1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on. It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PredIteratorCache.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/AtomicOrdering.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
57 #define DEBUG_TYPE "memdep"
59 STATISTIC(NumCacheNonLocal
, "Number of fully cached non-local responses");
60 STATISTIC(NumCacheDirtyNonLocal
, "Number of dirty cached non-local responses");
61 STATISTIC(NumUncacheNonLocal
, "Number of uncached non-local responses");
63 STATISTIC(NumCacheNonLocalPtr
,
64 "Number of fully cached non-local ptr responses");
65 STATISTIC(NumCacheDirtyNonLocalPtr
,
66 "Number of cached, but dirty, non-local ptr responses");
67 STATISTIC(NumUncacheNonLocalPtr
, "Number of uncached non-local ptr responses");
68 STATISTIC(NumCacheCompleteNonLocalPtr
,
69 "Number of block queries that were completely cached");
71 // Limit for the number of instructions to scan in a block.
73 static cl::opt
<unsigned> BlockScanLimit(
74 "memdep-block-scan-limit", cl::Hidden
, cl::init(100),
75 cl::desc("The number of instructions to scan in a block in memory "
76 "dependency analysis (default = 100)"));
78 static cl::opt
<unsigned>
79 BlockNumberLimit("memdep-block-number-limit", cl::Hidden
, cl::init(200),
80 cl::desc("The number of blocks to scan during memory "
81 "dependency analysis (default = 200)"));
83 // Limit on the number of memdep results to process.
84 static const unsigned int NumResultsLimit
= 100;
86 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
88 /// If the set becomes empty, remove Inst's entry.
89 template <typename KeyTy
>
91 RemoveFromReverseMap(DenseMap
<Instruction
*, SmallPtrSet
<KeyTy
, 4>> &ReverseMap
,
92 Instruction
*Inst
, KeyTy Val
) {
93 typename DenseMap
<Instruction
*, SmallPtrSet
<KeyTy
, 4>>::iterator InstIt
=
94 ReverseMap
.find(Inst
);
95 assert(InstIt
!= ReverseMap
.end() && "Reverse map out of sync?");
96 bool Found
= InstIt
->second
.erase(Val
);
97 assert(Found
&& "Invalid reverse map!");
99 if (InstIt
->second
.empty())
100 ReverseMap
.erase(InstIt
);
103 /// If the given instruction references a specific memory location, fill in Loc
104 /// with the details, otherwise set Loc.Ptr to null.
106 /// Returns a ModRefInfo value describing the general behavior of the
108 static ModRefInfo
GetLocation(const Instruction
*Inst
, MemoryLocation
&Loc
,
109 const TargetLibraryInfo
&TLI
) {
110 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
111 if (LI
->isUnordered()) {
112 Loc
= MemoryLocation::get(LI
);
113 return ModRefInfo::Ref
;
115 if (LI
->getOrdering() == AtomicOrdering::Monotonic
) {
116 Loc
= MemoryLocation::get(LI
);
117 return ModRefInfo::ModRef
;
119 Loc
= MemoryLocation();
120 return ModRefInfo::ModRef
;
123 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
124 if (SI
->isUnordered()) {
125 Loc
= MemoryLocation::get(SI
);
126 return ModRefInfo::Mod
;
128 if (SI
->getOrdering() == AtomicOrdering::Monotonic
) {
129 Loc
= MemoryLocation::get(SI
);
130 return ModRefInfo::ModRef
;
132 Loc
= MemoryLocation();
133 return ModRefInfo::ModRef
;
136 if (const VAArgInst
*V
= dyn_cast
<VAArgInst
>(Inst
)) {
137 Loc
= MemoryLocation::get(V
);
138 return ModRefInfo::ModRef
;
141 if (const CallBase
*CB
= dyn_cast
<CallBase
>(Inst
)) {
142 if (Value
*FreedOp
= getFreedOperand(CB
, &TLI
)) {
143 // calls to free() deallocate the entire structure
144 Loc
= MemoryLocation::getAfter(FreedOp
);
145 return ModRefInfo::Mod
;
149 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
150 switch (II
->getIntrinsicID()) {
151 case Intrinsic::lifetime_start
:
152 case Intrinsic::lifetime_end
:
153 case Intrinsic::invariant_start
:
154 Loc
= MemoryLocation::getForArgument(II
, 1, TLI
);
155 // These intrinsics don't really modify the memory, but returning Mod
156 // will allow them to be handled conservatively.
157 return ModRefInfo::Mod
;
158 case Intrinsic::invariant_end
:
159 Loc
= MemoryLocation::getForArgument(II
, 2, TLI
);
160 // These intrinsics don't really modify the memory, but returning Mod
161 // will allow them to be handled conservatively.
162 return ModRefInfo::Mod
;
163 case Intrinsic::masked_load
:
164 Loc
= MemoryLocation::getForArgument(II
, 0, TLI
);
165 return ModRefInfo::Ref
;
166 case Intrinsic::masked_store
:
167 Loc
= MemoryLocation::getForArgument(II
, 1, TLI
);
168 return ModRefInfo::Mod
;
174 // Otherwise, just do the coarse-grained thing that always works.
175 if (Inst
->mayWriteToMemory())
176 return ModRefInfo::ModRef
;
177 if (Inst
->mayReadFromMemory())
178 return ModRefInfo::Ref
;
179 return ModRefInfo::NoModRef
;
182 /// Private helper for finding the local dependencies of a call site.
183 MemDepResult
MemoryDependenceResults::getCallDependencyFrom(
184 CallBase
*Call
, bool isReadOnlyCall
, BasicBlock::iterator ScanIt
,
186 unsigned Limit
= getDefaultBlockScanLimit();
188 // Walk backwards through the block, looking for dependencies.
189 while (ScanIt
!= BB
->begin()) {
190 Instruction
*Inst
= &*--ScanIt
;
191 // Debug intrinsics don't cause dependences and should not affect Limit
192 if (isa
<DbgInfoIntrinsic
>(Inst
))
195 // Limit the amount of scanning we do so we don't end up with quadratic
196 // running time on extreme testcases.
199 return MemDepResult::getUnknown();
201 // If this inst is a memory op, get the pointer it accessed
203 ModRefInfo MR
= GetLocation(Inst
, Loc
, TLI
);
205 // A simple instruction.
206 if (isModOrRefSet(AA
.getModRefInfo(Call
, Loc
)))
207 return MemDepResult::getClobber(Inst
);
211 if (auto *CallB
= dyn_cast
<CallBase
>(Inst
)) {
212 // If these two calls do not interfere, look past it.
213 if (isNoModRef(AA
.getModRefInfo(Call
, CallB
))) {
214 // If the two calls are the same, return Inst as a Def, so that
215 // Call can be found redundant and eliminated.
216 if (isReadOnlyCall
&& !isModSet(MR
) &&
217 Call
->isIdenticalToWhenDefined(CallB
))
218 return MemDepResult::getDef(Inst
);
220 // Otherwise if the two calls don't interact (e.g. CallB is readnone)
224 return MemDepResult::getClobber(Inst
);
227 // If we could not obtain a pointer for the instruction and the instruction
228 // touches memory then assume that this is a dependency.
229 if (isModOrRefSet(MR
))
230 return MemDepResult::getClobber(Inst
);
233 // No dependence found. If this is the entry block of the function, it is
234 // unknown, otherwise it is non-local.
235 if (BB
!= &BB
->getParent()->getEntryBlock())
236 return MemDepResult::getNonLocal();
237 return MemDepResult::getNonFuncLocal();
240 MemDepResult
MemoryDependenceResults::getPointerDependencyFrom(
241 const MemoryLocation
&MemLoc
, bool isLoad
, BasicBlock::iterator ScanIt
,
242 BasicBlock
*BB
, Instruction
*QueryInst
, unsigned *Limit
,
243 BatchAAResults
&BatchAA
) {
244 MemDepResult InvariantGroupDependency
= MemDepResult::getUnknown();
245 if (QueryInst
!= nullptr) {
246 if (auto *LI
= dyn_cast
<LoadInst
>(QueryInst
)) {
247 InvariantGroupDependency
= getInvariantGroupPointerDependency(LI
, BB
);
249 if (InvariantGroupDependency
.isDef())
250 return InvariantGroupDependency
;
253 MemDepResult SimpleDep
= getSimplePointerDependencyFrom(
254 MemLoc
, isLoad
, ScanIt
, BB
, QueryInst
, Limit
, BatchAA
);
255 if (SimpleDep
.isDef())
257 // Non-local invariant group dependency indicates there is non local Def
258 // (it only returns nonLocal if it finds nonLocal def), which is better than
259 // local clobber and everything else.
260 if (InvariantGroupDependency
.isNonLocal())
261 return InvariantGroupDependency
;
263 assert(InvariantGroupDependency
.isUnknown() &&
264 "InvariantGroupDependency should be only unknown at this point");
268 MemDepResult
MemoryDependenceResults::getPointerDependencyFrom(
269 const MemoryLocation
&MemLoc
, bool isLoad
, BasicBlock::iterator ScanIt
,
270 BasicBlock
*BB
, Instruction
*QueryInst
, unsigned *Limit
) {
271 BatchAAResults
BatchAA(AA
, &EII
);
272 return getPointerDependencyFrom(MemLoc
, isLoad
, ScanIt
, BB
, QueryInst
, Limit
,
277 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst
*LI
,
280 if (!LI
->hasMetadata(LLVMContext::MD_invariant_group
))
281 return MemDepResult::getUnknown();
283 // Take the ptr operand after all casts and geps 0. This way we can search
284 // cast graph down only.
285 Value
*LoadOperand
= LI
->getPointerOperand()->stripPointerCasts();
287 // It's is not safe to walk the use list of global value, because function
288 // passes aren't allowed to look outside their functions.
289 // FIXME: this could be fixed by filtering instructions from outside
290 // of current function.
291 if (isa
<GlobalValue
>(LoadOperand
))
292 return MemDepResult::getUnknown();
294 // Queue to process all pointers that are equivalent to load operand.
295 SmallVector
<const Value
*, 8> LoadOperandsQueue
;
296 LoadOperandsQueue
.push_back(LoadOperand
);
298 Instruction
*ClosestDependency
= nullptr;
299 // Order of instructions in uses list is unpredictible. In order to always
300 // get the same result, we will look for the closest dominance.
301 auto GetClosestDependency
= [this](Instruction
*Best
, Instruction
*Other
) {
302 assert(Other
&& "Must call it with not null instruction");
303 if (Best
== nullptr || DT
.dominates(Best
, Other
))
308 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
309 // we will see all the instructions. This should be fixed in MSSA.
310 while (!LoadOperandsQueue
.empty()) {
311 const Value
*Ptr
= LoadOperandsQueue
.pop_back_val();
312 assert(Ptr
&& !isa
<GlobalValue
>(Ptr
) &&
313 "Null or GlobalValue should not be inserted");
315 for (const Use
&Us
: Ptr
->uses()) {
316 auto *U
= dyn_cast
<Instruction
>(Us
.getUser());
317 if (!U
|| U
== LI
|| !DT
.dominates(U
, LI
))
320 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
321 // users. U = bitcast Ptr
322 if (isa
<BitCastInst
>(U
)) {
323 LoadOperandsQueue
.push_back(U
);
326 // Gep with zeros is equivalent to bitcast.
327 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
328 // or gep 0 to bitcast because of SROA, so there are 2 forms. When
329 // typeless pointers will be ready then both cases will be gone
330 // (and this BFS also won't be needed).
331 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(U
))
332 if (GEP
->hasAllZeroIndices()) {
333 LoadOperandsQueue
.push_back(U
);
337 // If we hit load/store with the same invariant.group metadata (and the
338 // same pointer operand) we can assume that value pointed by pointer
339 // operand didn't change.
340 if ((isa
<LoadInst
>(U
) ||
341 (isa
<StoreInst
>(U
) &&
342 cast
<StoreInst
>(U
)->getPointerOperand() == Ptr
)) &&
343 U
->hasMetadata(LLVMContext::MD_invariant_group
))
344 ClosestDependency
= GetClosestDependency(ClosestDependency
, U
);
348 if (!ClosestDependency
)
349 return MemDepResult::getUnknown();
350 if (ClosestDependency
->getParent() == BB
)
351 return MemDepResult::getDef(ClosestDependency
);
352 // Def(U) can't be returned here because it is non-local. If local
353 // dependency won't be found then return nonLocal counting that the
354 // user will call getNonLocalPointerDependency, which will return cached
356 NonLocalDefsCache
.try_emplace(
357 LI
, NonLocalDepResult(ClosestDependency
->getParent(),
358 MemDepResult::getDef(ClosestDependency
), nullptr));
359 ReverseNonLocalDefsCache
[ClosestDependency
].insert(LI
);
360 return MemDepResult::getNonLocal();
363 // Check if SI that may alias with MemLoc can be safely skipped. This is
364 // possible in case if SI can only must alias or no alias with MemLoc (no
365 // partial overlapping possible) and it writes the same value that MemLoc
366 // contains now (it was loaded before this store and was not modified in
368 static bool canSkipClobberingStore(const StoreInst
*SI
,
369 const MemoryLocation
&MemLoc
,
370 Align MemLocAlign
, BatchAAResults
&BatchAA
,
371 unsigned ScanLimit
) {
372 if (!MemLoc
.Size
.hasValue())
374 if (MemoryLocation::get(SI
).Size
!= MemLoc
.Size
)
376 if (MemLoc
.Size
.isScalable())
378 if (std::min(MemLocAlign
, SI
->getAlign()).value() <
379 MemLoc
.Size
.getValue().getKnownMinValue())
382 auto *LI
= dyn_cast
<LoadInst
>(SI
->getValueOperand());
383 if (!LI
|| LI
->getParent() != SI
->getParent())
385 if (BatchAA
.alias(MemoryLocation::get(LI
), MemLoc
) != AliasResult::MustAlias
)
387 unsigned NumVisitedInsts
= 0;
388 for (const Instruction
*I
= LI
; I
!= SI
; I
= I
->getNextNonDebugInstruction())
389 if (++NumVisitedInsts
> ScanLimit
||
390 isModSet(BatchAA
.getModRefInfo(I
, MemLoc
)))
396 MemDepResult
MemoryDependenceResults::getSimplePointerDependencyFrom(
397 const MemoryLocation
&MemLoc
, bool isLoad
, BasicBlock::iterator ScanIt
,
398 BasicBlock
*BB
, Instruction
*QueryInst
, unsigned *Limit
,
399 BatchAAResults
&BatchAA
) {
400 bool isInvariantLoad
= false;
402 MemLoc
.Ptr
->getPointerAlignment(BB
->getModule()->getDataLayout());
404 unsigned DefaultLimit
= getDefaultBlockScanLimit();
406 Limit
= &DefaultLimit
;
408 // We must be careful with atomic accesses, as they may allow another thread
409 // to touch this location, clobbering it. We are conservative: if the
410 // QueryInst is not a simple (non-atomic) memory access, we automatically
411 // return getClobber.
412 // If it is simple, we know based on the results of
413 // "Compiler testing via a theory of sound optimisations in the C11/C++11
414 // memory model" in PLDI 2013, that a non-atomic location can only be
415 // clobbered between a pair of a release and an acquire action, with no
416 // access to the location in between.
417 // Here is an example for giving the general intuition behind this rule.
418 // In the following code:
420 // release action; [1]
421 // acquire action; [4]
423 // It is unsafe to replace %val by 0 because another thread may be running:
424 // acquire action; [2]
426 // release action; [3]
427 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
428 // being 42. A key property of this program however is that if either
429 // 1 or 4 were missing, there would be a race between the store of 42
430 // either the store of 0 or the load (making the whole program racy).
431 // The paper mentioned above shows that the same property is respected
432 // by every program that can detect any optimization of that kind: either
433 // it is racy (undefined) or there is a release followed by an acquire
434 // between the pair of accesses under consideration.
436 // If the load is invariant, we "know" that it doesn't alias *any* write. We
437 // do want to respect mustalias results since defs are useful for value
438 // forwarding, but any mayalias write can be assumed to be noalias.
439 // Arguably, this logic should be pushed inside AliasAnalysis itself.
440 if (isLoad
&& QueryInst
)
441 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(QueryInst
)) {
442 if (LI
->hasMetadata(LLVMContext::MD_invariant_load
))
443 isInvariantLoad
= true;
444 MemLocAlign
= LI
->getAlign();
447 // True for volatile instruction.
448 // For Load/Store return true if atomic ordering is stronger than AO,
449 // for other instruction just true if it can read or write to memory.
450 auto isComplexForReordering
= [](Instruction
* I
, AtomicOrdering AO
)->bool {
453 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
454 return isStrongerThan(LI
->getOrdering(), AO
);
455 if (auto *SI
= dyn_cast
<StoreInst
>(I
))
456 return isStrongerThan(SI
->getOrdering(), AO
);
457 return I
->mayReadOrWriteMemory();
460 // Walk backwards through the basic block, looking for dependencies.
461 while (ScanIt
!= BB
->begin()) {
462 Instruction
*Inst
= &*--ScanIt
;
464 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
))
465 // Debug intrinsics don't (and can't) cause dependencies.
466 if (isa
<DbgInfoIntrinsic
>(II
))
469 // Limit the amount of scanning we do so we don't end up with quadratic
470 // running time on extreme testcases.
473 return MemDepResult::getUnknown();
475 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
476 // If we reach a lifetime begin or end marker, then the query ends here
477 // because the value is undefined.
478 Intrinsic::ID ID
= II
->getIntrinsicID();
480 case Intrinsic::lifetime_start
: {
481 // FIXME: This only considers queries directly on the invariant-tagged
482 // pointer, not on query pointers that are indexed off of them. It'd
483 // be nice to handle that at some point (the right approach is to use
484 // GetPointerBaseWithConstantOffset).
485 MemoryLocation ArgLoc
= MemoryLocation::getAfter(II
->getArgOperand(1));
486 if (BatchAA
.isMustAlias(ArgLoc
, MemLoc
))
487 return MemDepResult::getDef(II
);
490 case Intrinsic::masked_load
:
491 case Intrinsic::masked_store
: {
493 /*ModRefInfo MR =*/ GetLocation(II
, Loc
, TLI
);
494 AliasResult R
= BatchAA
.alias(Loc
, MemLoc
);
495 if (R
== AliasResult::NoAlias
)
497 if (R
== AliasResult::MustAlias
)
498 return MemDepResult::getDef(II
);
499 if (ID
== Intrinsic::masked_load
)
501 return MemDepResult::getClobber(II
);
506 // Values depend on loads if the pointers are must aliased. This means
507 // that a load depends on another must aliased load from the same value.
508 // One exception is atomic loads: a value can depend on an atomic load that
509 // it does not alias with when this atomic load indicates that another
510 // thread may be accessing the location.
511 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
512 // While volatile access cannot be eliminated, they do not have to clobber
513 // non-aliasing locations, as normal accesses, for example, can be safely
514 // reordered with volatile accesses.
515 if (LI
->isVolatile()) {
517 // Original QueryInst *may* be volatile
518 return MemDepResult::getClobber(LI
);
519 if (QueryInst
->isVolatile())
520 // Ordering required if QueryInst is itself volatile
521 return MemDepResult::getClobber(LI
);
522 // Otherwise, volatile doesn't imply any special ordering
525 // Atomic loads have complications involved.
526 // A Monotonic (or higher) load is OK if the query inst is itself not
528 // FIXME: This is overly conservative.
529 if (LI
->isAtomic() && isStrongerThanUnordered(LI
->getOrdering())) {
531 isComplexForReordering(QueryInst
, AtomicOrdering::NotAtomic
))
532 return MemDepResult::getClobber(LI
);
533 if (LI
->getOrdering() != AtomicOrdering::Monotonic
)
534 return MemDepResult::getClobber(LI
);
537 MemoryLocation LoadLoc
= MemoryLocation::get(LI
);
539 // If we found a pointer, check if it could be the same as our pointer.
540 AliasResult R
= BatchAA
.alias(LoadLoc
, MemLoc
);
542 if (R
== AliasResult::NoAlias
)
546 // Must aliased loads are defs of each other.
547 if (R
== AliasResult::MustAlias
)
548 return MemDepResult::getDef(Inst
);
550 // If we have a partial alias, then return this as a clobber for the
552 if (R
== AliasResult::PartialAlias
&& R
.hasOffset()) {
553 ClobberOffsets
[LI
] = R
.getOffset();
554 return MemDepResult::getClobber(Inst
);
557 // Random may-alias loads don't depend on each other without a
562 // Stores don't alias loads from read-only memory.
563 if (!isModSet(BatchAA
.getModRefInfoMask(LoadLoc
)))
566 // Stores depend on may/must aliased loads.
567 return MemDepResult::getDef(Inst
);
570 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
571 // Atomic stores have complications involved.
572 // A Monotonic store is OK if the query inst is itself not atomic.
573 // FIXME: This is overly conservative.
574 if (!SI
->isUnordered() && SI
->isAtomic()) {
576 isComplexForReordering(QueryInst
, AtomicOrdering::Unordered
))
577 return MemDepResult::getClobber(SI
);
578 // Ok, if we are here the guard above guarantee us that
579 // QueryInst is a non-atomic or unordered load/store.
580 // SI is atomic with monotonic or release semantic (seq_cst for store
581 // is actually a release semantic plus total order over other seq_cst
582 // instructions, as soon as QueryInst is not seq_cst we can consider it
583 // as simple release semantic).
584 // Monotonic and Release semantic allows re-ordering before store
585 // so we are safe to go further and check the aliasing. It will prohibit
586 // re-ordering in case locations are may or must alias.
589 // While volatile access cannot be eliminated, they do not have to clobber
590 // non-aliasing locations, as normal accesses can for example be reordered
591 // with volatile accesses.
592 if (SI
->isVolatile())
593 if (!QueryInst
|| QueryInst
->isVolatile())
594 return MemDepResult::getClobber(SI
);
596 // If alias analysis can tell that this store is guaranteed to not modify
597 // the query pointer, ignore it. Use getModRefInfo to handle cases where
598 // the query pointer points to constant memory etc.
599 if (!isModOrRefSet(BatchAA
.getModRefInfo(SI
, MemLoc
)))
602 // Ok, this store might clobber the query pointer. Check to see if it is
603 // a must alias: in this case, we want to return this as a def.
604 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
605 MemoryLocation StoreLoc
= MemoryLocation::get(SI
);
607 // If we found a pointer, check if it could be the same as our pointer.
608 AliasResult R
= BatchAA
.alias(StoreLoc
, MemLoc
);
610 if (R
== AliasResult::NoAlias
)
612 if (R
== AliasResult::MustAlias
)
613 return MemDepResult::getDef(Inst
);
616 if (canSkipClobberingStore(SI
, MemLoc
, MemLocAlign
, BatchAA
, *Limit
))
618 return MemDepResult::getClobber(Inst
);
621 // If this is an allocation, and if we know that the accessed pointer is to
622 // the allocation, return Def. This means that there is no dependence and
623 // the access can be optimized based on that. For example, a load could
624 // turn into undef. Note that we can bypass the allocation itself when
625 // looking for a clobber in many cases; that's an alias property and is
626 // handled by BasicAA.
627 if (isa
<AllocaInst
>(Inst
) || isNoAliasCall(Inst
)) {
628 const Value
*AccessPtr
= getUnderlyingObject(MemLoc
.Ptr
);
629 if (AccessPtr
== Inst
|| BatchAA
.isMustAlias(Inst
, AccessPtr
))
630 return MemDepResult::getDef(Inst
);
633 // If we found a select instruction for MemLoc pointer, return it as Def
635 if (isa
<SelectInst
>(Inst
) && MemLoc
.Ptr
== Inst
)
636 return MemDepResult::getDef(Inst
);
641 // A release fence requires that all stores complete before it, but does
642 // not prevent the reordering of following loads or stores 'before' the
643 // fence. As a result, we look past it when finding a dependency for
644 // loads. DSE uses this to find preceding stores to delete and thus we
645 // can't bypass the fence if the query instruction is a store.
646 if (FenceInst
*FI
= dyn_cast
<FenceInst
>(Inst
))
647 if (isLoad
&& FI
->getOrdering() == AtomicOrdering::Release
)
650 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
651 switch (BatchAA
.getModRefInfo(Inst
, MemLoc
)) {
652 case ModRefInfo::NoModRef
:
653 // If the call has no effect on the queried pointer, just ignore it.
655 case ModRefInfo::Mod
:
656 return MemDepResult::getClobber(Inst
);
657 case ModRefInfo::Ref
:
658 // If the call is known to never store to the pointer, and if this is a
659 // load query, we can safely ignore it (scan past it).
664 // Otherwise, there is a potential dependence. Return a clobber.
665 return MemDepResult::getClobber(Inst
);
669 // No dependence found. If this is the entry block of the function, it is
670 // unknown, otherwise it is non-local.
671 if (BB
!= &BB
->getParent()->getEntryBlock())
672 return MemDepResult::getNonLocal();
673 return MemDepResult::getNonFuncLocal();
676 MemDepResult
MemoryDependenceResults::getDependency(Instruction
*QueryInst
) {
677 ClobberOffsets
.clear();
678 Instruction
*ScanPos
= QueryInst
;
680 // Check for a cached result
681 MemDepResult
&LocalCache
= LocalDeps
[QueryInst
];
683 // If the cached entry is non-dirty, just return it. Note that this depends
684 // on MemDepResult's default constructing to 'dirty'.
685 if (!LocalCache
.isDirty())
688 // Otherwise, if we have a dirty entry, we know we can start the scan at that
689 // instruction, which may save us some work.
690 if (Instruction
*Inst
= LocalCache
.getInst()) {
693 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, QueryInst
);
696 BasicBlock
*QueryParent
= QueryInst
->getParent();
699 if (BasicBlock::iterator(QueryInst
) == QueryParent
->begin()) {
700 // No dependence found. If this is the entry block of the function, it is
701 // unknown, otherwise it is non-local.
702 if (QueryParent
!= &QueryParent
->getParent()->getEntryBlock())
703 LocalCache
= MemDepResult::getNonLocal();
705 LocalCache
= MemDepResult::getNonFuncLocal();
707 MemoryLocation MemLoc
;
708 ModRefInfo MR
= GetLocation(QueryInst
, MemLoc
, TLI
);
710 // If we can do a pointer scan, make it happen.
711 bool isLoad
= !isModSet(MR
);
712 if (auto *II
= dyn_cast
<IntrinsicInst
>(QueryInst
))
713 isLoad
|= II
->getIntrinsicID() == Intrinsic::lifetime_start
;
716 getPointerDependencyFrom(MemLoc
, isLoad
, ScanPos
->getIterator(),
717 QueryParent
, QueryInst
, nullptr);
718 } else if (auto *QueryCall
= dyn_cast
<CallBase
>(QueryInst
)) {
719 bool isReadOnly
= AA
.onlyReadsMemory(QueryCall
);
720 LocalCache
= getCallDependencyFrom(QueryCall
, isReadOnly
,
721 ScanPos
->getIterator(), QueryParent
);
723 // Non-memory instruction.
724 LocalCache
= MemDepResult::getUnknown();
727 // Remember the result!
728 if (Instruction
*I
= LocalCache
.getInst())
729 ReverseLocalDeps
[I
].insert(QueryInst
);
735 /// This method is used when -debug is specified to verify that cache arrays
736 /// are properly kept sorted.
737 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo
&Cache
,
740 Count
= Cache
.size();
741 assert(std::is_sorted(Cache
.begin(), Cache
.begin() + Count
) &&
742 "Cache isn't sorted!");
746 const MemoryDependenceResults::NonLocalDepInfo
&
747 MemoryDependenceResults::getNonLocalCallDependency(CallBase
*QueryCall
) {
748 assert(getDependency(QueryCall
).isNonLocal() &&
749 "getNonLocalCallDependency should only be used on calls with "
751 PerInstNLInfo
&CacheP
= NonLocalDepsMap
[QueryCall
];
752 NonLocalDepInfo
&Cache
= CacheP
.first
;
754 // This is the set of blocks that need to be recomputed. In the cached case,
755 // this can happen due to instructions being deleted etc. In the uncached
756 // case, this starts out as the set of predecessors we care about.
757 SmallVector
<BasicBlock
*, 32> DirtyBlocks
;
759 if (!Cache
.empty()) {
760 // Okay, we have a cache entry. If we know it is not dirty, just return it
761 // with no computation.
762 if (!CacheP
.second
) {
767 // If we already have a partially computed set of results, scan them to
768 // determine what is dirty, seeding our initial DirtyBlocks worklist.
769 for (auto &Entry
: Cache
)
770 if (Entry
.getResult().isDirty())
771 DirtyBlocks
.push_back(Entry
.getBB());
773 // Sort the cache so that we can do fast binary search lookups below.
776 ++NumCacheDirtyNonLocal
;
778 // Seed DirtyBlocks with each of the preds of QueryInst's block.
779 BasicBlock
*QueryBB
= QueryCall
->getParent();
780 append_range(DirtyBlocks
, PredCache
.get(QueryBB
));
781 ++NumUncacheNonLocal
;
784 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
785 bool isReadonlyCall
= AA
.onlyReadsMemory(QueryCall
);
787 SmallPtrSet
<BasicBlock
*, 32> Visited
;
789 unsigned NumSortedEntries
= Cache
.size();
790 LLVM_DEBUG(AssertSorted(Cache
));
792 // Iterate while we still have blocks to update.
793 while (!DirtyBlocks
.empty()) {
794 BasicBlock
*DirtyBB
= DirtyBlocks
.pop_back_val();
796 // Already processed this block?
797 if (!Visited
.insert(DirtyBB
).second
)
800 // Do a binary search to see if we already have an entry for this block in
801 // the cache set. If so, find it.
802 LLVM_DEBUG(AssertSorted(Cache
, NumSortedEntries
));
803 NonLocalDepInfo::iterator Entry
=
804 std::upper_bound(Cache
.begin(), Cache
.begin() + NumSortedEntries
,
805 NonLocalDepEntry(DirtyBB
));
806 if (Entry
!= Cache
.begin() && std::prev(Entry
)->getBB() == DirtyBB
)
809 NonLocalDepEntry
*ExistingResult
= nullptr;
810 if (Entry
!= Cache
.begin() + NumSortedEntries
&&
811 Entry
->getBB() == DirtyBB
) {
812 // If we already have an entry, and if it isn't already dirty, the block
814 if (!Entry
->getResult().isDirty())
817 // Otherwise, remember this slot so we can update the value.
818 ExistingResult
= &*Entry
;
821 // If the dirty entry has a pointer, start scanning from it so we don't have
822 // to rescan the entire block.
823 BasicBlock::iterator ScanPos
= DirtyBB
->end();
824 if (ExistingResult
) {
825 if (Instruction
*Inst
= ExistingResult
->getResult().getInst()) {
826 ScanPos
= Inst
->getIterator();
827 // We're removing QueryInst's use of Inst.
828 RemoveFromReverseMap
<Instruction
*>(ReverseNonLocalDeps
, Inst
,
833 // Find out if this block has a local dependency for QueryInst.
836 if (ScanPos
!= DirtyBB
->begin()) {
837 Dep
= getCallDependencyFrom(QueryCall
, isReadonlyCall
, ScanPos
, DirtyBB
);
838 } else if (DirtyBB
!= &DirtyBB
->getParent()->getEntryBlock()) {
839 // No dependence found. If this is the entry block of the function, it is
840 // a clobber, otherwise it is unknown.
841 Dep
= MemDepResult::getNonLocal();
843 Dep
= MemDepResult::getNonFuncLocal();
846 // If we had a dirty entry for the block, update it. Otherwise, just add
849 ExistingResult
->setResult(Dep
);
851 Cache
.push_back(NonLocalDepEntry(DirtyBB
, Dep
));
853 // If the block has a dependency (i.e. it isn't completely transparent to
854 // the value), remember the association!
855 if (!Dep
.isNonLocal()) {
856 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
857 // update this when we remove instructions.
858 if (Instruction
*Inst
= Dep
.getInst())
859 ReverseNonLocalDeps
[Inst
].insert(QueryCall
);
862 // If the block *is* completely transparent to the load, we need to check
863 // the predecessors of this block. Add them to our worklist.
864 append_range(DirtyBlocks
, PredCache
.get(DirtyBB
));
871 void MemoryDependenceResults::getNonLocalPointerDependency(
872 Instruction
*QueryInst
, SmallVectorImpl
<NonLocalDepResult
> &Result
) {
873 const MemoryLocation Loc
= MemoryLocation::get(QueryInst
);
874 bool isLoad
= isa
<LoadInst
>(QueryInst
);
875 BasicBlock
*FromBB
= QueryInst
->getParent();
878 assert(Loc
.Ptr
->getType()->isPointerTy() &&
879 "Can't get pointer deps of a non-pointer!");
882 // Check if there is cached Def with invariant.group.
883 auto NonLocalDefIt
= NonLocalDefsCache
.find(QueryInst
);
884 if (NonLocalDefIt
!= NonLocalDefsCache
.end()) {
885 Result
.push_back(NonLocalDefIt
->second
);
886 ReverseNonLocalDefsCache
[NonLocalDefIt
->second
.getResult().getInst()]
888 NonLocalDefsCache
.erase(NonLocalDefIt
);
892 // This routine does not expect to deal with volatile instructions.
893 // Doing so would require piping through the QueryInst all the way through.
894 // TODO: volatiles can't be elided, but they can be reordered with other
895 // non-volatile accesses.
897 // We currently give up on any instruction which is ordered, but we do handle
898 // atomic instructions which are unordered.
899 // TODO: Handle ordered instructions
900 auto isOrdered
= [](Instruction
*Inst
) {
901 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
902 return !LI
->isUnordered();
903 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
904 return !SI
->isUnordered();
908 if (QueryInst
->isVolatile() || isOrdered(QueryInst
)) {
909 Result
.push_back(NonLocalDepResult(FromBB
, MemDepResult::getUnknown(),
910 const_cast<Value
*>(Loc
.Ptr
)));
913 const DataLayout
&DL
= FromBB
->getModule()->getDataLayout();
914 PHITransAddr
Address(const_cast<Value
*>(Loc
.Ptr
), DL
, &AC
);
916 // This is the set of blocks we've inspected, and the pointer we consider in
917 // each block. Because of critical edges, we currently bail out if querying
918 // a block with multiple different pointers. This can happen during PHI
920 DenseMap
<BasicBlock
*, Value
*> Visited
;
921 if (getNonLocalPointerDepFromBB(QueryInst
, Address
, Loc
, isLoad
, FromBB
,
922 Result
, Visited
, true))
925 Result
.push_back(NonLocalDepResult(FromBB
, MemDepResult::getUnknown(),
926 const_cast<Value
*>(Loc
.Ptr
)));
929 /// Compute the memdep value for BB with Pointer/PointeeSize using either
930 /// cached information in Cache or by doing a lookup (which may use dirty cache
931 /// info if available).
933 /// If we do a lookup, add the result to the cache.
934 MemDepResult
MemoryDependenceResults::getNonLocalInfoForBlock(
935 Instruction
*QueryInst
, const MemoryLocation
&Loc
, bool isLoad
,
936 BasicBlock
*BB
, NonLocalDepInfo
*Cache
, unsigned NumSortedEntries
,
937 BatchAAResults
&BatchAA
) {
939 bool isInvariantLoad
= false;
941 if (LoadInst
*LI
= dyn_cast_or_null
<LoadInst
>(QueryInst
))
942 isInvariantLoad
= LI
->getMetadata(LLVMContext::MD_invariant_load
);
944 // Do a binary search to see if we already have an entry for this block in
945 // the cache set. If so, find it.
946 NonLocalDepInfo::iterator Entry
= std::upper_bound(
947 Cache
->begin(), Cache
->begin() + NumSortedEntries
, NonLocalDepEntry(BB
));
948 if (Entry
!= Cache
->begin() && (Entry
- 1)->getBB() == BB
)
951 NonLocalDepEntry
*ExistingResult
= nullptr;
952 if (Entry
!= Cache
->begin() + NumSortedEntries
&& Entry
->getBB() == BB
)
953 ExistingResult
= &*Entry
;
955 // Use cached result for invariant load only if there is no dependency for non
956 // invariant load. In this case invariant load can not have any dependency as
958 if (ExistingResult
&& isInvariantLoad
&&
959 !ExistingResult
->getResult().isNonFuncLocal())
960 ExistingResult
= nullptr;
962 // If we have a cached entry, and it is non-dirty, use it as the value for
964 if (ExistingResult
&& !ExistingResult
->getResult().isDirty()) {
965 ++NumCacheNonLocalPtr
;
966 return ExistingResult
->getResult();
969 // Otherwise, we have to scan for the value. If we have a dirty cache
970 // entry, start scanning from its position, otherwise we scan from the end
972 BasicBlock::iterator ScanPos
= BB
->end();
973 if (ExistingResult
&& ExistingResult
->getResult().getInst()) {
974 assert(ExistingResult
->getResult().getInst()->getParent() == BB
&&
975 "Instruction invalidated?");
976 ++NumCacheDirtyNonLocalPtr
;
977 ScanPos
= ExistingResult
->getResult().getInst()->getIterator();
979 // Eliminating the dirty entry from 'Cache', so update the reverse info.
980 ValueIsLoadPair
CacheKey(Loc
.Ptr
, isLoad
);
981 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, &*ScanPos
, CacheKey
);
983 ++NumUncacheNonLocalPtr
;
986 // Scan the block for the dependency.
987 MemDepResult Dep
= getPointerDependencyFrom(Loc
, isLoad
, ScanPos
, BB
,
988 QueryInst
, nullptr, BatchAA
);
990 // Don't cache results for invariant load.
994 // If we had a dirty entry for the block, update it. Otherwise, just add
997 ExistingResult
->setResult(Dep
);
999 Cache
->push_back(NonLocalDepEntry(BB
, Dep
));
1001 // If the block has a dependency (i.e. it isn't completely transparent to
1002 // the value), remember the reverse association because we just added it
1007 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1008 // update MemDep when we remove instructions.
1009 Instruction
*Inst
= Dep
.getInst();
1010 assert(Inst
&& "Didn't depend on anything?");
1011 ValueIsLoadPair
CacheKey(Loc
.Ptr
, isLoad
);
1012 ReverseNonLocalPtrDeps
[Inst
].insert(CacheKey
);
1016 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
1017 /// array that are already properly ordered.
1019 /// This is optimized for the case when only a few entries are added.
1021 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo
&Cache
,
1022 unsigned NumSortedEntries
) {
1023 switch (Cache
.size() - NumSortedEntries
) {
1025 // done, no new entries.
1028 // Two new entries, insert the last one into place.
1029 NonLocalDepEntry Val
= Cache
.back();
1031 MemoryDependenceResults::NonLocalDepInfo::iterator Entry
=
1032 std::upper_bound(Cache
.begin(), Cache
.end() - 1, Val
);
1033 Cache
.insert(Entry
, Val
);
1037 // One new entry, Just insert the new value at the appropriate position.
1038 if (Cache
.size() != 1) {
1039 NonLocalDepEntry Val
= Cache
.back();
1041 MemoryDependenceResults::NonLocalDepInfo::iterator Entry
=
1042 llvm::upper_bound(Cache
, Val
);
1043 Cache
.insert(Entry
, Val
);
1047 // Added many values, do a full scale sort.
1053 /// Perform a dependency query based on pointer/pointeesize starting at the end
1056 /// Add any clobber/def results to the results vector and keep track of which
1057 /// blocks are visited in 'Visited'.
1059 /// This has special behavior for the first block queries (when SkipFirstBlock
1060 /// is true). In this special case, it ignores the contents of the specified
1061 /// block and starts returning dependence info for its predecessors.
1063 /// This function returns true on success, or false to indicate that it could
1064 /// not compute dependence information for some reason. This should be treated
1065 /// as a clobber dependence on the first instruction in the predecessor block.
1066 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1067 Instruction
*QueryInst
, const PHITransAddr
&Pointer
,
1068 const MemoryLocation
&Loc
, bool isLoad
, BasicBlock
*StartBB
,
1069 SmallVectorImpl
<NonLocalDepResult
> &Result
,
1070 DenseMap
<BasicBlock
*, Value
*> &Visited
, bool SkipFirstBlock
,
1071 bool IsIncomplete
) {
1072 // Look up the cached info for Pointer.
1073 ValueIsLoadPair
CacheKey(Pointer
.getAddr(), isLoad
);
1075 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1076 // CacheKey, this value will be inserted as the associated value. Otherwise,
1077 // it'll be ignored, and we'll have to check to see if the cached size and
1078 // aa tags are consistent with the current query.
1079 NonLocalPointerInfo InitialNLPI
;
1080 InitialNLPI
.Size
= Loc
.Size
;
1081 InitialNLPI
.AATags
= Loc
.AATags
;
1083 bool isInvariantLoad
= false;
1084 if (LoadInst
*LI
= dyn_cast_or_null
<LoadInst
>(QueryInst
))
1085 isInvariantLoad
= LI
->getMetadata(LLVMContext::MD_invariant_load
);
1087 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1088 // already have one.
1089 std::pair
<CachedNonLocalPointerInfo::iterator
, bool> Pair
=
1090 NonLocalPointerDeps
.insert(std::make_pair(CacheKey
, InitialNLPI
));
1091 NonLocalPointerInfo
*CacheInfo
= &Pair
.first
->second
;
1093 // If we already have a cache entry for this CacheKey, we may need to do some
1094 // work to reconcile the cache entry and the current query.
1095 // Invariant loads don't participate in caching. Thus no need to reconcile.
1096 if (!isInvariantLoad
&& !Pair
.second
) {
1097 if (CacheInfo
->Size
!= Loc
.Size
) {
1098 bool ThrowOutEverything
;
1099 if (CacheInfo
->Size
.hasValue() && Loc
.Size
.hasValue()) {
1100 // FIXME: We may be able to do better in the face of results with mixed
1101 // precision. We don't appear to get them in practice, though, so just
1103 ThrowOutEverything
=
1104 CacheInfo
->Size
.isPrecise() != Loc
.Size
.isPrecise() ||
1105 !TypeSize::isKnownGE(CacheInfo
->Size
.getValue(),
1106 Loc
.Size
.getValue());
1108 // For our purposes, unknown size > all others.
1109 ThrowOutEverything
= !Loc
.Size
.hasValue();
1112 if (ThrowOutEverything
) {
1113 // The query's Size is greater than the cached one. Throw out the
1114 // cached data and proceed with the query at the greater size.
1115 CacheInfo
->Pair
= BBSkipFirstBlockPair();
1116 CacheInfo
->Size
= Loc
.Size
;
1117 for (auto &Entry
: CacheInfo
->NonLocalDeps
)
1118 if (Instruction
*Inst
= Entry
.getResult().getInst())
1119 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, Inst
, CacheKey
);
1120 CacheInfo
->NonLocalDeps
.clear();
1121 // The cache is cleared (in the above line) so we will have lost
1122 // information about blocks we have already visited. We therefore must
1123 // assume that the cache information is incomplete.
1124 IsIncomplete
= true;
1126 // This query's Size is less than the cached one. Conservatively restart
1127 // the query using the greater size.
1128 return getNonLocalPointerDepFromBB(
1129 QueryInst
, Pointer
, Loc
.getWithNewSize(CacheInfo
->Size
), isLoad
,
1130 StartBB
, Result
, Visited
, SkipFirstBlock
, IsIncomplete
);
1134 // If the query's AATags are inconsistent with the cached one,
1135 // conservatively throw out the cached data and restart the query with
1136 // no tag if needed.
1137 if (CacheInfo
->AATags
!= Loc
.AATags
) {
1138 if (CacheInfo
->AATags
) {
1139 CacheInfo
->Pair
= BBSkipFirstBlockPair();
1140 CacheInfo
->AATags
= AAMDNodes();
1141 for (auto &Entry
: CacheInfo
->NonLocalDeps
)
1142 if (Instruction
*Inst
= Entry
.getResult().getInst())
1143 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, Inst
, CacheKey
);
1144 CacheInfo
->NonLocalDeps
.clear();
1145 // The cache is cleared (in the above line) so we will have lost
1146 // information about blocks we have already visited. We therefore must
1147 // assume that the cache information is incomplete.
1148 IsIncomplete
= true;
1151 return getNonLocalPointerDepFromBB(
1152 QueryInst
, Pointer
, Loc
.getWithoutAATags(), isLoad
, StartBB
, Result
,
1153 Visited
, SkipFirstBlock
, IsIncomplete
);
1157 NonLocalDepInfo
*Cache
= &CacheInfo
->NonLocalDeps
;
1159 // If we have valid cached information for exactly the block we are
1160 // investigating, just return it with no recomputation.
1161 // Don't use cached information for invariant loads since it is valid for
1162 // non-invariant loads only.
1163 if (!IsIncomplete
&& !isInvariantLoad
&&
1164 CacheInfo
->Pair
== BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
)) {
1165 // We have a fully cached result for this query then we can just return the
1166 // cached results and populate the visited set. However, we have to verify
1167 // that we don't already have conflicting results for these blocks. Check
1168 // to ensure that if a block in the results set is in the visited set that
1169 // it was for the same pointer query.
1170 if (!Visited
.empty()) {
1171 for (auto &Entry
: *Cache
) {
1172 DenseMap
<BasicBlock
*, Value
*>::iterator VI
=
1173 Visited
.find(Entry
.getBB());
1174 if (VI
== Visited
.end() || VI
->second
== Pointer
.getAddr())
1177 // We have a pointer mismatch in a block. Just return false, saying
1178 // that something was clobbered in this result. We could also do a
1179 // non-fully cached query, but there is little point in doing this.
1184 Value
*Addr
= Pointer
.getAddr();
1185 for (auto &Entry
: *Cache
) {
1186 Visited
.insert(std::make_pair(Entry
.getBB(), Addr
));
1187 if (Entry
.getResult().isNonLocal()) {
1191 if (DT
.isReachableFromEntry(Entry
.getBB())) {
1193 NonLocalDepResult(Entry
.getBB(), Entry
.getResult(), Addr
));
1196 ++NumCacheCompleteNonLocalPtr
;
1200 // Otherwise, either this is a new block, a block with an invalid cache
1201 // pointer or one that we're about to invalidate by putting more info into
1202 // it than its valid cache info. If empty and not explicitly indicated as
1203 // incomplete, the result will be valid cache info, otherwise it isn't.
1205 // Invariant loads don't affect cache in any way thus no need to update
1206 // CacheInfo as well.
1207 if (!isInvariantLoad
) {
1208 if (!IsIncomplete
&& Cache
->empty())
1209 CacheInfo
->Pair
= BBSkipFirstBlockPair(StartBB
, SkipFirstBlock
);
1211 CacheInfo
->Pair
= BBSkipFirstBlockPair();
1214 SmallVector
<BasicBlock
*, 32> Worklist
;
1215 Worklist
.push_back(StartBB
);
1217 // PredList used inside loop.
1218 SmallVector
<std::pair
<BasicBlock
*, PHITransAddr
>, 16> PredList
;
1220 // Keep track of the entries that we know are sorted. Previously cached
1221 // entries will all be sorted. The entries we add we only sort on demand (we
1222 // don't insert every element into its sorted position). We know that we
1223 // won't get any reuse from currently inserted values, because we don't
1224 // revisit blocks after we insert info for them.
1225 unsigned NumSortedEntries
= Cache
->size();
1226 unsigned WorklistEntries
= BlockNumberLimit
;
1227 bool GotWorklistLimit
= false;
1228 LLVM_DEBUG(AssertSorted(*Cache
));
1230 BatchAAResults
BatchAA(AA
, &EII
);
1231 while (!Worklist
.empty()) {
1232 BasicBlock
*BB
= Worklist
.pop_back_val();
1234 // If we do process a large number of blocks it becomes very expensive and
1235 // likely it isn't worth worrying about
1236 if (Result
.size() > NumResultsLimit
) {
1237 // Sort it now (if needed) so that recursive invocations of
1238 // getNonLocalPointerDepFromBB and other routines that could reuse the
1239 // cache value will only see properly sorted cache arrays.
1240 if (Cache
&& NumSortedEntries
!= Cache
->size()) {
1241 SortNonLocalDepInfoCache(*Cache
, NumSortedEntries
);
1243 // Since we bail out, the "Cache" set won't contain all of the
1244 // results for the query. This is ok (we can still use it to accelerate
1245 // specific block queries) but we can't do the fastpath "return all
1246 // results from the set". Clear out the indicator for this.
1247 CacheInfo
->Pair
= BBSkipFirstBlockPair();
1251 // Skip the first block if we have it.
1252 if (!SkipFirstBlock
) {
1253 // Analyze the dependency of *Pointer in FromBB. See if we already have
1255 assert(Visited
.count(BB
) && "Should check 'visited' before adding to WL");
1257 // Get the dependency info for Pointer in BB. If we have cached
1258 // information, we will use it, otherwise we compute it.
1259 LLVM_DEBUG(AssertSorted(*Cache
, NumSortedEntries
));
1260 MemDepResult Dep
= getNonLocalInfoForBlock(
1261 QueryInst
, Loc
, isLoad
, BB
, Cache
, NumSortedEntries
, BatchAA
);
1263 // If we got a Def or Clobber, add this to the list of results.
1264 if (!Dep
.isNonLocal()) {
1265 if (DT
.isReachableFromEntry(BB
)) {
1266 Result
.push_back(NonLocalDepResult(BB
, Dep
, Pointer
.getAddr()));
1272 // If 'Pointer' is an instruction defined in this block, then we need to do
1273 // phi translation to change it into a value live in the predecessor block.
1274 // If not, we just add the predecessors to the worklist and scan them with
1275 // the same Pointer.
1276 if (!Pointer
.needsPHITranslationFromBlock(BB
)) {
1277 SkipFirstBlock
= false;
1278 SmallVector
<BasicBlock
*, 16> NewBlocks
;
1279 for (BasicBlock
*Pred
: PredCache
.get(BB
)) {
1280 // Verify that we haven't looked at this block yet.
1281 std::pair
<DenseMap
<BasicBlock
*, Value
*>::iterator
, bool> InsertRes
=
1282 Visited
.insert(std::make_pair(Pred
, Pointer
.getAddr()));
1283 if (InsertRes
.second
) {
1284 // First time we've looked at *PI.
1285 NewBlocks
.push_back(Pred
);
1289 // If we have seen this block before, but it was with a different
1290 // pointer then we have a phi translation failure and we have to treat
1291 // this as a clobber.
1292 if (InsertRes
.first
->second
!= Pointer
.getAddr()) {
1293 // Make sure to clean up the Visited map before continuing on to
1294 // PredTranslationFailure.
1295 for (auto *NewBlock
: NewBlocks
)
1296 Visited
.erase(NewBlock
);
1297 goto PredTranslationFailure
;
1300 if (NewBlocks
.size() > WorklistEntries
) {
1301 // Make sure to clean up the Visited map before continuing on to
1302 // PredTranslationFailure.
1303 for (auto *NewBlock
: NewBlocks
)
1304 Visited
.erase(NewBlock
);
1305 GotWorklistLimit
= true;
1306 goto PredTranslationFailure
;
1308 WorklistEntries
-= NewBlocks
.size();
1309 Worklist
.append(NewBlocks
.begin(), NewBlocks
.end());
1313 // We do need to do phi translation, if we know ahead of time we can't phi
1314 // translate this value, don't even try.
1315 if (!Pointer
.isPotentiallyPHITranslatable())
1316 goto PredTranslationFailure
;
1318 // We may have added values to the cache list before this PHI translation.
1319 // If so, we haven't done anything to ensure that the cache remains sorted.
1320 // Sort it now (if needed) so that recursive invocations of
1321 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1322 // value will only see properly sorted cache arrays.
1323 if (Cache
&& NumSortedEntries
!= Cache
->size()) {
1324 SortNonLocalDepInfoCache(*Cache
, NumSortedEntries
);
1325 NumSortedEntries
= Cache
->size();
1330 for (BasicBlock
*Pred
: PredCache
.get(BB
)) {
1331 PredList
.push_back(std::make_pair(Pred
, Pointer
));
1333 // Get the PHI translated pointer in this predecessor. This can fail if
1334 // not translatable, in which case the getAddr() returns null.
1335 PHITransAddr
&PredPointer
= PredList
.back().second
;
1337 PredPointer
.translateValue(BB
, Pred
, &DT
, /*MustDominate=*/false);
1339 // Check to see if we have already visited this pred block with another
1340 // pointer. If so, we can't do this lookup. This failure can occur
1341 // with PHI translation when a critical edge exists and the PHI node in
1342 // the successor translates to a pointer value different than the
1343 // pointer the block was first analyzed with.
1344 std::pair
<DenseMap
<BasicBlock
*, Value
*>::iterator
, bool> InsertRes
=
1345 Visited
.insert(std::make_pair(Pred
, PredPtrVal
));
1347 if (!InsertRes
.second
) {
1348 // We found the pred; take it off the list of preds to visit.
1349 PredList
.pop_back();
1351 // If the predecessor was visited with PredPtr, then we already did
1352 // the analysis and can ignore it.
1353 if (InsertRes
.first
->second
== PredPtrVal
)
1356 // Otherwise, the block was previously analyzed with a different
1357 // pointer. We can't represent the result of this case, so we just
1358 // treat this as a phi translation failure.
1360 // Make sure to clean up the Visited map before continuing on to
1361 // PredTranslationFailure.
1362 for (const auto &Pred
: PredList
)
1363 Visited
.erase(Pred
.first
);
1365 goto PredTranslationFailure
;
1369 // Actually process results here; this need to be a separate loop to avoid
1370 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1371 // any results for. (getNonLocalPointerDepFromBB will modify our
1372 // datastructures in ways the code after the PredTranslationFailure label
1374 for (auto &I
: PredList
) {
1375 BasicBlock
*Pred
= I
.first
;
1376 PHITransAddr
&PredPointer
= I
.second
;
1377 Value
*PredPtrVal
= PredPointer
.getAddr();
1379 bool CanTranslate
= true;
1380 // If PHI translation was unable to find an available pointer in this
1381 // predecessor, then we have to assume that the pointer is clobbered in
1382 // that predecessor. We can still do PRE of the load, which would insert
1383 // a computation of the pointer in this predecessor.
1385 CanTranslate
= false;
1387 // FIXME: it is entirely possible that PHI translating will end up with
1388 // the same value. Consider PHI translating something like:
1389 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1390 // to recurse here, pedantically speaking.
1392 // If getNonLocalPointerDepFromBB fails here, that means the cached
1393 // result conflicted with the Visited list; we have to conservatively
1394 // assume it is unknown, but this also does not block PRE of the load.
1395 if (!CanTranslate
||
1396 !getNonLocalPointerDepFromBB(QueryInst
, PredPointer
,
1397 Loc
.getWithNewPtr(PredPtrVal
), isLoad
,
1398 Pred
, Result
, Visited
)) {
1399 // Add the entry to the Result list.
1400 NonLocalDepResult
Entry(Pred
, MemDepResult::getUnknown(), PredPtrVal
);
1401 Result
.push_back(Entry
);
1403 // Since we had a phi translation failure, the cache for CacheKey won't
1404 // include all of the entries that we need to immediately satisfy future
1405 // queries. Mark this in NonLocalPointerDeps by setting the
1406 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1407 // cached value to do more work but not miss the phi trans failure.
1408 NonLocalPointerInfo
&NLPI
= NonLocalPointerDeps
[CacheKey
];
1409 NLPI
.Pair
= BBSkipFirstBlockPair();
1414 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1415 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
1416 Cache
= &CacheInfo
->NonLocalDeps
;
1417 NumSortedEntries
= Cache
->size();
1419 // Since we did phi translation, the "Cache" set won't contain all of the
1420 // results for the query. This is ok (we can still use it to accelerate
1421 // specific block queries) but we can't do the fastpath "return all
1422 // results from the set" Clear out the indicator for this.
1423 CacheInfo
->Pair
= BBSkipFirstBlockPair();
1424 SkipFirstBlock
= false;
1427 PredTranslationFailure
:
1428 // The following code is "failure"; we can't produce a sane translation
1429 // for the given block. It assumes that we haven't modified any of
1430 // our datastructures while processing the current block.
1433 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1434 CacheInfo
= &NonLocalPointerDeps
[CacheKey
];
1435 Cache
= &CacheInfo
->NonLocalDeps
;
1436 NumSortedEntries
= Cache
->size();
1439 // Since we failed phi translation, the "Cache" set won't contain all of the
1440 // results for the query. This is ok (we can still use it to accelerate
1441 // specific block queries) but we can't do the fastpath "return all
1442 // results from the set". Clear out the indicator for this.
1443 CacheInfo
->Pair
= BBSkipFirstBlockPair();
1445 // If *nothing* works, mark the pointer as unknown.
1447 // If this is the magic first block, return this as a clobber of the whole
1448 // incoming value. Since we can't phi translate to one of the predecessors,
1449 // we have to bail out.
1453 // Results of invariant loads are not cached thus no need to update cached
1455 if (!isInvariantLoad
) {
1456 for (NonLocalDepEntry
&I
: llvm::reverse(*Cache
)) {
1457 if (I
.getBB() != BB
)
1460 assert((GotWorklistLimit
|| I
.getResult().isNonLocal() ||
1461 !DT
.isReachableFromEntry(BB
)) &&
1462 "Should only be here with transparent block");
1464 I
.setResult(MemDepResult::getUnknown());
1470 (void)GotWorklistLimit
;
1471 // Go ahead and report unknown dependence.
1473 NonLocalDepResult(BB
, MemDepResult::getUnknown(), Pointer
.getAddr()));
1476 // Okay, we're done now. If we added new values to the cache, re-sort it.
1477 SortNonLocalDepInfoCache(*Cache
, NumSortedEntries
);
1478 LLVM_DEBUG(AssertSorted(*Cache
));
1482 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1483 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1484 ValueIsLoadPair P
) {
1486 // Most of the time this cache is empty.
1487 if (!NonLocalDefsCache
.empty()) {
1488 auto it
= NonLocalDefsCache
.find(P
.getPointer());
1489 if (it
!= NonLocalDefsCache
.end()) {
1490 RemoveFromReverseMap(ReverseNonLocalDefsCache
,
1491 it
->second
.getResult().getInst(), P
.getPointer());
1492 NonLocalDefsCache
.erase(it
);
1495 if (auto *I
= dyn_cast
<Instruction
>(P
.getPointer())) {
1496 auto toRemoveIt
= ReverseNonLocalDefsCache
.find(I
);
1497 if (toRemoveIt
!= ReverseNonLocalDefsCache
.end()) {
1498 for (const auto *entry
: toRemoveIt
->second
)
1499 NonLocalDefsCache
.erase(entry
);
1500 ReverseNonLocalDefsCache
.erase(toRemoveIt
);
1505 CachedNonLocalPointerInfo::iterator It
= NonLocalPointerDeps
.find(P
);
1506 if (It
== NonLocalPointerDeps
.end())
1509 // Remove all of the entries in the BB->val map. This involves removing
1510 // instructions from the reverse map.
1511 NonLocalDepInfo
&PInfo
= It
->second
.NonLocalDeps
;
1513 for (const NonLocalDepEntry
&DE
: PInfo
) {
1514 Instruction
*Target
= DE
.getResult().getInst();
1516 continue; // Ignore non-local dep results.
1517 assert(Target
->getParent() == DE
.getBB());
1519 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1520 RemoveFromReverseMap(ReverseNonLocalPtrDeps
, Target
, P
);
1523 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1524 NonLocalPointerDeps
.erase(It
);
1527 void MemoryDependenceResults::invalidateCachedPointerInfo(Value
*Ptr
) {
1528 // If Ptr isn't really a pointer, just ignore it.
1529 if (!Ptr
->getType()->isPointerTy())
1531 // Flush store info for the pointer.
1532 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, false));
1533 // Flush load info for the pointer.
1534 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr
, true));
1537 void MemoryDependenceResults::invalidateCachedPredecessors() {
1541 void MemoryDependenceResults::removeInstruction(Instruction
*RemInst
) {
1542 EII
.removeInstruction(RemInst
);
1544 // Walk through the Non-local dependencies, removing this one as the value
1545 // for any cached queries.
1546 NonLocalDepMapType::iterator NLDI
= NonLocalDepsMap
.find(RemInst
);
1547 if (NLDI
!= NonLocalDepsMap
.end()) {
1548 NonLocalDepInfo
&BlockMap
= NLDI
->second
.first
;
1549 for (auto &Entry
: BlockMap
)
1550 if (Instruction
*Inst
= Entry
.getResult().getInst())
1551 RemoveFromReverseMap(ReverseNonLocalDeps
, Inst
, RemInst
);
1552 NonLocalDepsMap
.erase(NLDI
);
1555 // If we have a cached local dependence query for this instruction, remove it.
1556 LocalDepMapType::iterator LocalDepEntry
= LocalDeps
.find(RemInst
);
1557 if (LocalDepEntry
!= LocalDeps
.end()) {
1558 // Remove us from DepInst's reverse set now that the local dep info is gone.
1559 if (Instruction
*Inst
= LocalDepEntry
->second
.getInst())
1560 RemoveFromReverseMap(ReverseLocalDeps
, Inst
, RemInst
);
1562 // Remove this local dependency info.
1563 LocalDeps
.erase(LocalDepEntry
);
1566 // If we have any cached dependencies on this instruction, remove
1569 // If the instruction is a pointer, remove it from both the load info and the
1571 if (RemInst
->getType()->isPointerTy()) {
1572 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, false));
1573 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst
, true));
1575 // Otherwise, if the instructions is in the map directly, it must be a load.
1577 auto toRemoveIt
= NonLocalDefsCache
.find(RemInst
);
1578 if (toRemoveIt
!= NonLocalDefsCache
.end()) {
1579 assert(isa
<LoadInst
>(RemInst
) &&
1580 "only load instructions should be added directly");
1581 const Instruction
*DepV
= toRemoveIt
->second
.getResult().getInst();
1582 ReverseNonLocalDefsCache
.find(DepV
)->second
.erase(RemInst
);
1583 NonLocalDefsCache
.erase(toRemoveIt
);
1587 // Loop over all of the things that depend on the instruction we're removing.
1588 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 8> ReverseDepsToAdd
;
1590 // If we find RemInst as a clobber or Def in any of the maps for other values,
1591 // we need to replace its entry with a dirty version of the instruction after
1592 // it. If RemInst is a terminator, we use a null dirty value.
1594 // Using a dirty version of the instruction after RemInst saves having to scan
1595 // the entire block to get to this point.
1596 MemDepResult NewDirtyVal
;
1597 if (!RemInst
->isTerminator())
1598 NewDirtyVal
= MemDepResult::getDirty(&*++RemInst
->getIterator());
1600 ReverseDepMapType::iterator ReverseDepIt
= ReverseLocalDeps
.find(RemInst
);
1601 if (ReverseDepIt
!= ReverseLocalDeps
.end()) {
1602 // RemInst can't be the terminator if it has local stuff depending on it.
1603 assert(!ReverseDepIt
->second
.empty() && !RemInst
->isTerminator() &&
1604 "Nothing can locally depend on a terminator");
1606 for (Instruction
*InstDependingOnRemInst
: ReverseDepIt
->second
) {
1607 assert(InstDependingOnRemInst
!= RemInst
&&
1608 "Already removed our local dep info");
1610 LocalDeps
[InstDependingOnRemInst
] = NewDirtyVal
;
1612 // Make sure to remember that new things depend on NewDepInst.
1613 assert(NewDirtyVal
.getInst() &&
1614 "There is no way something else can have "
1615 "a local dep on this if it is a terminator!");
1616 ReverseDepsToAdd
.push_back(
1617 std::make_pair(NewDirtyVal
.getInst(), InstDependingOnRemInst
));
1620 ReverseLocalDeps
.erase(ReverseDepIt
);
1622 // Add new reverse deps after scanning the set, to avoid invalidating the
1623 // 'ReverseDeps' reference.
1624 while (!ReverseDepsToAdd
.empty()) {
1625 ReverseLocalDeps
[ReverseDepsToAdd
.back().first
].insert(
1626 ReverseDepsToAdd
.back().second
);
1627 ReverseDepsToAdd
.pop_back();
1631 ReverseDepIt
= ReverseNonLocalDeps
.find(RemInst
);
1632 if (ReverseDepIt
!= ReverseNonLocalDeps
.end()) {
1633 for (Instruction
*I
: ReverseDepIt
->second
) {
1634 assert(I
!= RemInst
&& "Already removed NonLocalDep info for RemInst");
1636 PerInstNLInfo
&INLD
= NonLocalDepsMap
[I
];
1637 // The information is now dirty!
1640 for (auto &Entry
: INLD
.first
) {
1641 if (Entry
.getResult().getInst() != RemInst
)
1644 // Convert to a dirty entry for the subsequent instruction.
1645 Entry
.setResult(NewDirtyVal
);
1647 if (Instruction
*NextI
= NewDirtyVal
.getInst())
1648 ReverseDepsToAdd
.push_back(std::make_pair(NextI
, I
));
1652 ReverseNonLocalDeps
.erase(ReverseDepIt
);
1654 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1655 while (!ReverseDepsToAdd
.empty()) {
1656 ReverseNonLocalDeps
[ReverseDepsToAdd
.back().first
].insert(
1657 ReverseDepsToAdd
.back().second
);
1658 ReverseDepsToAdd
.pop_back();
1662 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1663 // value in the NonLocalPointerDeps info.
1664 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt
=
1665 ReverseNonLocalPtrDeps
.find(RemInst
);
1666 if (ReversePtrDepIt
!= ReverseNonLocalPtrDeps
.end()) {
1667 SmallVector
<std::pair
<Instruction
*, ValueIsLoadPair
>, 8>
1668 ReversePtrDepsToAdd
;
1670 for (ValueIsLoadPair P
: ReversePtrDepIt
->second
) {
1671 assert(P
.getPointer() != RemInst
&&
1672 "Already removed NonLocalPointerDeps info for RemInst");
1674 NonLocalDepInfo
&NLPDI
= NonLocalPointerDeps
[P
].NonLocalDeps
;
1676 // The cache is not valid for any specific block anymore.
1677 NonLocalPointerDeps
[P
].Pair
= BBSkipFirstBlockPair();
1679 // Update any entries for RemInst to use the instruction after it.
1680 for (auto &Entry
: NLPDI
) {
1681 if (Entry
.getResult().getInst() != RemInst
)
1684 // Convert to a dirty entry for the subsequent instruction.
1685 Entry
.setResult(NewDirtyVal
);
1687 if (Instruction
*NewDirtyInst
= NewDirtyVal
.getInst())
1688 ReversePtrDepsToAdd
.push_back(std::make_pair(NewDirtyInst
, P
));
1691 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1692 // subsequent value may invalidate the sortedness.
1696 ReverseNonLocalPtrDeps
.erase(ReversePtrDepIt
);
1698 while (!ReversePtrDepsToAdd
.empty()) {
1699 ReverseNonLocalPtrDeps
[ReversePtrDepsToAdd
.back().first
].insert(
1700 ReversePtrDepsToAdd
.back().second
);
1701 ReversePtrDepsToAdd
.pop_back();
1705 assert(!NonLocalDepsMap
.count(RemInst
) && "RemInst got reinserted?");
1706 LLVM_DEBUG(verifyRemoved(RemInst
));
1709 /// Verify that the specified instruction does not occur in our internal data
1712 /// This function verifies by asserting in debug builds.
1713 void MemoryDependenceResults::verifyRemoved(Instruction
*D
) const {
1715 for (const auto &DepKV
: LocalDeps
) {
1716 assert(DepKV
.first
!= D
&& "Inst occurs in data structures");
1717 assert(DepKV
.second
.getInst() != D
&& "Inst occurs in data structures");
1720 for (const auto &DepKV
: NonLocalPointerDeps
) {
1721 assert(DepKV
.first
.getPointer() != D
&& "Inst occurs in NLPD map key");
1722 for (const auto &Entry
: DepKV
.second
.NonLocalDeps
)
1723 assert(Entry
.getResult().getInst() != D
&& "Inst occurs as NLPD value");
1726 for (const auto &DepKV
: NonLocalDepsMap
) {
1727 assert(DepKV
.first
!= D
&& "Inst occurs in data structures");
1728 const PerInstNLInfo
&INLD
= DepKV
.second
;
1729 for (const auto &Entry
: INLD
.first
)
1730 assert(Entry
.getResult().getInst() != D
&&
1731 "Inst occurs in data structures");
1734 for (const auto &DepKV
: ReverseLocalDeps
) {
1735 assert(DepKV
.first
!= D
&& "Inst occurs in data structures");
1736 for (Instruction
*Inst
: DepKV
.second
)
1737 assert(Inst
!= D
&& "Inst occurs in data structures");
1740 for (const auto &DepKV
: ReverseNonLocalDeps
) {
1741 assert(DepKV
.first
!= D
&& "Inst occurs in data structures");
1742 for (Instruction
*Inst
: DepKV
.second
)
1743 assert(Inst
!= D
&& "Inst occurs in data structures");
1746 for (const auto &DepKV
: ReverseNonLocalPtrDeps
) {
1747 assert(DepKV
.first
!= D
&& "Inst occurs in rev NLPD map");
1749 for (ValueIsLoadPair P
: DepKV
.second
)
1750 assert(P
!= ValueIsLoadPair(D
, false) && P
!= ValueIsLoadPair(D
, true) &&
1751 "Inst occurs in ReverseNonLocalPtrDeps map");
1756 AnalysisKey
MemoryDependenceAnalysis::Key
;
1758 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1759 : DefaultBlockScanLimit(BlockScanLimit
) {}
1761 MemoryDependenceResults
1762 MemoryDependenceAnalysis::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1763 auto &AA
= AM
.getResult
<AAManager
>(F
);
1764 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
1765 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
1766 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1767 return MemoryDependenceResults(AA
, AC
, TLI
, DT
, DefaultBlockScanLimit
);
1770 char MemoryDependenceWrapperPass::ID
= 0;
1772 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass
, "memdep",
1773 "Memory Dependence Analysis", false, true)
1774 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1775 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
1776 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
1777 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
1778 INITIALIZE_PASS_END(MemoryDependenceWrapperPass
, "memdep",
1779 "Memory Dependence Analysis", false, true)
1781 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID
) {
1782 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1785 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1787 void MemoryDependenceWrapperPass::releaseMemory() {
1791 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1792 AU
.setPreservesAll();
1793 AU
.addRequired
<AssumptionCacheTracker
>();
1794 AU
.addRequired
<DominatorTreeWrapperPass
>();
1795 AU
.addRequiredTransitive
<AAResultsWrapperPass
>();
1796 AU
.addRequiredTransitive
<TargetLibraryInfoWrapperPass
>();
1799 bool MemoryDependenceResults::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
1800 FunctionAnalysisManager::Invalidator
&Inv
) {
1801 // Check whether our analysis is preserved.
1802 auto PAC
= PA
.getChecker
<MemoryDependenceAnalysis
>();
1803 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Function
>>())
1804 // If not, give up now.
1807 // Check whether the analyses we depend on became invalid for any reason.
1808 if (Inv
.invalidate
<AAManager
>(F
, PA
) ||
1809 Inv
.invalidate
<AssumptionAnalysis
>(F
, PA
) ||
1810 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
))
1813 // Otherwise this analysis result remains valid.
1817 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1818 return DefaultBlockScanLimit
;
1821 bool MemoryDependenceWrapperPass::runOnFunction(Function
&F
) {
1822 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
1823 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1824 auto &TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
1825 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1826 MemDep
.emplace(AA
, AC
, TLI
, DT
, BlockScanLimit
);