[Reland][Runtimes] Merge 'compile_commands.json' files from runtimes build (#116303)
[llvm-project.git] / mlir / lib / Target / LLVMIR / ModuleTranslation.cpp
blobad62ae0cef57bef8a56a63db020671b9f69ad5dc
1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
12 //===----------------------------------------------------------------------===//
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
16 #include "AttrKindDetail.h"
17 #include "DebugTranslation.h"
18 #include "LoopAnnotationTranslation.h"
19 #include "mlir/Analysis/TopologicalSortUtils.h"
20 #include "mlir/Dialect/DLTI/DLTI.h"
21 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
22 #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
23 #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h"
24 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
25 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
26 #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
27 #include "mlir/IR/AttrTypeSubElements.h"
28 #include "mlir/IR/Attributes.h"
29 #include "mlir/IR/BuiltinOps.h"
30 #include "mlir/IR/BuiltinTypes.h"
31 #include "mlir/IR/DialectResourceBlobManager.h"
32 #include "mlir/IR/RegionGraphTraits.h"
33 #include "mlir/Support/LLVM.h"
34 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
35 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
37 #include "llvm/ADT/PostOrderIterator.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/TypeSwitch.h"
41 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/IntrinsicsNVPTX.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Verifier.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/ModuleUtils.h"
58 #include <numeric>
59 #include <optional>
61 #define DEBUG_TYPE "llvm-dialect-to-llvm-ir"
63 using namespace mlir;
64 using namespace mlir::LLVM;
65 using namespace mlir::LLVM::detail;
67 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
69 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
71 namespace {
72 /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR
73 /// instructions that are created for future reference.
74 ///
75 /// This is intended to be used with the `CollectionScope` RAII object:
76 ///
77 /// llvm::IRBuilder<..., InstructionCapturingInserter> builder;
78 /// {
79 /// InstructionCapturingInserter::CollectionScope scope(builder);
80 /// // Call IRBuilder methods as usual.
81 ///
82 /// // This will return a list of all instructions created by the builder,
83 /// // in order of creation.
84 /// builder.getInserter().getCapturedInstructions();
85 /// }
86 /// // This will return an empty list.
87 /// builder.getInserter().getCapturedInstructions();
88 ///
89 /// The capturing functionality is _disabled_ by default for performance
90 /// consideration. It needs to be explicitly enabled, which is achieved by
91 /// creating a `CollectionScope`.
92 class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter {
93 public:
94 /// Constructs the inserter.
95 InstructionCapturingInserter()
96 : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) {
97 if (LLVM_LIKELY(enabled))
98 capturedInstructions.push_back(instruction);
99 }) {}
101 /// Returns the list of LLVM IR instructions captured since the last cleanup.
102 ArrayRef<llvm::Instruction *> getCapturedInstructions() const {
103 return capturedInstructions;
106 /// Clears the list of captured LLVM IR instructions.
107 void clearCapturedInstructions() { capturedInstructions.clear(); }
109 /// RAII object enabling the capture of created LLVM IR instructions.
110 class CollectionScope {
111 public:
112 /// Creates the scope for the given inserter.
113 CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing);
115 /// Ends the scope.
116 ~CollectionScope();
118 ArrayRef<llvm::Instruction *> getCapturedInstructions() {
119 if (!inserter)
120 return {};
121 return inserter->getCapturedInstructions();
124 private:
125 /// Back reference to the inserter.
126 InstructionCapturingInserter *inserter = nullptr;
128 /// List of instructions in the inserter prior to this scope.
129 SmallVector<llvm::Instruction *> previouslyCollectedInstructions;
131 /// Whether the inserter was enabled prior to this scope.
132 bool wasEnabled;
135 /// Enable or disable the capturing mechanism.
136 void setEnabled(bool enabled = true) { this->enabled = enabled; }
138 private:
139 /// List of captured instructions.
140 SmallVector<llvm::Instruction *> capturedInstructions;
142 /// Whether the collection is enabled.
143 bool enabled = false;
146 using CapturingIRBuilder =
147 llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>;
148 } // namespace
150 InstructionCapturingInserter::CollectionScope::CollectionScope(
151 llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) {
153 if (!isBuilderCapturing)
154 return;
156 auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder);
157 inserter = &capturingIRBuilder.getInserter();
158 wasEnabled = inserter->enabled;
159 if (wasEnabled)
160 previouslyCollectedInstructions.swap(inserter->capturedInstructions);
161 inserter->setEnabled(true);
164 InstructionCapturingInserter::CollectionScope::~CollectionScope() {
165 if (!inserter)
166 return;
168 previouslyCollectedInstructions.swap(inserter->capturedInstructions);
169 // If collection was enabled (likely in another, surrounding scope), keep
170 // the instructions collected in this scope.
171 if (wasEnabled) {
172 llvm::append_range(inserter->capturedInstructions,
173 previouslyCollectedInstructions);
175 inserter->setEnabled(wasEnabled);
178 /// Translates the given data layout spec attribute to the LLVM IR data layout.
179 /// Only integer, float, pointer and endianness entries are currently supported.
180 static FailureOr<llvm::DataLayout>
181 translateDataLayout(DataLayoutSpecInterface attribute,
182 const DataLayout &dataLayout,
183 std::optional<Location> loc = std::nullopt) {
184 if (!loc)
185 loc = UnknownLoc::get(attribute.getContext());
187 // Translate the endianness attribute.
188 std::string llvmDataLayout;
189 llvm::raw_string_ostream layoutStream(llvmDataLayout);
190 for (DataLayoutEntryInterface entry : attribute.getEntries()) {
191 auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
192 if (!key)
193 continue;
194 if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
195 auto value = cast<StringAttr>(entry.getValue());
196 bool isLittleEndian =
197 value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
198 layoutStream << "-" << (isLittleEndian ? "e" : "E");
199 continue;
201 if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) {
202 auto value = cast<IntegerAttr>(entry.getValue());
203 uint64_t space = value.getValue().getZExtValue();
204 // Skip the default address space.
205 if (space == 0)
206 continue;
207 layoutStream << "-P" << space;
208 continue;
210 if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) {
211 auto value = cast<IntegerAttr>(entry.getValue());
212 uint64_t space = value.getValue().getZExtValue();
213 // Skip the default address space.
214 if (space == 0)
215 continue;
216 layoutStream << "-G" << space;
217 continue;
219 if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
220 auto value = cast<IntegerAttr>(entry.getValue());
221 uint64_t space = value.getValue().getZExtValue();
222 // Skip the default address space.
223 if (space == 0)
224 continue;
225 layoutStream << "-A" << space;
226 continue;
228 if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
229 auto value = cast<IntegerAttr>(entry.getValue());
230 uint64_t alignment = value.getValue().getZExtValue();
231 // Skip the default stack alignment.
232 if (alignment == 0)
233 continue;
234 layoutStream << "-S" << alignment;
235 continue;
237 emitError(*loc) << "unsupported data layout key " << key;
238 return failure();
241 // Go through the list of entries to check which types are explicitly
242 // specified in entries. Where possible, data layout queries are used instead
243 // of directly inspecting the entries.
244 for (DataLayoutEntryInterface entry : attribute.getEntries()) {
245 auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
246 if (!type)
247 continue;
248 // Data layout for the index type is irrelevant at this point.
249 if (isa<IndexType>(type))
250 continue;
251 layoutStream << "-";
252 LogicalResult result =
253 llvm::TypeSwitch<Type, LogicalResult>(type)
254 .Case<IntegerType, Float16Type, Float32Type, Float64Type,
255 Float80Type, Float128Type>([&](Type type) -> LogicalResult {
256 if (auto intType = dyn_cast<IntegerType>(type)) {
257 if (intType.getSignedness() != IntegerType::Signless)
258 return emitError(*loc)
259 << "unsupported data layout for non-signless integer "
260 << intType;
261 layoutStream << "i";
262 } else {
263 layoutStream << "f";
265 uint64_t size = dataLayout.getTypeSizeInBits(type);
266 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
267 uint64_t preferred =
268 dataLayout.getTypePreferredAlignment(type) * 8u;
269 layoutStream << size << ":" << abi;
270 if (abi != preferred)
271 layoutStream << ":" << preferred;
272 return success();
274 .Case([&](LLVMPointerType type) {
275 layoutStream << "p" << type.getAddressSpace() << ":";
276 uint64_t size = dataLayout.getTypeSizeInBits(type);
277 uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
278 uint64_t preferred =
279 dataLayout.getTypePreferredAlignment(type) * 8u;
280 uint64_t index = *dataLayout.getTypeIndexBitwidth(type);
281 layoutStream << size << ":" << abi << ":" << preferred << ":"
282 << index;
283 return success();
285 .Default([loc](Type type) {
286 return emitError(*loc)
287 << "unsupported type in data layout: " << type;
289 if (failed(result))
290 return failure();
292 StringRef layoutSpec(llvmDataLayout);
293 if (layoutSpec.starts_with("-"))
294 layoutSpec = layoutSpec.drop_front();
296 return llvm::DataLayout(layoutSpec);
299 /// Builds a constant of a sequential LLVM type `type`, potentially containing
300 /// other sequential types recursively, from the individual constant values
301 /// provided in `constants`. `shape` contains the number of elements in nested
302 /// sequential types. Reports errors at `loc` and returns nullptr on error.
303 static llvm::Constant *
304 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
305 ArrayRef<int64_t> shape, llvm::Type *type,
306 Location loc) {
307 if (shape.empty()) {
308 llvm::Constant *result = constants.front();
309 constants = constants.drop_front();
310 return result;
313 llvm::Type *elementType;
314 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
315 elementType = arrayTy->getElementType();
316 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
317 elementType = vectorTy->getElementType();
318 } else {
319 emitError(loc) << "expected sequential LLVM types wrapping a scalar";
320 return nullptr;
323 SmallVector<llvm::Constant *, 8> nested;
324 nested.reserve(shape.front());
325 for (int64_t i = 0; i < shape.front(); ++i) {
326 nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
327 elementType, loc));
328 if (!nested.back())
329 return nullptr;
332 if (shape.size() == 1 && type->isVectorTy())
333 return llvm::ConstantVector::get(nested);
334 return llvm::ConstantArray::get(
335 llvm::ArrayType::get(elementType, shape.front()), nested);
338 /// Returns the first non-sequential type nested in sequential types.
339 static llvm::Type *getInnermostElementType(llvm::Type *type) {
340 do {
341 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
342 type = arrayTy->getElementType();
343 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
344 type = vectorTy->getElementType();
345 } else {
346 return type;
348 } while (true);
351 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
352 /// storage if possible. This supports elements attributes of tensor or vector
353 /// type and avoids constructing separate objects for individual values of the
354 /// innermost dimension. Constants for other dimensions are still constructed
355 /// recursively. Returns null if constructing from raw data is not supported for
356 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
357 /// other errors at `loc`.
358 static llvm::Constant *
359 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
360 llvm::Type *llvmType,
361 const ModuleTranslation &moduleTranslation) {
362 if (!denseElementsAttr)
363 return nullptr;
365 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
366 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
367 return nullptr;
369 ShapedType type = denseElementsAttr.getType();
370 if (type.getNumElements() == 0)
371 return nullptr;
373 // Check that the raw data size matches what is expected for the scalar size.
374 // TODO: in theory, we could repack the data here to keep constructing from
375 // raw data.
376 // TODO: we may also need to consider endianness when cross-compiling to an
377 // architecture where it is different.
378 int64_t elementByteSize = denseElementsAttr.getRawData().size() /
379 denseElementsAttr.getNumElements();
380 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
381 return nullptr;
383 // Compute the shape of all dimensions but the innermost. Note that the
384 // innermost dimension may be that of the vector element type.
385 bool hasVectorElementType = isa<VectorType>(type.getElementType());
386 int64_t numAggregates =
387 denseElementsAttr.getNumElements() /
388 (hasVectorElementType ? 1
389 : denseElementsAttr.getType().getShape().back());
390 ArrayRef<int64_t> outerShape = type.getShape();
391 if (!hasVectorElementType)
392 outerShape = outerShape.drop_back();
394 // Handle the case of vector splat, LLVM has special support for it.
395 if (denseElementsAttr.isSplat() &&
396 (isa<VectorType>(type) || hasVectorElementType)) {
397 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
398 innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
399 moduleTranslation);
400 llvm::Constant *splatVector =
401 llvm::ConstantDataVector::getSplat(0, splatValue);
402 SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
403 ArrayRef<llvm::Constant *> constantsRef = constants;
404 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
406 if (denseElementsAttr.isSplat())
407 return nullptr;
409 // In case of non-splat, create a constructor for the innermost constant from
410 // a piece of raw data.
411 std::function<llvm::Constant *(StringRef)> buildCstData;
412 if (isa<TensorType>(type)) {
413 auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
414 if (vectorElementType && vectorElementType.getRank() == 1) {
415 buildCstData = [&](StringRef data) {
416 return llvm::ConstantDataVector::getRaw(
417 data, vectorElementType.getShape().back(), innermostLLVMType);
419 } else if (!vectorElementType) {
420 buildCstData = [&](StringRef data) {
421 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
422 innermostLLVMType);
425 } else if (isa<VectorType>(type)) {
426 buildCstData = [&](StringRef data) {
427 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
428 innermostLLVMType);
431 if (!buildCstData)
432 return nullptr;
434 // Create innermost constants and defer to the default constant creation
435 // mechanism for other dimensions.
436 SmallVector<llvm::Constant *> constants;
437 int64_t aggregateSize = denseElementsAttr.getType().getShape().back() *
438 (innermostLLVMType->getScalarSizeInBits() / 8);
439 constants.reserve(numAggregates);
440 for (unsigned i = 0; i < numAggregates; ++i) {
441 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
442 aggregateSize);
443 constants.push_back(buildCstData(data));
446 ArrayRef<llvm::Constant *> constantsRef = constants;
447 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
450 /// Convert a dense resource elements attribute to an LLVM IR constant using its
451 /// raw data storage if possible. This supports elements attributes of tensor or
452 /// vector type and avoids constructing separate objects for individual values
453 /// of the innermost dimension. Constants for other dimensions are still
454 /// constructed recursively. Returns nullptr on failure and emits errors at
455 /// `loc`.
456 static llvm::Constant *convertDenseResourceElementsAttr(
457 Location loc, DenseResourceElementsAttr denseResourceAttr,
458 llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) {
459 assert(denseResourceAttr && "expected non-null attribute");
461 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
462 if (!llvm::ConstantDataSequential::isElementTypeCompatible(
463 innermostLLVMType)) {
464 emitError(loc, "no known conversion for innermost element type");
465 return nullptr;
468 ShapedType type = denseResourceAttr.getType();
469 assert(type.getNumElements() > 0 && "Expected non-empty elements attribute");
471 AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob();
472 if (!blob) {
473 emitError(loc, "resource does not exist");
474 return nullptr;
477 ArrayRef<char> rawData = blob->getData();
479 // Check that the raw data size matches what is expected for the scalar size.
480 // TODO: in theory, we could repack the data here to keep constructing from
481 // raw data.
482 // TODO: we may also need to consider endianness when cross-compiling to an
483 // architecture where it is different.
484 int64_t numElements = denseResourceAttr.getType().getNumElements();
485 int64_t elementByteSize = rawData.size() / numElements;
486 if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) {
487 emitError(loc, "raw data size does not match element type size");
488 return nullptr;
491 // Compute the shape of all dimensions but the innermost. Note that the
492 // innermost dimension may be that of the vector element type.
493 bool hasVectorElementType = isa<VectorType>(type.getElementType());
494 int64_t numAggregates =
495 numElements / (hasVectorElementType
497 : denseResourceAttr.getType().getShape().back());
498 ArrayRef<int64_t> outerShape = type.getShape();
499 if (!hasVectorElementType)
500 outerShape = outerShape.drop_back();
502 // Create a constructor for the innermost constant from a piece of raw data.
503 std::function<llvm::Constant *(StringRef)> buildCstData;
504 if (isa<TensorType>(type)) {
505 auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
506 if (vectorElementType && vectorElementType.getRank() == 1) {
507 buildCstData = [&](StringRef data) {
508 return llvm::ConstantDataVector::getRaw(
509 data, vectorElementType.getShape().back(), innermostLLVMType);
511 } else if (!vectorElementType) {
512 buildCstData = [&](StringRef data) {
513 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
514 innermostLLVMType);
517 } else if (isa<VectorType>(type)) {
518 buildCstData = [&](StringRef data) {
519 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
520 innermostLLVMType);
523 if (!buildCstData) {
524 emitError(loc, "unsupported dense_resource type");
525 return nullptr;
528 // Create innermost constants and defer to the default constant creation
529 // mechanism for other dimensions.
530 SmallVector<llvm::Constant *> constants;
531 int64_t aggregateSize = denseResourceAttr.getType().getShape().back() *
532 (innermostLLVMType->getScalarSizeInBits() / 8);
533 constants.reserve(numAggregates);
534 for (unsigned i = 0; i < numAggregates; ++i) {
535 StringRef data(rawData.data() + i * aggregateSize, aggregateSize);
536 constants.push_back(buildCstData(data));
539 ArrayRef<llvm::Constant *> constantsRef = constants;
540 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
543 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
544 /// This currently supports integer, floating point, splat and dense element
545 /// attributes and combinations thereof. Also, an array attribute with two
546 /// elements is supported to represent a complex constant. In case of error,
547 /// report it to `loc` and return nullptr.
548 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
549 llvm::Type *llvmType, Attribute attr, Location loc,
550 const ModuleTranslation &moduleTranslation) {
551 if (!attr)
552 return llvm::UndefValue::get(llvmType);
553 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
554 auto arrayAttr = dyn_cast<ArrayAttr>(attr);
555 if (!arrayAttr) {
556 emitError(loc, "expected an array attribute for a struct constant");
557 return nullptr;
559 SmallVector<llvm::Constant *> structElements;
560 structElements.reserve(structType->getNumElements());
561 for (auto [elemType, elemAttr] :
562 zip_equal(structType->elements(), arrayAttr)) {
563 llvm::Constant *element =
564 getLLVMConstant(elemType, elemAttr, loc, moduleTranslation);
565 if (!element)
566 return nullptr;
567 structElements.push_back(element);
569 return llvm::ConstantStruct::get(structType, structElements);
571 // For integer types, we allow a mismatch in sizes as the index type in
572 // MLIR might have a different size than the index type in the LLVM module.
573 if (auto intAttr = dyn_cast<IntegerAttr>(attr))
574 return llvm::ConstantInt::get(
575 llvmType,
576 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
577 if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
578 const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
579 // Special case for 8-bit floats, which are represented by integers due to
580 // the lack of native fp8 types in LLVM at the moment. Additionally, handle
581 // targets (like AMDGPU) that don't implement bfloat and convert all bfloats
582 // to i16.
583 unsigned floatWidth = APFloat::getSizeInBits(sem);
584 if (llvmType->isIntegerTy(floatWidth))
585 return llvm::ConstantInt::get(llvmType,
586 floatAttr.getValue().bitcastToAPInt());
587 if (llvmType !=
588 llvm::Type::getFloatingPointTy(llvmType->getContext(),
589 floatAttr.getValue().getSemantics())) {
590 emitError(loc, "FloatAttr does not match expected type of the constant");
591 return nullptr;
593 return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
595 if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
596 return llvm::ConstantExpr::getBitCast(
597 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
598 if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
599 llvm::Type *elementType;
600 uint64_t numElements;
601 bool isScalable = false;
602 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
603 elementType = arrayTy->getElementType();
604 numElements = arrayTy->getNumElements();
605 } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
606 elementType = fVectorTy->getElementType();
607 numElements = fVectorTy->getNumElements();
608 } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
609 elementType = sVectorTy->getElementType();
610 numElements = sVectorTy->getMinNumElements();
611 isScalable = true;
612 } else {
613 llvm_unreachable("unrecognized constant vector type");
615 // Splat value is a scalar. Extract it only if the element type is not
616 // another sequence type. The recursion terminates because each step removes
617 // one outer sequential type.
618 bool elementTypeSequential =
619 isa<llvm::ArrayType, llvm::VectorType>(elementType);
620 llvm::Constant *child = getLLVMConstant(
621 elementType,
622 elementTypeSequential ? splatAttr
623 : splatAttr.getSplatValue<Attribute>(),
624 loc, moduleTranslation);
625 if (!child)
626 return nullptr;
627 if (llvmType->isVectorTy())
628 return llvm::ConstantVector::getSplat(
629 llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
630 if (llvmType->isArrayTy()) {
631 auto *arrayType = llvm::ArrayType::get(elementType, numElements);
632 if (child->isZeroValue()) {
633 return llvm::ConstantAggregateZero::get(arrayType);
634 } else {
635 if (llvm::ConstantDataSequential::isElementTypeCompatible(
636 elementType)) {
637 // TODO: Handle all compatible types. This code only handles integer.
638 if (isa<llvm::IntegerType>(elementType)) {
639 if (llvm::ConstantInt *ci = dyn_cast<llvm::ConstantInt>(child)) {
640 if (ci->getBitWidth() == 8) {
641 SmallVector<int8_t> constants(numElements, ci->getZExtValue());
642 return llvm::ConstantDataArray::get(elementType->getContext(),
643 constants);
645 if (ci->getBitWidth() == 16) {
646 SmallVector<int16_t> constants(numElements, ci->getZExtValue());
647 return llvm::ConstantDataArray::get(elementType->getContext(),
648 constants);
650 if (ci->getBitWidth() == 32) {
651 SmallVector<int32_t> constants(numElements, ci->getZExtValue());
652 return llvm::ConstantDataArray::get(elementType->getContext(),
653 constants);
655 if (ci->getBitWidth() == 64) {
656 SmallVector<int64_t> constants(numElements, ci->getZExtValue());
657 return llvm::ConstantDataArray::get(elementType->getContext(),
658 constants);
663 // std::vector is used here to accomodate large number of elements that
664 // exceed SmallVector capacity.
665 std::vector<llvm::Constant *> constants(numElements, child);
666 return llvm::ConstantArray::get(arrayType, constants);
671 // Try using raw elements data if possible.
672 if (llvm::Constant *result =
673 convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
674 llvmType, moduleTranslation)) {
675 return result;
678 if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) {
679 return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType,
680 moduleTranslation);
683 // Fall back to element-by-element construction otherwise.
684 if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
685 assert(elementsAttr.getShapedType().hasStaticShape());
686 assert(!elementsAttr.getShapedType().getShape().empty() &&
687 "unexpected empty elements attribute shape");
689 SmallVector<llvm::Constant *, 8> constants;
690 constants.reserve(elementsAttr.getNumElements());
691 llvm::Type *innermostType = getInnermostElementType(llvmType);
692 for (auto n : elementsAttr.getValues<Attribute>()) {
693 constants.push_back(
694 getLLVMConstant(innermostType, n, loc, moduleTranslation));
695 if (!constants.back())
696 return nullptr;
698 ArrayRef<llvm::Constant *> constantsRef = constants;
699 llvm::Constant *result = buildSequentialConstant(
700 constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
701 assert(constantsRef.empty() && "did not consume all elemental constants");
702 return result;
705 if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
706 return llvm::ConstantDataArray::get(
707 moduleTranslation.getLLVMContext(),
708 ArrayRef<char>{stringAttr.getValue().data(),
709 stringAttr.getValue().size()});
711 emitError(loc, "unsupported constant value");
712 return nullptr;
715 ModuleTranslation::ModuleTranslation(Operation *module,
716 std::unique_ptr<llvm::Module> llvmModule)
717 : mlirModule(module), llvmModule(std::move(llvmModule)),
718 debugTranslation(
719 std::make_unique<DebugTranslation>(module, *this->llvmModule)),
720 loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
721 *this, *this->llvmModule)),
722 typeTranslator(this->llvmModule->getContext()),
723 iface(module->getContext()) {
724 assert(satisfiesLLVMModule(mlirModule) &&
725 "mlirModule should honor LLVM's module semantics.");
728 ModuleTranslation::~ModuleTranslation() {
729 if (ompBuilder)
730 ompBuilder->finalize();
733 void ModuleTranslation::forgetMapping(Region &region) {
734 SmallVector<Region *> toProcess;
735 toProcess.push_back(&region);
736 while (!toProcess.empty()) {
737 Region *current = toProcess.pop_back_val();
738 for (Block &block : *current) {
739 blockMapping.erase(&block);
740 for (Value arg : block.getArguments())
741 valueMapping.erase(arg);
742 for (Operation &op : block) {
743 for (Value value : op.getResults())
744 valueMapping.erase(value);
745 if (op.hasSuccessors())
746 branchMapping.erase(&op);
747 if (isa<LLVM::GlobalOp>(op))
748 globalsMapping.erase(&op);
749 if (isa<LLVM::CallOp>(op))
750 callMapping.erase(&op);
751 llvm::append_range(
752 toProcess,
753 llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
759 /// Get the SSA value passed to the current block from the terminator operation
760 /// of its predecessor.
761 static Value getPHISourceValue(Block *current, Block *pred,
762 unsigned numArguments, unsigned index) {
763 Operation &terminator = *pred->getTerminator();
764 if (isa<LLVM::BrOp>(terminator))
765 return terminator.getOperand(index);
767 #ifndef NDEBUG
768 llvm::SmallPtrSet<Block *, 4> seenSuccessors;
769 for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
770 Block *successor = terminator.getSuccessor(i);
771 auto branch = cast<BranchOpInterface>(terminator);
772 SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
773 assert(
774 (!seenSuccessors.contains(successor) || successorOperands.empty()) &&
775 "successors with arguments in LLVM branches must be different blocks");
776 seenSuccessors.insert(successor);
778 #endif
780 // For instructions that branch based on a condition value, we need to take
781 // the operands for the branch that was taken.
782 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
783 // For conditional branches, we take the operands from either the "true" or
784 // the "false" branch.
785 return condBranchOp.getSuccessor(0) == current
786 ? condBranchOp.getTrueDestOperands()[index]
787 : condBranchOp.getFalseDestOperands()[index];
790 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
791 // For switches, we take the operands from either the default case, or from
792 // the case branch that was taken.
793 if (switchOp.getDefaultDestination() == current)
794 return switchOp.getDefaultOperands()[index];
795 for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
796 if (i.value() == current)
797 return switchOp.getCaseOperands(i.index())[index];
800 if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
801 return invokeOp.getNormalDest() == current
802 ? invokeOp.getNormalDestOperands()[index]
803 : invokeOp.getUnwindDestOperands()[index];
806 llvm_unreachable(
807 "only branch, switch or invoke operations can be terminators "
808 "of a block that has successors");
811 /// Connect the PHI nodes to the results of preceding blocks.
812 void mlir::LLVM::detail::connectPHINodes(Region &region,
813 const ModuleTranslation &state) {
814 // Skip the first block, it cannot be branched to and its arguments correspond
815 // to the arguments of the LLVM function.
816 for (Block &bb : llvm::drop_begin(region)) {
817 llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
818 auto phis = llvmBB->phis();
819 auto numArguments = bb.getNumArguments();
820 assert(numArguments == std::distance(phis.begin(), phis.end()));
821 for (auto [index, phiNode] : llvm::enumerate(phis)) {
822 for (auto *pred : bb.getPredecessors()) {
823 // Find the LLVM IR block that contains the converted terminator
824 // instruction and use it in the PHI node. Note that this block is not
825 // necessarily the same as state.lookupBlock(pred), some operations
826 // (in particular, OpenMP operations using OpenMPIRBuilder) may have
827 // split the blocks.
828 llvm::Instruction *terminator =
829 state.lookupBranch(pred->getTerminator());
830 assert(terminator && "missing the mapping for a terminator");
831 phiNode.addIncoming(state.lookupValue(getPHISourceValue(
832 &bb, pred, numArguments, index)),
833 terminator->getParent());
839 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
840 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
841 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
842 llvm::Module *module = builder.GetInsertBlock()->getModule();
843 llvm::Function *fn =
844 llvm::Intrinsic::getOrInsertDeclaration(module, intrinsic, tys);
845 return builder.CreateCall(fn, args);
848 llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
849 llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation,
850 Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults,
851 ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands,
852 ArrayRef<unsigned> immArgPositions,
853 ArrayRef<StringLiteral> immArgAttrNames) {
854 assert(immArgPositions.size() == immArgAttrNames.size() &&
855 "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
856 "length");
858 SmallVector<llvm::OperandBundleDef> opBundles;
859 size_t numOpBundleOperands = 0;
860 auto opBundleSizesAttr = cast_if_present<DenseI32ArrayAttr>(
861 intrOp->getAttr(LLVMDialect::getOpBundleSizesAttrName()));
862 auto opBundleTagsAttr = cast_if_present<ArrayAttr>(
863 intrOp->getAttr(LLVMDialect::getOpBundleTagsAttrName()));
865 if (opBundleSizesAttr && opBundleTagsAttr) {
866 ArrayRef<int> opBundleSizes = opBundleSizesAttr.asArrayRef();
867 assert(opBundleSizes.size() == opBundleTagsAttr.size() &&
868 "operand bundles and tags do not match");
870 numOpBundleOperands =
871 std::accumulate(opBundleSizes.begin(), opBundleSizes.end(), size_t(0));
872 assert(numOpBundleOperands <= intrOp->getNumOperands() &&
873 "operand bundle operands is more than the number of operands");
875 ValueRange operands = intrOp->getOperands().take_back(numOpBundleOperands);
876 size_t nextOperandIdx = 0;
877 opBundles.reserve(opBundleSizesAttr.size());
879 for (auto [opBundleTagAttr, bundleSize] :
880 llvm::zip(opBundleTagsAttr, opBundleSizes)) {
881 auto bundleTag = cast<StringAttr>(opBundleTagAttr).str();
882 auto bundleOperands = moduleTranslation.lookupValues(
883 operands.slice(nextOperandIdx, bundleSize));
884 opBundles.emplace_back(std::move(bundleTag), std::move(bundleOperands));
885 nextOperandIdx += bundleSize;
889 // Map operands and attributes to LLVM values.
890 auto opOperands = intrOp->getOperands().drop_back(numOpBundleOperands);
891 auto operands = moduleTranslation.lookupValues(opOperands);
892 SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size());
893 for (auto [immArgPos, immArgName] :
894 llvm::zip(immArgPositions, immArgAttrNames)) {
895 auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName));
896 assert(attr.getType().isIntOrFloat() && "expected int or float immarg");
897 auto *type = moduleTranslation.convertType(attr.getType());
898 args[immArgPos] = LLVM::detail::getLLVMConstant(
899 type, attr, intrOp->getLoc(), moduleTranslation);
901 unsigned opArg = 0;
902 for (auto &arg : args) {
903 if (!arg)
904 arg = operands[opArg++];
907 // Resolve overloaded intrinsic declaration.
908 SmallVector<llvm::Type *> overloadedTypes;
909 for (unsigned overloadedResultIdx : overloadedResults) {
910 if (numResults > 1) {
911 // More than one result is mapped to an LLVM struct.
912 overloadedTypes.push_back(moduleTranslation.convertType(
913 llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType())
914 .getBody()[overloadedResultIdx]));
915 } else {
916 overloadedTypes.push_back(
917 moduleTranslation.convertType(intrOp->getResult(0).getType()));
920 for (unsigned overloadedOperandIdx : overloadedOperands)
921 overloadedTypes.push_back(args[overloadedOperandIdx]->getType());
922 llvm::Module *module = builder.GetInsertBlock()->getModule();
923 llvm::Function *llvmIntr = llvm::Intrinsic::getOrInsertDeclaration(
924 module, intrinsic, overloadedTypes);
926 return builder.CreateCall(llvmIntr, args, opBundles);
929 /// Given a single MLIR operation, create the corresponding LLVM IR operation
930 /// using the `builder`.
931 LogicalResult ModuleTranslation::convertOperation(Operation &op,
932 llvm::IRBuilderBase &builder,
933 bool recordInsertions) {
934 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
935 if (!opIface)
936 return op.emitError("cannot be converted to LLVM IR: missing "
937 "`LLVMTranslationDialectInterface` registration for "
938 "dialect for op: ")
939 << op.getName();
941 InstructionCapturingInserter::CollectionScope scope(builder,
942 recordInsertions);
943 if (failed(opIface->convertOperation(&op, builder, *this)))
944 return op.emitError("LLVM Translation failed for operation: ")
945 << op.getName();
947 return convertDialectAttributes(&op, scope.getCapturedInstructions());
950 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
951 /// to define values corresponding to the MLIR block arguments. These nodes
952 /// are not connected to the source basic blocks, which may not exist yet. Uses
953 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
954 /// been created for `bb` and included in the block mapping. Inserts new
955 /// instructions at the end of the block and leaves `builder` in a state
956 /// suitable for further insertion into the end of the block.
957 LogicalResult ModuleTranslation::convertBlockImpl(Block &bb,
958 bool ignoreArguments,
959 llvm::IRBuilderBase &builder,
960 bool recordInsertions) {
961 builder.SetInsertPoint(lookupBlock(&bb));
962 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
964 // Before traversing operations, make block arguments available through
965 // value remapping and PHI nodes, but do not add incoming edges for the PHI
966 // nodes just yet: those values may be defined by this or following blocks.
967 // This step is omitted if "ignoreArguments" is set. The arguments of the
968 // first block have been already made available through the remapping of
969 // LLVM function arguments.
970 if (!ignoreArguments) {
971 auto predecessors = bb.getPredecessors();
972 unsigned numPredecessors =
973 std::distance(predecessors.begin(), predecessors.end());
974 for (auto arg : bb.getArguments()) {
975 auto wrappedType = arg.getType();
976 if (!isCompatibleType(wrappedType))
977 return emitError(bb.front().getLoc(),
978 "block argument does not have an LLVM type");
979 builder.SetCurrentDebugLocation(
980 debugTranslation->translateLoc(arg.getLoc(), subprogram));
981 llvm::Type *type = convertType(wrappedType);
982 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
983 mapValue(arg, phi);
987 // Traverse operations.
988 for (auto &op : bb) {
989 // Set the current debug location within the builder.
990 builder.SetCurrentDebugLocation(
991 debugTranslation->translateLoc(op.getLoc(), subprogram));
993 if (failed(convertOperation(op, builder, recordInsertions)))
994 return failure();
996 // Set the branch weight metadata on the translated instruction.
997 if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
998 setBranchWeightsMetadata(iface);
1001 return success();
1004 /// A helper method to get the single Block in an operation honoring LLVM's
1005 /// module requirements.
1006 static Block &getModuleBody(Operation *module) {
1007 return module->getRegion(0).front();
1010 /// A helper method to decide if a constant must not be set as a global variable
1011 /// initializer. For an external linkage variable, the variable with an
1012 /// initializer is considered externally visible and defined in this module, the
1013 /// variable without an initializer is externally available and is defined
1014 /// elsewhere.
1015 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
1016 llvm::Constant *cst) {
1017 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
1018 linkage == llvm::GlobalVariable::ExternalWeakLinkage;
1021 /// Sets the runtime preemption specifier of `gv` to dso_local if
1022 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
1023 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
1024 llvm::GlobalValue *gv) {
1025 if (dsoLocalRequested)
1026 gv->setDSOLocal(true);
1029 /// Create named global variables that correspond to llvm.mlir.global
1030 /// definitions. Convert llvm.global_ctors and global_dtors ops.
1031 LogicalResult ModuleTranslation::convertGlobals() {
1032 // Mapping from compile unit to its respective set of global variables.
1033 DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars;
1035 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
1036 llvm::Type *type = convertType(op.getType());
1037 llvm::Constant *cst = nullptr;
1038 if (op.getValueOrNull()) {
1039 // String attributes are treated separately because they cannot appear as
1040 // in-function constants and are thus not supported by getLLVMConstant.
1041 if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
1042 cst = llvm::ConstantDataArray::getString(
1043 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
1044 type = cst->getType();
1045 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
1046 *this))) {
1047 return failure();
1051 auto linkage = convertLinkageToLLVM(op.getLinkage());
1053 // LLVM IR requires constant with linkage other than external or weak
1054 // external to have initializers. If MLIR does not provide an initializer,
1055 // default to undef.
1056 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
1057 if (!dropInitializer && !cst)
1058 cst = llvm::UndefValue::get(type);
1059 else if (dropInitializer && cst)
1060 cst = nullptr;
1062 auto *var = new llvm::GlobalVariable(
1063 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
1064 /*InsertBefore=*/nullptr,
1065 op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
1066 : llvm::GlobalValue::NotThreadLocal,
1067 op.getAddrSpace(), op.getExternallyInitialized());
1069 if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
1070 auto selectorOp = cast<ComdatSelectorOp>(
1071 SymbolTable::lookupNearestSymbolFrom(op, *comdat));
1072 var->setComdat(comdatMapping.lookup(selectorOp));
1075 if (op.getUnnamedAddr().has_value())
1076 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
1078 if (op.getSection().has_value())
1079 var->setSection(*op.getSection());
1081 addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
1083 std::optional<uint64_t> alignment = op.getAlignment();
1084 if (alignment.has_value())
1085 var->setAlignment(llvm::MaybeAlign(alignment.value()));
1087 var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
1089 globalsMapping.try_emplace(op, var);
1091 // Add debug information if present.
1092 if (op.getDbgExprs()) {
1093 for (auto exprAttr :
1094 op.getDbgExprs()->getAsRange<DIGlobalVariableExpressionAttr>()) {
1095 llvm::DIGlobalVariableExpression *diGlobalExpr =
1096 debugTranslation->translateGlobalVariableExpression(exprAttr);
1097 llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable();
1098 var->addDebugInfo(diGlobalExpr);
1100 // There is no `globals` field in DICompileUnitAttr which can be
1101 // directly assigned to DICompileUnit. We have to build the list by
1102 // looking at the dbgExpr of all the GlobalOps. The scope of the
1103 // variable is used to get the DICompileUnit in which to add it. But
1104 // there are cases where the scope of a global does not directly point
1105 // to the DICompileUnit and we have to do a bit more work to get to
1106 // it. Some of those cases are:
1108 // 1. For the languages that support modules, the scope hierarchy can
1109 // be variable -> DIModule -> DICompileUnit
1111 // 2. For the Fortran common block variable, the scope hierarchy can
1112 // be variable -> DICommonBlock -> DISubprogram -> DICompileUnit
1114 // 3. For entities like static local variables in C or variable with
1115 // SAVE attribute in Fortran, the scope hierarchy can be
1116 // variable -> DISubprogram -> DICompileUnit
1117 llvm::DIScope *scope = diGlobalVar->getScope();
1118 if (auto *mod = dyn_cast_if_present<llvm::DIModule>(scope))
1119 scope = mod->getScope();
1120 else if (auto *cb = dyn_cast_if_present<llvm::DICommonBlock>(scope)) {
1121 if (auto *sp =
1122 dyn_cast_if_present<llvm::DISubprogram>(cb->getScope()))
1123 scope = sp->getUnit();
1124 } else if (auto *sp = dyn_cast_if_present<llvm::DISubprogram>(scope))
1125 scope = sp->getUnit();
1127 // Get the compile unit (scope) of the the global variable.
1128 if (llvm::DICompileUnit *compileUnit =
1129 dyn_cast_if_present<llvm::DICompileUnit>(scope)) {
1130 // Update the compile unit with this incoming global variable
1131 // expression during the finalizing step later.
1132 allGVars[compileUnit].push_back(diGlobalExpr);
1138 // Convert global variable bodies. This is done after all global variables
1139 // have been created in LLVM IR because a global body may refer to another
1140 // global or itself. So all global variables need to be mapped first.
1141 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
1142 if (Block *initializer = op.getInitializerBlock()) {
1143 llvm::IRBuilder<> builder(llvmModule->getContext());
1145 [[maybe_unused]] int numConstantsHit = 0;
1146 [[maybe_unused]] int numConstantsErased = 0;
1147 DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap;
1149 for (auto &op : initializer->without_terminator()) {
1150 if (failed(convertOperation(op, builder)))
1151 return emitError(op.getLoc(), "fail to convert global initializer");
1152 auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0)));
1153 if (!cst)
1154 return emitError(op.getLoc(), "unemittable constant value");
1156 // When emitting an LLVM constant, a new constant is created and the old
1157 // constant may become dangling and take space. We should remove the
1158 // dangling constants to avoid memory explosion especially for constant
1159 // arrays whose number of elements is large.
1160 // Because multiple operations may refer to the same constant, we need
1161 // to count the number of uses of each constant array and remove it only
1162 // when the count becomes zero.
1163 if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) {
1164 numConstantsHit++;
1165 Value result = op.getResult(0);
1166 int numUsers = std::distance(result.use_begin(), result.use_end());
1167 auto [iterator, inserted] =
1168 constantAggregateUseMap.try_emplace(agg, numUsers);
1169 if (!inserted) {
1170 // Key already exists, update the value
1171 iterator->second += numUsers;
1174 // Scan the operands of the operation to decrement the use count of
1175 // constants. Erase the constant if the use count becomes zero.
1176 for (Value v : op.getOperands()) {
1177 auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v));
1178 if (!cst)
1179 continue;
1180 auto iter = constantAggregateUseMap.find(cst);
1181 assert(iter != constantAggregateUseMap.end() && "constant not found");
1182 iter->second--;
1183 if (iter->second == 0) {
1184 // NOTE: cannot call removeDeadConstantUsers() here because it
1185 // may remove the constant which has uses not be converted yet.
1186 if (cst->user_empty()) {
1187 cst->destroyConstant();
1188 numConstantsErased++;
1190 constantAggregateUseMap.erase(iter);
1195 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
1196 llvm::Constant *cst =
1197 cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
1198 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
1199 if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
1200 global->setInitializer(cst);
1202 // Try to remove the dangling constants again after all operations are
1203 // converted.
1204 for (auto it : constantAggregateUseMap) {
1205 auto cst = it.first;
1206 cst->removeDeadConstantUsers();
1207 if (cst->user_empty()) {
1208 cst->destroyConstant();
1209 numConstantsErased++;
1213 LLVM_DEBUG(llvm::dbgs()
1214 << "Convert initializer for " << op.getName() << "\n";
1215 llvm::dbgs() << numConstantsHit << " new constants hit\n";
1216 llvm::dbgs()
1217 << numConstantsErased << " dangling constants erased\n";);
1221 // Convert llvm.mlir.global_ctors and dtors.
1222 for (Operation &op : getModuleBody(mlirModule)) {
1223 auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
1224 auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
1225 if (!ctorOp && !dtorOp)
1226 continue;
1227 auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
1228 : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
1229 auto appendGlobalFn =
1230 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
1231 for (auto symbolAndPriority : range) {
1232 llvm::Function *f = lookupFunction(
1233 cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
1234 appendGlobalFn(*llvmModule, f,
1235 cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
1236 /*Data=*/nullptr);
1240 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
1241 if (failed(convertDialectAttributes(op, {})))
1242 return failure();
1244 // Finally, update the compile units their respective sets of global variables
1245 // created earlier.
1246 for (const auto &[compileUnit, globals] : allGVars) {
1247 compileUnit->replaceGlobalVariables(
1248 llvm::MDTuple::get(getLLVMContext(), globals));
1251 return success();
1254 /// Attempts to add an attribute identified by `key`, optionally with the given
1255 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
1256 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
1257 /// otherwise keep it as a string attribute. Performs additional checks for
1258 /// attributes known to have or not have a value in order to avoid assertions
1259 /// inside LLVM upon construction.
1260 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
1261 llvm::Function *llvmFunc,
1262 StringRef key,
1263 StringRef value = StringRef()) {
1264 auto kind = llvm::Attribute::getAttrKindFromName(key);
1265 if (kind == llvm::Attribute::None) {
1266 llvmFunc->addFnAttr(key, value);
1267 return success();
1270 if (llvm::Attribute::isIntAttrKind(kind)) {
1271 if (value.empty())
1272 return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
1274 int64_t result;
1275 if (!value.getAsInteger(/*Radix=*/0, result))
1276 llvmFunc->addFnAttr(
1277 llvm::Attribute::get(llvmFunc->getContext(), kind, result));
1278 else
1279 llvmFunc->addFnAttr(key, value);
1280 return success();
1283 if (!value.empty())
1284 return emitError(loc) << "LLVM attribute '" << key
1285 << "' does not expect a value, found '" << value
1286 << "'";
1288 llvmFunc->addFnAttr(kind);
1289 return success();
1292 /// Return a representation of `value` as metadata.
1293 static llvm::Metadata *convertIntegerToMetadata(llvm::LLVMContext &context,
1294 const llvm::APInt &value) {
1295 llvm::Constant *constant = llvm::ConstantInt::get(context, value);
1296 return llvm::ConstantAsMetadata::get(constant);
1299 /// Return a representation of `value` as an MDNode.
1300 static llvm::MDNode *convertIntegerToMDNode(llvm::LLVMContext &context,
1301 const llvm::APInt &value) {
1302 return llvm::MDNode::get(context, convertIntegerToMetadata(context, value));
1305 /// Return an MDNode encoding `vec_type_hint` metadata.
1306 static llvm::MDNode *convertVecTypeHintToMDNode(llvm::LLVMContext &context,
1307 llvm::Type *type,
1308 bool isSigned) {
1309 llvm::Metadata *typeMD =
1310 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(type));
1311 llvm::Metadata *isSignedMD =
1312 convertIntegerToMetadata(context, llvm::APInt(32, isSigned ? 1 : 0));
1313 return llvm::MDNode::get(context, {typeMD, isSignedMD});
1316 /// Return an MDNode with a tuple given by the values in `values`.
1317 static llvm::MDNode *convertIntegerArrayToMDNode(llvm::LLVMContext &context,
1318 ArrayRef<int32_t> values) {
1319 SmallVector<llvm::Metadata *> mdValues;
1320 llvm::transform(
1321 values, std::back_inserter(mdValues), [&context](int32_t value) {
1322 return convertIntegerToMetadata(context, llvm::APInt(32, value));
1324 return llvm::MDNode::get(context, mdValues);
1327 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
1328 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
1329 /// to be an array attribute containing either string attributes, treated as
1330 /// value-less LLVM attributes, or array attributes containing two string
1331 /// attributes, with the first string being the name of the corresponding LLVM
1332 /// attribute and the second string beings its value. Note that even integer
1333 /// attributes are expected to have their values expressed as strings.
1334 static LogicalResult
1335 forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
1336 llvm::Function *llvmFunc) {
1337 if (!attributes)
1338 return success();
1340 for (Attribute attr : *attributes) {
1341 if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
1342 if (failed(
1343 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
1344 return failure();
1345 continue;
1348 auto arrayAttr = dyn_cast<ArrayAttr>(attr);
1349 if (!arrayAttr || arrayAttr.size() != 2)
1350 return emitError(loc)
1351 << "expected 'passthrough' to contain string or array attributes";
1353 auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
1354 auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
1355 if (!keyAttr || !valueAttr)
1356 return emitError(loc)
1357 << "expected arrays within 'passthrough' to contain two strings";
1359 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
1360 valueAttr.getValue())))
1361 return failure();
1363 return success();
1366 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
1367 // Clear the block, branch value mappings, they are only relevant within one
1368 // function.
1369 blockMapping.clear();
1370 valueMapping.clear();
1371 branchMapping.clear();
1372 llvm::Function *llvmFunc = lookupFunction(func.getName());
1374 // Add function arguments to the value remapping table.
1375 for (auto [mlirArg, llvmArg] :
1376 llvm::zip(func.getArguments(), llvmFunc->args()))
1377 mapValue(mlirArg, &llvmArg);
1379 // Check the personality and set it.
1380 if (func.getPersonality()) {
1381 llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext());
1382 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
1383 func.getLoc(), *this))
1384 llvmFunc->setPersonalityFn(pfunc);
1387 if (std::optional<StringRef> section = func.getSection())
1388 llvmFunc->setSection(*section);
1390 if (func.getArmStreaming())
1391 llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
1392 else if (func.getArmLocallyStreaming())
1393 llvmFunc->addFnAttr("aarch64_pstate_sm_body");
1394 else if (func.getArmStreamingCompatible())
1395 llvmFunc->addFnAttr("aarch64_pstate_sm_compatible");
1397 if (func.getArmNewZa())
1398 llvmFunc->addFnAttr("aarch64_new_za");
1399 else if (func.getArmInZa())
1400 llvmFunc->addFnAttr("aarch64_in_za");
1401 else if (func.getArmOutZa())
1402 llvmFunc->addFnAttr("aarch64_out_za");
1403 else if (func.getArmInoutZa())
1404 llvmFunc->addFnAttr("aarch64_inout_za");
1405 else if (func.getArmPreservesZa())
1406 llvmFunc->addFnAttr("aarch64_preserves_za");
1408 if (auto targetCpu = func.getTargetCpu())
1409 llvmFunc->addFnAttr("target-cpu", *targetCpu);
1411 if (auto tuneCpu = func.getTuneCpu())
1412 llvmFunc->addFnAttr("tune-cpu", *tuneCpu);
1414 if (auto targetFeatures = func.getTargetFeatures())
1415 llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString());
1417 if (auto attr = func.getVscaleRange())
1418 llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
1419 getLLVMContext(), attr->getMinRange().getInt(),
1420 attr->getMaxRange().getInt()));
1422 if (auto unsafeFpMath = func.getUnsafeFpMath())
1423 llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath));
1425 if (auto noInfsFpMath = func.getNoInfsFpMath())
1426 llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath));
1428 if (auto noNansFpMath = func.getNoNansFpMath())
1429 llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath));
1431 if (auto approxFuncFpMath = func.getApproxFuncFpMath())
1432 llvmFunc->addFnAttr("approx-func-fp-math",
1433 llvm::toStringRef(*approxFuncFpMath));
1435 if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath())
1436 llvmFunc->addFnAttr("no-signed-zeros-fp-math",
1437 llvm::toStringRef(*noSignedZerosFpMath));
1439 if (auto denormalFpMath = func.getDenormalFpMath())
1440 llvmFunc->addFnAttr("denormal-fp-math", *denormalFpMath);
1442 if (auto denormalFpMathF32 = func.getDenormalFpMathF32())
1443 llvmFunc->addFnAttr("denormal-fp-math-f32", *denormalFpMathF32);
1445 if (auto fpContract = func.getFpContract())
1446 llvmFunc->addFnAttr("fp-contract", *fpContract);
1448 // Add function attribute frame-pointer, if found.
1449 if (FramePointerKindAttr attr = func.getFramePointerAttr())
1450 llvmFunc->addFnAttr("frame-pointer",
1451 LLVM::framePointerKind::stringifyFramePointerKind(
1452 (attr.getFramePointerKind())));
1454 // First, create all blocks so we can jump to them.
1455 llvm::LLVMContext &llvmContext = llvmFunc->getContext();
1456 for (auto &bb : func) {
1457 auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
1458 llvmBB->insertInto(llvmFunc);
1459 mapBlock(&bb, llvmBB);
1462 // Then, convert blocks one by one in topological order to ensure defs are
1463 // converted before uses.
1464 auto blocks = getBlocksSortedByDominance(func.getBody());
1465 for (Block *bb : blocks) {
1466 CapturingIRBuilder builder(llvmContext);
1467 if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder,
1468 /*recordInsertions=*/true)))
1469 return failure();
1472 // After all blocks have been traversed and values mapped, connect the PHI
1473 // nodes to the results of preceding blocks.
1474 detail::connectPHINodes(func.getBody(), *this);
1476 // Finally, convert dialect attributes attached to the function.
1477 return convertDialectAttributes(func, {});
1480 LogicalResult ModuleTranslation::convertDialectAttributes(
1481 Operation *op, ArrayRef<llvm::Instruction *> instructions) {
1482 for (NamedAttribute attribute : op->getDialectAttrs())
1483 if (failed(iface.amendOperation(op, instructions, attribute, *this)))
1484 return failure();
1485 return success();
1488 /// Converts memory effect attributes from `func` and attaches them to
1489 /// `llvmFunc`.
1490 static void convertFunctionMemoryAttributes(LLVMFuncOp func,
1491 llvm::Function *llvmFunc) {
1492 if (!func.getMemoryEffects())
1493 return;
1495 MemoryEffectsAttr memEffects = func.getMemoryEffectsAttr();
1497 // Add memory effects incrementally.
1498 llvm::MemoryEffects newMemEffects =
1499 llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
1500 convertModRefInfoToLLVM(memEffects.getArgMem()));
1501 newMemEffects |= llvm::MemoryEffects(
1502 llvm::MemoryEffects::Location::InaccessibleMem,
1503 convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
1504 newMemEffects |=
1505 llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
1506 convertModRefInfoToLLVM(memEffects.getOther()));
1507 llvmFunc->setMemoryEffects(newMemEffects);
1510 /// Converts function attributes from `func` and attaches them to `llvmFunc`.
1511 static void convertFunctionAttributes(LLVMFuncOp func,
1512 llvm::Function *llvmFunc) {
1513 if (func.getNoInlineAttr())
1514 llvmFunc->addFnAttr(llvm::Attribute::NoInline);
1515 if (func.getAlwaysInlineAttr())
1516 llvmFunc->addFnAttr(llvm::Attribute::AlwaysInline);
1517 if (func.getOptimizeNoneAttr())
1518 llvmFunc->addFnAttr(llvm::Attribute::OptimizeNone);
1519 if (func.getConvergentAttr())
1520 llvmFunc->addFnAttr(llvm::Attribute::Convergent);
1521 if (func.getNoUnwindAttr())
1522 llvmFunc->addFnAttr(llvm::Attribute::NoUnwind);
1523 if (func.getWillReturnAttr())
1524 llvmFunc->addFnAttr(llvm::Attribute::WillReturn);
1525 convertFunctionMemoryAttributes(func, llvmFunc);
1528 /// Converts function attributes from `func` and attaches them to `llvmFunc`.
1529 static void convertFunctionKernelAttributes(LLVMFuncOp func,
1530 llvm::Function *llvmFunc,
1531 ModuleTranslation &translation) {
1532 llvm::LLVMContext &llvmContext = llvmFunc->getContext();
1534 if (VecTypeHintAttr vecTypeHint = func.getVecTypeHintAttr()) {
1535 Type type = vecTypeHint.getHint().getValue();
1536 llvm::Type *llvmType = translation.convertType(type);
1537 bool isSigned = vecTypeHint.getIsSigned();
1538 llvmFunc->setMetadata(
1539 func.getVecTypeHintAttrName(),
1540 convertVecTypeHintToMDNode(llvmContext, llvmType, isSigned));
1543 if (std::optional<ArrayRef<int32_t>> workGroupSizeHint =
1544 func.getWorkGroupSizeHint()) {
1545 llvmFunc->setMetadata(
1546 func.getWorkGroupSizeHintAttrName(),
1547 convertIntegerArrayToMDNode(llvmContext, *workGroupSizeHint));
1550 if (std::optional<ArrayRef<int32_t>> reqdWorkGroupSize =
1551 func.getReqdWorkGroupSize()) {
1552 llvmFunc->setMetadata(
1553 func.getReqdWorkGroupSizeAttrName(),
1554 convertIntegerArrayToMDNode(llvmContext, *reqdWorkGroupSize));
1557 if (std::optional<uint32_t> intelReqdSubGroupSize =
1558 func.getIntelReqdSubGroupSize()) {
1559 llvmFunc->setMetadata(
1560 func.getIntelReqdSubGroupSizeAttrName(),
1561 convertIntegerToMDNode(llvmContext,
1562 llvm::APInt(32, *intelReqdSubGroupSize)));
1566 FailureOr<llvm::AttrBuilder>
1567 ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx,
1568 DictionaryAttr paramAttrs) {
1569 llvm::AttrBuilder attrBuilder(llvmModule->getContext());
1570 auto attrNameToKindMapping = getAttrNameToKindMapping();
1572 for (auto namedAttr : paramAttrs) {
1573 auto it = attrNameToKindMapping.find(namedAttr.getName());
1574 if (it != attrNameToKindMapping.end()) {
1575 llvm::Attribute::AttrKind llvmKind = it->second;
1577 llvm::TypeSwitch<Attribute>(namedAttr.getValue())
1578 .Case<TypeAttr>([&](auto typeAttr) {
1579 attrBuilder.addTypeAttr(llvmKind, convertType(typeAttr.getValue()));
1581 .Case<IntegerAttr>([&](auto intAttr) {
1582 attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt());
1584 .Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKind); })
1585 .Case<LLVM::ConstantRangeAttr>([&](auto rangeAttr) {
1586 attrBuilder.addConstantRangeAttr(
1587 llvmKind, llvm::ConstantRange(rangeAttr.getLower(),
1588 rangeAttr.getUpper()));
1590 } else if (namedAttr.getNameDialect()) {
1591 if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this)))
1592 return failure();
1596 return attrBuilder;
1599 LogicalResult ModuleTranslation::convertFunctionSignatures() {
1600 // Declare all functions first because there may be function calls that form a
1601 // call graph with cycles, or global initializers that reference functions.
1602 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1603 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
1604 function.getName(),
1605 cast<llvm::FunctionType>(convertType(function.getFunctionType())));
1606 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
1607 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
1608 llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
1609 mapFunction(function.getName(), llvmFunc);
1610 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
1612 // Convert function attributes.
1613 convertFunctionAttributes(function, llvmFunc);
1615 // Convert function kernel attributes to metadata.
1616 convertFunctionKernelAttributes(function, llvmFunc, *this);
1618 // Convert function_entry_count attribute to metadata.
1619 if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
1620 llvmFunc->setEntryCount(entryCount.value());
1622 // Convert result attributes.
1623 if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
1624 DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
1625 FailureOr<llvm::AttrBuilder> attrBuilder =
1626 convertParameterAttrs(function, -1, resultAttrs);
1627 if (failed(attrBuilder))
1628 return failure();
1629 llvmFunc->addRetAttrs(*attrBuilder);
1632 // Convert argument attributes.
1633 for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
1634 if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
1635 FailureOr<llvm::AttrBuilder> attrBuilder =
1636 convertParameterAttrs(function, argIdx, argAttrs);
1637 if (failed(attrBuilder))
1638 return failure();
1639 llvmArg.addAttrs(*attrBuilder);
1643 // Forward the pass-through attributes to LLVM.
1644 if (failed(forwardPassthroughAttributes(
1645 function.getLoc(), function.getPassthrough(), llvmFunc)))
1646 return failure();
1648 // Convert visibility attribute.
1649 llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
1651 // Convert the comdat attribute.
1652 if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
1653 auto selectorOp = cast<ComdatSelectorOp>(
1654 SymbolTable::lookupNearestSymbolFrom(function, *comdat));
1655 llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
1658 if (auto gc = function.getGarbageCollector())
1659 llvmFunc->setGC(gc->str());
1661 if (auto unnamedAddr = function.getUnnamedAddr())
1662 llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
1664 if (auto alignment = function.getAlignment())
1665 llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
1667 // Translate the debug information for this function.
1668 debugTranslation->translate(function, *llvmFunc);
1671 return success();
1674 LogicalResult ModuleTranslation::convertFunctions() {
1675 // Convert functions.
1676 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1677 // Do not convert external functions, but do process dialect attributes
1678 // attached to them.
1679 if (function.isExternal()) {
1680 if (failed(convertDialectAttributes(function, {})))
1681 return failure();
1682 continue;
1685 if (failed(convertOneFunction(function)))
1686 return failure();
1689 return success();
1692 LogicalResult ModuleTranslation::convertComdats() {
1693 for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
1694 for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
1695 llvm::Module *module = getLLVMModule();
1696 if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
1697 return emitError(selectorOp.getLoc())
1698 << "comdat selection symbols must be unique even in different "
1699 "comdat regions";
1700 llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
1701 comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
1702 comdatMapping.try_emplace(selectorOp, comdat);
1705 return success();
1708 void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
1709 llvm::Instruction *inst) {
1710 if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
1711 inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
1714 llvm::MDNode *
1715 ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
1716 auto [scopeIt, scopeInserted] =
1717 aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
1718 if (!scopeInserted)
1719 return scopeIt->second;
1720 llvm::LLVMContext &ctx = llvmModule->getContext();
1721 auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt);
1722 // Convert the domain metadata node if necessary.
1723 auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
1724 aliasScopeAttr.getDomain(), nullptr);
1725 if (insertedDomain) {
1726 llvm::SmallVector<llvm::Metadata *, 2> operands;
1727 // Placeholder for self-reference.
1728 operands.push_back(dummy.get());
1729 if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
1730 operands.push_back(llvm::MDString::get(ctx, description));
1731 domainIt->second = llvm::MDNode::get(ctx, operands);
1732 // Self-reference for uniqueness.
1733 domainIt->second->replaceOperandWith(0, domainIt->second);
1735 // Convert the scope metadata node.
1736 assert(domainIt->second && "Scope's domain should already be valid");
1737 llvm::SmallVector<llvm::Metadata *, 3> operands;
1738 // Placeholder for self-reference.
1739 operands.push_back(dummy.get());
1740 operands.push_back(domainIt->second);
1741 if (StringAttr description = aliasScopeAttr.getDescription())
1742 operands.push_back(llvm::MDString::get(ctx, description));
1743 scopeIt->second = llvm::MDNode::get(ctx, operands);
1744 // Self-reference for uniqueness.
1745 scopeIt->second->replaceOperandWith(0, scopeIt->second);
1746 return scopeIt->second;
1749 llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
1750 ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
1751 SmallVector<llvm::Metadata *> nodes;
1752 nodes.reserve(aliasScopeAttrs.size());
1753 for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
1754 nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
1755 return llvm::MDNode::get(getLLVMContext(), nodes);
1758 void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
1759 llvm::Instruction *inst) {
1760 auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
1761 if (!aliasScopeAttrs || aliasScopeAttrs.empty())
1762 return;
1763 llvm::MDNode *node = getOrCreateAliasScopes(
1764 llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
1765 inst->setMetadata(kind, node);
1768 populateScopeMetadata(op.getAliasScopesOrNull(),
1769 llvm::LLVMContext::MD_alias_scope);
1770 populateScopeMetadata(op.getNoAliasScopesOrNull(),
1771 llvm::LLVMContext::MD_noalias);
1774 llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
1775 return tbaaMetadataMapping.lookup(tbaaAttr);
1778 void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
1779 llvm::Instruction *inst) {
1780 ArrayAttr tagRefs = op.getTBAATagsOrNull();
1781 if (!tagRefs || tagRefs.empty())
1782 return;
1784 // LLVM IR currently does not support attaching more than one TBAA access tag
1785 // to a memory accessing instruction. It may be useful to support this in
1786 // future, but for the time being just ignore the metadata if MLIR operation
1787 // has multiple access tags.
1788 if (tagRefs.size() > 1) {
1789 op.emitWarning() << "TBAA access tags were not translated, because LLVM "
1790 "IR only supports a single tag per instruction";
1791 return;
1794 llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
1795 inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
1798 void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
1799 DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
1800 if (!weightsAttr)
1801 return;
1803 llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
1804 assert(inst && "expected the operation to have a mapping to an instruction");
1805 SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
1806 inst->setMetadata(
1807 llvm::LLVMContext::MD_prof,
1808 llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
1811 LogicalResult ModuleTranslation::createTBAAMetadata() {
1812 llvm::LLVMContext &ctx = llvmModule->getContext();
1813 llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
1815 // Walk the entire module and create all metadata nodes for the TBAA
1816 // attributes. The code below relies on two invariants of the
1817 // `AttrTypeWalker`:
1818 // 1. Attributes are visited in post-order: Since the attributes create a DAG,
1819 // this ensures that any lookups into `tbaaMetadataMapping` for child
1820 // attributes succeed.
1821 // 2. Attributes are only ever visited once: This way we don't leak any
1822 // LLVM metadata instances.
1823 AttrTypeWalker walker;
1824 walker.addWalk([&](TBAARootAttr root) {
1825 tbaaMetadataMapping.insert(
1826 {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
1829 walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
1830 SmallVector<llvm::Metadata *> operands;
1831 operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
1832 for (TBAAMemberAttr member : descriptor.getMembers()) {
1833 operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
1834 operands.push_back(llvm::ConstantAsMetadata::get(
1835 llvm::ConstantInt::get(offsetTy, member.getOffset())));
1838 tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
1841 walker.addWalk([&](TBAATagAttr tag) {
1842 SmallVector<llvm::Metadata *> operands;
1844 operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
1845 operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
1847 operands.push_back(llvm::ConstantAsMetadata::get(
1848 llvm::ConstantInt::get(offsetTy, tag.getOffset())));
1849 if (tag.getConstant())
1850 operands.push_back(
1851 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
1853 tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
1856 mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
1857 if (auto attr = analysisOpInterface.getTBAATagsOrNull())
1858 walker.walk(attr);
1861 return success();
1864 LogicalResult ModuleTranslation::createIdentMetadata() {
1865 if (auto attr = mlirModule->getAttrOfType<StringAttr>(
1866 LLVMDialect::getIdentAttrName())) {
1867 StringRef ident = attr;
1868 llvm::LLVMContext &ctx = llvmModule->getContext();
1869 llvm::NamedMDNode *namedMd =
1870 llvmModule->getOrInsertNamedMetadata(LLVMDialect::getIdentAttrName());
1871 llvm::MDNode *md = llvm::MDNode::get(ctx, llvm::MDString::get(ctx, ident));
1872 namedMd->addOperand(md);
1875 return success();
1878 LogicalResult ModuleTranslation::createCommandlineMetadata() {
1879 if (auto attr = mlirModule->getAttrOfType<StringAttr>(
1880 LLVMDialect::getCommandlineAttrName())) {
1881 StringRef cmdLine = attr;
1882 llvm::LLVMContext &ctx = llvmModule->getContext();
1883 llvm::NamedMDNode *nmd = llvmModule->getOrInsertNamedMetadata(
1884 LLVMDialect::getCommandlineAttrName());
1885 llvm::MDNode *md =
1886 llvm::MDNode::get(ctx, llvm::MDString::get(ctx, cmdLine));
1887 nmd->addOperand(md);
1890 return success();
1893 void ModuleTranslation::setLoopMetadata(Operation *op,
1894 llvm::Instruction *inst) {
1895 LoopAnnotationAttr attr =
1896 TypeSwitch<Operation *, LoopAnnotationAttr>(op)
1897 .Case<LLVM::BrOp, LLVM::CondBrOp>(
1898 [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
1899 if (!attr)
1900 return;
1901 llvm::MDNode *loopMD =
1902 loopAnnotationTranslation->translateLoopAnnotation(attr, op);
1903 inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
1906 void ModuleTranslation::setDisjointFlag(Operation *op, llvm::Value *value) {
1907 auto iface = cast<DisjointFlagInterface>(op);
1908 // We do a dyn_cast here in case the value got folded into a constant.
1909 if (auto disjointInst = dyn_cast<llvm::PossiblyDisjointInst>(value))
1910 disjointInst->setIsDisjoint(iface.getIsDisjoint());
1913 llvm::Type *ModuleTranslation::convertType(Type type) {
1914 return typeTranslator.translateType(type);
1917 /// A helper to look up remapped operands in the value remapping table.
1918 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
1919 SmallVector<llvm::Value *> remapped;
1920 remapped.reserve(values.size());
1921 for (Value v : values)
1922 remapped.push_back(lookupValue(v));
1923 return remapped;
1926 llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
1927 if (!ompBuilder) {
1928 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
1929 ompBuilder->initialize();
1931 // Flags represented as top-level OpenMP dialect attributes are set in
1932 // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
1933 // the default configuration.
1934 ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
1935 /* IsTargetDevice = */ false, /* IsGPU = */ false,
1936 /* OpenMPOffloadMandatory = */ false,
1937 /* HasRequiresReverseOffload = */ false,
1938 /* HasRequiresUnifiedAddress = */ false,
1939 /* HasRequiresUnifiedSharedMemory = */ false,
1940 /* HasRequiresDynamicAllocators = */ false));
1942 return ompBuilder.get();
1945 llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
1946 llvm::DILocalScope *scope) {
1947 return debugTranslation->translateLoc(loc, scope);
1950 llvm::DIExpression *
1951 ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) {
1952 return debugTranslation->translateExpression(attr);
1955 llvm::DIGlobalVariableExpression *
1956 ModuleTranslation::translateGlobalVariableExpression(
1957 LLVM::DIGlobalVariableExpressionAttr attr) {
1958 return debugTranslation->translateGlobalVariableExpression(attr);
1961 llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
1962 return debugTranslation->translate(attr);
1965 llvm::RoundingMode
1966 ModuleTranslation::translateRoundingMode(LLVM::RoundingMode rounding) {
1967 return convertRoundingModeToLLVM(rounding);
1970 llvm::fp::ExceptionBehavior ModuleTranslation::translateFPExceptionBehavior(
1971 LLVM::FPExceptionBehavior exceptionBehavior) {
1972 return convertFPExceptionBehaviorToLLVM(exceptionBehavior);
1975 llvm::NamedMDNode *
1976 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
1977 return llvmModule->getOrInsertNamedMetadata(name);
1980 void ModuleTranslation::StackFrame::anchor() {}
1982 static std::unique_ptr<llvm::Module>
1983 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
1984 StringRef name) {
1985 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1986 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1987 // ModuleTranslation can currently only construct modules in the old debug
1988 // info format, so set the flag accordingly.
1989 llvmModule->setNewDbgInfoFormatFlag(false);
1990 if (auto dataLayoutAttr =
1991 m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
1992 llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
1993 } else {
1994 FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
1995 if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
1996 if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
1997 llvmDataLayout =
1998 translateDataLayout(spec, DataLayout(iface), m->getLoc());
2000 } else if (auto mod = dyn_cast<ModuleOp>(m)) {
2001 if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
2002 llvmDataLayout =
2003 translateDataLayout(spec, DataLayout(mod), m->getLoc());
2006 if (failed(llvmDataLayout))
2007 return nullptr;
2008 llvmModule->setDataLayout(*llvmDataLayout);
2010 if (auto targetTripleAttr =
2011 m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
2012 llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
2014 return llvmModule;
2017 std::unique_ptr<llvm::Module>
2018 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
2019 StringRef name, bool disableVerification) {
2020 if (!satisfiesLLVMModule(module)) {
2021 module->emitOpError("can not be translated to an LLVMIR module");
2022 return nullptr;
2025 std::unique_ptr<llvm::Module> llvmModule =
2026 prepareLLVMModule(module, llvmContext, name);
2027 if (!llvmModule)
2028 return nullptr;
2030 LLVM::ensureDistinctSuccessors(module);
2031 LLVM::legalizeDIExpressionsRecursively(module);
2033 ModuleTranslation translator(module, std::move(llvmModule));
2034 llvm::IRBuilder<> llvmBuilder(llvmContext);
2036 // Convert module before functions and operations inside, so dialect
2037 // attributes can be used to change dialect-specific global configurations via
2038 // `amendOperation()`. These configurations can then influence the translation
2039 // of operations afterwards.
2040 if (failed(translator.convertOperation(*module, llvmBuilder)))
2041 return nullptr;
2043 if (failed(translator.convertComdats()))
2044 return nullptr;
2045 if (failed(translator.convertFunctionSignatures()))
2046 return nullptr;
2047 if (failed(translator.convertGlobals()))
2048 return nullptr;
2049 if (failed(translator.createTBAAMetadata()))
2050 return nullptr;
2051 if (failed(translator.createIdentMetadata()))
2052 return nullptr;
2053 if (failed(translator.createCommandlineMetadata()))
2054 return nullptr;
2056 // Convert other top-level operations if possible.
2057 for (Operation &o : getModuleBody(module).getOperations()) {
2058 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
2059 LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
2060 !o.hasTrait<OpTrait::IsTerminator>() &&
2061 failed(translator.convertOperation(o, llvmBuilder))) {
2062 return nullptr;
2066 // Operations in function bodies with symbolic references must be converted
2067 // after the top-level operations they refer to are declared, so we do it
2068 // last.
2069 if (failed(translator.convertFunctions()))
2070 return nullptr;
2072 // Once we've finished constructing elements in the module, we should convert
2073 // it to use the debug info format desired by LLVM.
2074 // See https://llvm.org/docs/RemoveDIsDebugInfo.html
2075 translator.llvmModule->setIsNewDbgInfoFormat(UseNewDbgInfoFormat);
2077 if (!disableVerification &&
2078 llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
2079 return nullptr;
2081 return std::move(translator.llvmModule);