[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Analysis / MemorySSA.cpp
blob2cf92ceba01032cd311140d273f5adb1c7657d29
1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/iterator.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/CFGPrinter.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/GraphWriter.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <memory>
56 #include <utility>
58 using namespace llvm;
60 #define DEBUG_TYPE "memoryssa"
62 static cl::opt<std::string>
63 DotCFGMSSA("dot-cfg-mssa",
64 cl::value_desc("file name for generated dot file"),
65 cl::desc("file name for generated dot file"), cl::init(""));
67 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
68 true)
69 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
70 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
71 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
72 true)
74 static cl::opt<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
79 // Always verify MemorySSA if expensive checking is enabled.
80 #ifdef EXPENSIVE_CHECKS
81 bool llvm::VerifyMemorySSA = true;
82 #else
83 bool llvm::VerifyMemorySSA = false;
84 #endif
86 static cl::opt<bool, true>
87 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
88 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
90 const static char LiveOnEntryStr[] = "liveOnEntry";
92 namespace {
94 /// An assembly annotator class to print Memory SSA information in
95 /// comments.
96 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
97 const MemorySSA *MSSA;
99 public:
100 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
102 void emitBasicBlockStartAnnot(const BasicBlock *BB,
103 formatted_raw_ostream &OS) override {
104 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
105 OS << "; " << *MA << "\n";
108 void emitInstructionAnnot(const Instruction *I,
109 formatted_raw_ostream &OS) override {
110 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
111 OS << "; " << *MA << "\n";
115 /// An assembly annotator class to print Memory SSA information in
116 /// comments.
117 class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter {
118 MemorySSA *MSSA;
119 MemorySSAWalker *Walker;
120 BatchAAResults BAA;
122 public:
123 MemorySSAWalkerAnnotatedWriter(MemorySSA *M)
124 : MSSA(M), Walker(M->getWalker()), BAA(M->getAA()) {}
126 void emitBasicBlockStartAnnot(const BasicBlock *BB,
127 formatted_raw_ostream &OS) override {
128 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
129 OS << "; " << *MA << "\n";
132 void emitInstructionAnnot(const Instruction *I,
133 formatted_raw_ostream &OS) override {
134 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
135 MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA, BAA);
136 OS << "; " << *MA;
137 if (Clobber) {
138 OS << " - clobbered by ";
139 if (MSSA->isLiveOnEntryDef(Clobber))
140 OS << LiveOnEntryStr;
141 else
142 OS << *Clobber;
144 OS << "\n";
149 } // namespace
151 namespace {
153 /// Our current alias analysis API differentiates heavily between calls and
154 /// non-calls, and functions called on one usually assert on the other.
155 /// This class encapsulates the distinction to simplify other code that wants
156 /// "Memory affecting instructions and related data" to use as a key.
157 /// For example, this class is used as a densemap key in the use optimizer.
158 class MemoryLocOrCall {
159 public:
160 bool IsCall = false;
162 MemoryLocOrCall(MemoryUseOrDef *MUD)
163 : MemoryLocOrCall(MUD->getMemoryInst()) {}
164 MemoryLocOrCall(const MemoryUseOrDef *MUD)
165 : MemoryLocOrCall(MUD->getMemoryInst()) {}
167 MemoryLocOrCall(Instruction *Inst) {
168 if (auto *C = dyn_cast<CallBase>(Inst)) {
169 IsCall = true;
170 Call = C;
171 } else {
172 IsCall = false;
173 // There is no such thing as a memorylocation for a fence inst, and it is
174 // unique in that regard.
175 if (!isa<FenceInst>(Inst))
176 Loc = MemoryLocation::get(Inst);
180 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
182 const CallBase *getCall() const {
183 assert(IsCall);
184 return Call;
187 MemoryLocation getLoc() const {
188 assert(!IsCall);
189 return Loc;
192 bool operator==(const MemoryLocOrCall &Other) const {
193 if (IsCall != Other.IsCall)
194 return false;
196 if (!IsCall)
197 return Loc == Other.Loc;
199 if (Call->getCalledOperand() != Other.Call->getCalledOperand())
200 return false;
202 return Call->arg_size() == Other.Call->arg_size() &&
203 std::equal(Call->arg_begin(), Call->arg_end(),
204 Other.Call->arg_begin());
207 private:
208 union {
209 const CallBase *Call;
210 MemoryLocation Loc;
214 } // end anonymous namespace
216 namespace llvm {
218 template <> struct DenseMapInfo<MemoryLocOrCall> {
219 static inline MemoryLocOrCall getEmptyKey() {
220 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
223 static inline MemoryLocOrCall getTombstoneKey() {
224 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
227 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
228 if (!MLOC.IsCall)
229 return hash_combine(
230 MLOC.IsCall,
231 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
233 hash_code hash =
234 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
235 MLOC.getCall()->getCalledOperand()));
237 for (const Value *Arg : MLOC.getCall()->args())
238 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
239 return hash;
242 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
243 return LHS == RHS;
247 } // end namespace llvm
249 /// This does one-way checks to see if Use could theoretically be hoisted above
250 /// MayClobber. This will not check the other way around.
252 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
253 /// MayClobber, with no potentially clobbering operations in between them.
254 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
255 static bool areLoadsReorderable(const LoadInst *Use,
256 const LoadInst *MayClobber) {
257 bool VolatileUse = Use->isVolatile();
258 bool VolatileClobber = MayClobber->isVolatile();
259 // Volatile operations may never be reordered with other volatile operations.
260 if (VolatileUse && VolatileClobber)
261 return false;
262 // Otherwise, volatile doesn't matter here. From the language reference:
263 // 'optimizers may change the order of volatile operations relative to
264 // non-volatile operations.'"
266 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
267 // is weaker, it can be moved above other loads. We just need to be sure that
268 // MayClobber isn't an acquire load, because loads can't be moved above
269 // acquire loads.
271 // Note that this explicitly *does* allow the free reordering of monotonic (or
272 // weaker) loads of the same address.
273 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
274 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
275 AtomicOrdering::Acquire);
276 return !(SeqCstUse || MayClobberIsAcquire);
279 template <typename AliasAnalysisType>
280 static bool
281 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
282 const Instruction *UseInst, AliasAnalysisType &AA) {
283 Instruction *DefInst = MD->getMemoryInst();
284 assert(DefInst && "Defining instruction not actually an instruction");
286 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
287 // These intrinsics will show up as affecting memory, but they are just
288 // markers, mostly.
290 // FIXME: We probably don't actually want MemorySSA to model these at all
291 // (including creating MemoryAccesses for them): we just end up inventing
292 // clobbers where they don't really exist at all. Please see D43269 for
293 // context.
294 switch (II->getIntrinsicID()) {
295 case Intrinsic::invariant_start:
296 case Intrinsic::invariant_end:
297 case Intrinsic::assume:
298 case Intrinsic::experimental_noalias_scope_decl:
299 case Intrinsic::pseudoprobe:
300 return false;
301 case Intrinsic::dbg_declare:
302 case Intrinsic::dbg_label:
303 case Intrinsic::dbg_value:
304 llvm_unreachable("debuginfo shouldn't have associated defs!");
305 default:
306 break;
310 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) {
311 ModRefInfo I = AA.getModRefInfo(DefInst, CB);
312 return isModOrRefSet(I);
315 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
316 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst))
317 return !areLoadsReorderable(UseLoad, DefLoad);
319 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
320 return isModSet(I);
323 template <typename AliasAnalysisType>
324 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
325 const MemoryLocOrCall &UseMLOC,
326 AliasAnalysisType &AA) {
327 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
328 // to exist while MemoryLocOrCall is pushed through places.
329 if (UseMLOC.IsCall)
330 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
331 AA);
332 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
333 AA);
336 // Return true when MD may alias MU, return false otherwise.
337 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
338 AliasAnalysis &AA) {
339 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
342 namespace {
344 struct UpwardsMemoryQuery {
345 // True if our original query started off as a call
346 bool IsCall = false;
347 // The pointer location we started the query with. This will be empty if
348 // IsCall is true.
349 MemoryLocation StartingLoc;
350 // This is the instruction we were querying about.
351 const Instruction *Inst = nullptr;
352 // The MemoryAccess we actually got called with, used to test local domination
353 const MemoryAccess *OriginalAccess = nullptr;
354 bool SkipSelfAccess = false;
356 UpwardsMemoryQuery() = default;
358 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
359 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
360 if (!IsCall)
361 StartingLoc = MemoryLocation::get(Inst);
365 } // end anonymous namespace
367 template <typename AliasAnalysisType>
368 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
369 const Instruction *I) {
370 // If the memory can't be changed, then loads of the memory can't be
371 // clobbered.
372 if (auto *LI = dyn_cast<LoadInst>(I)) {
373 return I->hasMetadata(LLVMContext::MD_invariant_load) ||
374 !isModSet(AA.getModRefInfoMask(MemoryLocation::get(LI)));
376 return false;
379 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
380 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
382 /// This is meant to be as simple and self-contained as possible. Because it
383 /// uses no cache, etc., it can be relatively expensive.
385 /// \param Start The MemoryAccess that we want to walk from.
386 /// \param ClobberAt A clobber for Start.
387 /// \param StartLoc The MemoryLocation for Start.
388 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
389 /// \param Query The UpwardsMemoryQuery we used for our search.
390 /// \param AA The AliasAnalysis we used for our search.
391 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
393 LLVM_ATTRIBUTE_UNUSED static void
394 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
395 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
396 const UpwardsMemoryQuery &Query, BatchAAResults &AA,
397 bool AllowImpreciseClobber = false) {
398 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
400 if (MSSA.isLiveOnEntryDef(Start)) {
401 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
402 "liveOnEntry must clobber itself");
403 return;
406 bool FoundClobber = false;
407 DenseSet<ConstMemoryAccessPair> VisitedPhis;
408 SmallVector<ConstMemoryAccessPair, 8> Worklist;
409 Worklist.emplace_back(Start, StartLoc);
410 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
411 // is found, complain.
412 while (!Worklist.empty()) {
413 auto MAP = Worklist.pop_back_val();
414 // All we care about is that nothing from Start to ClobberAt clobbers Start.
415 // We learn nothing from revisiting nodes.
416 if (!VisitedPhis.insert(MAP).second)
417 continue;
419 for (const auto *MA : def_chain(MAP.first)) {
420 if (MA == ClobberAt) {
421 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
422 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
423 // since it won't let us short-circuit.
425 // Also, note that this can't be hoisted out of the `Worklist` loop,
426 // since MD may only act as a clobber for 1 of N MemoryLocations.
427 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
428 if (!FoundClobber) {
429 if (instructionClobbersQuery(MD, MAP.second, Query.Inst, AA))
430 FoundClobber = true;
433 break;
436 // We should never hit liveOnEntry, unless it's the clobber.
437 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
439 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
440 // If Start is a Def, skip self.
441 if (MD == Start)
442 continue;
444 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
445 "Found clobber before reaching ClobberAt!");
446 continue;
449 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
450 (void)MU;
451 assert (MU == Start &&
452 "Can only find use in def chain if Start is a use");
453 continue;
456 assert(isa<MemoryPhi>(MA));
458 // Add reachable phi predecessors
459 for (auto ItB = upward_defs_begin(
460 {const_cast<MemoryAccess *>(MA), MAP.second},
461 MSSA.getDomTree()),
462 ItE = upward_defs_end();
463 ItB != ItE; ++ItB)
464 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock()))
465 Worklist.emplace_back(*ItB);
469 // If the verify is done following an optimization, it's possible that
470 // ClobberAt was a conservative clobbering, that we can now infer is not a
471 // true clobbering access. Don't fail the verify if that's the case.
472 // We do have accesses that claim they're optimized, but could be optimized
473 // further. Updating all these can be expensive, so allow it for now (FIXME).
474 if (AllowImpreciseClobber)
475 return;
477 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
478 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
479 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
480 "ClobberAt never acted as a clobber");
483 namespace {
485 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
486 /// in one class.
487 class ClobberWalker {
488 /// Save a few bytes by using unsigned instead of size_t.
489 using ListIndex = unsigned;
491 /// Represents a span of contiguous MemoryDefs, potentially ending in a
492 /// MemoryPhi.
493 struct DefPath {
494 MemoryLocation Loc;
495 // Note that, because we always walk in reverse, Last will always dominate
496 // First. Also note that First and Last are inclusive.
497 MemoryAccess *First;
498 MemoryAccess *Last;
499 std::optional<ListIndex> Previous;
501 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
502 std::optional<ListIndex> Previous)
503 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
505 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
506 std::optional<ListIndex> Previous)
507 : DefPath(Loc, Init, Init, Previous) {}
510 const MemorySSA &MSSA;
511 DominatorTree &DT;
512 BatchAAResults *AA;
513 UpwardsMemoryQuery *Query;
514 unsigned *UpwardWalkLimit;
516 // Phi optimization bookkeeping:
517 // List of DefPath to process during the current phi optimization walk.
518 SmallVector<DefPath, 32> Paths;
519 // List of visited <Access, Location> pairs; we can skip paths already
520 // visited with the same memory location.
521 DenseSet<ConstMemoryAccessPair> VisitedPhis;
523 /// Find the nearest def or phi that `From` can legally be optimized to.
524 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
525 assert(From->getNumOperands() && "Phi with no operands?");
527 BasicBlock *BB = From->getBlock();
528 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
529 DomTreeNode *Node = DT.getNode(BB);
530 while ((Node = Node->getIDom())) {
531 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
532 if (Defs)
533 return &*Defs->rbegin();
535 return Result;
538 /// Result of calling walkToPhiOrClobber.
539 struct UpwardsWalkResult {
540 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
541 /// both. Include alias info when clobber found.
542 MemoryAccess *Result;
543 bool IsKnownClobber;
546 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
547 /// This will update Desc.Last as it walks. It will (optionally) also stop at
548 /// StopAt.
550 /// This does not test for whether StopAt is a clobber
551 UpwardsWalkResult
552 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
553 const MemoryAccess *SkipStopAt = nullptr) const {
554 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
555 assert(UpwardWalkLimit && "Need a valid walk limit");
556 bool LimitAlreadyReached = false;
557 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
558 // it to 1. This will not do any alias() calls. It either returns in the
559 // first iteration in the loop below, or is set back to 0 if all def chains
560 // are free of MemoryDefs.
561 if (!*UpwardWalkLimit) {
562 *UpwardWalkLimit = 1;
563 LimitAlreadyReached = true;
566 for (MemoryAccess *Current : def_chain(Desc.Last)) {
567 Desc.Last = Current;
568 if (Current == StopAt || Current == SkipStopAt)
569 return {Current, false};
571 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
572 if (MSSA.isLiveOnEntryDef(MD))
573 return {MD, true};
575 if (!--*UpwardWalkLimit)
576 return {Current, true};
578 if (instructionClobbersQuery(MD, Desc.Loc, Query->Inst, *AA))
579 return {MD, true};
583 if (LimitAlreadyReached)
584 *UpwardWalkLimit = 0;
586 assert(isa<MemoryPhi>(Desc.Last) &&
587 "Ended at a non-clobber that's not a phi?");
588 return {Desc.Last, false};
591 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
592 ListIndex PriorNode) {
593 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT);
594 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
595 for (const MemoryAccessPair &P : UpwardDefs) {
596 PausedSearches.push_back(Paths.size());
597 Paths.emplace_back(P.second, P.first, PriorNode);
601 /// Represents a search that terminated after finding a clobber. This clobber
602 /// may or may not be present in the path of defs from LastNode..SearchStart,
603 /// since it may have been retrieved from cache.
604 struct TerminatedPath {
605 MemoryAccess *Clobber;
606 ListIndex LastNode;
609 /// Get an access that keeps us from optimizing to the given phi.
611 /// PausedSearches is an array of indices into the Paths array. Its incoming
612 /// value is the indices of searches that stopped at the last phi optimization
613 /// target. It's left in an unspecified state.
615 /// If this returns std::nullopt, NewPaused is a vector of searches that
616 /// terminated at StopWhere. Otherwise, NewPaused is left in an unspecified
617 /// state.
618 std::optional<TerminatedPath>
619 getBlockingAccess(const MemoryAccess *StopWhere,
620 SmallVectorImpl<ListIndex> &PausedSearches,
621 SmallVectorImpl<ListIndex> &NewPaused,
622 SmallVectorImpl<TerminatedPath> &Terminated) {
623 assert(!PausedSearches.empty() && "No searches to continue?");
625 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
626 // PausedSearches as our stack.
627 while (!PausedSearches.empty()) {
628 ListIndex PathIndex = PausedSearches.pop_back_val();
629 DefPath &Node = Paths[PathIndex];
631 // If we've already visited this path with this MemoryLocation, we don't
632 // need to do so again.
634 // NOTE: That we just drop these paths on the ground makes caching
635 // behavior sporadic. e.g. given a diamond:
636 // A
637 // B C
638 // D
640 // ...If we walk D, B, A, C, we'll only cache the result of phi
641 // optimization for A, B, and D; C will be skipped because it dies here.
642 // This arguably isn't the worst thing ever, since:
643 // - We generally query things in a top-down order, so if we got below D
644 // without needing cache entries for {C, MemLoc}, then chances are
645 // that those cache entries would end up ultimately unused.
646 // - We still cache things for A, so C only needs to walk up a bit.
647 // If this behavior becomes problematic, we can fix without a ton of extra
648 // work.
649 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
650 continue;
652 const MemoryAccess *SkipStopWhere = nullptr;
653 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
654 assert(isa<MemoryDef>(Query->OriginalAccess));
655 SkipStopWhere = Query->OriginalAccess;
658 UpwardsWalkResult Res = walkToPhiOrClobber(Node,
659 /*StopAt=*/StopWhere,
660 /*SkipStopAt=*/SkipStopWhere);
661 if (Res.IsKnownClobber) {
662 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
664 // If this wasn't a cache hit, we hit a clobber when walking. That's a
665 // failure.
666 TerminatedPath Term{Res.Result, PathIndex};
667 if (!MSSA.dominates(Res.Result, StopWhere))
668 return Term;
670 // Otherwise, it's a valid thing to potentially optimize to.
671 Terminated.push_back(Term);
672 continue;
675 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
676 // We've hit our target. Save this path off for if we want to continue
677 // walking. If we are in the mode of skipping the OriginalAccess, and
678 // we've reached back to the OriginalAccess, do not save path, we've
679 // just looped back to self.
680 if (Res.Result != SkipStopWhere)
681 NewPaused.push_back(PathIndex);
682 continue;
685 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
686 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
689 return std::nullopt;
692 template <typename T, typename Walker>
693 struct generic_def_path_iterator
694 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
695 std::forward_iterator_tag, T *> {
696 generic_def_path_iterator() = default;
697 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
699 T &operator*() const { return curNode(); }
701 generic_def_path_iterator &operator++() {
702 N = curNode().Previous;
703 return *this;
706 bool operator==(const generic_def_path_iterator &O) const {
707 if (N.has_value() != O.N.has_value())
708 return false;
709 return !N || *N == *O.N;
712 private:
713 T &curNode() const { return W->Paths[*N]; }
715 Walker *W = nullptr;
716 std::optional<ListIndex> N;
719 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
720 using const_def_path_iterator =
721 generic_def_path_iterator<const DefPath, const ClobberWalker>;
723 iterator_range<def_path_iterator> def_path(ListIndex From) {
724 return make_range(def_path_iterator(this, From), def_path_iterator());
727 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
728 return make_range(const_def_path_iterator(this, From),
729 const_def_path_iterator());
732 struct OptznResult {
733 /// The path that contains our result.
734 TerminatedPath PrimaryClobber;
735 /// The paths that we can legally cache back from, but that aren't
736 /// necessarily the result of the Phi optimization.
737 SmallVector<TerminatedPath, 4> OtherClobbers;
740 ListIndex defPathIndex(const DefPath &N) const {
741 // The assert looks nicer if we don't need to do &N
742 const DefPath *NP = &N;
743 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
744 "Out of bounds DefPath!");
745 return NP - &Paths.front();
748 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
749 /// that act as legal clobbers. Note that this won't return *all* clobbers.
751 /// Phi optimization algorithm tl;dr:
752 /// - Find the earliest def/phi, A, we can optimize to
753 /// - Find if all paths from the starting memory access ultimately reach A
754 /// - If not, optimization isn't possible.
755 /// - Otherwise, walk from A to another clobber or phi, A'.
756 /// - If A' is a def, we're done.
757 /// - If A' is a phi, try to optimize it.
759 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
760 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
761 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
762 const MemoryLocation &Loc) {
763 assert(Paths.empty() && VisitedPhis.empty() &&
764 "Reset the optimization state.");
766 Paths.emplace_back(Loc, Start, Phi, std::nullopt);
767 // Stores how many "valid" optimization nodes we had prior to calling
768 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
769 auto PriorPathsSize = Paths.size();
771 SmallVector<ListIndex, 16> PausedSearches;
772 SmallVector<ListIndex, 8> NewPaused;
773 SmallVector<TerminatedPath, 4> TerminatedPaths;
775 addSearches(Phi, PausedSearches, 0);
777 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
778 // Paths.
779 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
780 assert(!Paths.empty() && "Need a path to move");
781 auto Dom = Paths.begin();
782 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
783 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
784 Dom = I;
785 auto Last = Paths.end() - 1;
786 if (Last != Dom)
787 std::iter_swap(Last, Dom);
790 MemoryPhi *Current = Phi;
791 while (true) {
792 assert(!MSSA.isLiveOnEntryDef(Current) &&
793 "liveOnEntry wasn't treated as a clobber?");
795 const auto *Target = getWalkTarget(Current);
796 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
797 // optimization for the prior phi.
798 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
799 return MSSA.dominates(P.Clobber, Target);
800 }));
802 // FIXME: This is broken, because the Blocker may be reported to be
803 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
804 // For the moment, this is fine, since we do nothing with blocker info.
805 if (std::optional<TerminatedPath> Blocker = getBlockingAccess(
806 Target, PausedSearches, NewPaused, TerminatedPaths)) {
808 // Find the node we started at. We can't search based on N->Last, since
809 // we may have gone around a loop with a different MemoryLocation.
810 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
811 return defPathIndex(N) < PriorPathsSize;
813 assert(Iter != def_path_iterator());
815 DefPath &CurNode = *Iter;
816 assert(CurNode.Last == Current);
818 // Two things:
819 // A. We can't reliably cache all of NewPaused back. Consider a case
820 // where we have two paths in NewPaused; one of which can't optimize
821 // above this phi, whereas the other can. If we cache the second path
822 // back, we'll end up with suboptimal cache entries. We can handle
823 // cases like this a bit better when we either try to find all
824 // clobbers that block phi optimization, or when our cache starts
825 // supporting unfinished searches.
826 // B. We can't reliably cache TerminatedPaths back here without doing
827 // extra checks; consider a case like:
828 // T
829 // / \
830 // D C
831 // \ /
832 // S
833 // Where T is our target, C is a node with a clobber on it, D is a
834 // diamond (with a clobber *only* on the left or right node, N), and
835 // S is our start. Say we walk to D, through the node opposite N
836 // (read: ignoring the clobber), and see a cache entry in the top
837 // node of D. That cache entry gets put into TerminatedPaths. We then
838 // walk up to C (N is later in our worklist), find the clobber, and
839 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
840 // the bottom part of D to the cached clobber, ignoring the clobber
841 // in N. Again, this problem goes away if we start tracking all
842 // blockers for a given phi optimization.
843 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
844 return {Result, {}};
847 // If there's nothing left to search, then all paths led to valid clobbers
848 // that we got from our cache; pick the nearest to the start, and allow
849 // the rest to be cached back.
850 if (NewPaused.empty()) {
851 MoveDominatedPathToEnd(TerminatedPaths);
852 TerminatedPath Result = TerminatedPaths.pop_back_val();
853 return {Result, std::move(TerminatedPaths)};
856 MemoryAccess *DefChainEnd = nullptr;
857 SmallVector<TerminatedPath, 4> Clobbers;
858 for (ListIndex Paused : NewPaused) {
859 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
860 if (WR.IsKnownClobber)
861 Clobbers.push_back({WR.Result, Paused});
862 else
863 // Micro-opt: If we hit the end of the chain, save it.
864 DefChainEnd = WR.Result;
867 if (!TerminatedPaths.empty()) {
868 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
869 // do it now.
870 if (!DefChainEnd)
871 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
872 DefChainEnd = MA;
873 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
875 // If any of the terminated paths don't dominate the phi we'll try to
876 // optimize, we need to figure out what they are and quit.
877 const BasicBlock *ChainBB = DefChainEnd->getBlock();
878 for (const TerminatedPath &TP : TerminatedPaths) {
879 // Because we know that DefChainEnd is as "high" as we can go, we
880 // don't need local dominance checks; BB dominance is sufficient.
881 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
882 Clobbers.push_back(TP);
886 // If we have clobbers in the def chain, find the one closest to Current
887 // and quit.
888 if (!Clobbers.empty()) {
889 MoveDominatedPathToEnd(Clobbers);
890 TerminatedPath Result = Clobbers.pop_back_val();
891 return {Result, std::move(Clobbers)};
894 assert(all_of(NewPaused,
895 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
897 // Because liveOnEntry is a clobber, this must be a phi.
898 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
900 PriorPathsSize = Paths.size();
901 PausedSearches.clear();
902 for (ListIndex I : NewPaused)
903 addSearches(DefChainPhi, PausedSearches, I);
904 NewPaused.clear();
906 Current = DefChainPhi;
910 void verifyOptResult(const OptznResult &R) const {
911 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
912 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
913 }));
916 void resetPhiOptznState() {
917 Paths.clear();
918 VisitedPhis.clear();
921 public:
922 ClobberWalker(const MemorySSA &MSSA, DominatorTree &DT)
923 : MSSA(MSSA), DT(DT) {}
925 /// Finds the nearest clobber for the given query, optimizing phis if
926 /// possible.
927 MemoryAccess *findClobber(BatchAAResults &BAA, MemoryAccess *Start,
928 UpwardsMemoryQuery &Q, unsigned &UpWalkLimit) {
929 AA = &BAA;
930 Query = &Q;
931 UpwardWalkLimit = &UpWalkLimit;
932 // Starting limit must be > 0.
933 if (!UpWalkLimit)
934 UpWalkLimit++;
936 MemoryAccess *Current = Start;
937 // This walker pretends uses don't exist. If we're handed one, silently grab
938 // its def. (This has the nice side-effect of ensuring we never cache uses)
939 if (auto *MU = dyn_cast<MemoryUse>(Start))
940 Current = MU->getDefiningAccess();
942 DefPath FirstDesc(Q.StartingLoc, Current, Current, std::nullopt);
943 // Fast path for the overly-common case (no crazy phi optimization
944 // necessary)
945 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
946 MemoryAccess *Result;
947 if (WalkResult.IsKnownClobber) {
948 Result = WalkResult.Result;
949 } else {
950 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
951 Current, Q.StartingLoc);
952 verifyOptResult(OptRes);
953 resetPhiOptznState();
954 Result = OptRes.PrimaryClobber.Clobber;
957 #ifdef EXPENSIVE_CHECKS
958 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
959 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, BAA);
960 #endif
961 return Result;
965 struct RenamePassData {
966 DomTreeNode *DTN;
967 DomTreeNode::const_iterator ChildIt;
968 MemoryAccess *IncomingVal;
970 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
971 MemoryAccess *M)
972 : DTN(D), ChildIt(It), IncomingVal(M) {}
974 void swap(RenamePassData &RHS) {
975 std::swap(DTN, RHS.DTN);
976 std::swap(ChildIt, RHS.ChildIt);
977 std::swap(IncomingVal, RHS.IncomingVal);
981 } // end anonymous namespace
983 namespace llvm {
985 class MemorySSA::ClobberWalkerBase {
986 ClobberWalker Walker;
987 MemorySSA *MSSA;
989 public:
990 ClobberWalkerBase(MemorySSA *M, DominatorTree *D) : Walker(*M, *D), MSSA(M) {}
992 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
993 const MemoryLocation &,
994 BatchAAResults &, unsigned &);
995 // Third argument (bool), defines whether the clobber search should skip the
996 // original queried access. If true, there will be a follow-up query searching
997 // for a clobber access past "self". Note that the Optimized access is not
998 // updated if a new clobber is found by this SkipSelf search. If this
999 // additional query becomes heavily used we may decide to cache the result.
1000 // Walker instantiations will decide how to set the SkipSelf bool.
1001 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, BatchAAResults &,
1002 unsigned &, bool,
1003 bool UseInvariantGroup = true);
1006 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1007 /// longer does caching on its own, but the name has been retained for the
1008 /// moment.
1009 class MemorySSA::CachingWalker final : public MemorySSAWalker {
1010 ClobberWalkerBase *Walker;
1012 public:
1013 CachingWalker(MemorySSA *M, ClobberWalkerBase *W)
1014 : MemorySSAWalker(M), Walker(W) {}
1015 ~CachingWalker() override = default;
1017 using MemorySSAWalker::getClobberingMemoryAccess;
1019 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA,
1020 unsigned &UWL) {
1021 return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false);
1023 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1024 const MemoryLocation &Loc,
1025 BatchAAResults &BAA, unsigned &UWL) {
1026 return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL);
1028 // This method is not accessible outside of this file.
1029 MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup(
1030 MemoryAccess *MA, BatchAAResults &BAA, unsigned &UWL) {
1031 return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false, false);
1034 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1035 BatchAAResults &BAA) override {
1036 unsigned UpwardWalkLimit = MaxCheckLimit;
1037 return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit);
1039 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1040 const MemoryLocation &Loc,
1041 BatchAAResults &BAA) override {
1042 unsigned UpwardWalkLimit = MaxCheckLimit;
1043 return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit);
1046 void invalidateInfo(MemoryAccess *MA) override {
1047 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1048 MUD->resetOptimized();
1052 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1053 ClobberWalkerBase *Walker;
1055 public:
1056 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W)
1057 : MemorySSAWalker(M), Walker(W) {}
1058 ~SkipSelfWalker() override = default;
1060 using MemorySSAWalker::getClobberingMemoryAccess;
1062 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA,
1063 unsigned &UWL) {
1064 return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, true);
1066 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1067 const MemoryLocation &Loc,
1068 BatchAAResults &BAA, unsigned &UWL) {
1069 return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL);
1072 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1073 BatchAAResults &BAA) override {
1074 unsigned UpwardWalkLimit = MaxCheckLimit;
1075 return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit);
1077 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1078 const MemoryLocation &Loc,
1079 BatchAAResults &BAA) override {
1080 unsigned UpwardWalkLimit = MaxCheckLimit;
1081 return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit);
1084 void invalidateInfo(MemoryAccess *MA) override {
1085 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1086 MUD->resetOptimized();
1090 } // end namespace llvm
1092 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1093 bool RenameAllUses) {
1094 // Pass through values to our successors
1095 for (const BasicBlock *S : successors(BB)) {
1096 auto It = PerBlockAccesses.find(S);
1097 // Rename the phi nodes in our successor block
1098 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1099 continue;
1100 AccessList *Accesses = It->second.get();
1101 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1102 if (RenameAllUses) {
1103 bool ReplacementDone = false;
1104 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1105 if (Phi->getIncomingBlock(I) == BB) {
1106 Phi->setIncomingValue(I, IncomingVal);
1107 ReplacementDone = true;
1109 (void) ReplacementDone;
1110 assert(ReplacementDone && "Incomplete phi during partial rename");
1111 } else
1112 Phi->addIncoming(IncomingVal, BB);
1116 /// Rename a single basic block into MemorySSA form.
1117 /// Uses the standard SSA renaming algorithm.
1118 /// \returns The new incoming value.
1119 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1120 bool RenameAllUses) {
1121 auto It = PerBlockAccesses.find(BB);
1122 // Skip most processing if the list is empty.
1123 if (It != PerBlockAccesses.end()) {
1124 AccessList *Accesses = It->second.get();
1125 for (MemoryAccess &L : *Accesses) {
1126 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1127 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1128 MUD->setDefiningAccess(IncomingVal);
1129 if (isa<MemoryDef>(&L))
1130 IncomingVal = &L;
1131 } else {
1132 IncomingVal = &L;
1136 return IncomingVal;
1139 /// This is the standard SSA renaming algorithm.
1141 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1142 /// in phi nodes in our successors.
1143 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1144 SmallPtrSetImpl<BasicBlock *> &Visited,
1145 bool SkipVisited, bool RenameAllUses) {
1146 assert(Root && "Trying to rename accesses in an unreachable block");
1148 SmallVector<RenamePassData, 32> WorkStack;
1149 // Skip everything if we already renamed this block and we are skipping.
1150 // Note: You can't sink this into the if, because we need it to occur
1151 // regardless of whether we skip blocks or not.
1152 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1153 if (SkipVisited && AlreadyVisited)
1154 return;
1156 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1157 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1158 WorkStack.push_back({Root, Root->begin(), IncomingVal});
1160 while (!WorkStack.empty()) {
1161 DomTreeNode *Node = WorkStack.back().DTN;
1162 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1163 IncomingVal = WorkStack.back().IncomingVal;
1165 if (ChildIt == Node->end()) {
1166 WorkStack.pop_back();
1167 } else {
1168 DomTreeNode *Child = *ChildIt;
1169 ++WorkStack.back().ChildIt;
1170 BasicBlock *BB = Child->getBlock();
1171 // Note: You can't sink this into the if, because we need it to occur
1172 // regardless of whether we skip blocks or not.
1173 AlreadyVisited = !Visited.insert(BB).second;
1174 if (SkipVisited && AlreadyVisited) {
1175 // We already visited this during our renaming, which can happen when
1176 // being asked to rename multiple blocks. Figure out the incoming val,
1177 // which is the last def.
1178 // Incoming value can only change if there is a block def, and in that
1179 // case, it's the last block def in the list.
1180 if (auto *BlockDefs = getWritableBlockDefs(BB))
1181 IncomingVal = &*BlockDefs->rbegin();
1182 } else
1183 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1184 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1185 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1190 /// This handles unreachable block accesses by deleting phi nodes in
1191 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1192 /// being uses of the live on entry definition.
1193 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1194 assert(!DT->isReachableFromEntry(BB) &&
1195 "Reachable block found while handling unreachable blocks");
1197 // Make sure phi nodes in our reachable successors end up with a
1198 // LiveOnEntryDef for our incoming edge, even though our block is forward
1199 // unreachable. We could just disconnect these blocks from the CFG fully,
1200 // but we do not right now.
1201 for (const BasicBlock *S : successors(BB)) {
1202 if (!DT->isReachableFromEntry(S))
1203 continue;
1204 auto It = PerBlockAccesses.find(S);
1205 // Rename the phi nodes in our successor block
1206 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1207 continue;
1208 AccessList *Accesses = It->second.get();
1209 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1210 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1213 auto It = PerBlockAccesses.find(BB);
1214 if (It == PerBlockAccesses.end())
1215 return;
1217 auto &Accesses = It->second;
1218 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1219 auto Next = std::next(AI);
1220 // If we have a phi, just remove it. We are going to replace all
1221 // users with live on entry.
1222 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1223 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1224 else
1225 Accesses->erase(AI);
1226 AI = Next;
1230 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1231 : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1232 SkipWalker(nullptr) {
1233 // Build MemorySSA using a batch alias analysis. This reuses the internal
1234 // state that AA collects during an alias()/getModRefInfo() call. This is
1235 // safe because there are no CFG changes while building MemorySSA and can
1236 // significantly reduce the time spent by the compiler in AA, because we will
1237 // make queries about all the instructions in the Function.
1238 assert(AA && "No alias analysis?");
1239 BatchAAResults BatchAA(*AA);
1240 buildMemorySSA(BatchAA);
1241 // Intentionally leave AA to nullptr while building so we don't accidently
1242 // use non-batch AliasAnalysis.
1243 this->AA = AA;
1244 // Also create the walker here.
1245 getWalker();
1248 MemorySSA::~MemorySSA() {
1249 // Drop all our references
1250 for (const auto &Pair : PerBlockAccesses)
1251 for (MemoryAccess &MA : *Pair.second)
1252 MA.dropAllReferences();
1255 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1256 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1258 if (Res.second)
1259 Res.first->second = std::make_unique<AccessList>();
1260 return Res.first->second.get();
1263 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1264 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1266 if (Res.second)
1267 Res.first->second = std::make_unique<DefsList>();
1268 return Res.first->second.get();
1271 namespace llvm {
1273 /// This class is a batch walker of all MemoryUse's in the program, and points
1274 /// their defining access at the thing that actually clobbers them. Because it
1275 /// is a batch walker that touches everything, it does not operate like the
1276 /// other walkers. This walker is basically performing a top-down SSA renaming
1277 /// pass, where the version stack is used as the cache. This enables it to be
1278 /// significantly more time and memory efficient than using the regular walker,
1279 /// which is walking bottom-up.
1280 class MemorySSA::OptimizeUses {
1281 public:
1282 OptimizeUses(MemorySSA *MSSA, CachingWalker *Walker, BatchAAResults *BAA,
1283 DominatorTree *DT)
1284 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1286 void optimizeUses();
1288 private:
1289 /// This represents where a given memorylocation is in the stack.
1290 struct MemlocStackInfo {
1291 // This essentially is keeping track of versions of the stack. Whenever
1292 // the stack changes due to pushes or pops, these versions increase.
1293 unsigned long StackEpoch;
1294 unsigned long PopEpoch;
1295 // This is the lower bound of places on the stack to check. It is equal to
1296 // the place the last stack walk ended.
1297 // Note: Correctness depends on this being initialized to 0, which densemap
1298 // does
1299 unsigned long LowerBound;
1300 const BasicBlock *LowerBoundBlock;
1301 // This is where the last walk for this memory location ended.
1302 unsigned long LastKill;
1303 bool LastKillValid;
1306 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1307 SmallVectorImpl<MemoryAccess *> &,
1308 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1310 MemorySSA *MSSA;
1311 CachingWalker *Walker;
1312 BatchAAResults *AA;
1313 DominatorTree *DT;
1316 } // end namespace llvm
1318 /// Optimize the uses in a given block This is basically the SSA renaming
1319 /// algorithm, with one caveat: We are able to use a single stack for all
1320 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1321 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1322 /// going to be some position in that stack of possible ones.
1324 /// We track the stack positions that each MemoryLocation needs
1325 /// to check, and last ended at. This is because we only want to check the
1326 /// things that changed since last time. The same MemoryLocation should
1327 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1328 /// things like this, and if they start, we can modify MemoryLocOrCall to
1329 /// include relevant data)
1330 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1331 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1332 SmallVectorImpl<MemoryAccess *> &VersionStack,
1333 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1335 /// If no accesses, nothing to do.
1336 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1337 if (Accesses == nullptr)
1338 return;
1340 // Pop everything that doesn't dominate the current block off the stack,
1341 // increment the PopEpoch to account for this.
1342 while (true) {
1343 assert(
1344 !VersionStack.empty() &&
1345 "Version stack should have liveOnEntry sentinel dominating everything");
1346 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1347 if (DT->dominates(BackBlock, BB))
1348 break;
1349 while (VersionStack.back()->getBlock() == BackBlock)
1350 VersionStack.pop_back();
1351 ++PopEpoch;
1354 for (MemoryAccess &MA : *Accesses) {
1355 auto *MU = dyn_cast<MemoryUse>(&MA);
1356 if (!MU) {
1357 VersionStack.push_back(&MA);
1358 ++StackEpoch;
1359 continue;
1362 if (MU->isOptimized())
1363 continue;
1365 MemoryLocOrCall UseMLOC(MU);
1366 auto &LocInfo = LocStackInfo[UseMLOC];
1367 // If the pop epoch changed, it means we've removed stuff from top of
1368 // stack due to changing blocks. We may have to reset the lower bound or
1369 // last kill info.
1370 if (LocInfo.PopEpoch != PopEpoch) {
1371 LocInfo.PopEpoch = PopEpoch;
1372 LocInfo.StackEpoch = StackEpoch;
1373 // If the lower bound was in something that no longer dominates us, we
1374 // have to reset it.
1375 // We can't simply track stack size, because the stack may have had
1376 // pushes/pops in the meantime.
1377 // XXX: This is non-optimal, but only is slower cases with heavily
1378 // branching dominator trees. To get the optimal number of queries would
1379 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1380 // the top of that stack dominates us. This does not seem worth it ATM.
1381 // A much cheaper optimization would be to always explore the deepest
1382 // branch of the dominator tree first. This will guarantee this resets on
1383 // the smallest set of blocks.
1384 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1385 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1386 // Reset the lower bound of things to check.
1387 // TODO: Some day we should be able to reset to last kill, rather than
1388 // 0.
1389 LocInfo.LowerBound = 0;
1390 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1391 LocInfo.LastKillValid = false;
1393 } else if (LocInfo.StackEpoch != StackEpoch) {
1394 // If all that has changed is the StackEpoch, we only have to check the
1395 // new things on the stack, because we've checked everything before. In
1396 // this case, the lower bound of things to check remains the same.
1397 LocInfo.PopEpoch = PopEpoch;
1398 LocInfo.StackEpoch = StackEpoch;
1400 if (!LocInfo.LastKillValid) {
1401 LocInfo.LastKill = VersionStack.size() - 1;
1402 LocInfo.LastKillValid = true;
1405 // At this point, we should have corrected last kill and LowerBound to be
1406 // in bounds.
1407 assert(LocInfo.LowerBound < VersionStack.size() &&
1408 "Lower bound out of range");
1409 assert(LocInfo.LastKill < VersionStack.size() &&
1410 "Last kill info out of range");
1411 // In any case, the new upper bound is the top of the stack.
1412 unsigned long UpperBound = VersionStack.size() - 1;
1414 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1415 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1416 << *(MU->getMemoryInst()) << ")"
1417 << " because there are "
1418 << UpperBound - LocInfo.LowerBound
1419 << " stores to disambiguate\n");
1420 // Because we did not walk, LastKill is no longer valid, as this may
1421 // have been a kill.
1422 LocInfo.LastKillValid = false;
1423 continue;
1425 bool FoundClobberResult = false;
1426 unsigned UpwardWalkLimit = MaxCheckLimit;
1427 while (UpperBound > LocInfo.LowerBound) {
1428 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1429 // For phis, use the walker, see where we ended up, go there.
1430 // The invariant.group handling in MemorySSA is ad-hoc and doesn't
1431 // support updates, so don't use it to optimize uses.
1432 MemoryAccess *Result =
1433 Walker->getClobberingMemoryAccessWithoutInvariantGroup(
1434 MU, *AA, UpwardWalkLimit);
1435 // We are guaranteed to find it or something is wrong.
1436 while (VersionStack[UpperBound] != Result) {
1437 assert(UpperBound != 0);
1438 --UpperBound;
1440 FoundClobberResult = true;
1441 break;
1444 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1445 if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
1446 FoundClobberResult = true;
1447 break;
1449 --UpperBound;
1452 // At the end of this loop, UpperBound is either a clobber, or lower bound
1453 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1454 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1455 MU->setDefiningAccess(VersionStack[UpperBound], true);
1456 LocInfo.LastKill = UpperBound;
1457 } else {
1458 // Otherwise, we checked all the new ones, and now we know we can get to
1459 // LastKill.
1460 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
1462 LocInfo.LowerBound = VersionStack.size() - 1;
1463 LocInfo.LowerBoundBlock = BB;
1467 /// Optimize uses to point to their actual clobbering definitions.
1468 void MemorySSA::OptimizeUses::optimizeUses() {
1469 SmallVector<MemoryAccess *, 16> VersionStack;
1470 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1471 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1473 unsigned long StackEpoch = 1;
1474 unsigned long PopEpoch = 1;
1475 // We perform a non-recursive top-down dominator tree walk.
1476 for (const auto *DomNode : depth_first(DT->getRootNode()))
1477 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1478 LocStackInfo);
1481 void MemorySSA::placePHINodes(
1482 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1483 // Determine where our MemoryPhi's should go
1484 ForwardIDFCalculator IDFs(*DT);
1485 IDFs.setDefiningBlocks(DefiningBlocks);
1486 SmallVector<BasicBlock *, 32> IDFBlocks;
1487 IDFs.calculate(IDFBlocks);
1489 // Now place MemoryPhi nodes.
1490 for (auto &BB : IDFBlocks)
1491 createMemoryPhi(BB);
1494 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1495 // We create an access to represent "live on entry", for things like
1496 // arguments or users of globals, where the memory they use is defined before
1497 // the beginning of the function. We do not actually insert it into the IR.
1498 // We do not define a live on exit for the immediate uses, and thus our
1499 // semantics do *not* imply that something with no immediate uses can simply
1500 // be removed.
1501 BasicBlock &StartingPoint = F.getEntryBlock();
1502 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1503 &StartingPoint, NextID++));
1505 // We maintain lists of memory accesses per-block, trading memory for time. We
1506 // could just look up the memory access for every possible instruction in the
1507 // stream.
1508 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1509 // Go through each block, figure out where defs occur, and chain together all
1510 // the accesses.
1511 for (BasicBlock &B : F) {
1512 bool InsertIntoDef = false;
1513 AccessList *Accesses = nullptr;
1514 DefsList *Defs = nullptr;
1515 for (Instruction &I : B) {
1516 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1517 if (!MUD)
1518 continue;
1520 if (!Accesses)
1521 Accesses = getOrCreateAccessList(&B);
1522 Accesses->push_back(MUD);
1523 if (isa<MemoryDef>(MUD)) {
1524 InsertIntoDef = true;
1525 if (!Defs)
1526 Defs = getOrCreateDefsList(&B);
1527 Defs->push_back(*MUD);
1530 if (InsertIntoDef)
1531 DefiningBlocks.insert(&B);
1533 placePHINodes(DefiningBlocks);
1535 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1536 // filled in with all blocks.
1537 SmallPtrSet<BasicBlock *, 16> Visited;
1538 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1540 // Mark the uses in unreachable blocks as live on entry, so that they go
1541 // somewhere.
1542 for (auto &BB : F)
1543 if (!Visited.count(&BB))
1544 markUnreachableAsLiveOnEntry(&BB);
1547 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1549 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1550 if (Walker)
1551 return Walker.get();
1553 if (!WalkerBase)
1554 WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT);
1556 Walker = std::make_unique<CachingWalker>(this, WalkerBase.get());
1557 return Walker.get();
1560 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1561 if (SkipWalker)
1562 return SkipWalker.get();
1564 if (!WalkerBase)
1565 WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT);
1567 SkipWalker = std::make_unique<SkipSelfWalker>(this, WalkerBase.get());
1568 return SkipWalker.get();
1572 // This is a helper function used by the creation routines. It places NewAccess
1573 // into the access and defs lists for a given basic block, at the given
1574 // insertion point.
1575 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1576 const BasicBlock *BB,
1577 InsertionPlace Point) {
1578 auto *Accesses = getOrCreateAccessList(BB);
1579 if (Point == Beginning) {
1580 // If it's a phi node, it goes first, otherwise, it goes after any phi
1581 // nodes.
1582 if (isa<MemoryPhi>(NewAccess)) {
1583 Accesses->push_front(NewAccess);
1584 auto *Defs = getOrCreateDefsList(BB);
1585 Defs->push_front(*NewAccess);
1586 } else {
1587 auto AI = find_if_not(
1588 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1589 Accesses->insert(AI, NewAccess);
1590 if (!isa<MemoryUse>(NewAccess)) {
1591 auto *Defs = getOrCreateDefsList(BB);
1592 auto DI = find_if_not(
1593 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1594 Defs->insert(DI, *NewAccess);
1597 } else {
1598 Accesses->push_back(NewAccess);
1599 if (!isa<MemoryUse>(NewAccess)) {
1600 auto *Defs = getOrCreateDefsList(BB);
1601 Defs->push_back(*NewAccess);
1604 BlockNumberingValid.erase(BB);
1607 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1608 AccessList::iterator InsertPt) {
1609 auto *Accesses = getWritableBlockAccesses(BB);
1610 bool WasEnd = InsertPt == Accesses->end();
1611 Accesses->insert(AccessList::iterator(InsertPt), What);
1612 if (!isa<MemoryUse>(What)) {
1613 auto *Defs = getOrCreateDefsList(BB);
1614 // If we got asked to insert at the end, we have an easy job, just shove it
1615 // at the end. If we got asked to insert before an existing def, we also get
1616 // an iterator. If we got asked to insert before a use, we have to hunt for
1617 // the next def.
1618 if (WasEnd) {
1619 Defs->push_back(*What);
1620 } else if (isa<MemoryDef>(InsertPt)) {
1621 Defs->insert(InsertPt->getDefsIterator(), *What);
1622 } else {
1623 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1624 ++InsertPt;
1625 // Either we found a def, or we are inserting at the end
1626 if (InsertPt == Accesses->end())
1627 Defs->push_back(*What);
1628 else
1629 Defs->insert(InsertPt->getDefsIterator(), *What);
1632 BlockNumberingValid.erase(BB);
1635 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1636 // Keep it in the lookup tables, remove from the lists
1637 removeFromLists(What, false);
1639 // Note that moving should implicitly invalidate the optimized state of a
1640 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1641 // MemoryDef.
1642 if (auto *MD = dyn_cast<MemoryDef>(What))
1643 MD->resetOptimized();
1644 What->setBlock(BB);
1647 // Move What before Where in the IR. The end result is that What will belong to
1648 // the right lists and have the right Block set, but will not otherwise be
1649 // correct. It will not have the right defining access, and if it is a def,
1650 // things below it will not properly be updated.
1651 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1652 AccessList::iterator Where) {
1653 prepareForMoveTo(What, BB);
1654 insertIntoListsBefore(What, BB, Where);
1657 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1658 InsertionPlace Point) {
1659 if (isa<MemoryPhi>(What)) {
1660 assert(Point == Beginning &&
1661 "Can only move a Phi at the beginning of the block");
1662 // Update lookup table entry
1663 ValueToMemoryAccess.erase(What->getBlock());
1664 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1665 (void)Inserted;
1666 assert(Inserted && "Cannot move a Phi to a block that already has one");
1669 prepareForMoveTo(What, BB);
1670 insertIntoListsForBlock(What, BB, Point);
1673 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1674 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1675 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1676 // Phi's always are placed at the front of the block.
1677 insertIntoListsForBlock(Phi, BB, Beginning);
1678 ValueToMemoryAccess[BB] = Phi;
1679 return Phi;
1682 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1683 MemoryAccess *Definition,
1684 const MemoryUseOrDef *Template,
1685 bool CreationMustSucceed) {
1686 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1687 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1688 if (CreationMustSucceed)
1689 assert(NewAccess != nullptr && "Tried to create a memory access for a "
1690 "non-memory touching instruction");
1691 if (NewAccess) {
1692 assert((!Definition || !isa<MemoryUse>(Definition)) &&
1693 "A use cannot be a defining access");
1694 NewAccess->setDefiningAccess(Definition);
1696 return NewAccess;
1699 // Return true if the instruction has ordering constraints.
1700 // Note specifically that this only considers stores and loads
1701 // because others are still considered ModRef by getModRefInfo.
1702 static inline bool isOrdered(const Instruction *I) {
1703 if (auto *SI = dyn_cast<StoreInst>(I)) {
1704 if (!SI->isUnordered())
1705 return true;
1706 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1707 if (!LI->isUnordered())
1708 return true;
1710 return false;
1713 /// Helper function to create new memory accesses
1714 template <typename AliasAnalysisType>
1715 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1716 AliasAnalysisType *AAP,
1717 const MemoryUseOrDef *Template) {
1718 // The assume intrinsic has a control dependency which we model by claiming
1719 // that it writes arbitrarily. Debuginfo intrinsics may be considered
1720 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1721 // dependencies here.
1722 // FIXME: Replace this special casing with a more accurate modelling of
1723 // assume's control dependency.
1724 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1725 switch (II->getIntrinsicID()) {
1726 default:
1727 break;
1728 case Intrinsic::assume:
1729 case Intrinsic::experimental_noalias_scope_decl:
1730 case Intrinsic::pseudoprobe:
1731 return nullptr;
1735 // Using a nonstandard AA pipelines might leave us with unexpected modref
1736 // results for I, so add a check to not model instructions that may not read
1737 // from or write to memory. This is necessary for correctness.
1738 if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1739 return nullptr;
1741 bool Def, Use;
1742 if (Template) {
1743 Def = isa<MemoryDef>(Template);
1744 Use = isa<MemoryUse>(Template);
1745 #if !defined(NDEBUG)
1746 ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt);
1747 bool DefCheck, UseCheck;
1748 DefCheck = isModSet(ModRef) || isOrdered(I);
1749 UseCheck = isRefSet(ModRef);
1750 // Memory accesses should only be reduced and can not be increased since AA
1751 // just might return better results as a result of some transformations.
1752 assert((Def == DefCheck || !DefCheck) &&
1753 "Memory accesses should only be reduced");
1754 if (!Def && Use != UseCheck) {
1755 // New Access should not have more power than template access
1756 assert(!UseCheck && "Invalid template");
1758 #endif
1759 } else {
1760 // Find out what affect this instruction has on memory.
1761 ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt);
1762 // The isOrdered check is used to ensure that volatiles end up as defs
1763 // (atomics end up as ModRef right now anyway). Until we separate the
1764 // ordering chain from the memory chain, this enables people to see at least
1765 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1766 // will still give an answer that bypasses other volatile loads. TODO:
1767 // Separate memory aliasing and ordering into two different chains so that
1768 // we can precisely represent both "what memory will this read/write/is
1769 // clobbered by" and "what instructions can I move this past".
1770 Def = isModSet(ModRef) || isOrdered(I);
1771 Use = isRefSet(ModRef);
1774 // It's possible for an instruction to not modify memory at all. During
1775 // construction, we ignore them.
1776 if (!Def && !Use)
1777 return nullptr;
1779 MemoryUseOrDef *MUD;
1780 if (Def) {
1781 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1782 } else {
1783 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1784 if (isUseTriviallyOptimizableToLiveOnEntry(*AAP, I)) {
1785 MemoryAccess *LiveOnEntry = getLiveOnEntryDef();
1786 MUD->setOptimized(LiveOnEntry);
1789 ValueToMemoryAccess[I] = MUD;
1790 return MUD;
1793 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1794 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1795 assert(MA->use_empty() &&
1796 "Trying to remove memory access that still has uses");
1797 BlockNumbering.erase(MA);
1798 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1799 MUD->setDefiningAccess(nullptr);
1800 // Invalidate our walker's cache if necessary
1801 if (!isa<MemoryUse>(MA))
1802 getWalker()->invalidateInfo(MA);
1804 Value *MemoryInst;
1805 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1806 MemoryInst = MUD->getMemoryInst();
1807 else
1808 MemoryInst = MA->getBlock();
1810 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1811 if (VMA->second == MA)
1812 ValueToMemoryAccess.erase(VMA);
1815 /// Properly remove \p MA from all of MemorySSA's lists.
1817 /// Because of the way the intrusive list and use lists work, it is important to
1818 /// do removal in the right order.
1819 /// ShouldDelete defaults to true, and will cause the memory access to also be
1820 /// deleted, not just removed.
1821 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1822 BasicBlock *BB = MA->getBlock();
1823 // The access list owns the reference, so we erase it from the non-owning list
1824 // first.
1825 if (!isa<MemoryUse>(MA)) {
1826 auto DefsIt = PerBlockDefs.find(BB);
1827 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1828 Defs->remove(*MA);
1829 if (Defs->empty())
1830 PerBlockDefs.erase(DefsIt);
1833 // The erase call here will delete it. If we don't want it deleted, we call
1834 // remove instead.
1835 auto AccessIt = PerBlockAccesses.find(BB);
1836 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1837 if (ShouldDelete)
1838 Accesses->erase(MA);
1839 else
1840 Accesses->remove(MA);
1842 if (Accesses->empty()) {
1843 PerBlockAccesses.erase(AccessIt);
1844 BlockNumberingValid.erase(BB);
1848 void MemorySSA::print(raw_ostream &OS) const {
1849 MemorySSAAnnotatedWriter Writer(this);
1850 F.print(OS, &Writer);
1853 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1854 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1855 #endif
1857 void MemorySSA::verifyMemorySSA(VerificationLevel VL) const {
1858 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1859 VL = VerificationLevel::Full;
1860 #endif
1862 #ifndef NDEBUG
1863 verifyOrderingDominationAndDefUses(F, VL);
1864 verifyDominationNumbers(F);
1865 if (VL == VerificationLevel::Full)
1866 verifyPrevDefInPhis(F);
1867 #endif
1868 // Previously, the verification used to also verify that the clobberingAccess
1869 // cached by MemorySSA is the same as the clobberingAccess found at a later
1870 // query to AA. This does not hold true in general due to the current fragility
1871 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1872 // up. As a result, transformations that are correct, will lead to BasicAA
1873 // returning different Alias answers before and after that transformation.
1874 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1875 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1876 // every transformation, which defeats the purpose of using it. For such an
1877 // example, see test4 added in D51960.
1880 void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1881 for (const BasicBlock &BB : F) {
1882 if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1883 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1884 auto *Pred = Phi->getIncomingBlock(I);
1885 auto *IncAcc = Phi->getIncomingValue(I);
1886 // If Pred has no unreachable predecessors, get last def looking at
1887 // IDoms. If, while walkings IDoms, any of these has an unreachable
1888 // predecessor, then the incoming def can be any access.
1889 if (auto *DTNode = DT->getNode(Pred)) {
1890 while (DTNode) {
1891 if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1892 auto *LastAcc = &*(--DefList->end());
1893 assert(LastAcc == IncAcc &&
1894 "Incorrect incoming access into phi.");
1895 (void)IncAcc;
1896 (void)LastAcc;
1897 break;
1899 DTNode = DTNode->getIDom();
1901 } else {
1902 // If Pred has unreachable predecessors, but has at least a Def, the
1903 // incoming access can be the last Def in Pred, or it could have been
1904 // optimized to LoE. After an update, though, the LoE may have been
1905 // replaced by another access, so IncAcc may be any access.
1906 // If Pred has unreachable predecessors and no Defs, incoming access
1907 // should be LoE; However, after an update, it may be any access.
1914 /// Verify that all of the blocks we believe to have valid domination numbers
1915 /// actually have valid domination numbers.
1916 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1917 if (BlockNumberingValid.empty())
1918 return;
1920 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1921 for (const BasicBlock &BB : F) {
1922 if (!ValidBlocks.count(&BB))
1923 continue;
1925 ValidBlocks.erase(&BB);
1927 const AccessList *Accesses = getBlockAccesses(&BB);
1928 // It's correct to say an empty block has valid numbering.
1929 if (!Accesses)
1930 continue;
1932 // Block numbering starts at 1.
1933 unsigned long LastNumber = 0;
1934 for (const MemoryAccess &MA : *Accesses) {
1935 auto ThisNumberIter = BlockNumbering.find(&MA);
1936 assert(ThisNumberIter != BlockNumbering.end() &&
1937 "MemoryAccess has no domination number in a valid block!");
1939 unsigned long ThisNumber = ThisNumberIter->second;
1940 assert(ThisNumber > LastNumber &&
1941 "Domination numbers should be strictly increasing!");
1942 (void)LastNumber;
1943 LastNumber = ThisNumber;
1947 assert(ValidBlocks.empty() &&
1948 "All valid BasicBlocks should exist in F -- dangling pointers?");
1951 /// Verify ordering: the order and existence of MemoryAccesses matches the
1952 /// order and existence of memory affecting instructions.
1953 /// Verify domination: each definition dominates all of its uses.
1954 /// Verify def-uses: the immediate use information - walk all the memory
1955 /// accesses and verifying that, for each use, it appears in the appropriate
1956 /// def's use list
1957 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F,
1958 VerificationLevel VL) const {
1959 // Walk all the blocks, comparing what the lookups think and what the access
1960 // lists think, as well as the order in the blocks vs the order in the access
1961 // lists.
1962 SmallVector<MemoryAccess *, 32> ActualAccesses;
1963 SmallVector<MemoryAccess *, 32> ActualDefs;
1964 for (BasicBlock &B : F) {
1965 const AccessList *AL = getBlockAccesses(&B);
1966 const auto *DL = getBlockDefs(&B);
1967 MemoryPhi *Phi = getMemoryAccess(&B);
1968 if (Phi) {
1969 // Verify ordering.
1970 ActualAccesses.push_back(Phi);
1971 ActualDefs.push_back(Phi);
1972 // Verify domination
1973 for (const Use &U : Phi->uses()) {
1974 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
1975 (void)U;
1977 // Verify def-uses for full verify.
1978 if (VL == VerificationLevel::Full) {
1979 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1980 pred_begin(&B), pred_end(&B))) &&
1981 "Incomplete MemoryPhi Node");
1982 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1983 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1984 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) &&
1985 "Incoming phi block not a block predecessor");
1990 for (Instruction &I : B) {
1991 MemoryUseOrDef *MA = getMemoryAccess(&I);
1992 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1993 "We have memory affecting instructions "
1994 "in this block but they are not in the "
1995 "access list or defs list");
1996 if (MA) {
1997 // Verify ordering.
1998 ActualAccesses.push_back(MA);
1999 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
2000 // Verify ordering.
2001 ActualDefs.push_back(MA);
2002 // Verify domination.
2003 for (const Use &U : MD->uses()) {
2004 assert(dominates(MD, U) &&
2005 "Memory Def does not dominate it's uses");
2006 (void)U;
2009 // Verify def-uses for full verify.
2010 if (VL == VerificationLevel::Full)
2011 verifyUseInDefs(MA->getDefiningAccess(), MA);
2014 // Either we hit the assert, really have no accesses, or we have both
2015 // accesses and an access list. Same with defs.
2016 if (!AL && !DL)
2017 continue;
2018 // Verify ordering.
2019 assert(AL->size() == ActualAccesses.size() &&
2020 "We don't have the same number of accesses in the block as on the "
2021 "access list");
2022 assert((DL || ActualDefs.size() == 0) &&
2023 "Either we should have a defs list, or we should have no defs");
2024 assert((!DL || DL->size() == ActualDefs.size()) &&
2025 "We don't have the same number of defs in the block as on the "
2026 "def list");
2027 auto ALI = AL->begin();
2028 auto AAI = ActualAccesses.begin();
2029 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2030 assert(&*ALI == *AAI && "Not the same accesses in the same order");
2031 ++ALI;
2032 ++AAI;
2034 ActualAccesses.clear();
2035 if (DL) {
2036 auto DLI = DL->begin();
2037 auto ADI = ActualDefs.begin();
2038 while (DLI != DL->end() && ADI != ActualDefs.end()) {
2039 assert(&*DLI == *ADI && "Not the same defs in the same order");
2040 ++DLI;
2041 ++ADI;
2044 ActualDefs.clear();
2048 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2049 /// appears in the use list of \p Def.
2050 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2051 // The live on entry use may cause us to get a NULL def here
2052 if (!Def)
2053 assert(isLiveOnEntryDef(Use) &&
2054 "Null def but use not point to live on entry def");
2055 else
2056 assert(is_contained(Def->users(), Use) &&
2057 "Did not find use in def's use list");
2060 /// Perform a local numbering on blocks so that instruction ordering can be
2061 /// determined in constant time.
2062 /// TODO: We currently just number in order. If we numbered by N, we could
2063 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2064 /// log2(N) sequences of mixed before and after) without needing to invalidate
2065 /// the numbering.
2066 void MemorySSA::renumberBlock(const BasicBlock *B) const {
2067 // The pre-increment ensures the numbers really start at 1.
2068 unsigned long CurrentNumber = 0;
2069 const AccessList *AL = getBlockAccesses(B);
2070 assert(AL != nullptr && "Asking to renumber an empty block");
2071 for (const auto &I : *AL)
2072 BlockNumbering[&I] = ++CurrentNumber;
2073 BlockNumberingValid.insert(B);
2076 /// Determine, for two memory accesses in the same block,
2077 /// whether \p Dominator dominates \p Dominatee.
2078 /// \returns True if \p Dominator dominates \p Dominatee.
2079 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2080 const MemoryAccess *Dominatee) const {
2081 const BasicBlock *DominatorBlock = Dominator->getBlock();
2083 assert((DominatorBlock == Dominatee->getBlock()) &&
2084 "Asking for local domination when accesses are in different blocks!");
2085 // A node dominates itself.
2086 if (Dominatee == Dominator)
2087 return true;
2089 // When Dominatee is defined on function entry, it is not dominated by another
2090 // memory access.
2091 if (isLiveOnEntryDef(Dominatee))
2092 return false;
2094 // When Dominator is defined on function entry, it dominates the other memory
2095 // access.
2096 if (isLiveOnEntryDef(Dominator))
2097 return true;
2099 if (!BlockNumberingValid.count(DominatorBlock))
2100 renumberBlock(DominatorBlock);
2102 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2103 // All numbers start with 1
2104 assert(DominatorNum != 0 && "Block was not numbered properly");
2105 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2106 assert(DominateeNum != 0 && "Block was not numbered properly");
2107 return DominatorNum < DominateeNum;
2110 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2111 const MemoryAccess *Dominatee) const {
2112 if (Dominator == Dominatee)
2113 return true;
2115 if (isLiveOnEntryDef(Dominatee))
2116 return false;
2118 if (Dominator->getBlock() != Dominatee->getBlock())
2119 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2120 return locallyDominates(Dominator, Dominatee);
2123 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2124 const Use &Dominatee) const {
2125 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2126 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2127 // The def must dominate the incoming block of the phi.
2128 if (UseBB != Dominator->getBlock())
2129 return DT->dominates(Dominator->getBlock(), UseBB);
2130 // If the UseBB and the DefBB are the same, compare locally.
2131 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2133 // If it's not a PHI node use, the normal dominates can already handle it.
2134 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2137 void MemorySSA::ensureOptimizedUses() {
2138 if (IsOptimized)
2139 return;
2141 BatchAAResults BatchAA(*AA);
2142 ClobberWalkerBase WalkerBase(this, DT);
2143 CachingWalker WalkerLocal(this, &WalkerBase);
2144 OptimizeUses(this, &WalkerLocal, &BatchAA, DT).optimizeUses();
2145 IsOptimized = true;
2148 void MemoryAccess::print(raw_ostream &OS) const {
2149 switch (getValueID()) {
2150 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2151 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2152 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2154 llvm_unreachable("invalid value id");
2157 void MemoryDef::print(raw_ostream &OS) const {
2158 MemoryAccess *UO = getDefiningAccess();
2160 auto printID = [&OS](MemoryAccess *A) {
2161 if (A && A->getID())
2162 OS << A->getID();
2163 else
2164 OS << LiveOnEntryStr;
2167 OS << getID() << " = MemoryDef(";
2168 printID(UO);
2169 OS << ")";
2171 if (isOptimized()) {
2172 OS << "->";
2173 printID(getOptimized());
2177 void MemoryPhi::print(raw_ostream &OS) const {
2178 ListSeparator LS(",");
2179 OS << getID() << " = MemoryPhi(";
2180 for (const auto &Op : operands()) {
2181 BasicBlock *BB = getIncomingBlock(Op);
2182 MemoryAccess *MA = cast<MemoryAccess>(Op);
2184 OS << LS << '{';
2185 if (BB->hasName())
2186 OS << BB->getName();
2187 else
2188 BB->printAsOperand(OS, false);
2189 OS << ',';
2190 if (unsigned ID = MA->getID())
2191 OS << ID;
2192 else
2193 OS << LiveOnEntryStr;
2194 OS << '}';
2196 OS << ')';
2199 void MemoryUse::print(raw_ostream &OS) const {
2200 MemoryAccess *UO = getDefiningAccess();
2201 OS << "MemoryUse(";
2202 if (UO && UO->getID())
2203 OS << UO->getID();
2204 else
2205 OS << LiveOnEntryStr;
2206 OS << ')';
2209 void MemoryAccess::dump() const {
2210 // Cannot completely remove virtual function even in release mode.
2211 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2212 print(dbgs());
2213 dbgs() << "\n";
2214 #endif
2217 class DOTFuncMSSAInfo {
2218 private:
2219 const Function &F;
2220 MemorySSAAnnotatedWriter MSSAWriter;
2222 public:
2223 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA)
2224 : F(F), MSSAWriter(&MSSA) {}
2226 const Function *getFunction() { return &F; }
2227 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; }
2230 namespace llvm {
2232 template <>
2233 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> {
2234 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) {
2235 return &(CFGInfo->getFunction()->getEntryBlock());
2238 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
2239 using nodes_iterator = pointer_iterator<Function::const_iterator>;
2241 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) {
2242 return nodes_iterator(CFGInfo->getFunction()->begin());
2245 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) {
2246 return nodes_iterator(CFGInfo->getFunction()->end());
2249 static size_t size(DOTFuncMSSAInfo *CFGInfo) {
2250 return CFGInfo->getFunction()->size();
2254 template <>
2255 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits {
2257 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
2259 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) {
2260 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() +
2261 "' function";
2264 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) {
2265 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel(
2266 Node, nullptr,
2267 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void {
2268 BB.print(OS, &CFGInfo->getWriter(), true, true);
2270 [](std::string &S, unsigned &I, unsigned Idx) -> void {
2271 std::string Str = S.substr(I, Idx - I);
2272 StringRef SR = Str;
2273 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") ||
2274 SR.count("MemoryUse("))
2275 return;
2276 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx);
2280 static std::string getEdgeSourceLabel(const BasicBlock *Node,
2281 const_succ_iterator I) {
2282 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I);
2285 /// Display the raw branch weights from PGO.
2286 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
2287 DOTFuncMSSAInfo *CFGInfo) {
2288 return "";
2291 std::string getNodeAttributes(const BasicBlock *Node,
2292 DOTFuncMSSAInfo *CFGInfo) {
2293 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos
2294 ? "style=filled, fillcolor=lightpink"
2295 : "";
2299 } // namespace llvm
2301 AnalysisKey MemorySSAAnalysis::Key;
2303 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2304 FunctionAnalysisManager &AM) {
2305 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2306 auto &AA = AM.getResult<AAManager>(F);
2307 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2310 bool MemorySSAAnalysis::Result::invalidate(
2311 Function &F, const PreservedAnalyses &PA,
2312 FunctionAnalysisManager::Invalidator &Inv) {
2313 auto PAC = PA.getChecker<MemorySSAAnalysis>();
2314 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2315 Inv.invalidate<AAManager>(F, PA) ||
2316 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2319 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2320 FunctionAnalysisManager &AM) {
2321 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2322 if (EnsureOptimizedUses)
2323 MSSA.ensureOptimizedUses();
2324 if (DotCFGMSSA != "") {
2325 DOTFuncMSSAInfo CFGInfo(F, MSSA);
2326 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2327 } else {
2328 OS << "MemorySSA for function: " << F.getName() << "\n";
2329 MSSA.print(OS);
2332 return PreservedAnalyses::all();
2335 PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F,
2336 FunctionAnalysisManager &AM) {
2337 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2338 OS << "MemorySSA (walker) for function: " << F.getName() << "\n";
2339 MemorySSAWalkerAnnotatedWriter Writer(&MSSA);
2340 F.print(OS, &Writer);
2342 return PreservedAnalyses::all();
2345 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2346 FunctionAnalysisManager &AM) {
2347 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2349 return PreservedAnalyses::all();
2352 char MemorySSAWrapperPass::ID = 0;
2354 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2355 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2358 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2360 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2361 AU.setPreservesAll();
2362 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2363 AU.addRequiredTransitive<AAResultsWrapperPass>();
2366 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2367 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2368 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2369 MSSA.reset(new MemorySSA(F, &AA, &DT));
2370 return false;
2373 void MemorySSAWrapperPass::verifyAnalysis() const {
2374 if (VerifyMemorySSA)
2375 MSSA->verifyMemorySSA();
2378 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2379 MSSA->print(OS);
2382 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2384 /// Walk the use-def chains starting at \p StartingAccess and find
2385 /// the MemoryAccess that actually clobbers Loc.
2387 /// \returns our clobbering memory access
2388 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2389 MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2390 BatchAAResults &BAA, unsigned &UpwardWalkLimit) {
2391 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access");
2393 // If location is undefined, conservatively return starting access.
2394 if (Loc.Ptr == nullptr)
2395 return StartingAccess;
2397 Instruction *I = nullptr;
2398 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) {
2399 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2400 return StartingUseOrDef;
2402 I = StartingUseOrDef->getMemoryInst();
2404 // Conservatively, fences are always clobbers, so don't perform the walk if
2405 // we hit a fence.
2406 if (!isa<CallBase>(I) && I->isFenceLike())
2407 return StartingUseOrDef;
2410 UpwardsMemoryQuery Q;
2411 Q.OriginalAccess = StartingAccess;
2412 Q.StartingLoc = Loc;
2413 Q.Inst = nullptr;
2414 Q.IsCall = false;
2416 // Unlike the other function, do not walk to the def of a def, because we are
2417 // handed something we already believe is the clobbering access.
2418 // We never set SkipSelf to true in Q in this method.
2419 MemoryAccess *Clobber =
2420 Walker.findClobber(BAA, StartingAccess, Q, UpwardWalkLimit);
2421 LLVM_DEBUG({
2422 dbgs() << "Clobber starting at access " << *StartingAccess << "\n";
2423 if (I)
2424 dbgs() << " for instruction " << *I << "\n";
2425 dbgs() << " is " << *Clobber << "\n";
2427 return Clobber;
2430 static const Instruction *
2431 getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) {
2432 if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile())
2433 return nullptr;
2435 // We consider bitcasts and zero GEPs to be the same pointer value. Start by
2436 // stripping bitcasts and zero GEPs, then we will recursively look at loads
2437 // and stores through bitcasts and zero GEPs.
2438 Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts();
2440 // It's not safe to walk the use list of a global value because function
2441 // passes aren't allowed to look outside their functions.
2442 // FIXME: this could be fixed by filtering instructions from outside of
2443 // current function.
2444 if (isa<Constant>(PointerOperand))
2445 return nullptr;
2447 // Queue to process all pointers that are equivalent to load operand.
2448 SmallVector<const Value *, 8> PointerUsesQueue;
2449 PointerUsesQueue.push_back(PointerOperand);
2451 const Instruction *MostDominatingInstruction = &I;
2453 // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case
2454 // we will see all the instructions. It may not matter in practice. If it
2455 // does, we will have to support MemorySSA construction and updates.
2456 while (!PointerUsesQueue.empty()) {
2457 const Value *Ptr = PointerUsesQueue.pop_back_val();
2458 assert(Ptr && !isa<GlobalValue>(Ptr) &&
2459 "Null or GlobalValue should not be inserted");
2461 for (const User *Us : Ptr->users()) {
2462 auto *U = dyn_cast<Instruction>(Us);
2463 if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction))
2464 continue;
2466 // Add bitcasts and zero GEPs to queue.
2467 if (isa<BitCastInst>(U)) {
2468 PointerUsesQueue.push_back(U);
2469 continue;
2471 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
2472 if (GEP->hasAllZeroIndices())
2473 PointerUsesQueue.push_back(U);
2474 continue;
2477 // If we hit a load/store with an invariant.group metadata and the same
2478 // pointer operand, we can assume that value pointed to by the pointer
2479 // operand didn't change.
2480 if (U->hasMetadata(LLVMContext::MD_invariant_group) &&
2481 getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) {
2482 MostDominatingInstruction = U;
2486 return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction;
2489 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2490 MemoryAccess *MA, BatchAAResults &BAA, unsigned &UpwardWalkLimit,
2491 bool SkipSelf, bool UseInvariantGroup) {
2492 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2493 // If this is a MemoryPhi, we can't do anything.
2494 if (!StartingAccess)
2495 return MA;
2497 if (UseInvariantGroup) {
2498 if (auto *I = getInvariantGroupClobberingInstruction(
2499 *StartingAccess->getMemoryInst(), MSSA->getDomTree())) {
2500 assert(isa<LoadInst>(I) || isa<StoreInst>(I));
2502 auto *ClobberMA = MSSA->getMemoryAccess(I);
2503 assert(ClobberMA);
2504 if (isa<MemoryUse>(ClobberMA))
2505 return ClobberMA->getDefiningAccess();
2506 return ClobberMA;
2510 bool IsOptimized = false;
2512 // If this is an already optimized use or def, return the optimized result.
2513 // Note: Currently, we store the optimized def result in a separate field,
2514 // since we can't use the defining access.
2515 if (StartingAccess->isOptimized()) {
2516 if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2517 return StartingAccess->getOptimized();
2518 IsOptimized = true;
2521 const Instruction *I = StartingAccess->getMemoryInst();
2522 // We can't sanely do anything with a fence, since they conservatively clobber
2523 // all memory, and have no locations to get pointers from to try to
2524 // disambiguate.
2525 if (!isa<CallBase>(I) && I->isFenceLike())
2526 return StartingAccess;
2528 UpwardsMemoryQuery Q(I, StartingAccess);
2530 if (isUseTriviallyOptimizableToLiveOnEntry(BAA, I)) {
2531 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2532 StartingAccess->setOptimized(LiveOnEntry);
2533 return LiveOnEntry;
2536 MemoryAccess *OptimizedAccess;
2537 if (!IsOptimized) {
2538 // Start with the thing we already think clobbers this location
2539 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2541 // At this point, DefiningAccess may be the live on entry def.
2542 // If it is, we will not get a better result.
2543 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2544 StartingAccess->setOptimized(DefiningAccess);
2545 return DefiningAccess;
2548 OptimizedAccess =
2549 Walker.findClobber(BAA, DefiningAccess, Q, UpwardWalkLimit);
2550 StartingAccess->setOptimized(OptimizedAccess);
2551 } else
2552 OptimizedAccess = StartingAccess->getOptimized();
2554 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2555 LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2556 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2557 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2559 MemoryAccess *Result;
2560 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2561 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2562 assert(isa<MemoryDef>(Q.OriginalAccess));
2563 Q.SkipSelfAccess = true;
2564 Result = Walker.findClobber(BAA, OptimizedAccess, Q, UpwardWalkLimit);
2565 } else
2566 Result = OptimizedAccess;
2568 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2569 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2571 return Result;
2574 MemoryAccess *
2575 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2576 BatchAAResults &) {
2577 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2578 return Use->getDefiningAccess();
2579 return MA;
2582 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2583 MemoryAccess *StartingAccess, const MemoryLocation &, BatchAAResults &) {
2584 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2585 return Use->getDefiningAccess();
2586 return StartingAccess;
2589 void MemoryPhi::deleteMe(DerivedUser *Self) {
2590 delete static_cast<MemoryPhi *>(Self);
2593 void MemoryDef::deleteMe(DerivedUser *Self) {
2594 delete static_cast<MemoryDef *>(Self);
2597 void MemoryUse::deleteMe(DerivedUser *Self) {
2598 delete static_cast<MemoryUse *>(Self);
2601 bool upward_defs_iterator::IsGuaranteedLoopInvariant(const Value *Ptr) const {
2602 auto IsGuaranteedLoopInvariantBase = [](const Value *Ptr) {
2603 Ptr = Ptr->stripPointerCasts();
2604 if (!isa<Instruction>(Ptr))
2605 return true;
2606 return isa<AllocaInst>(Ptr);
2609 Ptr = Ptr->stripPointerCasts();
2610 if (auto *I = dyn_cast<Instruction>(Ptr)) {
2611 if (I->getParent()->isEntryBlock())
2612 return true;
2614 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2615 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
2616 GEP->hasAllConstantIndices();
2618 return IsGuaranteedLoopInvariantBase(Ptr);