[RISCV] Add MIPS P8700 processor (#119882)
[llvm-project.git] / mlir / test / Integration / Dialect / SparseTensor / python / test_SDDMM.py
blobb6f61a47dec1ec9bd1b8eb6fa8f5c641fe2315ec
1 # RUN: env SUPPORT_LIB=%mlir_c_runner_utils \
2 # RUN: %PYTHON %s | FileCheck %s
4 import ctypes
5 import numpy as np
6 import os
7 import sys
9 from mlir import ir
10 from mlir import runtime as rt
12 from mlir.dialects import sparse_tensor as st
13 from mlir.dialects import builtin
14 from mlir.dialects import func
15 from mlir.dialects.linalg.opdsl import lang as dsl
17 _SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
18 sys.path.append(_SCRIPT_PATH)
19 from tools import sparsifier
22 @dsl.linalg_structured_op
23 def sddmm_dsl(
24 A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
25 B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
26 S=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N),
27 C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True),
29 C[dsl.D.m, dsl.D.n] += (
30 S[dsl.D.m, dsl.D.n] * A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
34 def build_SDDMM(attr: st.EncodingAttr):
35 """Build SDDMM kernel.
37 This method generates a linalg op with for matrix multiplication using
38 just the Python API. Effectively, a generic linalg op is constructed
39 that computes C(i,j) += S(i,j) SUM_k A(i,k) B(k,j) for sparse S.
40 """
41 module = ir.Module.create()
42 f64 = ir.F64Type.get()
43 a = ir.RankedTensorType.get([8, 8], f64)
44 b = ir.RankedTensorType.get([8, 8], f64)
45 c = ir.RankedTensorType.get([8, 8], f64)
46 s = ir.RankedTensorType.get([8, 8], f64, attr)
47 arguments = [a, b, s, c]
48 with ir.InsertionPoint(module.body):
50 @func.FuncOp.from_py_func(*arguments)
51 def sddmm(*args):
52 return sddmm_dsl(args[0], args[1], args[2], outs=[args[3]])
54 return module
57 def boilerplate(attr: st.EncodingAttr):
58 """Returns boilerplate code for main driver."""
59 return f"""
60 func.func @main(%a: tensor<8x8xf64>,
61 %b: tensor<8x8xf64>,
62 %c: tensor<8x8xf64>) -> tensor<8x8xf64> attributes {{ llvm.emit_c_interface }} {{
63 %t = arith.constant sparse<[[0,0], [0,2], [4,1]], [1.0, 2.0, 3.0]> : tensor<8x8xf64>
64 %s = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, {attr}>
65 %0 = call @sddmm(%a, %b, %s, %c) : (tensor<8x8xf64>,
66 tensor<8x8xf64>,
67 tensor<8x8xf64, {attr}>,
68 tensor<8x8xf64>) -> tensor<8x8xf64>
69 return %0 : tensor<8x8xf64>
71 """
74 def build_compile_and_run_SDDMMM(attr: st.EncodingAttr, compiler):
75 # Build.
76 module = build_SDDMM(attr)
77 func = str(module.operation.regions[0].blocks[0].operations[0].operation)
78 module = ir.Module.parse(func + boilerplate(attr))
80 # Compile.
81 engine = compiler.compile_and_jit(module)
83 # Set up numpy input and buffer for output.
84 a = np.array(
86 [1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1],
87 [1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2],
88 [1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3],
89 [1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4],
90 [1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5],
91 [1.6, 2.6, 3.6, 4.6, 5.6, 6.6, 7.6, 8.6],
92 [1.7, 2.7, 3.7, 4.7, 5.7, 6.7, 7.7, 8.7],
93 [1.8, 2.8, 3.8, 4.8, 5.8, 6.8, 7.8, 8.8],
95 np.float64,
97 b = np.ones((8, 8), np.float64)
98 c = np.zeros((8, 8), np.float64)
100 mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
101 mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
102 mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
104 # Allocate a MemRefDescriptor to receive the output tensor.
105 # The buffer itself is allocated inside the MLIR code generation.
106 ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)()
107 mem_out = ctypes.pointer(ctypes.pointer(ref_out))
109 # Invoke the kernel and get numpy output.
110 # Built-in bufferization uses in-out buffers.
111 engine.invoke("main", mem_out, mem_a, mem_b, mem_c)
113 # Sanity check on computed result. Only a few elements
114 # are sampled from the full dense matrix multiplication.
115 full_matmul = np.matmul(a, b)
116 expected = np.zeros((8, 8), np.float64)
117 expected[0, 0] = 1.0 * full_matmul[0, 0]
118 expected[0, 2] = 2.0 * full_matmul[0, 2]
119 expected[4, 1] = 3.0 * full_matmul[4, 1]
120 c = rt.ranked_memref_to_numpy(mem_out[0])
121 if np.allclose(c, expected):
122 pass
123 else:
124 quit(f"FAILURE")
127 def main():
128 support_lib = os.getenv("SUPPORT_LIB")
129 assert support_lib is not None, "SUPPORT_LIB is undefined"
130 if not os.path.exists(support_lib):
131 raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib)
133 # CHECK-LABEL: TEST: testSDDMMM
134 print("\nTEST: testSDDMMM")
135 count = 0
136 with ir.Context() as ctx, ir.Location.unknown():
137 # Loop over various ways to compile and annotate the SDDMM kernel with
138 # a *single* sparse tensor. Note that we deliberate do not exhaustively
139 # search the full state space to reduce runtime of the test. It is
140 # straightforward to adapt the code below to explore more combinations.
141 # For these simple orderings, dim2lvl and lvl2dim are the same.
142 builder = st.EncodingAttr.build_level_type
143 fmt = st.LevelFormat
144 prop = st.LevelProperty
145 levels = [
146 [builder(fmt.compressed, [prop.non_unique]), builder(fmt.singleton)],
147 [builder(fmt.dense), builder(fmt.dense)],
148 [builder(fmt.dense), builder(fmt.compressed)],
149 [builder(fmt.compressed), builder(fmt.dense)],
150 [builder(fmt.compressed), builder(fmt.compressed)],
152 orderings = [
153 ir.AffineMap.get_permutation([0, 1]),
154 ir.AffineMap.get_permutation([1, 0]),
156 for level in levels:
157 for ordering in orderings:
158 for pwidth in [32]:
159 for iwidth in [32]:
160 for e in [True]:
161 attr = st.EncodingAttr.get(
162 level, ordering, ordering, pwidth, iwidth
164 opt = f"parallelization-strategy=none"
165 compiler = sparsifier.Sparsifier(
166 extras="",
167 options=opt,
168 opt_level=0,
169 shared_libs=[support_lib],
171 build_compile_and_run_SDDMMM(attr, compiler)
172 count = count + 1
173 # CHECK: Passed 10 tests
174 print("Passed ", count, "tests")
177 if __name__ == "__main__":
178 main()