1 //===- ReductionNode.cpp - Reduction Node Implementation -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the reduction nodes which are used to track of the
10 // metadata for a specific generated variant within a reduction pass and are the
11 // building blocks of the reduction tree structure. A reduction tree is used to
12 // keep track of the different generated variants throughout a reduction pass in
13 // the MLIR Reduce tool.
15 //===----------------------------------------------------------------------===//
17 #include "mlir/Reducer/ReductionNode.h"
18 #include "mlir/IR/IRMapping.h"
19 #include "llvm/ADT/STLExtras.h"
26 ReductionNode::ReductionNode(
27 ReductionNode
*parentNode
, const std::vector
<Range
> &ranges
,
28 llvm::SpecificBumpPtrAllocator
<ReductionNode
> &allocator
)
29 /// Root node will have the parent pointer point to themselves.
30 : parent(parentNode
== nullptr ? this : parentNode
),
31 size(std::numeric_limits
<size_t>::max()), ranges(ranges
),
32 startRanges(ranges
), allocator(allocator
) {
34 if (failed(initialize(parent
->getModule(), parent
->getRegion())))
35 llvm_unreachable("unexpected initialization failure");
38 LogicalResult
ReductionNode::initialize(ModuleOp parentModule
,
39 Region
&targetRegion
) {
40 // Use the mapper help us find the corresponding region after module clone.
42 module
= cast
<ModuleOp
>(parentModule
->clone(mapper
));
43 // Use the first block of targetRegion to locate the cloned region.
44 Block
*block
= mapper
.lookup(&*targetRegion
.begin());
45 region
= block
->getParent();
49 /// If we haven't explored any variants from this node, we will create N
50 /// variants, N is the length of `ranges` if N > 1. Otherwise, we will split the
51 /// max element in `ranges` and create 2 new variants for each call.
52 ArrayRef
<ReductionNode
*> ReductionNode::generateNewVariants() {
53 int oldNumVariant
= getVariants().size();
55 auto createNewNode
= [this](const std::vector
<Range
> &ranges
) {
56 return new (allocator
.Allocate()) ReductionNode(this, ranges
, allocator
);
59 // If we haven't created new variant, then we can create varients by removing
60 // each of them respectively. For example, given {{1, 3}, {4, 9}}, we can
61 // produce variants with range {{1, 3}} and {{4, 9}}.
62 if (variants
.empty() && getRanges().size() > 1) {
63 for (const Range
&range
: getRanges()) {
64 std::vector
<Range
> subRanges
= getRanges();
65 llvm::erase(subRanges
, range
);
66 variants
.push_back(createNewNode(subRanges
));
69 return getVariants().drop_front(oldNumVariant
);
72 // At here, we have created the type of variants mentioned above. We would
73 // like to split the max range into 2 to create 2 new variants. Continue on
74 // the above example, we split the range {4, 9} into {4, 6}, {6, 9}, and
75 // create two variants with range {{1, 3}, {4, 6}} and {{1, 3}, {6, 9}}. The
76 // final ranges vector will be {{1, 3}, {4, 6}, {6, 9}}.
78 llvm::max_element(ranges
, [](const Range
&lhs
, const Range
&rhs
) {
79 return (lhs
.second
- lhs
.first
) > (rhs
.second
- rhs
.first
);
82 // The length of range is less than 1, we can't split it to create new
84 if (maxElement
->second
- maxElement
->first
<= 1)
87 Range maxRange
= *maxElement
;
88 std::vector
<Range
> subRanges
= getRanges();
89 auto subRangesIter
= subRanges
.begin() + (maxElement
- ranges
.begin());
90 int half
= (maxRange
.first
+ maxRange
.second
) / 2;
91 *subRangesIter
= std::make_pair(maxRange
.first
, half
);
92 variants
.push_back(createNewNode(subRanges
));
93 *subRangesIter
= std::make_pair(half
, maxRange
.second
);
94 variants
.push_back(createNewNode(subRanges
));
96 auto it
= ranges
.insert(maxElement
, std::make_pair(half
, maxRange
.second
));
97 it
= ranges
.insert(it
, std::make_pair(maxRange
.first
, half
));
98 // Remove the range that has been split.
101 return getVariants().drop_front(oldNumVariant
);
104 void ReductionNode::update(std::pair
<Tester::Interestingness
, size_t> result
) {
105 std::tie(interesting
, size
) = result
;
106 // After applying reduction, the number of operation in the region may have
107 // changed. Non-interesting case won't be explored thus it's safe to keep it
108 // in a stale status.
109 if (interesting
== Tester::Interestingness::True
) {
110 // This module may has been updated. Reset the range.
112 ranges
.emplace_back(0, std::distance(region
->op_begin(), region
->op_end()));
114 // Release the uninteresting module to save some memory.
115 module
.release()->erase();
119 ArrayRef
<ReductionNode
*>
120 ReductionNode::iterator
<SinglePath
>::getNeighbors(ReductionNode
*node
) {
121 // Single Path: Traverses the smallest successful variant at each level until
122 // no new successful variants can be created at that level.
123 ArrayRef
<ReductionNode
*> variantsFromParent
=
124 node
->getParent()->getVariants();
126 // The parent node created several variants and they may be waiting for
127 // examing interestingness. In Single Path approach, we will select the
128 // smallest variant to continue our exploration. Thus we should wait until the
129 // last variant to be examed then do the following traversal decision.
130 if (!llvm::all_of(variantsFromParent
, [](ReductionNode
*node
) {
131 return node
->isInteresting() != Tester::Interestingness::Untested
;
136 ReductionNode
*smallest
= nullptr;
137 for (ReductionNode
*node
: variantsFromParent
) {
138 if (node
->isInteresting() != Tester::Interestingness::True
)
140 if (smallest
== nullptr || node
->getSize() < smallest
->getSize())
144 if (smallest
!= nullptr &&
145 smallest
->getSize() < node
->getParent()->getSize()) {
146 // We got a smallest one, keep traversing from this node.
149 // None of these variants is interesting, let the parent node to generate
151 node
= node
->getParent();
154 return node
->generateNewVariants();