[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Analysis / IVDescriptors.cpp
blob1aa324c6b5f380c1a4be88f76e405589de85662c
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/Analysis/DemandedBits.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/ScalarEvolution.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/KnownBits.h"
27 using namespace llvm;
28 using namespace llvm::PatternMatch;
30 #define DEBUG_TYPE "iv-descriptors"
32 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
33 SmallPtrSetImpl<Instruction *> &Set) {
34 for (const Use &Use : I->operands())
35 if (!Set.count(dyn_cast<Instruction>(Use)))
36 return false;
37 return true;
40 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
41 switch (Kind) {
42 default:
43 break;
44 case RecurKind::Add:
45 case RecurKind::Mul:
46 case RecurKind::Or:
47 case RecurKind::And:
48 case RecurKind::Xor:
49 case RecurKind::SMax:
50 case RecurKind::SMin:
51 case RecurKind::UMax:
52 case RecurKind::UMin:
53 case RecurKind::IAnyOf:
54 case RecurKind::FAnyOf:
55 return true;
57 return false;
60 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
61 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
64 /// Determines if Phi may have been type-promoted. If Phi has a single user
65 /// that ANDs the Phi with a type mask, return the user. RT is updated to
66 /// account for the narrower bit width represented by the mask, and the AND
67 /// instruction is added to CI.
68 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
69 SmallPtrSetImpl<Instruction *> &Visited,
70 SmallPtrSetImpl<Instruction *> &CI) {
71 if (!Phi->hasOneUse())
72 return Phi;
74 const APInt *M = nullptr;
75 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
77 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
78 // with a new integer type of the corresponding bit width.
79 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
80 int32_t Bits = (*M + 1).exactLogBase2();
81 if (Bits > 0) {
82 RT = IntegerType::get(Phi->getContext(), Bits);
83 Visited.insert(Phi);
84 CI.insert(J);
85 return J;
88 return Phi;
91 /// Compute the minimal bit width needed to represent a reduction whose exit
92 /// instruction is given by Exit.
93 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
94 DemandedBits *DB,
95 AssumptionCache *AC,
96 DominatorTree *DT) {
97 bool IsSigned = false;
98 const DataLayout &DL = Exit->getModule()->getDataLayout();
99 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
101 if (DB) {
102 // Use the demanded bits analysis to determine the bits that are live out
103 // of the exit instruction, rounding up to the nearest power of two. If the
104 // use of demanded bits results in a smaller bit width, we know the value
105 // must be positive (i.e., IsSigned = false), because if this were not the
106 // case, the sign bit would have been demanded.
107 auto Mask = DB->getDemandedBits(Exit);
108 MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero();
111 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
112 // If demanded bits wasn't able to limit the bit width, we can try to use
113 // value tracking instead. This can be the case, for example, if the value
114 // may be negative.
115 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
116 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
117 MaxBitWidth = NumTypeBits - NumSignBits;
118 KnownBits Bits = computeKnownBits(Exit, DL);
119 if (!Bits.isNonNegative()) {
120 // If the value is not known to be non-negative, we set IsSigned to true,
121 // meaning that we will use sext instructions instead of zext
122 // instructions to restore the original type.
123 IsSigned = true;
124 // Make sure at least one sign bit is included in the result, so it
125 // will get properly sign-extended.
126 ++MaxBitWidth;
129 MaxBitWidth = llvm::bit_ceil(MaxBitWidth);
131 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
132 IsSigned);
135 /// Collect cast instructions that can be ignored in the vectorizer's cost
136 /// model, given a reduction exit value and the minimal type in which the
137 // reduction can be represented. Also search casts to the recurrence type
138 // to find the minimum width used by the recurrence.
139 static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
140 Type *RecurrenceType,
141 SmallPtrSetImpl<Instruction *> &Casts,
142 unsigned &MinWidthCastToRecurTy) {
144 SmallVector<Instruction *, 8> Worklist;
145 SmallPtrSet<Instruction *, 8> Visited;
146 Worklist.push_back(Exit);
147 MinWidthCastToRecurTy = -1U;
149 while (!Worklist.empty()) {
150 Instruction *Val = Worklist.pop_back_val();
151 Visited.insert(Val);
152 if (auto *Cast = dyn_cast<CastInst>(Val)) {
153 if (Cast->getSrcTy() == RecurrenceType) {
154 // If the source type of a cast instruction is equal to the recurrence
155 // type, it will be eliminated, and should be ignored in the vectorizer
156 // cost model.
157 Casts.insert(Cast);
158 continue;
160 if (Cast->getDestTy() == RecurrenceType) {
161 // The minimum width used by the recurrence is found by checking for
162 // casts on its operands. The minimum width is used by the vectorizer
163 // when finding the widest type for in-loop reductions without any
164 // loads/stores.
165 MinWidthCastToRecurTy = std::min<unsigned>(
166 MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
167 continue;
170 // Add all operands to the work list if they are loop-varying values that
171 // we haven't yet visited.
172 for (Value *O : cast<User>(Val)->operands())
173 if (auto *I = dyn_cast<Instruction>(O))
174 if (TheLoop->contains(I) && !Visited.count(I))
175 Worklist.push_back(I);
179 // Check if a given Phi node can be recognized as an ordered reduction for
180 // vectorizing floating point operations without unsafe math.
181 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
182 Instruction *Exit, PHINode *Phi) {
183 // Currently only FAdd and FMulAdd are supported.
184 if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
185 return false;
187 if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
188 return false;
190 if (Kind == RecurKind::FMulAdd &&
191 !RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
192 return false;
194 // Ensure the exit instruction has only one user other than the reduction PHI
195 if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
196 return false;
198 // The only pattern accepted is the one in which the reduction PHI
199 // is used as one of the operands of the exit instruction
200 auto *Op0 = Exit->getOperand(0);
201 auto *Op1 = Exit->getOperand(1);
202 if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
203 return false;
204 if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
205 return false;
207 LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
208 << ", ExitInst: " << *Exit << "\n");
210 return true;
213 bool RecurrenceDescriptor::AddReductionVar(
214 PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF,
215 RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC,
216 DominatorTree *DT, ScalarEvolution *SE) {
217 if (Phi->getNumIncomingValues() != 2)
218 return false;
220 // Reduction variables are only found in the loop header block.
221 if (Phi->getParent() != TheLoop->getHeader())
222 return false;
224 // Obtain the reduction start value from the value that comes from the loop
225 // preheader.
226 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
228 // ExitInstruction is the single value which is used outside the loop.
229 // We only allow for a single reduction value to be used outside the loop.
230 // This includes users of the reduction, variables (which form a cycle
231 // which ends in the phi node).
232 Instruction *ExitInstruction = nullptr;
234 // Variable to keep last visited store instruction. By the end of the
235 // algorithm this variable will be either empty or having intermediate
236 // reduction value stored in invariant address.
237 StoreInst *IntermediateStore = nullptr;
239 // Indicates that we found a reduction operation in our scan.
240 bool FoundReduxOp = false;
242 // We start with the PHI node and scan for all of the users of this
243 // instruction. All users must be instructions that can be used as reduction
244 // variables (such as ADD). We must have a single out-of-block user. The cycle
245 // must include the original PHI.
246 bool FoundStartPHI = false;
248 // To recognize min/max patterns formed by a icmp select sequence, we store
249 // the number of instruction we saw from the recognized min/max pattern,
250 // to make sure we only see exactly the two instructions.
251 unsigned NumCmpSelectPatternInst = 0;
252 InstDesc ReduxDesc(false, nullptr);
254 // Data used for determining if the recurrence has been type-promoted.
255 Type *RecurrenceType = Phi->getType();
256 SmallPtrSet<Instruction *, 4> CastInsts;
257 unsigned MinWidthCastToRecurrenceType;
258 Instruction *Start = Phi;
259 bool IsSigned = false;
261 SmallPtrSet<Instruction *, 8> VisitedInsts;
262 SmallVector<Instruction *, 8> Worklist;
264 // Return early if the recurrence kind does not match the type of Phi. If the
265 // recurrence kind is arithmetic, we attempt to look through AND operations
266 // resulting from the type promotion performed by InstCombine. Vector
267 // operations are not limited to the legal integer widths, so we may be able
268 // to evaluate the reduction in the narrower width.
269 if (RecurrenceType->isFloatingPointTy()) {
270 if (!isFloatingPointRecurrenceKind(Kind))
271 return false;
272 } else if (RecurrenceType->isIntegerTy()) {
273 if (!isIntegerRecurrenceKind(Kind))
274 return false;
275 if (!isMinMaxRecurrenceKind(Kind))
276 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
277 } else {
278 // Pointer min/max may exist, but it is not supported as a reduction op.
279 return false;
282 Worklist.push_back(Start);
283 VisitedInsts.insert(Start);
285 // Start with all flags set because we will intersect this with the reduction
286 // flags from all the reduction operations.
287 FastMathFlags FMF = FastMathFlags::getFast();
289 // The first instruction in the use-def chain of the Phi node that requires
290 // exact floating point operations.
291 Instruction *ExactFPMathInst = nullptr;
293 // A value in the reduction can be used:
294 // - By the reduction:
295 // - Reduction operation:
296 // - One use of reduction value (safe).
297 // - Multiple use of reduction value (not safe).
298 // - PHI:
299 // - All uses of the PHI must be the reduction (safe).
300 // - Otherwise, not safe.
301 // - By instructions outside of the loop (safe).
302 // * One value may have several outside users, but all outside
303 // uses must be of the same value.
304 // - By store instructions with a loop invariant address (safe with
305 // the following restrictions):
306 // * If there are several stores, all must have the same address.
307 // * Final value should be stored in that loop invariant address.
308 // - By an instruction that is not part of the reduction (not safe).
309 // This is either:
310 // * An instruction type other than PHI or the reduction operation.
311 // * A PHI in the header other than the initial PHI.
312 while (!Worklist.empty()) {
313 Instruction *Cur = Worklist.pop_back_val();
315 // Store instructions are allowed iff it is the store of the reduction
316 // value to the same loop invariant memory location.
317 if (auto *SI = dyn_cast<StoreInst>(Cur)) {
318 if (!SE) {
319 LLVM_DEBUG(dbgs() << "Store instructions are not processed without "
320 << "Scalar Evolution Analysis\n");
321 return false;
324 const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand());
325 // Check it is the same address as previous stores
326 if (IntermediateStore) {
327 const SCEV *OtherScev =
328 SE->getSCEV(IntermediateStore->getPointerOperand());
330 if (OtherScev != PtrScev) {
331 LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses "
332 << "inside the loop: " << *SI->getPointerOperand()
333 << " and "
334 << *IntermediateStore->getPointerOperand() << '\n');
335 return false;
339 // Check the pointer is loop invariant
340 if (!SE->isLoopInvariant(PtrScev, TheLoop)) {
341 LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address "
342 << "inside the loop: " << *SI->getPointerOperand()
343 << '\n');
344 return false;
347 // IntermediateStore is always the last store in the loop.
348 IntermediateStore = SI;
349 continue;
352 // No Users.
353 // If the instruction has no users then this is a broken chain and can't be
354 // a reduction variable.
355 if (Cur->use_empty())
356 return false;
358 bool IsAPhi = isa<PHINode>(Cur);
360 // A header PHI use other than the original PHI.
361 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
362 return false;
364 // Reductions of instructions such as Div, and Sub is only possible if the
365 // LHS is the reduction variable.
366 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
367 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
368 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
369 return false;
371 // Any reduction instruction must be of one of the allowed kinds. We ignore
372 // the starting value (the Phi or an AND instruction if the Phi has been
373 // type-promoted).
374 if (Cur != Start) {
375 ReduxDesc =
376 isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
377 ExactFPMathInst = ExactFPMathInst == nullptr
378 ? ReduxDesc.getExactFPMathInst()
379 : ExactFPMathInst;
380 if (!ReduxDesc.isRecurrence())
381 return false;
382 // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
383 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
384 FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
385 if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
386 // Accept FMF on either fcmp or select of a min/max idiom.
387 // TODO: This is a hack to work-around the fact that FMF may not be
388 // assigned/propagated correctly. If that problem is fixed or we
389 // standardize on fmin/fmax via intrinsics, this can be removed.
390 if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
391 CurFMF |= FCmp->getFastMathFlags();
393 FMF &= CurFMF;
395 // Update this reduction kind if we matched a new instruction.
396 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
397 // state accurate while processing the worklist?
398 if (ReduxDesc.getRecKind() != RecurKind::None)
399 Kind = ReduxDesc.getRecKind();
402 bool IsASelect = isa<SelectInst>(Cur);
404 // A conditional reduction operation must only have 2 or less uses in
405 // VisitedInsts.
406 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
407 hasMultipleUsesOf(Cur, VisitedInsts, 2))
408 return false;
410 // A reduction operation must only have one use of the reduction value.
411 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
412 !isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(Cur, VisitedInsts, 1))
413 return false;
415 // All inputs to a PHI node must be a reduction value.
416 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
417 return false;
419 if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::IAnyOf) &&
420 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
421 ++NumCmpSelectPatternInst;
422 if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::FAnyOf) &&
423 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
424 ++NumCmpSelectPatternInst;
426 // Check whether we found a reduction operator.
427 FoundReduxOp |= !IsAPhi && Cur != Start;
429 // Process users of current instruction. Push non-PHI nodes after PHI nodes
430 // onto the stack. This way we are going to have seen all inputs to PHI
431 // nodes once we get to them.
432 SmallVector<Instruction *, 8> NonPHIs;
433 SmallVector<Instruction *, 8> PHIs;
434 for (User *U : Cur->users()) {
435 Instruction *UI = cast<Instruction>(U);
437 // If the user is a call to llvm.fmuladd then the instruction can only be
438 // the final operand.
439 if (isFMulAddIntrinsic(UI))
440 if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
441 return false;
443 // Check if we found the exit user.
444 BasicBlock *Parent = UI->getParent();
445 if (!TheLoop->contains(Parent)) {
446 // If we already know this instruction is used externally, move on to
447 // the next user.
448 if (ExitInstruction == Cur)
449 continue;
451 // Exit if you find multiple values used outside or if the header phi
452 // node is being used. In this case the user uses the value of the
453 // previous iteration, in which case we would loose "VF-1" iterations of
454 // the reduction operation if we vectorize.
455 if (ExitInstruction != nullptr || Cur == Phi)
456 return false;
458 // The instruction used by an outside user must be the last instruction
459 // before we feed back to the reduction phi. Otherwise, we loose VF-1
460 // operations on the value.
461 if (!is_contained(Phi->operands(), Cur))
462 return false;
464 ExitInstruction = Cur;
465 continue;
468 // Process instructions only once (termination). Each reduction cycle
469 // value must only be used once, except by phi nodes and min/max
470 // reductions which are represented as a cmp followed by a select.
471 InstDesc IgnoredVal(false, nullptr);
472 if (VisitedInsts.insert(UI).second) {
473 if (isa<PHINode>(UI)) {
474 PHIs.push_back(UI);
475 } else {
476 StoreInst *SI = dyn_cast<StoreInst>(UI);
477 if (SI && SI->getPointerOperand() == Cur) {
478 // Reduction variable chain can only be stored somewhere but it
479 // can't be used as an address.
480 return false;
482 NonPHIs.push_back(UI);
484 } else if (!isa<PHINode>(UI) &&
485 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
486 !isa<SelectInst>(UI)) ||
487 (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
488 !isAnyOfPattern(TheLoop, Phi, UI, IgnoredVal)
489 .isRecurrence() &&
490 !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
491 return false;
493 // Remember that we completed the cycle.
494 if (UI == Phi)
495 FoundStartPHI = true;
497 Worklist.append(PHIs.begin(), PHIs.end());
498 Worklist.append(NonPHIs.begin(), NonPHIs.end());
501 // This means we have seen one but not the other instruction of the
502 // pattern or more than just a select and cmp. Zero implies that we saw a
503 // llvm.min/max intrinsic, which is always OK.
504 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
505 NumCmpSelectPatternInst != 0)
506 return false;
508 if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
509 return false;
511 if (IntermediateStore) {
512 // Check that stored value goes to the phi node again. This way we make sure
513 // that the value stored in IntermediateStore is indeed the final reduction
514 // value.
515 if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) {
516 LLVM_DEBUG(dbgs() << "Not a final reduction value stored: "
517 << *IntermediateStore << '\n');
518 return false;
521 // If there is an exit instruction it's value should be stored in
522 // IntermediateStore
523 if (ExitInstruction &&
524 IntermediateStore->getValueOperand() != ExitInstruction) {
525 LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not "
526 "store last calculated value of the reduction: "
527 << *IntermediateStore << '\n');
528 return false;
531 // If all uses are inside the loop (intermediate stores), then the
532 // reduction value after the loop will be the one used in the last store.
533 if (!ExitInstruction)
534 ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand());
537 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
538 return false;
540 const bool IsOrdered =
541 checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
543 if (Start != Phi) {
544 // If the starting value is not the same as the phi node, we speculatively
545 // looked through an 'and' instruction when evaluating a potential
546 // arithmetic reduction to determine if it may have been type-promoted.
548 // We now compute the minimal bit width that is required to represent the
549 // reduction. If this is the same width that was indicated by the 'and', we
550 // can represent the reduction in the smaller type. The 'and' instruction
551 // will be eliminated since it will essentially be a cast instruction that
552 // can be ignore in the cost model. If we compute a different type than we
553 // did when evaluating the 'and', the 'and' will not be eliminated, and we
554 // will end up with different kinds of operations in the recurrence
555 // expression (e.g., IntegerAND, IntegerADD). We give up if this is
556 // the case.
558 // The vectorizer relies on InstCombine to perform the actual
559 // type-shrinking. It does this by inserting instructions to truncate the
560 // exit value of the reduction to the width indicated by RecurrenceType and
561 // then extend this value back to the original width. If IsSigned is false,
562 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
563 // used.
565 // TODO: We should not rely on InstCombine to rewrite the reduction in the
566 // smaller type. We should just generate a correctly typed expression
567 // to begin with.
568 Type *ComputedType;
569 std::tie(ComputedType, IsSigned) =
570 computeRecurrenceType(ExitInstruction, DB, AC, DT);
571 if (ComputedType != RecurrenceType)
572 return false;
575 // Collect cast instructions and the minimum width used by the recurrence.
576 // If the starting value is not the same as the phi node and the computed
577 // recurrence type is equal to the recurrence type, the recurrence expression
578 // will be represented in a narrower or wider type. If there are any cast
579 // instructions that will be unnecessary, collect them in CastsFromRecurTy.
580 // Note that the 'and' instruction was already included in this list.
582 // TODO: A better way to represent this may be to tag in some way all the
583 // instructions that are a part of the reduction. The vectorizer cost
584 // model could then apply the recurrence type to these instructions,
585 // without needing a white list of instructions to ignore.
586 // This may also be useful for the inloop reductions, if it can be
587 // kept simple enough.
588 collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
589 MinWidthCastToRecurrenceType);
591 // We found a reduction var if we have reached the original phi node and we
592 // only have a single instruction with out-of-loop users.
594 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
595 // is saved as part of the RecurrenceDescriptor.
597 // Save the description of this reduction variable.
598 RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind,
599 FMF, ExactFPMathInst, RecurrenceType, IsSigned,
600 IsOrdered, CastInsts, MinWidthCastToRecurrenceType);
601 RedDes = RD;
603 return true;
606 // We are looking for loops that do something like this:
607 // int r = 0;
608 // for (int i = 0; i < n; i++) {
609 // if (src[i] > 3)
610 // r = 3;
611 // }
612 // where the reduction value (r) only has two states, in this example 0 or 3.
613 // The generated LLVM IR for this type of loop will be like this:
614 // for.body:
615 // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
616 // ...
617 // %cmp = icmp sgt i32 %5, 3
618 // %spec.select = select i1 %cmp, i32 3, i32 %r
619 // ...
620 // In general we can support vectorization of loops where 'r' flips between
621 // any two non-constants, provided they are loop invariant. The only thing
622 // we actually care about at the end of the loop is whether or not any lane
623 // in the selected vector is different from the start value. The final
624 // across-vector reduction after the loop simply involves choosing the start
625 // value if nothing changed (0 in the example above) or the other selected
626 // value (3 in the example above).
627 RecurrenceDescriptor::InstDesc
628 RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi,
629 Instruction *I, InstDesc &Prev) {
630 // We must handle the select(cmp(),x,y) as a single instruction. Advance to
631 // the select.
632 CmpInst::Predicate Pred;
633 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
634 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
635 return InstDesc(Select, Prev.getRecKind());
638 // Only match select with single use cmp condition.
639 if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
640 m_Value())))
641 return InstDesc(false, I);
643 SelectInst *SI = cast<SelectInst>(I);
644 Value *NonPhi = nullptr;
646 if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
647 NonPhi = SI->getFalseValue();
648 else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
649 NonPhi = SI->getTrueValue();
650 else
651 return InstDesc(false, I);
653 // We are looking for selects of the form:
654 // select(cmp(), phi, loop_invariant) or
655 // select(cmp(), loop_invariant, phi)
656 if (!Loop->isLoopInvariant(NonPhi))
657 return InstDesc(false, I);
659 return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::IAnyOf
660 : RecurKind::FAnyOf);
663 RecurrenceDescriptor::InstDesc
664 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
665 const InstDesc &Prev) {
666 assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
667 "Expected a cmp or select or call instruction");
668 if (!isMinMaxRecurrenceKind(Kind))
669 return InstDesc(false, I);
671 // We must handle the select(cmp()) as a single instruction. Advance to the
672 // select.
673 CmpInst::Predicate Pred;
674 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
675 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
676 return InstDesc(Select, Prev.getRecKind());
679 // Only match select with single use cmp condition, or a min/max intrinsic.
680 if (!isa<IntrinsicInst>(I) &&
681 !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
682 m_Value())))
683 return InstDesc(false, I);
685 // Look for a min/max pattern.
686 if (match(I, m_UMin(m_Value(), m_Value())))
687 return InstDesc(Kind == RecurKind::UMin, I);
688 if (match(I, m_UMax(m_Value(), m_Value())))
689 return InstDesc(Kind == RecurKind::UMax, I);
690 if (match(I, m_SMax(m_Value(), m_Value())))
691 return InstDesc(Kind == RecurKind::SMax, I);
692 if (match(I, m_SMin(m_Value(), m_Value())))
693 return InstDesc(Kind == RecurKind::SMin, I);
694 if (match(I, m_OrdFMin(m_Value(), m_Value())))
695 return InstDesc(Kind == RecurKind::FMin, I);
696 if (match(I, m_OrdFMax(m_Value(), m_Value())))
697 return InstDesc(Kind == RecurKind::FMax, I);
698 if (match(I, m_UnordFMin(m_Value(), m_Value())))
699 return InstDesc(Kind == RecurKind::FMin, I);
700 if (match(I, m_UnordFMax(m_Value(), m_Value())))
701 return InstDesc(Kind == RecurKind::FMax, I);
702 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
703 return InstDesc(Kind == RecurKind::FMin, I);
704 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
705 return InstDesc(Kind == RecurKind::FMax, I);
706 if (match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())))
707 return InstDesc(Kind == RecurKind::FMinimum, I);
708 if (match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value())))
709 return InstDesc(Kind == RecurKind::FMaximum, I);
711 return InstDesc(false, I);
714 /// Returns true if the select instruction has users in the compare-and-add
715 /// reduction pattern below. The select instruction argument is the last one
716 /// in the sequence.
718 /// %sum.1 = phi ...
719 /// ...
720 /// %cmp = fcmp pred %0, %CFP
721 /// %add = fadd %0, %sum.1
722 /// %sum.2 = select %cmp, %add, %sum.1
723 RecurrenceDescriptor::InstDesc
724 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
725 SelectInst *SI = dyn_cast<SelectInst>(I);
726 if (!SI)
727 return InstDesc(false, I);
729 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
730 // Only handle single use cases for now.
731 if (!CI || !CI->hasOneUse())
732 return InstDesc(false, I);
734 Value *TrueVal = SI->getTrueValue();
735 Value *FalseVal = SI->getFalseValue();
736 // Handle only when either of operands of select instruction is a PHI
737 // node for now.
738 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
739 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
740 return InstDesc(false, I);
742 Instruction *I1 =
743 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
744 : dyn_cast<Instruction>(TrueVal);
745 if (!I1 || !I1->isBinaryOp())
746 return InstDesc(false, I);
748 Value *Op1, *Op2;
749 if (!(((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
750 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
751 I1->isFast()) ||
752 (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) ||
753 ((m_Add(m_Value(Op1), m_Value(Op2)).match(I1) ||
754 m_Sub(m_Value(Op1), m_Value(Op2)).match(I1))) ||
755 (m_Mul(m_Value(Op1), m_Value(Op2)).match(I1))))
756 return InstDesc(false, I);
758 Instruction *IPhi = isa<PHINode>(*Op1) ? dyn_cast<Instruction>(Op1)
759 : dyn_cast<Instruction>(Op2);
760 if (!IPhi || IPhi != FalseVal)
761 return InstDesc(false, I);
763 return InstDesc(true, SI);
766 RecurrenceDescriptor::InstDesc
767 RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
768 Instruction *I, RecurKind Kind,
769 InstDesc &Prev, FastMathFlags FuncFMF) {
770 assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
771 switch (I->getOpcode()) {
772 default:
773 return InstDesc(false, I);
774 case Instruction::PHI:
775 return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
776 case Instruction::Sub:
777 case Instruction::Add:
778 return InstDesc(Kind == RecurKind::Add, I);
779 case Instruction::Mul:
780 return InstDesc(Kind == RecurKind::Mul, I);
781 case Instruction::And:
782 return InstDesc(Kind == RecurKind::And, I);
783 case Instruction::Or:
784 return InstDesc(Kind == RecurKind::Or, I);
785 case Instruction::Xor:
786 return InstDesc(Kind == RecurKind::Xor, I);
787 case Instruction::FDiv:
788 case Instruction::FMul:
789 return InstDesc(Kind == RecurKind::FMul, I,
790 I->hasAllowReassoc() ? nullptr : I);
791 case Instruction::FSub:
792 case Instruction::FAdd:
793 return InstDesc(Kind == RecurKind::FAdd, I,
794 I->hasAllowReassoc() ? nullptr : I);
795 case Instruction::Select:
796 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul ||
797 Kind == RecurKind::Add || Kind == RecurKind::Mul)
798 return isConditionalRdxPattern(Kind, I);
799 [[fallthrough]];
800 case Instruction::FCmp:
801 case Instruction::ICmp:
802 case Instruction::Call:
803 if (isAnyOfRecurrenceKind(Kind))
804 return isAnyOfPattern(L, OrigPhi, I, Prev);
805 auto HasRequiredFMF = [&]() {
806 if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros())
807 return true;
808 if (isa<FPMathOperator>(I) && I->hasNoNaNs() && I->hasNoSignedZeros())
809 return true;
810 // minimum and maximum intrinsics do not require nsz and nnan flags since
811 // NaN and signed zeroes are propagated in the intrinsic implementation.
812 return match(I, m_Intrinsic<Intrinsic::minimum>(m_Value(), m_Value())) ||
813 match(I, m_Intrinsic<Intrinsic::maximum>(m_Value(), m_Value()));
815 if (isIntMinMaxRecurrenceKind(Kind) ||
816 (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind)))
817 return isMinMaxPattern(I, Kind, Prev);
818 else if (isFMulAddIntrinsic(I))
819 return InstDesc(Kind == RecurKind::FMulAdd, I,
820 I->hasAllowReassoc() ? nullptr : I);
821 return InstDesc(false, I);
825 bool RecurrenceDescriptor::hasMultipleUsesOf(
826 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
827 unsigned MaxNumUses) {
828 unsigned NumUses = 0;
829 for (const Use &U : I->operands()) {
830 if (Insts.count(dyn_cast<Instruction>(U)))
831 ++NumUses;
832 if (NumUses > MaxNumUses)
833 return true;
836 return false;
839 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
840 RecurrenceDescriptor &RedDes,
841 DemandedBits *DB, AssumptionCache *AC,
842 DominatorTree *DT,
843 ScalarEvolution *SE) {
844 BasicBlock *Header = TheLoop->getHeader();
845 Function &F = *Header->getParent();
846 FastMathFlags FMF;
847 FMF.setNoNaNs(
848 F.getFnAttribute("no-nans-fp-math").getValueAsBool());
849 FMF.setNoSignedZeros(
850 F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
852 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT,
853 SE)) {
854 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
855 return true;
857 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT,
858 SE)) {
859 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
860 return true;
862 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT,
863 SE)) {
864 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
865 return true;
867 if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT,
868 SE)) {
869 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
870 return true;
872 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT,
873 SE)) {
874 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
875 return true;
877 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT,
878 SE)) {
879 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
880 return true;
882 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT,
883 SE)) {
884 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
885 return true;
887 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT,
888 SE)) {
889 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
890 return true;
892 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT,
893 SE)) {
894 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
895 return true;
897 if (AddReductionVar(Phi, RecurKind::IAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
898 SE)) {
899 LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
900 << *Phi << "\n");
901 return true;
903 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT,
904 SE)) {
905 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
906 return true;
908 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT,
909 SE)) {
910 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
911 return true;
913 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT,
914 SE)) {
915 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
916 return true;
918 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT,
919 SE)) {
920 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
921 return true;
923 if (AddReductionVar(Phi, RecurKind::FAnyOf, TheLoop, FMF, RedDes, DB, AC, DT,
924 SE)) {
925 LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
926 << " PHI." << *Phi << "\n");
927 return true;
929 if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT,
930 SE)) {
931 LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
932 return true;
934 if (AddReductionVar(Phi, RecurKind::FMaximum, TheLoop, FMF, RedDes, DB, AC, DT,
935 SE)) {
936 LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n");
937 return true;
939 if (AddReductionVar(Phi, RecurKind::FMinimum, TheLoop, FMF, RedDes, DB, AC, DT,
940 SE)) {
941 LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n");
942 return true;
944 // Not a reduction of known type.
945 return false;
948 bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop,
949 DominatorTree *DT) {
951 // Ensure the phi node is in the loop header and has two incoming values.
952 if (Phi->getParent() != TheLoop->getHeader() ||
953 Phi->getNumIncomingValues() != 2)
954 return false;
956 // Ensure the loop has a preheader and a single latch block. The loop
957 // vectorizer will need the latch to set up the next iteration of the loop.
958 auto *Preheader = TheLoop->getLoopPreheader();
959 auto *Latch = TheLoop->getLoopLatch();
960 if (!Preheader || !Latch)
961 return false;
963 // Ensure the phi node's incoming blocks are the loop preheader and latch.
964 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
965 Phi->getBasicBlockIndex(Latch) < 0)
966 return false;
968 // Get the previous value. The previous value comes from the latch edge while
969 // the initial value comes from the preheader edge.
970 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
972 // If Previous is a phi in the header, go through incoming values from the
973 // latch until we find a non-phi value. Use this as the new Previous, all uses
974 // in the header will be dominated by the original phi, but need to be moved
975 // after the non-phi previous value.
976 SmallPtrSet<PHINode *, 4> SeenPhis;
977 while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Previous)) {
978 if (PrevPhi->getParent() != Phi->getParent())
979 return false;
980 if (!SeenPhis.insert(PrevPhi).second)
981 return false;
982 Previous = dyn_cast<Instruction>(PrevPhi->getIncomingValueForBlock(Latch));
985 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
986 return false;
988 // Ensure every user of the phi node (recursively) is dominated by the
989 // previous value. The dominance requirement ensures the loop vectorizer will
990 // not need to vectorize the initial value prior to the first iteration of the
991 // loop.
992 // TODO: Consider extending this sinking to handle memory instructions.
994 SmallPtrSet<Value *, 8> Seen;
995 BasicBlock *PhiBB = Phi->getParent();
996 SmallVector<Instruction *, 8> WorkList;
997 auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
998 // Cyclic dependence.
999 if (Previous == SinkCandidate)
1000 return false;
1002 if (!Seen.insert(SinkCandidate).second)
1003 return true;
1004 if (DT->dominates(Previous,
1005 SinkCandidate)) // We already are good w/o sinking.
1006 return true;
1008 if (SinkCandidate->getParent() != PhiBB ||
1009 SinkCandidate->mayHaveSideEffects() ||
1010 SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
1011 return false;
1013 // If we reach a PHI node that is not dominated by Previous, we reached a
1014 // header PHI. No need for sinking.
1015 if (isa<PHINode>(SinkCandidate))
1016 return true;
1018 // Sink User tentatively and check its users
1019 WorkList.push_back(SinkCandidate);
1020 return true;
1023 WorkList.push_back(Phi);
1024 // Try to recursively sink instructions and their users after Previous.
1025 while (!WorkList.empty()) {
1026 Instruction *Current = WorkList.pop_back_val();
1027 for (User *User : Current->users()) {
1028 if (!TryToPushSinkCandidate(cast<Instruction>(User)))
1029 return false;
1033 return true;
1036 /// This function returns the identity element (or neutral element) for
1037 /// the operation K.
1038 Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
1039 FastMathFlags FMF) const {
1040 switch (K) {
1041 case RecurKind::Xor:
1042 case RecurKind::Add:
1043 case RecurKind::Or:
1044 // Adding, Xoring, Oring zero to a number does not change it.
1045 return ConstantInt::get(Tp, 0);
1046 case RecurKind::Mul:
1047 // Multiplying a number by 1 does not change it.
1048 return ConstantInt::get(Tp, 1);
1049 case RecurKind::And:
1050 // AND-ing a number with an all-1 value does not change it.
1051 return ConstantInt::get(Tp, -1, true);
1052 case RecurKind::FMul:
1053 // Multiplying a number by 1 does not change it.
1054 return ConstantFP::get(Tp, 1.0L);
1055 case RecurKind::FMulAdd:
1056 case RecurKind::FAdd:
1057 // Adding zero to a number does not change it.
1058 // FIXME: Ideally we should not need to check FMF for FAdd and should always
1059 // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
1060 // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
1061 // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
1062 // mean we can then remove the check for noSignedZeros() below (see D98963).
1063 if (FMF.noSignedZeros())
1064 return ConstantFP::get(Tp, 0.0L);
1065 return ConstantFP::get(Tp, -0.0L);
1066 case RecurKind::UMin:
1067 return ConstantInt::get(Tp, -1, true);
1068 case RecurKind::UMax:
1069 return ConstantInt::get(Tp, 0);
1070 case RecurKind::SMin:
1071 return ConstantInt::get(Tp,
1072 APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
1073 case RecurKind::SMax:
1074 return ConstantInt::get(Tp,
1075 APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
1076 case RecurKind::FMin:
1077 assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1078 "nnan, nsz is expected to be set for FP min reduction.");
1079 return ConstantFP::getInfinity(Tp, false /*Negative*/);
1080 case RecurKind::FMax:
1081 assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1082 "nnan, nsz is expected to be set for FP max reduction.");
1083 return ConstantFP::getInfinity(Tp, true /*Negative*/);
1084 case RecurKind::FMinimum:
1085 return ConstantFP::getInfinity(Tp, false /*Negative*/);
1086 case RecurKind::FMaximum:
1087 return ConstantFP::getInfinity(Tp, true /*Negative*/);
1088 case RecurKind::IAnyOf:
1089 case RecurKind::FAnyOf:
1090 return getRecurrenceStartValue();
1091 break;
1092 default:
1093 llvm_unreachable("Unknown recurrence kind");
1097 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
1098 switch (Kind) {
1099 case RecurKind::Add:
1100 return Instruction::Add;
1101 case RecurKind::Mul:
1102 return Instruction::Mul;
1103 case RecurKind::Or:
1104 return Instruction::Or;
1105 case RecurKind::And:
1106 return Instruction::And;
1107 case RecurKind::Xor:
1108 return Instruction::Xor;
1109 case RecurKind::FMul:
1110 return Instruction::FMul;
1111 case RecurKind::FMulAdd:
1112 case RecurKind::FAdd:
1113 return Instruction::FAdd;
1114 case RecurKind::SMax:
1115 case RecurKind::SMin:
1116 case RecurKind::UMax:
1117 case RecurKind::UMin:
1118 case RecurKind::IAnyOf:
1119 return Instruction::ICmp;
1120 case RecurKind::FMax:
1121 case RecurKind::FMin:
1122 case RecurKind::FMaximum:
1123 case RecurKind::FMinimum:
1124 case RecurKind::FAnyOf:
1125 return Instruction::FCmp;
1126 default:
1127 llvm_unreachable("Unknown recurrence operation");
1131 SmallVector<Instruction *, 4>
1132 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
1133 SmallVector<Instruction *, 4> ReductionOperations;
1134 unsigned RedOp = getOpcode(Kind);
1136 // Search down from the Phi to the LoopExitInstr, looking for instructions
1137 // with a single user of the correct type for the reduction.
1139 // Note that we check that the type of the operand is correct for each item in
1140 // the chain, including the last (the loop exit value). This can come up from
1141 // sub, which would otherwise be treated as an add reduction. MinMax also need
1142 // to check for a pair of icmp/select, for which we use getNextInstruction and
1143 // isCorrectOpcode functions to step the right number of instruction, and
1144 // check the icmp/select pair.
1145 // FIXME: We also do not attempt to look through Select's yet, which might
1146 // be part of the reduction chain, or attempt to looks through And's to find a
1147 // smaller bitwidth. Subs are also currently not allowed (which are usually
1148 // treated as part of a add reduction) as they are expected to generally be
1149 // more expensive than out-of-loop reductions, and need to be costed more
1150 // carefully.
1151 unsigned ExpectedUses = 1;
1152 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1153 ExpectedUses = 2;
1155 auto getNextInstruction = [&](Instruction *Cur) -> Instruction * {
1156 for (auto *User : Cur->users()) {
1157 Instruction *UI = cast<Instruction>(User);
1158 if (isa<PHINode>(UI))
1159 continue;
1160 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1161 // We are expecting a icmp/select pair, which we go to the next select
1162 // instruction if we can. We already know that Cur has 2 uses.
1163 if (isa<SelectInst>(UI))
1164 return UI;
1165 continue;
1167 return UI;
1169 return nullptr;
1171 auto isCorrectOpcode = [&](Instruction *Cur) {
1172 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1173 Value *LHS, *RHS;
1174 return SelectPatternResult::isMinOrMax(
1175 matchSelectPattern(Cur, LHS, RHS).Flavor);
1177 // Recognize a call to the llvm.fmuladd intrinsic.
1178 if (isFMulAddIntrinsic(Cur))
1179 return true;
1181 return Cur->getOpcode() == RedOp;
1184 // Attempt to look through Phis which are part of the reduction chain
1185 unsigned ExtraPhiUses = 0;
1186 Instruction *RdxInstr = LoopExitInstr;
1187 if (auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) {
1188 if (ExitPhi->getNumIncomingValues() != 2)
1189 return {};
1191 Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0));
1192 Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1));
1194 Instruction *Chain = nullptr;
1195 if (Inc0 == Phi)
1196 Chain = Inc1;
1197 else if (Inc1 == Phi)
1198 Chain = Inc0;
1199 else
1200 return {};
1202 RdxInstr = Chain;
1203 ExtraPhiUses = 1;
1206 // The loop exit instruction we check first (as a quick test) but add last. We
1207 // check the opcode is correct (and dont allow them to be Subs) and that they
1208 // have expected to have the expected number of uses. They will have one use
1209 // from the phi and one from a LCSSA value, no matter the type.
1210 if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2))
1211 return {};
1213 // Check that the Phi has one (or two for min/max) uses, plus an extra use
1214 // for conditional reductions.
1215 if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses))
1216 return {};
1218 Instruction *Cur = getNextInstruction(Phi);
1220 // Each other instruction in the chain should have the expected number of uses
1221 // and be the correct opcode.
1222 while (Cur != RdxInstr) {
1223 if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1224 return {};
1226 ReductionOperations.push_back(Cur);
1227 Cur = getNextInstruction(Cur);
1230 ReductionOperations.push_back(Cur);
1231 return ReductionOperations;
1234 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1235 const SCEV *Step, BinaryOperator *BOp,
1236 SmallVectorImpl<Instruction *> *Casts)
1237 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
1238 assert(IK != IK_NoInduction && "Not an induction");
1240 // Start value type should match the induction kind and the value
1241 // itself should not be null.
1242 assert(StartValue && "StartValue is null");
1243 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1244 "StartValue is not a pointer for pointer induction");
1245 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1246 "StartValue is not an integer for integer induction");
1248 // Check the Step Value. It should be non-zero integer value.
1249 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1250 "Step value is zero");
1252 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1253 "StepValue is not an integer");
1255 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1256 "StepValue is not FP for FpInduction");
1257 assert((IK != IK_FpInduction ||
1258 (InductionBinOp &&
1259 (InductionBinOp->getOpcode() == Instruction::FAdd ||
1260 InductionBinOp->getOpcode() == Instruction::FSub))) &&
1261 "Binary opcode should be specified for FP induction");
1263 if (Casts) {
1264 for (auto &Inst : *Casts) {
1265 RedundantCasts.push_back(Inst);
1270 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1271 if (isa<SCEVConstant>(Step))
1272 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1273 return nullptr;
1276 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1277 ScalarEvolution *SE,
1278 InductionDescriptor &D) {
1280 // Here we only handle FP induction variables.
1281 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1283 if (TheLoop->getHeader() != Phi->getParent())
1284 return false;
1286 // The loop may have multiple entrances or multiple exits; we can analyze
1287 // this phi if it has a unique entry value and a unique backedge value.
1288 if (Phi->getNumIncomingValues() != 2)
1289 return false;
1290 Value *BEValue = nullptr, *StartValue = nullptr;
1291 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1292 BEValue = Phi->getIncomingValue(0);
1293 StartValue = Phi->getIncomingValue(1);
1294 } else {
1295 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1296 "Unexpected Phi node in the loop");
1297 BEValue = Phi->getIncomingValue(1);
1298 StartValue = Phi->getIncomingValue(0);
1301 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1302 if (!BOp)
1303 return false;
1305 Value *Addend = nullptr;
1306 if (BOp->getOpcode() == Instruction::FAdd) {
1307 if (BOp->getOperand(0) == Phi)
1308 Addend = BOp->getOperand(1);
1309 else if (BOp->getOperand(1) == Phi)
1310 Addend = BOp->getOperand(0);
1311 } else if (BOp->getOpcode() == Instruction::FSub)
1312 if (BOp->getOperand(0) == Phi)
1313 Addend = BOp->getOperand(1);
1315 if (!Addend)
1316 return false;
1318 // The addend should be loop invariant
1319 if (auto *I = dyn_cast<Instruction>(Addend))
1320 if (TheLoop->contains(I))
1321 return false;
1323 // FP Step has unknown SCEV
1324 const SCEV *Step = SE->getUnknown(Addend);
1325 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1326 return true;
1329 /// This function is called when we suspect that the update-chain of a phi node
1330 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1331 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1332 /// predicate P under which the SCEV expression for the phi can be the
1333 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1334 /// cast instructions that are involved in the update-chain of this induction.
1335 /// A caller that adds the required runtime predicate can be free to drop these
1336 /// cast instructions, and compute the phi using \p AR (instead of some scev
1337 /// expression with casts).
1339 /// For example, without a predicate the scev expression can take the following
1340 /// form:
1341 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1343 /// It corresponds to the following IR sequence:
1344 /// %for.body:
1345 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1346 /// %casted_phi = "ExtTrunc i64 %x"
1347 /// %add = add i64 %casted_phi, %step
1349 /// where %x is given in \p PN,
1350 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1351 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1352 /// several forms, for example, such as:
1353 /// ExtTrunc1: %casted_phi = and %x, 2^n-1
1354 /// or:
1355 /// ExtTrunc2: %t = shl %x, m
1356 /// %casted_phi = ashr %t, m
1358 /// If we are able to find such sequence, we return the instructions
1359 /// we found, namely %casted_phi and the instructions on its use-def chain up
1360 /// to the phi (not including the phi).
1361 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1362 const SCEVUnknown *PhiScev,
1363 const SCEVAddRecExpr *AR,
1364 SmallVectorImpl<Instruction *> &CastInsts) {
1366 assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1367 auto *PN = cast<PHINode>(PhiScev->getValue());
1368 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1369 const Loop *L = AR->getLoop();
1371 // Find any cast instructions that participate in the def-use chain of
1372 // PhiScev in the loop.
1373 // FORNOW/TODO: We currently expect the def-use chain to include only
1374 // two-operand instructions, where one of the operands is an invariant.
1375 // createAddRecFromPHIWithCasts() currently does not support anything more
1376 // involved than that, so we keep the search simple. This can be
1377 // extended/generalized as needed.
1379 auto getDef = [&](const Value *Val) -> Value * {
1380 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1381 if (!BinOp)
1382 return nullptr;
1383 Value *Op0 = BinOp->getOperand(0);
1384 Value *Op1 = BinOp->getOperand(1);
1385 Value *Def = nullptr;
1386 if (L->isLoopInvariant(Op0))
1387 Def = Op1;
1388 else if (L->isLoopInvariant(Op1))
1389 Def = Op0;
1390 return Def;
1393 // Look for the instruction that defines the induction via the
1394 // loop backedge.
1395 BasicBlock *Latch = L->getLoopLatch();
1396 if (!Latch)
1397 return false;
1398 Value *Val = PN->getIncomingValueForBlock(Latch);
1399 if (!Val)
1400 return false;
1402 // Follow the def-use chain until the induction phi is reached.
1403 // If on the way we encounter a Value that has the same SCEV Expr as the
1404 // phi node, we can consider the instructions we visit from that point
1405 // as part of the cast-sequence that can be ignored.
1406 bool InCastSequence = false;
1407 auto *Inst = dyn_cast<Instruction>(Val);
1408 while (Val != PN) {
1409 // If we encountered a phi node other than PN, or if we left the loop,
1410 // we bail out.
1411 if (!Inst || !L->contains(Inst)) {
1412 return false;
1414 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1415 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1416 InCastSequence = true;
1417 if (InCastSequence) {
1418 // Only the last instruction in the cast sequence is expected to have
1419 // uses outside the induction def-use chain.
1420 if (!CastInsts.empty())
1421 if (!Inst->hasOneUse())
1422 return false;
1423 CastInsts.push_back(Inst);
1425 Val = getDef(Val);
1426 if (!Val)
1427 return false;
1428 Inst = dyn_cast<Instruction>(Val);
1431 return InCastSequence;
1434 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1435 PredicatedScalarEvolution &PSE,
1436 InductionDescriptor &D, bool Assume) {
1437 Type *PhiTy = Phi->getType();
1439 // Handle integer and pointer inductions variables.
1440 // Now we handle also FP induction but not trying to make a
1441 // recurrent expression from the PHI node in-place.
1443 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1444 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1445 return false;
1447 if (PhiTy->isFloatingPointTy())
1448 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1450 const SCEV *PhiScev = PSE.getSCEV(Phi);
1451 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1453 // We need this expression to be an AddRecExpr.
1454 if (Assume && !AR)
1455 AR = PSE.getAsAddRec(Phi);
1457 if (!AR) {
1458 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1459 return false;
1462 // Record any Cast instructions that participate in the induction update
1463 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1464 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1465 // only after enabling Assume with PSCEV, this means we may have encountered
1466 // cast instructions that required adding a runtime check in order to
1467 // guarantee the correctness of the AddRecurrence respresentation of the
1468 // induction.
1469 if (PhiScev != AR && SymbolicPhi) {
1470 SmallVector<Instruction *, 2> Casts;
1471 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1472 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1475 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1478 bool InductionDescriptor::isInductionPHI(
1479 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1480 InductionDescriptor &D, const SCEV *Expr,
1481 SmallVectorImpl<Instruction *> *CastsToIgnore) {
1482 Type *PhiTy = Phi->getType();
1483 // We only handle integer and pointer inductions variables.
1484 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1485 return false;
1487 // Check that the PHI is consecutive.
1488 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1489 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1491 if (!AR) {
1492 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1493 return false;
1496 if (AR->getLoop() != TheLoop) {
1497 // FIXME: We should treat this as a uniform. Unfortunately, we
1498 // don't currently know how to handled uniform PHIs.
1499 LLVM_DEBUG(
1500 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1501 return false;
1504 // This function assumes that InductionPhi is called only on Phi nodes
1505 // present inside loop headers. Check for the same, and throw an assert if
1506 // the current Phi is not present inside the loop header.
1507 assert(Phi->getParent() == AR->getLoop()->getHeader()
1508 && "Invalid Phi node, not present in loop header");
1510 Value *StartValue =
1511 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1513 BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1514 if (!Latch)
1515 return false;
1517 const SCEV *Step = AR->getStepRecurrence(*SE);
1518 // Calculate the pointer stride and check if it is consecutive.
1519 // The stride may be a constant or a loop invariant integer value.
1520 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1521 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1522 return false;
1524 if (PhiTy->isIntegerTy()) {
1525 BinaryOperator *BOp =
1526 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1527 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1528 CastsToIgnore);
1529 return true;
1532 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1534 // This allows induction variables w/non-constant steps.
1535 D = InductionDescriptor(StartValue, IK_PtrInduction, Step);
1536 return true;