[SmallPtrSet] Remove SmallArray member (NFC) (#118099)
[llvm-project.git] / mlir / lib / Reducer / ReductionNode.cpp
blobd57ee932bfcae0f103ef90dced00cfc2be5d0c4d
1 //===- ReductionNode.cpp - Reduction Node Implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the reduction nodes which are used to track of the
10 // metadata for a specific generated variant within a reduction pass and are the
11 // building blocks of the reduction tree structure. A reduction tree is used to
12 // keep track of the different generated variants throughout a reduction pass in
13 // the MLIR Reduce tool.
15 //===----------------------------------------------------------------------===//
17 #include "mlir/Reducer/ReductionNode.h"
18 #include "mlir/IR/IRMapping.h"
19 #include "llvm/ADT/STLExtras.h"
21 #include <algorithm>
22 #include <limits>
24 using namespace mlir;
26 ReductionNode::ReductionNode(
27 ReductionNode *parentNode, const std::vector<Range> &ranges,
28 llvm::SpecificBumpPtrAllocator<ReductionNode> &allocator)
29 /// Root node will have the parent pointer point to themselves.
30 : parent(parentNode == nullptr ? this : parentNode),
31 size(std::numeric_limits<size_t>::max()), ranges(ranges),
32 startRanges(ranges), allocator(allocator) {
33 if (parent != this)
34 if (failed(initialize(parent->getModule(), parent->getRegion())))
35 llvm_unreachable("unexpected initialization failure");
38 LogicalResult ReductionNode::initialize(ModuleOp parentModule,
39 Region &targetRegion) {
40 // Use the mapper help us find the corresponding region after module clone.
41 IRMapping mapper;
42 module = cast<ModuleOp>(parentModule->clone(mapper));
43 // Use the first block of targetRegion to locate the cloned region.
44 Block *block = mapper.lookup(&*targetRegion.begin());
45 region = block->getParent();
46 return success();
49 /// If we haven't explored any variants from this node, we will create N
50 /// variants, N is the length of `ranges` if N > 1. Otherwise, we will split the
51 /// max element in `ranges` and create 2 new variants for each call.
52 ArrayRef<ReductionNode *> ReductionNode::generateNewVariants() {
53 int oldNumVariant = getVariants().size();
55 auto createNewNode = [this](const std::vector<Range> &ranges) {
56 return new (allocator.Allocate()) ReductionNode(this, ranges, allocator);
59 // If we haven't created new variant, then we can create varients by removing
60 // each of them respectively. For example, given {{1, 3}, {4, 9}}, we can
61 // produce variants with range {{1, 3}} and {{4, 9}}.
62 if (variants.empty() && getRanges().size() > 1) {
63 for (const Range &range : getRanges()) {
64 std::vector<Range> subRanges = getRanges();
65 llvm::erase(subRanges, range);
66 variants.push_back(createNewNode(subRanges));
69 return getVariants().drop_front(oldNumVariant);
72 // At here, we have created the type of variants mentioned above. We would
73 // like to split the max range into 2 to create 2 new variants. Continue on
74 // the above example, we split the range {4, 9} into {4, 6}, {6, 9}, and
75 // create two variants with range {{1, 3}, {4, 6}} and {{1, 3}, {6, 9}}. The
76 // final ranges vector will be {{1, 3}, {4, 6}, {6, 9}}.
77 auto maxElement =
78 llvm::max_element(ranges, [](const Range &lhs, const Range &rhs) {
79 return (lhs.second - lhs.first) > (rhs.second - rhs.first);
80 });
82 // The length of range is less than 1, we can't split it to create new
83 // variant.
84 if (maxElement->second - maxElement->first <= 1)
85 return {};
87 Range maxRange = *maxElement;
88 std::vector<Range> subRanges = getRanges();
89 auto subRangesIter = subRanges.begin() + (maxElement - ranges.begin());
90 int half = (maxRange.first + maxRange.second) / 2;
91 *subRangesIter = std::make_pair(maxRange.first, half);
92 variants.push_back(createNewNode(subRanges));
93 *subRangesIter = std::make_pair(half, maxRange.second);
94 variants.push_back(createNewNode(subRanges));
96 auto it = ranges.insert(maxElement, std::make_pair(half, maxRange.second));
97 it = ranges.insert(it, std::make_pair(maxRange.first, half));
98 // Remove the range that has been split.
99 ranges.erase(it + 2);
101 return getVariants().drop_front(oldNumVariant);
104 void ReductionNode::update(std::pair<Tester::Interestingness, size_t> result) {
105 std::tie(interesting, size) = result;
106 // After applying reduction, the number of operation in the region may have
107 // changed. Non-interesting case won't be explored thus it's safe to keep it
108 // in a stale status.
109 if (interesting == Tester::Interestingness::True) {
110 // This module may has been updated. Reset the range.
111 ranges.clear();
112 ranges.emplace_back(0, std::distance(region->op_begin(), region->op_end()));
113 } else {
114 // Release the uninteresting module to save some memory.
115 module.release()->erase();
119 ArrayRef<ReductionNode *>
120 ReductionNode::iterator<SinglePath>::getNeighbors(ReductionNode *node) {
121 // Single Path: Traverses the smallest successful variant at each level until
122 // no new successful variants can be created at that level.
123 ArrayRef<ReductionNode *> variantsFromParent =
124 node->getParent()->getVariants();
126 // The parent node created several variants and they may be waiting for
127 // examing interestingness. In Single Path approach, we will select the
128 // smallest variant to continue our exploration. Thus we should wait until the
129 // last variant to be examed then do the following traversal decision.
130 if (!llvm::all_of(variantsFromParent, [](ReductionNode *node) {
131 return node->isInteresting() != Tester::Interestingness::Untested;
132 })) {
133 return {};
136 ReductionNode *smallest = nullptr;
137 for (ReductionNode *node : variantsFromParent) {
138 if (node->isInteresting() != Tester::Interestingness::True)
139 continue;
140 if (smallest == nullptr || node->getSize() < smallest->getSize())
141 smallest = node;
144 if (smallest != nullptr &&
145 smallest->getSize() < node->getParent()->getSize()) {
146 // We got a smallest one, keep traversing from this node.
147 node = smallest;
148 } else {
149 // None of these variants is interesting, let the parent node to generate
150 // more variants.
151 node = node->getParent();
154 return node->generateNewVariants();