[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Analysis / MemoryBuiltins.cpp
blob46a7a921d86d3d0d49bbaf0059b8cd2d29f5a85a
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/TargetFolder.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/Utils/Local.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <numeric>
46 #include <optional>
47 #include <type_traits>
48 #include <utility>
50 using namespace llvm;
52 #define DEBUG_TYPE "memory-builtins"
54 static cl::opt<unsigned> ObjectSizeOffsetVisitorMaxVisitInstructions(
55 "object-size-offset-visitor-max-visit-instructions",
56 cl::desc("Maximum number of instructions for ObjectSizeOffsetVisitor to "
57 "look at"),
58 cl::init(100));
60 enum AllocType : uint8_t {
61 OpNewLike = 1<<0, // allocates; never returns null
62 MallocLike = 1<<1, // allocates; may return null
63 StrDupLike = 1<<2,
64 MallocOrOpNewLike = MallocLike | OpNewLike,
65 AllocLike = MallocOrOpNewLike | StrDupLike,
66 AnyAlloc = AllocLike
69 enum class MallocFamily {
70 Malloc,
71 CPPNew, // new(unsigned int)
72 CPPNewAligned, // new(unsigned int, align_val_t)
73 CPPNewArray, // new[](unsigned int)
74 CPPNewArrayAligned, // new[](unsigned long, align_val_t)
75 MSVCNew, // new(unsigned int)
76 MSVCArrayNew, // new[](unsigned int)
77 VecMalloc,
78 KmpcAllocShared,
81 StringRef mangledNameForMallocFamily(const MallocFamily &Family) {
82 switch (Family) {
83 case MallocFamily::Malloc:
84 return "malloc";
85 case MallocFamily::CPPNew:
86 return "_Znwm";
87 case MallocFamily::CPPNewAligned:
88 return "_ZnwmSt11align_val_t";
89 case MallocFamily::CPPNewArray:
90 return "_Znam";
91 case MallocFamily::CPPNewArrayAligned:
92 return "_ZnamSt11align_val_t";
93 case MallocFamily::MSVCNew:
94 return "??2@YAPAXI@Z";
95 case MallocFamily::MSVCArrayNew:
96 return "??_U@YAPAXI@Z";
97 case MallocFamily::VecMalloc:
98 return "vec_malloc";
99 case MallocFamily::KmpcAllocShared:
100 return "__kmpc_alloc_shared";
102 llvm_unreachable("missing an alloc family");
105 struct AllocFnsTy {
106 AllocType AllocTy;
107 unsigned NumParams;
108 // First and Second size parameters (or -1 if unused)
109 int FstParam, SndParam;
110 // Alignment parameter for aligned_alloc and aligned new
111 int AlignParam;
112 // Name of default allocator function to group malloc/free calls by family
113 MallocFamily Family;
116 // clang-format off
117 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
118 // know which functions are nounwind, noalias, nocapture parameters, etc.
119 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
120 {LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int)
121 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow)
122 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t)
123 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow)
124 {LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long)
125 {LibFunc_Znwm12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, __hot_cold_t)
126 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow)
127 {LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow, __hot_cold_t)
128 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t)
129 {LibFunc_ZnwmSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, __hot_cold_t)
130 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow)
131 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow, __hot_cold_t)
132 {LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int)
133 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow)
134 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t)
135 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow)
136 {LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long)
137 {LibFunc_Znam12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, __hot_cold_t)
138 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow)
139 {LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, nothrow, __hot_cold_t)
140 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t)
141 {LibFunc_ZnamSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, __hot_cold_t)
142 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow)
143 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, nothrow, __hot_cold_t)
144 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int)
145 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow)
146 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long)
147 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow)
148 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int)
149 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow)
150 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long)
151 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow)
152 {LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}},
153 {LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}},
154 {LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}},
155 {LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}},
156 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}},
158 // clang-format on
160 static const Function *getCalledFunction(const Value *V,
161 bool &IsNoBuiltin) {
162 // Don't care about intrinsics in this case.
163 if (isa<IntrinsicInst>(V))
164 return nullptr;
166 const auto *CB = dyn_cast<CallBase>(V);
167 if (!CB)
168 return nullptr;
170 IsNoBuiltin = CB->isNoBuiltin();
172 if (const Function *Callee = CB->getCalledFunction())
173 return Callee;
174 return nullptr;
177 /// Returns the allocation data for the given value if it's a call to a known
178 /// allocation function.
179 static std::optional<AllocFnsTy>
180 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
181 const TargetLibraryInfo *TLI) {
182 // Don't perform a slow TLI lookup, if this function doesn't return a pointer
183 // and thus can't be an allocation function.
184 if (!Callee->getReturnType()->isPointerTy())
185 return std::nullopt;
187 // Make sure that the function is available.
188 LibFunc TLIFn;
189 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
190 return std::nullopt;
192 const auto *Iter = find_if(
193 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
194 return P.first == TLIFn;
197 if (Iter == std::end(AllocationFnData))
198 return std::nullopt;
200 const AllocFnsTy *FnData = &Iter->second;
201 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
202 return std::nullopt;
204 // Check function prototype.
205 int FstParam = FnData->FstParam;
206 int SndParam = FnData->SndParam;
207 FunctionType *FTy = Callee->getFunctionType();
209 if (FTy->getReturnType()->isPointerTy() &&
210 FTy->getNumParams() == FnData->NumParams &&
211 (FstParam < 0 ||
212 (FTy->getParamType(FstParam)->isIntegerTy(32) ||
213 FTy->getParamType(FstParam)->isIntegerTy(64))) &&
214 (SndParam < 0 ||
215 FTy->getParamType(SndParam)->isIntegerTy(32) ||
216 FTy->getParamType(SndParam)->isIntegerTy(64)))
217 return *FnData;
218 return std::nullopt;
221 static std::optional<AllocFnsTy>
222 getAllocationData(const Value *V, AllocType AllocTy,
223 const TargetLibraryInfo *TLI) {
224 bool IsNoBuiltinCall;
225 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
226 if (!IsNoBuiltinCall)
227 return getAllocationDataForFunction(Callee, AllocTy, TLI);
228 return std::nullopt;
231 static std::optional<AllocFnsTy>
232 getAllocationData(const Value *V, AllocType AllocTy,
233 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
234 bool IsNoBuiltinCall;
235 if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
236 if (!IsNoBuiltinCall)
237 return getAllocationDataForFunction(
238 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
239 return std::nullopt;
242 static std::optional<AllocFnsTy>
243 getAllocationSize(const Value *V, const TargetLibraryInfo *TLI) {
244 bool IsNoBuiltinCall;
245 const Function *Callee =
246 getCalledFunction(V, IsNoBuiltinCall);
247 if (!Callee)
248 return std::nullopt;
250 // Prefer to use existing information over allocsize. This will give us an
251 // accurate AllocTy.
252 if (!IsNoBuiltinCall)
253 if (std::optional<AllocFnsTy> Data =
254 getAllocationDataForFunction(Callee, AnyAlloc, TLI))
255 return Data;
257 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
258 if (Attr == Attribute())
259 return std::nullopt;
261 std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs();
263 AllocFnsTy Result;
264 // Because allocsize only tells us how many bytes are allocated, we're not
265 // really allowed to assume anything, so we use MallocLike.
266 Result.AllocTy = MallocLike;
267 Result.NumParams = Callee->getNumOperands();
268 Result.FstParam = Args.first;
269 Result.SndParam = Args.second.value_or(-1);
270 // Allocsize has no way to specify an alignment argument
271 Result.AlignParam = -1;
272 return Result;
275 static AllocFnKind getAllocFnKind(const Value *V) {
276 if (const auto *CB = dyn_cast<CallBase>(V)) {
277 Attribute Attr = CB->getFnAttr(Attribute::AllocKind);
278 if (Attr.isValid())
279 return AllocFnKind(Attr.getValueAsInt());
281 return AllocFnKind::Unknown;
284 static AllocFnKind getAllocFnKind(const Function *F) {
285 return F->getAttributes().getAllocKind();
288 static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) {
289 return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown;
292 static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) {
293 return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown;
296 /// Tests if a value is a call or invoke to a library function that
297 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
298 /// like).
299 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
300 return getAllocationData(V, AnyAlloc, TLI).has_value() ||
301 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
303 bool llvm::isAllocationFn(
304 const Value *V,
305 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
306 return getAllocationData(V, AnyAlloc, GetTLI).has_value() ||
307 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
310 /// Tests if a value is a call or invoke to a library function that
311 /// allocates memory via new.
312 bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
313 return getAllocationData(V, OpNewLike, TLI).has_value();
316 /// Tests if a value is a call or invoke to a library function that
317 /// allocates memory similar to malloc or calloc.
318 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
319 // TODO: Function behavior does not match name.
320 return getAllocationData(V, MallocOrOpNewLike, TLI).has_value();
323 /// Tests if a value is a call or invoke to a library function that
324 /// allocates memory (either malloc, calloc, or strdup like).
325 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
326 return getAllocationData(V, AllocLike, TLI).has_value() ||
327 checkFnAllocKind(V, AllocFnKind::Alloc);
330 /// Tests if a functions is a call or invoke to a library function that
331 /// reallocates memory (e.g., realloc).
332 bool llvm::isReallocLikeFn(const Function *F) {
333 return checkFnAllocKind(F, AllocFnKind::Realloc);
336 Value *llvm::getReallocatedOperand(const CallBase *CB) {
337 if (checkFnAllocKind(CB, AllocFnKind::Realloc))
338 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
339 return nullptr;
342 bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) {
343 // Note: Removability is highly dependent on the source language. For
344 // example, recent C++ requires direct calls to the global allocation
345 // [basic.stc.dynamic.allocation] to be observable unless part of a new
346 // expression [expr.new paragraph 13].
348 // Historically we've treated the C family allocation routines and operator
349 // new as removable
350 return isAllocLikeFn(CB, TLI);
353 Value *llvm::getAllocAlignment(const CallBase *V,
354 const TargetLibraryInfo *TLI) {
355 const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
356 if (FnData && FnData->AlignParam >= 0) {
357 return V->getOperand(FnData->AlignParam);
359 return V->getArgOperandWithAttribute(Attribute::AllocAlign);
362 /// When we're compiling N-bit code, and the user uses parameters that are
363 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
364 /// trouble with APInt size issues. This function handles resizing + overflow
365 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
366 /// I's value.
367 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
368 // More bits than we can handle. Checking the bit width isn't necessary, but
369 // it's faster than checking active bits, and should give `false` in the
370 // vast majority of cases.
371 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
372 return false;
373 if (I.getBitWidth() != IntTyBits)
374 I = I.zextOrTrunc(IntTyBits);
375 return true;
378 std::optional<APInt>
379 llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI,
380 function_ref<const Value *(const Value *)> Mapper) {
381 // Note: This handles both explicitly listed allocation functions and
382 // allocsize. The code structure could stand to be cleaned up a bit.
383 std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
384 if (!FnData)
385 return std::nullopt;
387 // Get the index type for this address space, results and intermediate
388 // computations are performed at that width.
389 auto &DL = CB->getModule()->getDataLayout();
390 const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
392 // Handle strdup-like functions separately.
393 if (FnData->AllocTy == StrDupLike) {
394 APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
395 if (!Size)
396 return std::nullopt;
398 // Strndup limits strlen.
399 if (FnData->FstParam > 0) {
400 const ConstantInt *Arg =
401 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
402 if (!Arg)
403 return std::nullopt;
405 APInt MaxSize = Arg->getValue().zext(IntTyBits);
406 if (Size.ugt(MaxSize))
407 Size = MaxSize + 1;
409 return Size;
412 const ConstantInt *Arg =
413 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
414 if (!Arg)
415 return std::nullopt;
417 APInt Size = Arg->getValue();
418 if (!CheckedZextOrTrunc(Size, IntTyBits))
419 return std::nullopt;
421 // Size is determined by just 1 parameter.
422 if (FnData->SndParam < 0)
423 return Size;
425 Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
426 if (!Arg)
427 return std::nullopt;
429 APInt NumElems = Arg->getValue();
430 if (!CheckedZextOrTrunc(NumElems, IntTyBits))
431 return std::nullopt;
433 bool Overflow;
434 Size = Size.umul_ov(NumElems, Overflow);
435 if (Overflow)
436 return std::nullopt;
437 return Size;
440 Constant *llvm::getInitialValueOfAllocation(const Value *V,
441 const TargetLibraryInfo *TLI,
442 Type *Ty) {
443 auto *Alloc = dyn_cast<CallBase>(V);
444 if (!Alloc)
445 return nullptr;
447 // malloc are uninitialized (undef)
448 if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value())
449 return UndefValue::get(Ty);
451 AllocFnKind AK = getAllocFnKind(Alloc);
452 if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown)
453 return UndefValue::get(Ty);
454 if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown)
455 return Constant::getNullValue(Ty);
457 return nullptr;
460 struct FreeFnsTy {
461 unsigned NumParams;
462 // Name of default allocator function to group malloc/free calls by family
463 MallocFamily Family;
466 // clang-format off
467 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = {
468 {LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*)
469 {LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*)
470 {LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*)
471 {LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*)
472 {LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*)
473 {LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*)
474 {LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint)
475 {LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong)
476 {LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow)
477 {LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t)
478 {LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint)
479 {LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong)
480 {LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow)
481 {LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t)
482 {LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint)
483 {LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong)
484 {LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow)
485 {LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow)
486 {LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint)
487 {LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong)
488 {LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow)
489 {LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow)
490 {LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free
491 {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow)
492 {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow)
493 {LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t)
494 {LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t)
495 {LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t)
496 {LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t)
498 // clang-format on
500 std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee,
501 const LibFunc TLIFn) {
502 const auto *Iter =
503 find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) {
504 return P.first == TLIFn;
506 if (Iter == std::end(FreeFnData))
507 return std::nullopt;
508 return Iter->second;
511 std::optional<StringRef>
512 llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) {
513 bool IsNoBuiltin;
514 const Function *Callee = getCalledFunction(I, IsNoBuiltin);
515 if (Callee == nullptr || IsNoBuiltin)
516 return std::nullopt;
517 LibFunc TLIFn;
519 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) {
520 // Callee is some known library function.
521 const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI);
522 if (AllocData)
523 return mangledNameForMallocFamily(AllocData->Family);
524 const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn);
525 if (FreeData)
526 return mangledNameForMallocFamily(FreeData->Family);
528 // Callee isn't a known library function, still check attributes.
529 if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc |
530 AllocFnKind::Realloc)) {
531 Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family");
532 if (Attr.isValid())
533 return Attr.getValueAsString();
535 return std::nullopt;
538 /// isLibFreeFunction - Returns true if the function is a builtin free()
539 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
540 std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn);
541 if (!FnData)
542 return checkFnAllocKind(F, AllocFnKind::Free);
544 // Check free prototype.
545 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
546 // attribute will exist.
547 FunctionType *FTy = F->getFunctionType();
548 if (!FTy->getReturnType()->isVoidTy())
549 return false;
550 if (FTy->getNumParams() != FnData->NumParams)
551 return false;
552 if (!FTy->getParamType(0)->isPointerTy())
553 return false;
555 return true;
558 Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) {
559 bool IsNoBuiltinCall;
560 const Function *Callee = getCalledFunction(CB, IsNoBuiltinCall);
561 if (Callee == nullptr || IsNoBuiltinCall)
562 return nullptr;
564 LibFunc TLIFn;
565 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) &&
566 isLibFreeFunction(Callee, TLIFn)) {
567 // All currently supported free functions free the first argument.
568 return CB->getArgOperand(0);
571 if (checkFnAllocKind(CB, AllocFnKind::Free))
572 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
574 return nullptr;
577 //===----------------------------------------------------------------------===//
578 // Utility functions to compute size of objects.
580 static APInt getSizeWithOverflow(const SizeOffsetAPInt &Data) {
581 APInt Size = Data.Size;
582 APInt Offset = Data.Offset;
583 if (Offset.isNegative() || Size.ult(Offset))
584 return APInt(Size.getBitWidth(), 0);
585 return Size - Offset;
588 /// Compute the size of the object pointed by Ptr. Returns true and the
589 /// object size in Size if successful, and false otherwise.
590 /// If RoundToAlign is true, then Size is rounded up to the alignment of
591 /// allocas, byval arguments, and global variables.
592 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
593 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
594 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
595 SizeOffsetAPInt Data = Visitor.compute(const_cast<Value *>(Ptr));
596 if (!Data.bothKnown())
597 return false;
599 Size = getSizeWithOverflow(Data).getZExtValue();
600 return true;
603 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
604 const DataLayout &DL,
605 const TargetLibraryInfo *TLI,
606 bool MustSucceed) {
607 return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr,
608 MustSucceed);
611 Value *llvm::lowerObjectSizeCall(
612 IntrinsicInst *ObjectSize, const DataLayout &DL,
613 const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed,
614 SmallVectorImpl<Instruction *> *InsertedInstructions) {
615 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
616 "ObjectSize must be a call to llvm.objectsize!");
618 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
619 ObjectSizeOpts EvalOptions;
620 EvalOptions.AA = AA;
622 // Unless we have to fold this to something, try to be as accurate as
623 // possible.
624 if (MustSucceed)
625 EvalOptions.EvalMode =
626 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
627 else
628 EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset;
630 EvalOptions.NullIsUnknownSize =
631 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
633 auto *ResultType = cast<IntegerType>(ObjectSize->getType());
634 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
635 if (StaticOnly) {
636 // FIXME: Does it make sense to just return a failure value if the size won't
637 // fit in the output and `!MustSucceed`?
638 uint64_t Size;
639 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
640 isUIntN(ResultType->getBitWidth(), Size))
641 return ConstantInt::get(ResultType, Size);
642 } else {
643 LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
644 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
645 SizeOffsetValue SizeOffsetPair = Eval.compute(ObjectSize->getArgOperand(0));
647 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
648 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
649 Ctx, TargetFolder(DL), IRBuilderCallbackInserter([&](Instruction *I) {
650 if (InsertedInstructions)
651 InsertedInstructions->push_back(I);
652 }));
653 Builder.SetInsertPoint(ObjectSize);
655 Value *Size = SizeOffsetPair.Size;
656 Value *Offset = SizeOffsetPair.Offset;
658 // If we've outside the end of the object, then we can always access
659 // exactly 0 bytes.
660 Value *ResultSize = Builder.CreateSub(Size, Offset);
661 Value *UseZero = Builder.CreateICmpULT(Size, Offset);
662 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
663 Value *Ret = Builder.CreateSelect(
664 UseZero, ConstantInt::get(ResultType, 0), ResultSize);
666 // The non-constant size expression cannot evaluate to -1.
667 if (!isa<Constant>(Size) || !isa<Constant>(Offset))
668 Builder.CreateAssumption(
669 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
671 return Ret;
675 if (!MustSucceed)
676 return nullptr;
678 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
681 STATISTIC(ObjectVisitorArgument,
682 "Number of arguments with unsolved size and offset");
683 STATISTIC(ObjectVisitorLoad,
684 "Number of load instructions with unsolved size and offset");
686 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
687 if (Options.RoundToAlign && Alignment)
688 return APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment));
689 return Size;
692 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
693 const TargetLibraryInfo *TLI,
694 LLVMContext &Context,
695 ObjectSizeOpts Options)
696 : DL(DL), TLI(TLI), Options(Options) {
697 // Pointer size must be rechecked for each object visited since it could have
698 // a different address space.
701 SizeOffsetAPInt ObjectSizeOffsetVisitor::compute(Value *V) {
702 InstructionsVisited = 0;
703 return computeImpl(V);
706 SizeOffsetAPInt ObjectSizeOffsetVisitor::computeImpl(Value *V) {
707 unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType());
709 // Stripping pointer casts can strip address space casts which can change the
710 // index type size. The invariant is that we use the value type to determine
711 // the index type size and if we stripped address space casts we have to
712 // readjust the APInt as we pass it upwards in order for the APInt to match
713 // the type the caller passed in.
714 APInt Offset(InitialIntTyBits, 0);
715 V = V->stripAndAccumulateConstantOffsets(
716 DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true);
718 // Later we use the index type size and zero but it will match the type of the
719 // value that is passed to computeImpl.
720 IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
721 Zero = APInt::getZero(IntTyBits);
723 SizeOffsetAPInt SOT = computeValue(V);
725 bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits;
726 if (!IndexTypeSizeChanged && Offset.isZero())
727 return SOT;
729 // We stripped an address space cast that changed the index type size or we
730 // accumulated some constant offset (or both). Readjust the bit width to match
731 // the argument index type size and apply the offset, as required.
732 if (IndexTypeSizeChanged) {
733 if (SOT.knownSize() && !::CheckedZextOrTrunc(SOT.Size, InitialIntTyBits))
734 SOT.Size = APInt();
735 if (SOT.knownOffset() &&
736 !::CheckedZextOrTrunc(SOT.Offset, InitialIntTyBits))
737 SOT.Offset = APInt();
739 // If the computed offset is "unknown" we cannot add the stripped offset.
740 return {SOT.Size,
741 SOT.Offset.getBitWidth() > 1 ? SOT.Offset + Offset : SOT.Offset};
744 SizeOffsetAPInt ObjectSizeOffsetVisitor::computeValue(Value *V) {
745 if (Instruction *I = dyn_cast<Instruction>(V)) {
746 // If we have already seen this instruction, bail out. Cycles can happen in
747 // unreachable code after constant propagation.
748 auto P = SeenInsts.try_emplace(I, ObjectSizeOffsetVisitor::unknown());
749 if (!P.second)
750 return P.first->second;
751 ++InstructionsVisited;
752 if (InstructionsVisited > ObjectSizeOffsetVisitorMaxVisitInstructions)
753 return ObjectSizeOffsetVisitor::unknown();
754 SizeOffsetAPInt Res = visit(*I);
755 // Cache the result for later visits. If we happened to visit this during
756 // the above recursion, we would consider it unknown until now.
757 SeenInsts[I] = Res;
758 return Res;
760 if (Argument *A = dyn_cast<Argument>(V))
761 return visitArgument(*A);
762 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
763 return visitConstantPointerNull(*P);
764 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
765 return visitGlobalAlias(*GA);
766 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
767 return visitGlobalVariable(*GV);
768 if (UndefValue *UV = dyn_cast<UndefValue>(V))
769 return visitUndefValue(*UV);
771 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
772 << *V << '\n');
773 return ObjectSizeOffsetVisitor::unknown();
776 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
777 return ::CheckedZextOrTrunc(I, IntTyBits);
780 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
781 TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType());
782 if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min)
783 return ObjectSizeOffsetVisitor::unknown();
784 APInt Size(IntTyBits, ElemSize.getKnownMinValue());
785 if (!I.isArrayAllocation())
786 return SizeOffsetAPInt(align(Size, I.getAlign()), Zero);
788 Value *ArraySize = I.getArraySize();
789 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
790 APInt NumElems = C->getValue();
791 if (!CheckedZextOrTrunc(NumElems))
792 return ObjectSizeOffsetVisitor::unknown();
794 bool Overflow;
795 Size = Size.umul_ov(NumElems, Overflow);
796 return Overflow ? ObjectSizeOffsetVisitor::unknown()
797 : SizeOffsetAPInt(align(Size, I.getAlign()), Zero);
799 return ObjectSizeOffsetVisitor::unknown();
802 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
803 Type *MemoryTy = A.getPointeeInMemoryValueType();
804 // No interprocedural analysis is done at the moment.
805 if (!MemoryTy|| !MemoryTy->isSized()) {
806 ++ObjectVisitorArgument;
807 return ObjectSizeOffsetVisitor::unknown();
810 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
811 return SizeOffsetAPInt(align(Size, A.getParamAlign()), Zero);
814 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
815 if (std::optional<APInt> Size = getAllocSize(&CB, TLI))
816 return SizeOffsetAPInt(*Size, Zero);
817 return ObjectSizeOffsetVisitor::unknown();
820 SizeOffsetAPInt
821 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull &CPN) {
822 // If null is unknown, there's nothing we can do. Additionally, non-zero
823 // address spaces can make use of null, so we don't presume to know anything
824 // about that.
826 // TODO: How should this work with address space casts? We currently just drop
827 // them on the floor, but it's unclear what we should do when a NULL from
828 // addrspace(1) gets casted to addrspace(0) (or vice-versa).
829 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
830 return ObjectSizeOffsetVisitor::unknown();
831 return SizeOffsetAPInt(Zero, Zero);
834 SizeOffsetAPInt
835 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst &) {
836 return ObjectSizeOffsetVisitor::unknown();
839 SizeOffsetAPInt
840 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst &) {
841 // Easy cases were already folded by previous passes.
842 return ObjectSizeOffsetVisitor::unknown();
845 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
846 if (GA.isInterposable())
847 return ObjectSizeOffsetVisitor::unknown();
848 return computeImpl(GA.getAliasee());
851 SizeOffsetAPInt
852 ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV) {
853 if (!GV.getValueType()->isSized() || GV.hasExternalWeakLinkage() ||
854 ((!GV.hasInitializer() || GV.isInterposable()) &&
855 Options.EvalMode != ObjectSizeOpts::Mode::Min))
856 return ObjectSizeOffsetVisitor::unknown();
858 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
859 return SizeOffsetAPInt(align(Size, GV.getAlign()), Zero);
862 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst &) {
863 // clueless
864 return ObjectSizeOffsetVisitor::unknown();
867 SizeOffsetAPInt ObjectSizeOffsetVisitor::findLoadSizeOffset(
868 LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From,
869 SmallDenseMap<BasicBlock *, SizeOffsetAPInt, 8> &VisitedBlocks,
870 unsigned &ScannedInstCount) {
871 constexpr unsigned MaxInstsToScan = 128;
873 auto Where = VisitedBlocks.find(&BB);
874 if (Where != VisitedBlocks.end())
875 return Where->second;
877 auto Unknown = [&BB, &VisitedBlocks]() {
878 return VisitedBlocks[&BB] = ObjectSizeOffsetVisitor::unknown();
880 auto Known = [&BB, &VisitedBlocks](SizeOffsetAPInt SO) {
881 return VisitedBlocks[&BB] = SO;
884 do {
885 Instruction &I = *From;
887 if (I.isDebugOrPseudoInst())
888 continue;
890 if (++ScannedInstCount > MaxInstsToScan)
891 return Unknown();
893 if (!I.mayWriteToMemory())
894 continue;
896 if (auto *SI = dyn_cast<StoreInst>(&I)) {
897 AliasResult AR =
898 Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand());
899 switch ((AliasResult::Kind)AR) {
900 case AliasResult::NoAlias:
901 continue;
902 case AliasResult::MustAlias:
903 if (SI->getValueOperand()->getType()->isPointerTy())
904 return Known(computeImpl(SI->getValueOperand()));
905 else
906 return Unknown(); // No handling of non-pointer values by `compute`.
907 default:
908 return Unknown();
912 if (auto *CB = dyn_cast<CallBase>(&I)) {
913 Function *Callee = CB->getCalledFunction();
914 // Bail out on indirect call.
915 if (!Callee)
916 return Unknown();
918 LibFunc TLIFn;
919 if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) ||
920 !TLI->has(TLIFn))
921 return Unknown();
923 // TODO: There's probably more interesting case to support here.
924 if (TLIFn != LibFunc_posix_memalign)
925 return Unknown();
927 AliasResult AR =
928 Options.AA->alias(CB->getOperand(0), Load.getPointerOperand());
929 switch ((AliasResult::Kind)AR) {
930 case AliasResult::NoAlias:
931 continue;
932 case AliasResult::MustAlias:
933 break;
934 default:
935 return Unknown();
938 // Is the error status of posix_memalign correctly checked? If not it
939 // would be incorrect to assume it succeeds and load doesn't see the
940 // previous value.
941 std::optional<bool> Checked = isImpliedByDomCondition(
942 ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL);
943 if (!Checked || !*Checked)
944 return Unknown();
946 Value *Size = CB->getOperand(2);
947 auto *C = dyn_cast<ConstantInt>(Size);
948 if (!C)
949 return Unknown();
951 return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)});
954 return Unknown();
955 } while (From-- != BB.begin());
957 SmallVector<SizeOffsetAPInt> PredecessorSizeOffsets;
958 for (auto *PredBB : predecessors(&BB)) {
959 PredecessorSizeOffsets.push_back(findLoadSizeOffset(
960 Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()),
961 VisitedBlocks, ScannedInstCount));
962 if (!PredecessorSizeOffsets.back().bothKnown())
963 return Unknown();
966 if (PredecessorSizeOffsets.empty())
967 return Unknown();
969 return Known(std::accumulate(
970 PredecessorSizeOffsets.begin() + 1, PredecessorSizeOffsets.end(),
971 PredecessorSizeOffsets.front(),
972 [this](SizeOffsetAPInt LHS, SizeOffsetAPInt RHS) {
973 return combineSizeOffset(LHS, RHS);
974 }));
977 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) {
978 if (!Options.AA) {
979 ++ObjectVisitorLoad;
980 return ObjectSizeOffsetVisitor::unknown();
983 SmallDenseMap<BasicBlock *, SizeOffsetAPInt, 8> VisitedBlocks;
984 unsigned ScannedInstCount = 0;
985 SizeOffsetAPInt SO =
986 findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI),
987 VisitedBlocks, ScannedInstCount);
988 if (!SO.bothKnown())
989 ++ObjectVisitorLoad;
990 return SO;
993 SizeOffsetAPInt
994 ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetAPInt LHS,
995 SizeOffsetAPInt RHS) {
996 if (!LHS.bothKnown() || !RHS.bothKnown())
997 return ObjectSizeOffsetVisitor::unknown();
999 switch (Options.EvalMode) {
1000 case ObjectSizeOpts::Mode::Min:
1001 return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS;
1002 case ObjectSizeOpts::Mode::Max:
1003 return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS;
1004 case ObjectSizeOpts::Mode::ExactSizeFromOffset:
1005 return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS)))
1006 ? LHS
1007 : ObjectSizeOffsetVisitor::unknown();
1008 case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset:
1009 return LHS == RHS ? LHS : ObjectSizeOffsetVisitor::unknown();
1011 llvm_unreachable("missing an eval mode");
1014 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) {
1015 if (PN.getNumIncomingValues() == 0)
1016 return ObjectSizeOffsetVisitor::unknown();
1017 auto IncomingValues = PN.incoming_values();
1018 return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(),
1019 computeImpl(*IncomingValues.begin()),
1020 [this](SizeOffsetAPInt LHS, Value *VRHS) {
1021 return combineSizeOffset(LHS, computeImpl(VRHS));
1025 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
1026 return combineSizeOffset(computeImpl(I.getTrueValue()),
1027 computeImpl(I.getFalseValue()));
1030 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitUndefValue(UndefValue &) {
1031 return SizeOffsetAPInt(Zero, Zero);
1034 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
1035 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
1036 << '\n');
1037 return ObjectSizeOffsetVisitor::unknown();
1040 // Just set these right here...
1041 SizeOffsetValue::SizeOffsetValue(const SizeOffsetWeakTrackingVH &SOT)
1042 : SizeOffsetType(SOT.Size, SOT.Offset) {}
1044 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
1045 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
1046 ObjectSizeOpts EvalOpts)
1047 : DL(DL), TLI(TLI), Context(Context),
1048 Builder(Context, TargetFolder(DL),
1049 IRBuilderCallbackInserter(
1050 [&](Instruction *I) { InsertedInstructions.insert(I); })),
1051 EvalOpts(EvalOpts) {
1052 // IntTy and Zero must be set for each compute() since the address space may
1053 // be different for later objects.
1056 SizeOffsetValue ObjectSizeOffsetEvaluator::compute(Value *V) {
1057 // XXX - Are vectors of pointers possible here?
1058 IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
1059 Zero = ConstantInt::get(IntTy, 0);
1061 SizeOffsetValue Result = compute_(V);
1063 if (!Result.bothKnown()) {
1064 // Erase everything that was computed in this iteration from the cache, so
1065 // that no dangling references are left behind. We could be a bit smarter if
1066 // we kept a dependency graph. It's probably not worth the complexity.
1067 for (const Value *SeenVal : SeenVals) {
1068 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
1069 // non-computable results can be safely cached
1070 if (CacheIt != CacheMap.end() && CacheIt->second.anyKnown())
1071 CacheMap.erase(CacheIt);
1074 // Erase any instructions we inserted as part of the traversal.
1075 for (Instruction *I : InsertedInstructions) {
1076 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1077 I->eraseFromParent();
1081 SeenVals.clear();
1082 InsertedInstructions.clear();
1083 return Result;
1086 SizeOffsetValue ObjectSizeOffsetEvaluator::compute_(Value *V) {
1087 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
1088 SizeOffsetAPInt Const = Visitor.compute(V);
1089 if (Const.bothKnown())
1090 return SizeOffsetValue(ConstantInt::get(Context, Const.Size),
1091 ConstantInt::get(Context, Const.Offset));
1093 V = V->stripPointerCasts();
1095 // Check cache.
1096 CacheMapTy::iterator CacheIt = CacheMap.find(V);
1097 if (CacheIt != CacheMap.end())
1098 return CacheIt->second;
1100 // Always generate code immediately before the instruction being
1101 // processed, so that the generated code dominates the same BBs.
1102 BuilderTy::InsertPointGuard Guard(Builder);
1103 if (Instruction *I = dyn_cast<Instruction>(V))
1104 Builder.SetInsertPoint(I);
1106 // Now compute the size and offset.
1107 SizeOffsetValue Result;
1109 // Record the pointers that were handled in this run, so that they can be
1110 // cleaned later if something fails. We also use this set to break cycles that
1111 // can occur in dead code.
1112 if (!SeenVals.insert(V).second) {
1113 Result = ObjectSizeOffsetEvaluator::unknown();
1114 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1115 Result = visitGEPOperator(*GEP);
1116 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
1117 Result = visit(*I);
1118 } else if (isa<Argument>(V) ||
1119 (isa<ConstantExpr>(V) &&
1120 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
1121 isa<GlobalAlias>(V) ||
1122 isa<GlobalVariable>(V)) {
1123 // Ignore values where we cannot do more than ObjectSizeVisitor.
1124 Result = ObjectSizeOffsetEvaluator::unknown();
1125 } else {
1126 LLVM_DEBUG(
1127 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
1128 << '\n');
1129 Result = ObjectSizeOffsetEvaluator::unknown();
1132 // Don't reuse CacheIt since it may be invalid at this point.
1133 CacheMap[V] = SizeOffsetWeakTrackingVH(Result);
1134 return Result;
1137 SizeOffsetValue ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
1138 if (!I.getAllocatedType()->isSized())
1139 return ObjectSizeOffsetEvaluator::unknown();
1141 // must be a VLA
1142 assert(I.isArrayAllocation());
1144 // If needed, adjust the alloca's operand size to match the pointer indexing
1145 // size. Subsequent math operations expect the types to match.
1146 Value *ArraySize = Builder.CreateZExtOrTrunc(
1147 I.getArraySize(),
1148 DL.getIndexType(I.getContext(), DL.getAllocaAddrSpace()));
1149 assert(ArraySize->getType() == Zero->getType() &&
1150 "Expected zero constant to have pointer index type");
1152 Value *Size = ConstantInt::get(ArraySize->getType(),
1153 DL.getTypeAllocSize(I.getAllocatedType()));
1154 Size = Builder.CreateMul(Size, ArraySize);
1155 return SizeOffsetValue(Size, Zero);
1158 SizeOffsetValue ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
1159 std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
1160 if (!FnData)
1161 return ObjectSizeOffsetEvaluator::unknown();
1163 // Handle strdup-like functions separately.
1164 if (FnData->AllocTy == StrDupLike) {
1165 // TODO: implement evaluation of strdup/strndup
1166 return ObjectSizeOffsetEvaluator::unknown();
1169 Value *FirstArg = CB.getArgOperand(FnData->FstParam);
1170 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
1171 if (FnData->SndParam < 0)
1172 return SizeOffsetValue(FirstArg, Zero);
1174 Value *SecondArg = CB.getArgOperand(FnData->SndParam);
1175 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
1176 Value *Size = Builder.CreateMul(FirstArg, SecondArg);
1177 return SizeOffsetValue(Size, Zero);
1180 SizeOffsetValue
1181 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst &) {
1182 return ObjectSizeOffsetEvaluator::unknown();
1185 SizeOffsetValue
1186 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst &) {
1187 return ObjectSizeOffsetEvaluator::unknown();
1190 SizeOffsetValue ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
1191 SizeOffsetValue PtrData = compute_(GEP.getPointerOperand());
1192 if (!PtrData.bothKnown())
1193 return ObjectSizeOffsetEvaluator::unknown();
1195 Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
1196 Offset = Builder.CreateAdd(PtrData.Offset, Offset);
1197 return SizeOffsetValue(PtrData.Size, Offset);
1200 SizeOffsetValue ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst &) {
1201 // clueless
1202 return ObjectSizeOffsetEvaluator::unknown();
1205 SizeOffsetValue ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) {
1206 return ObjectSizeOffsetEvaluator::unknown();
1209 SizeOffsetValue ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
1210 // Create 2 PHIs: one for size and another for offset.
1211 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1212 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1214 // Insert right away in the cache to handle recursive PHIs.
1215 CacheMap[&PHI] = SizeOffsetWeakTrackingVH(SizePHI, OffsetPHI);
1217 // Compute offset/size for each PHI incoming pointer.
1218 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1219 BasicBlock *IncomingBlock = PHI.getIncomingBlock(i);
1220 Builder.SetInsertPoint(IncomingBlock, IncomingBlock->getFirstInsertionPt());
1221 SizeOffsetValue EdgeData = compute_(PHI.getIncomingValue(i));
1223 if (!EdgeData.bothKnown()) {
1224 OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy));
1225 OffsetPHI->eraseFromParent();
1226 InsertedInstructions.erase(OffsetPHI);
1227 SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy));
1228 SizePHI->eraseFromParent();
1229 InsertedInstructions.erase(SizePHI);
1230 return ObjectSizeOffsetEvaluator::unknown();
1232 SizePHI->addIncoming(EdgeData.Size, IncomingBlock);
1233 OffsetPHI->addIncoming(EdgeData.Offset, IncomingBlock);
1236 Value *Size = SizePHI, *Offset = OffsetPHI;
1237 if (Value *Tmp = SizePHI->hasConstantValue()) {
1238 Size = Tmp;
1239 SizePHI->replaceAllUsesWith(Size);
1240 SizePHI->eraseFromParent();
1241 InsertedInstructions.erase(SizePHI);
1243 if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1244 Offset = Tmp;
1245 OffsetPHI->replaceAllUsesWith(Offset);
1246 OffsetPHI->eraseFromParent();
1247 InsertedInstructions.erase(OffsetPHI);
1249 return SizeOffsetValue(Size, Offset);
1252 SizeOffsetValue ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1253 SizeOffsetValue TrueSide = compute_(I.getTrueValue());
1254 SizeOffsetValue FalseSide = compute_(I.getFalseValue());
1256 if (!TrueSide.bothKnown() || !FalseSide.bothKnown())
1257 return ObjectSizeOffsetEvaluator::unknown();
1258 if (TrueSide == FalseSide)
1259 return TrueSide;
1261 Value *Size =
1262 Builder.CreateSelect(I.getCondition(), TrueSide.Size, FalseSide.Size);
1263 Value *Offset =
1264 Builder.CreateSelect(I.getCondition(), TrueSide.Offset, FalseSide.Offset);
1265 return SizeOffsetValue(Size, Offset);
1268 SizeOffsetValue ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1269 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1270 << '\n');
1271 return ObjectSizeOffsetEvaluator::unknown();