n"
1922 << " LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n";
1924 if (Features
.empty()) {
1929 if (Target
== "AArch64")
1930 OS
<< " CPU = AArch64::resolveCPUAlias(CPU);\n"
1931 << " TuneCPU = AArch64::resolveCPUAlias(TuneCPU);\n";
1933 OS
<< " InitMCProcessorInfo(CPU, TuneCPU, FS);\n"
1934 << " const FeatureBitset &Bits = getFeatureBits();\n";
1936 for (const Record
*R
: Features
) {
1938 StringRef Instance
= R
->getName();
1939 StringRef Value
= R
->getValueAsString("Value");
1940 StringRef FieldName
= R
->getValueAsString("FieldName");
1942 if (Value
== "true" || Value
== "false")
1943 OS
<< " if (Bits[" << Target
<< "::" << Instance
<< "]) " << FieldName
1944 << " = " << Value
<< ";\n";
1946 OS
<< " if (Bits[" << Target
<< "::" << Instance
<< "] && " << FieldName
1947 << " < " << Value
<< ") " << FieldName
<< " = " << Value
<< ";\n";
1953 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream
&OS
) {
1954 OS
<< "namespace " << Target
<< "_MC {\n"
1955 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1956 << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n";
1957 emitSchedModelHelpersImpl(OS
, /* OnlyExpandMCPredicates */ true);
1959 OS
<< "} // end namespace " << Target
<< "_MC\n\n";
1961 OS
<< "struct " << Target
1962 << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1963 OS
<< " " << Target
<< "GenMCSubtargetInfo(const Triple &TT,\n"
1964 << " StringRef CPU, StringRef TuneCPU, StringRef FS,\n"
1965 << " ArrayRef<StringRef> PN,\n"
1966 << " ArrayRef<SubtargetFeatureKV> PF,\n"
1967 << " ArrayRef<SubtargetSubTypeKV> PD,\n"
1968 << " const MCWriteProcResEntry *WPR,\n"
1969 << " const MCWriteLatencyEntry *WL,\n"
1970 << " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1971 << " const unsigned *OC, const unsigned *FP) :\n"
1972 << " MCSubtargetInfo(TT, CPU, TuneCPU, FS, PN, PF, PD,\n"
1973 << " WPR, WL, RA, IS, OC, FP) { }\n\n"
1974 << " unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1975 << " const MCInst *MI, const MCInstrInfo *MCII,\n"
1976 << " unsigned CPUID) const override {\n"
1977 << " return " << Target
<< "_MC"
1978 << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n";
1980 if (TGT
.getHwModes().getNumModeIds() > 1) {
1981 OS
<< " unsigned getHwModeSet() const override;\n";
1982 OS
<< " unsigned getHwMode(enum HwModeType type = HwMode_Default) const "
1985 if (Target
== "AArch64")
1986 OS
<< " bool isCPUStringValid(StringRef CPU) const override {\n"
1987 << " CPU = AArch64::resolveCPUAlias(CPU);\n"
1988 << " return MCSubtargetInfo::isCPUStringValid(CPU);\n"
1991 emitHwModeCheck(Target
+ "GenMCSubtargetInfo", OS
);
1994 void SubtargetEmitter::emitMcInstrAnalysisPredicateFunctions(raw_ostream
&OS
) {
1995 OS
<< "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1996 OS
<< "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1998 STIPredicateExpander
PE(Target
, /*Indent=*/0);
1999 PE
.setExpandForMC(true);
2001 for (const STIPredicateFunction
&Fn
: SchedModels
.getSTIPredicates())
2002 PE
.expandSTIPredicate(OS
, Fn
);
2004 OS
<< "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
2006 OS
<< "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
2007 OS
<< "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
2009 std::string ClassPrefix
= Target
+ "MCInstrAnalysis";
2010 PE
.setExpandDefinition(true);
2011 PE
.setClassPrefix(ClassPrefix
);
2012 for (const STIPredicateFunction
&Fn
: SchedModels
.getSTIPredicates())
2013 PE
.expandSTIPredicate(OS
, Fn
);
2015 OS
<< "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
2019 // SubtargetEmitter::run - Main subtarget enumeration emitter.
2021 void SubtargetEmitter::run(raw_ostream
&OS
) {
2022 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS
);
2024 OS
<< "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
2025 OS
<< "#undef GET_SUBTARGETINFO_ENUM\n\n";
2027 OS
<< "namespace llvm {\n";
2028 auto FeatureMap
= enumeration(OS
);
2029 OS
<< "} // end namespace llvm\n\n";
2030 OS
<< "#endif // GET_SUBTARGETINFO_ENUM\n\n";
2032 emitSubtargetInfoMacroCalls(OS
);
2034 OS
<< "namespace llvm {\n";
2035 unsigned NumFeatures
= featureKeyValues(OS
, FeatureMap
);
2039 unsigned NumProcs
= cpuKeyValues(OS
, FeatureMap
);
2041 unsigned NumNames
= cpuNames(OS
);
2044 // MCInstrInfo initialization routine.
2045 emitGenMCSubtargetInfo(OS
);
2047 OS
<< "\nstatic inline MCSubtargetInfo *create" << Target
2048 << "MCSubtargetInfoImpl("
2049 << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n";
2050 if (Target
== "AArch64")
2051 OS
<< " CPU = AArch64::resolveCPUAlias(CPU);\n"
2052 << " TuneCPU = AArch64::resolveCPUAlias(TuneCPU);\n";
2053 OS
<< " return new " << Target
2054 << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, ";
2056 OS
<< Target
<< "Names, ";
2060 OS
<< Target
<< "FeatureKV, ";
2064 OS
<< Target
<< "SubTypeKV, ";
2069 OS
<< Target
<< "WriteProcResTable, " << Target
<< "WriteLatencyTable, "
2070 << Target
<< "ReadAdvanceTable, ";
2073 if (SchedModels
.hasItineraries()) {
2074 OS
<< Target
<< "Stages, " << Target
<< "OperandCycles, " << Target
2075 << "ForwardingPaths";
2077 OS
<< "nullptr, nullptr, nullptr";
2080 OS
<< "} // end namespace llvm\n\n";
2082 OS
<< "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
2084 OS
<< "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
2085 OS
<< "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
2087 OS
<< "#include \"llvm/Support/Debug.h\"\n";
2088 OS
<< "#include \"llvm/Support/raw_ostream.h\"\n\n";
2089 if (Target
== "AArch64")
2090 OS
<< "#include \"llvm/TargetParser/AArch64TargetParser.h\"\n\n";
2091 parseFeaturesFunction(OS
);
2093 OS
<< "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
2095 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
2096 OS
<< "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
2097 OS
<< "#undef GET_SUBTARGETINFO_HEADER\n\n";
2099 std::string ClassName
= Target
+ "GenSubtargetInfo";
2100 OS
<< "namespace llvm {\n";
2101 OS
<< "class DFAPacketizer;\n";
2102 OS
<< "namespace " << Target
<< "_MC {\n"
2103 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
2104 << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n"
2105 << "} // end namespace " << Target
<< "_MC\n\n";
2106 OS
<< "struct " << ClassName
<< " : public TargetSubtargetInfo {\n"
2107 << " explicit " << ClassName
<< "(const Triple &TT, StringRef CPU, "
2108 << "StringRef TuneCPU, StringRef FS);\n"
2110 << " unsigned resolveSchedClass(unsigned SchedClass, "
2111 << " const MachineInstr *DefMI,"
2112 << " const TargetSchedModel *SchedModel) const override;\n"
2113 << " unsigned resolveVariantSchedClass(unsigned SchedClass,"
2114 << " const MCInst *MI, const MCInstrInfo *MCII,"
2115 << " unsigned CPUID) const override;\n"
2116 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
2118 if (TGT
.getHwModes().getNumModeIds() > 1) {
2119 OS
<< " unsigned getHwModeSet() const override;\n";
2120 OS
<< " unsigned getHwMode(enum HwModeType type = HwMode_Default) const "
2123 if (TGT
.hasMacroFusion())
2124 OS
<< " std::vector<MacroFusionPredTy> getMacroFusions() const "
2127 STIPredicateExpander
PE(Target
);
2129 for (const STIPredicateFunction
&Fn
: SchedModels
.getSTIPredicates())
2130 PE
.expandSTIPredicate(OS
, Fn
);
2133 << "} // end namespace llvm\n\n";
2135 OS
<< "#endif // GET_SUBTARGETINFO_HEADER\n\n";
2137 OS
<< "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
2138 OS
<< "#undef GET_SUBTARGETINFO_CTOR\n\n";
2140 OS
<< "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
2141 OS
<< "namespace llvm {\n";
2142 OS
<< "extern const llvm::StringRef " << Target
<< "Names[];\n";
2143 OS
<< "extern const llvm::SubtargetFeatureKV " << Target
<< "FeatureKV[];\n";
2144 OS
<< "extern const llvm::SubtargetSubTypeKV " << Target
<< "SubTypeKV[];\n";
2145 OS
<< "extern const llvm::MCWriteProcResEntry " << Target
2146 << "WriteProcResTable[];\n";
2147 OS
<< "extern const llvm::MCWriteLatencyEntry " << Target
2148 << "WriteLatencyTable[];\n";
2149 OS
<< "extern const llvm::MCReadAdvanceEntry " << Target
2150 << "ReadAdvanceTable[];\n";
2152 if (SchedModels
.hasItineraries()) {
2153 OS
<< "extern const llvm::InstrStage " << Target
<< "Stages[];\n";
2154 OS
<< "extern const unsigned " << Target
<< "OperandCycles[];\n";
2155 OS
<< "extern const unsigned " << Target
<< "ForwardingPaths[];\n";
2158 OS
<< ClassName
<< "::" << ClassName
<< "(const Triple &TT, StringRef CPU, "
2159 << "StringRef TuneCPU, StringRef FS)\n";
2161 if (Target
== "AArch64")
2162 OS
<< " : TargetSubtargetInfo(TT, AArch64::resolveCPUAlias(CPU),\n"
2163 << " AArch64::resolveCPUAlias(TuneCPU), FS, ";
2165 OS
<< " : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, ";
2167 OS
<< "ArrayRef(" << Target
<< "Names, " << NumNames
<< "), ";
2171 OS
<< "ArrayRef(" << Target
<< "FeatureKV, " << NumFeatures
<< "), ";
2175 OS
<< "ArrayRef(" << Target
<< "SubTypeKV, " << NumProcs
<< "), ";
2180 OS
<< Target
<< "WriteProcResTable, " << Target
<< "WriteLatencyTable, "
2181 << Target
<< "ReadAdvanceTable, ";
2184 if (SchedModels
.hasItineraries()) {
2185 OS
<< Target
<< "Stages, " << Target
<< "OperandCycles, " << Target
2186 << "ForwardingPaths";
2188 OS
<< "nullptr, nullptr, nullptr";
2191 emitSchedModelHelpers(ClassName
, OS
);
2192 emitHwModeCheck(ClassName
, OS
);
2193 emitGetMacroFusions(ClassName
, OS
);
2195 OS
<< "} // end namespace llvm\n\n";
2197 OS
<< "#endif // GET_SUBTARGETINFO_CTOR\n\n";
2199 emitMcInstrAnalysisPredicateFunctions(OS
);
2202 static TableGen::Emitter::OptClass
<SubtargetEmitter
>
2203 X("gen-subtarget", "Generate subtarget enumerations");