1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the MemorySSA class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/iterator.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/CFGPrinter.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/GraphWriter.h"
51 #include "llvm/Support/raw_ostream.h"
60 #define DEBUG_TYPE "memoryssa"
62 static cl::opt
<std::string
>
63 DotCFGMSSA("dot-cfg-mssa",
64 cl::value_desc("file name for generated dot file"),
65 cl::desc("file name for generated dot file"), cl::init(""));
67 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
69 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
70 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
71 INITIALIZE_PASS_END(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
74 static cl::opt
<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden
, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
79 // Always verify MemorySSA if expensive checking is enabled.
80 #ifdef EXPENSIVE_CHECKS
81 bool llvm::VerifyMemorySSA
= true;
83 bool llvm::VerifyMemorySSA
= false;
86 static cl::opt
<bool, true>
87 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA
),
88 cl::Hidden
, cl::desc("Enable verification of MemorySSA."));
90 const static char LiveOnEntryStr
[] = "liveOnEntry";
94 /// An assembly annotator class to print Memory SSA information in
96 class MemorySSAAnnotatedWriter
: public AssemblyAnnotationWriter
{
97 const MemorySSA
*MSSA
;
100 MemorySSAAnnotatedWriter(const MemorySSA
*M
) : MSSA(M
) {}
102 void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
103 formatted_raw_ostream
&OS
) override
{
104 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(BB
))
105 OS
<< "; " << *MA
<< "\n";
108 void emitInstructionAnnot(const Instruction
*I
,
109 formatted_raw_ostream
&OS
) override
{
110 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(I
))
111 OS
<< "; " << *MA
<< "\n";
115 /// An assembly annotator class to print Memory SSA information in
117 class MemorySSAWalkerAnnotatedWriter
: public AssemblyAnnotationWriter
{
119 MemorySSAWalker
*Walker
;
123 MemorySSAWalkerAnnotatedWriter(MemorySSA
*M
)
124 : MSSA(M
), Walker(M
->getWalker()), BAA(M
->getAA()) {}
126 void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
127 formatted_raw_ostream
&OS
) override
{
128 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(BB
))
129 OS
<< "; " << *MA
<< "\n";
132 void emitInstructionAnnot(const Instruction
*I
,
133 formatted_raw_ostream
&OS
) override
{
134 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(I
)) {
135 MemoryAccess
*Clobber
= Walker
->getClobberingMemoryAccess(MA
, BAA
);
138 OS
<< " - clobbered by ";
139 if (MSSA
->isLiveOnEntryDef(Clobber
))
140 OS
<< LiveOnEntryStr
;
153 /// Our current alias analysis API differentiates heavily between calls and
154 /// non-calls, and functions called on one usually assert on the other.
155 /// This class encapsulates the distinction to simplify other code that wants
156 /// "Memory affecting instructions and related data" to use as a key.
157 /// For example, this class is used as a densemap key in the use optimizer.
158 class MemoryLocOrCall
{
162 MemoryLocOrCall(MemoryUseOrDef
*MUD
)
163 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
164 MemoryLocOrCall(const MemoryUseOrDef
*MUD
)
165 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
167 MemoryLocOrCall(Instruction
*Inst
) {
168 if (auto *C
= dyn_cast
<CallBase
>(Inst
)) {
173 // There is no such thing as a memorylocation for a fence inst, and it is
174 // unique in that regard.
175 if (!isa
<FenceInst
>(Inst
))
176 Loc
= MemoryLocation::get(Inst
);
180 explicit MemoryLocOrCall(const MemoryLocation
&Loc
) : Loc(Loc
) {}
182 const CallBase
*getCall() const {
187 MemoryLocation
getLoc() const {
192 bool operator==(const MemoryLocOrCall
&Other
) const {
193 if (IsCall
!= Other
.IsCall
)
197 return Loc
== Other
.Loc
;
199 if (Call
->getCalledOperand() != Other
.Call
->getCalledOperand())
202 return Call
->arg_size() == Other
.Call
->arg_size() &&
203 std::equal(Call
->arg_begin(), Call
->arg_end(),
204 Other
.Call
->arg_begin());
209 const CallBase
*Call
;
214 } // end anonymous namespace
218 template <> struct DenseMapInfo
<MemoryLocOrCall
> {
219 static inline MemoryLocOrCall
getEmptyKey() {
220 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getEmptyKey());
223 static inline MemoryLocOrCall
getTombstoneKey() {
224 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getTombstoneKey());
227 static unsigned getHashValue(const MemoryLocOrCall
&MLOC
) {
231 DenseMapInfo
<MemoryLocation
>::getHashValue(MLOC
.getLoc()));
234 hash_combine(MLOC
.IsCall
, DenseMapInfo
<const Value
*>::getHashValue(
235 MLOC
.getCall()->getCalledOperand()));
237 for (const Value
*Arg
: MLOC
.getCall()->args())
238 hash
= hash_combine(hash
, DenseMapInfo
<const Value
*>::getHashValue(Arg
));
242 static bool isEqual(const MemoryLocOrCall
&LHS
, const MemoryLocOrCall
&RHS
) {
247 } // end namespace llvm
249 /// This does one-way checks to see if Use could theoretically be hoisted above
250 /// MayClobber. This will not check the other way around.
252 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
253 /// MayClobber, with no potentially clobbering operations in between them.
254 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
255 static bool areLoadsReorderable(const LoadInst
*Use
,
256 const LoadInst
*MayClobber
) {
257 bool VolatileUse
= Use
->isVolatile();
258 bool VolatileClobber
= MayClobber
->isVolatile();
259 // Volatile operations may never be reordered with other volatile operations.
260 if (VolatileUse
&& VolatileClobber
)
262 // Otherwise, volatile doesn't matter here. From the language reference:
263 // 'optimizers may change the order of volatile operations relative to
264 // non-volatile operations.'"
266 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
267 // is weaker, it can be moved above other loads. We just need to be sure that
268 // MayClobber isn't an acquire load, because loads can't be moved above
271 // Note that this explicitly *does* allow the free reordering of monotonic (or
272 // weaker) loads of the same address.
273 bool SeqCstUse
= Use
->getOrdering() == AtomicOrdering::SequentiallyConsistent
;
274 bool MayClobberIsAcquire
= isAtLeastOrStrongerThan(MayClobber
->getOrdering(),
275 AtomicOrdering::Acquire
);
276 return !(SeqCstUse
|| MayClobberIsAcquire
);
279 template <typename AliasAnalysisType
>
281 instructionClobbersQuery(const MemoryDef
*MD
, const MemoryLocation
&UseLoc
,
282 const Instruction
*UseInst
, AliasAnalysisType
&AA
) {
283 Instruction
*DefInst
= MD
->getMemoryInst();
284 assert(DefInst
&& "Defining instruction not actually an instruction");
286 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(DefInst
)) {
287 // These intrinsics will show up as affecting memory, but they are just
290 // FIXME: We probably don't actually want MemorySSA to model these at all
291 // (including creating MemoryAccesses for them): we just end up inventing
292 // clobbers where they don't really exist at all. Please see D43269 for
294 switch (II
->getIntrinsicID()) {
295 case Intrinsic::invariant_start
:
296 case Intrinsic::invariant_end
:
297 case Intrinsic::assume
:
298 case Intrinsic::experimental_noalias_scope_decl
:
299 case Intrinsic::pseudoprobe
:
301 case Intrinsic::dbg_declare
:
302 case Intrinsic::dbg_label
:
303 case Intrinsic::dbg_value
:
304 llvm_unreachable("debuginfo shouldn't have associated defs!");
310 if (auto *CB
= dyn_cast_or_null
<CallBase
>(UseInst
)) {
311 ModRefInfo I
= AA
.getModRefInfo(DefInst
, CB
);
312 return isModOrRefSet(I
);
315 if (auto *DefLoad
= dyn_cast
<LoadInst
>(DefInst
))
316 if (auto *UseLoad
= dyn_cast_or_null
<LoadInst
>(UseInst
))
317 return !areLoadsReorderable(UseLoad
, DefLoad
);
319 ModRefInfo I
= AA
.getModRefInfo(DefInst
, UseLoc
);
323 template <typename AliasAnalysisType
>
324 static bool instructionClobbersQuery(MemoryDef
*MD
, const MemoryUseOrDef
*MU
,
325 const MemoryLocOrCall
&UseMLOC
,
326 AliasAnalysisType
&AA
) {
327 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
328 // to exist while MemoryLocOrCall is pushed through places.
330 return instructionClobbersQuery(MD
, MemoryLocation(), MU
->getMemoryInst(),
332 return instructionClobbersQuery(MD
, UseMLOC
.getLoc(), MU
->getMemoryInst(),
336 // Return true when MD may alias MU, return false otherwise.
337 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef
*MD
, const MemoryUseOrDef
*MU
,
339 return instructionClobbersQuery(MD
, MU
, MemoryLocOrCall(MU
), AA
);
344 struct UpwardsMemoryQuery
{
345 // True if our original query started off as a call
347 // The pointer location we started the query with. This will be empty if
349 MemoryLocation StartingLoc
;
350 // This is the instruction we were querying about.
351 const Instruction
*Inst
= nullptr;
352 // The MemoryAccess we actually got called with, used to test local domination
353 const MemoryAccess
*OriginalAccess
= nullptr;
354 bool SkipSelfAccess
= false;
356 UpwardsMemoryQuery() = default;
358 UpwardsMemoryQuery(const Instruction
*Inst
, const MemoryAccess
*Access
)
359 : IsCall(isa
<CallBase
>(Inst
)), Inst(Inst
), OriginalAccess(Access
) {
361 StartingLoc
= MemoryLocation::get(Inst
);
365 } // end anonymous namespace
367 template <typename AliasAnalysisType
>
368 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType
&AA
,
369 const Instruction
*I
) {
370 // If the memory can't be changed, then loads of the memory can't be
372 if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
373 return I
->hasMetadata(LLVMContext::MD_invariant_load
) ||
374 !isModSet(AA
.getModRefInfoMask(MemoryLocation::get(LI
)));
379 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
380 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
382 /// This is meant to be as simple and self-contained as possible. Because it
383 /// uses no cache, etc., it can be relatively expensive.
385 /// \param Start The MemoryAccess that we want to walk from.
386 /// \param ClobberAt A clobber for Start.
387 /// \param StartLoc The MemoryLocation for Start.
388 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
389 /// \param Query The UpwardsMemoryQuery we used for our search.
390 /// \param AA The AliasAnalysis we used for our search.
391 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
393 LLVM_ATTRIBUTE_UNUSED
static void
394 checkClobberSanity(const MemoryAccess
*Start
, MemoryAccess
*ClobberAt
,
395 const MemoryLocation
&StartLoc
, const MemorySSA
&MSSA
,
396 const UpwardsMemoryQuery
&Query
, BatchAAResults
&AA
,
397 bool AllowImpreciseClobber
= false) {
398 assert(MSSA
.dominates(ClobberAt
, Start
) && "Clobber doesn't dominate start?");
400 if (MSSA
.isLiveOnEntryDef(Start
)) {
401 assert(MSSA
.isLiveOnEntryDef(ClobberAt
) &&
402 "liveOnEntry must clobber itself");
406 bool FoundClobber
= false;
407 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
408 SmallVector
<ConstMemoryAccessPair
, 8> Worklist
;
409 Worklist
.emplace_back(Start
, StartLoc
);
410 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
411 // is found, complain.
412 while (!Worklist
.empty()) {
413 auto MAP
= Worklist
.pop_back_val();
414 // All we care about is that nothing from Start to ClobberAt clobbers Start.
415 // We learn nothing from revisiting nodes.
416 if (!VisitedPhis
.insert(MAP
).second
)
419 for (const auto *MA
: def_chain(MAP
.first
)) {
420 if (MA
== ClobberAt
) {
421 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
422 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
423 // since it won't let us short-circuit.
425 // Also, note that this can't be hoisted out of the `Worklist` loop,
426 // since MD may only act as a clobber for 1 of N MemoryLocations.
427 FoundClobber
= FoundClobber
|| MSSA
.isLiveOnEntryDef(MD
);
429 if (instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
))
436 // We should never hit liveOnEntry, unless it's the clobber.
437 assert(!MSSA
.isLiveOnEntryDef(MA
) && "Hit liveOnEntry before clobber?");
439 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
440 // If Start is a Def, skip self.
444 assert(!instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
) &&
445 "Found clobber before reaching ClobberAt!");
449 if (const auto *MU
= dyn_cast
<MemoryUse
>(MA
)) {
451 assert (MU
== Start
&&
452 "Can only find use in def chain if Start is a use");
456 assert(isa
<MemoryPhi
>(MA
));
458 // Add reachable phi predecessors
459 for (auto ItB
= upward_defs_begin(
460 {const_cast<MemoryAccess
*>(MA
), MAP
.second
},
462 ItE
= upward_defs_end();
464 if (MSSA
.getDomTree().isReachableFromEntry(ItB
.getPhiArgBlock()))
465 Worklist
.emplace_back(*ItB
);
469 // If the verify is done following an optimization, it's possible that
470 // ClobberAt was a conservative clobbering, that we can now infer is not a
471 // true clobbering access. Don't fail the verify if that's the case.
472 // We do have accesses that claim they're optimized, but could be optimized
473 // further. Updating all these can be expensive, so allow it for now (FIXME).
474 if (AllowImpreciseClobber
)
477 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
478 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
479 assert((isa
<MemoryPhi
>(ClobberAt
) || FoundClobber
) &&
480 "ClobberAt never acted as a clobber");
485 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
487 class ClobberWalker
{
488 /// Save a few bytes by using unsigned instead of size_t.
489 using ListIndex
= unsigned;
491 /// Represents a span of contiguous MemoryDefs, potentially ending in a
495 // Note that, because we always walk in reverse, Last will always dominate
496 // First. Also note that First and Last are inclusive.
499 std::optional
<ListIndex
> Previous
;
501 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*First
, MemoryAccess
*Last
,
502 std::optional
<ListIndex
> Previous
)
503 : Loc(Loc
), First(First
), Last(Last
), Previous(Previous
) {}
505 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*Init
,
506 std::optional
<ListIndex
> Previous
)
507 : DefPath(Loc
, Init
, Init
, Previous
) {}
510 const MemorySSA
&MSSA
;
513 UpwardsMemoryQuery
*Query
;
514 unsigned *UpwardWalkLimit
;
516 // Phi optimization bookkeeping:
517 // List of DefPath to process during the current phi optimization walk.
518 SmallVector
<DefPath
, 32> Paths
;
519 // List of visited <Access, Location> pairs; we can skip paths already
520 // visited with the same memory location.
521 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
523 /// Find the nearest def or phi that `From` can legally be optimized to.
524 const MemoryAccess
*getWalkTarget(const MemoryPhi
*From
) const {
525 assert(From
->getNumOperands() && "Phi with no operands?");
527 BasicBlock
*BB
= From
->getBlock();
528 MemoryAccess
*Result
= MSSA
.getLiveOnEntryDef();
529 DomTreeNode
*Node
= DT
.getNode(BB
);
530 while ((Node
= Node
->getIDom())) {
531 auto *Defs
= MSSA
.getBlockDefs(Node
->getBlock());
533 return &*Defs
->rbegin();
538 /// Result of calling walkToPhiOrClobber.
539 struct UpwardsWalkResult
{
540 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
541 /// both. Include alias info when clobber found.
542 MemoryAccess
*Result
;
546 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
547 /// This will update Desc.Last as it walks. It will (optionally) also stop at
550 /// This does not test for whether StopAt is a clobber
552 walkToPhiOrClobber(DefPath
&Desc
, const MemoryAccess
*StopAt
= nullptr,
553 const MemoryAccess
*SkipStopAt
= nullptr) const {
554 assert(!isa
<MemoryUse
>(Desc
.Last
) && "Uses don't exist in my world");
555 assert(UpwardWalkLimit
&& "Need a valid walk limit");
556 bool LimitAlreadyReached
= false;
557 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
558 // it to 1. This will not do any alias() calls. It either returns in the
559 // first iteration in the loop below, or is set back to 0 if all def chains
560 // are free of MemoryDefs.
561 if (!*UpwardWalkLimit
) {
562 *UpwardWalkLimit
= 1;
563 LimitAlreadyReached
= true;
566 for (MemoryAccess
*Current
: def_chain(Desc
.Last
)) {
568 if (Current
== StopAt
|| Current
== SkipStopAt
)
569 return {Current
, false};
571 if (auto *MD
= dyn_cast
<MemoryDef
>(Current
)) {
572 if (MSSA
.isLiveOnEntryDef(MD
))
575 if (!--*UpwardWalkLimit
)
576 return {Current
, true};
578 if (instructionClobbersQuery(MD
, Desc
.Loc
, Query
->Inst
, *AA
))
583 if (LimitAlreadyReached
)
584 *UpwardWalkLimit
= 0;
586 assert(isa
<MemoryPhi
>(Desc
.Last
) &&
587 "Ended at a non-clobber that's not a phi?");
588 return {Desc
.Last
, false};
591 void addSearches(MemoryPhi
*Phi
, SmallVectorImpl
<ListIndex
> &PausedSearches
,
592 ListIndex PriorNode
) {
593 auto UpwardDefsBegin
= upward_defs_begin({Phi
, Paths
[PriorNode
].Loc
}, DT
);
594 auto UpwardDefs
= make_range(UpwardDefsBegin
, upward_defs_end());
595 for (const MemoryAccessPair
&P
: UpwardDefs
) {
596 PausedSearches
.push_back(Paths
.size());
597 Paths
.emplace_back(P
.second
, P
.first
, PriorNode
);
601 /// Represents a search that terminated after finding a clobber. This clobber
602 /// may or may not be present in the path of defs from LastNode..SearchStart,
603 /// since it may have been retrieved from cache.
604 struct TerminatedPath
{
605 MemoryAccess
*Clobber
;
609 /// Get an access that keeps us from optimizing to the given phi.
611 /// PausedSearches is an array of indices into the Paths array. Its incoming
612 /// value is the indices of searches that stopped at the last phi optimization
613 /// target. It's left in an unspecified state.
615 /// If this returns std::nullopt, NewPaused is a vector of searches that
616 /// terminated at StopWhere. Otherwise, NewPaused is left in an unspecified
618 std::optional
<TerminatedPath
>
619 getBlockingAccess(const MemoryAccess
*StopWhere
,
620 SmallVectorImpl
<ListIndex
> &PausedSearches
,
621 SmallVectorImpl
<ListIndex
> &NewPaused
,
622 SmallVectorImpl
<TerminatedPath
> &Terminated
) {
623 assert(!PausedSearches
.empty() && "No searches to continue?");
625 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
626 // PausedSearches as our stack.
627 while (!PausedSearches
.empty()) {
628 ListIndex PathIndex
= PausedSearches
.pop_back_val();
629 DefPath
&Node
= Paths
[PathIndex
];
631 // If we've already visited this path with this MemoryLocation, we don't
632 // need to do so again.
634 // NOTE: That we just drop these paths on the ground makes caching
635 // behavior sporadic. e.g. given a diamond:
640 // ...If we walk D, B, A, C, we'll only cache the result of phi
641 // optimization for A, B, and D; C will be skipped because it dies here.
642 // This arguably isn't the worst thing ever, since:
643 // - We generally query things in a top-down order, so if we got below D
644 // without needing cache entries for {C, MemLoc}, then chances are
645 // that those cache entries would end up ultimately unused.
646 // - We still cache things for A, so C only needs to walk up a bit.
647 // If this behavior becomes problematic, we can fix without a ton of extra
649 if (!VisitedPhis
.insert({Node
.Last
, Node
.Loc
}).second
)
652 const MemoryAccess
*SkipStopWhere
= nullptr;
653 if (Query
->SkipSelfAccess
&& Node
.Loc
== Query
->StartingLoc
) {
654 assert(isa
<MemoryDef
>(Query
->OriginalAccess
));
655 SkipStopWhere
= Query
->OriginalAccess
;
658 UpwardsWalkResult Res
= walkToPhiOrClobber(Node
,
659 /*StopAt=*/StopWhere
,
660 /*SkipStopAt=*/SkipStopWhere
);
661 if (Res
.IsKnownClobber
) {
662 assert(Res
.Result
!= StopWhere
&& Res
.Result
!= SkipStopWhere
);
664 // If this wasn't a cache hit, we hit a clobber when walking. That's a
666 TerminatedPath Term
{Res
.Result
, PathIndex
};
667 if (!MSSA
.dominates(Res
.Result
, StopWhere
))
670 // Otherwise, it's a valid thing to potentially optimize to.
671 Terminated
.push_back(Term
);
675 if (Res
.Result
== StopWhere
|| Res
.Result
== SkipStopWhere
) {
676 // We've hit our target. Save this path off for if we want to continue
677 // walking. If we are in the mode of skipping the OriginalAccess, and
678 // we've reached back to the OriginalAccess, do not save path, we've
679 // just looped back to self.
680 if (Res
.Result
!= SkipStopWhere
)
681 NewPaused
.push_back(PathIndex
);
685 assert(!MSSA
.isLiveOnEntryDef(Res
.Result
) && "liveOnEntry is a clobber");
686 addSearches(cast
<MemoryPhi
>(Res
.Result
), PausedSearches
, PathIndex
);
692 template <typename T
, typename Walker
>
693 struct generic_def_path_iterator
694 : public iterator_facade_base
<generic_def_path_iterator
<T
, Walker
>,
695 std::forward_iterator_tag
, T
*> {
696 generic_def_path_iterator() = default;
697 generic_def_path_iterator(Walker
*W
, ListIndex N
) : W(W
), N(N
) {}
699 T
&operator*() const { return curNode(); }
701 generic_def_path_iterator
&operator++() {
702 N
= curNode().Previous
;
706 bool operator==(const generic_def_path_iterator
&O
) const {
707 if (N
.has_value() != O
.N
.has_value())
709 return !N
|| *N
== *O
.N
;
713 T
&curNode() const { return W
->Paths
[*N
]; }
716 std::optional
<ListIndex
> N
;
719 using def_path_iterator
= generic_def_path_iterator
<DefPath
, ClobberWalker
>;
720 using const_def_path_iterator
=
721 generic_def_path_iterator
<const DefPath
, const ClobberWalker
>;
723 iterator_range
<def_path_iterator
> def_path(ListIndex From
) {
724 return make_range(def_path_iterator(this, From
), def_path_iterator());
727 iterator_range
<const_def_path_iterator
> const_def_path(ListIndex From
) const {
728 return make_range(const_def_path_iterator(this, From
),
729 const_def_path_iterator());
733 /// The path that contains our result.
734 TerminatedPath PrimaryClobber
;
735 /// The paths that we can legally cache back from, but that aren't
736 /// necessarily the result of the Phi optimization.
737 SmallVector
<TerminatedPath
, 4> OtherClobbers
;
740 ListIndex
defPathIndex(const DefPath
&N
) const {
741 // The assert looks nicer if we don't need to do &N
742 const DefPath
*NP
= &N
;
743 assert(!Paths
.empty() && NP
>= &Paths
.front() && NP
<= &Paths
.back() &&
744 "Out of bounds DefPath!");
745 return NP
- &Paths
.front();
748 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
749 /// that act as legal clobbers. Note that this won't return *all* clobbers.
751 /// Phi optimization algorithm tl;dr:
752 /// - Find the earliest def/phi, A, we can optimize to
753 /// - Find if all paths from the starting memory access ultimately reach A
754 /// - If not, optimization isn't possible.
755 /// - Otherwise, walk from A to another clobber or phi, A'.
756 /// - If A' is a def, we're done.
757 /// - If A' is a phi, try to optimize it.
759 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
760 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
761 OptznResult
tryOptimizePhi(MemoryPhi
*Phi
, MemoryAccess
*Start
,
762 const MemoryLocation
&Loc
) {
763 assert(Paths
.empty() && VisitedPhis
.empty() &&
764 "Reset the optimization state.");
766 Paths
.emplace_back(Loc
, Start
, Phi
, std::nullopt
);
767 // Stores how many "valid" optimization nodes we had prior to calling
768 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
769 auto PriorPathsSize
= Paths
.size();
771 SmallVector
<ListIndex
, 16> PausedSearches
;
772 SmallVector
<ListIndex
, 8> NewPaused
;
773 SmallVector
<TerminatedPath
, 4> TerminatedPaths
;
775 addSearches(Phi
, PausedSearches
, 0);
777 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
779 auto MoveDominatedPathToEnd
= [&](SmallVectorImpl
<TerminatedPath
> &Paths
) {
780 assert(!Paths
.empty() && "Need a path to move");
781 auto Dom
= Paths
.begin();
782 for (auto I
= std::next(Dom
), E
= Paths
.end(); I
!= E
; ++I
)
783 if (!MSSA
.dominates(I
->Clobber
, Dom
->Clobber
))
785 auto Last
= Paths
.end() - 1;
787 std::iter_swap(Last
, Dom
);
790 MemoryPhi
*Current
= Phi
;
792 assert(!MSSA
.isLiveOnEntryDef(Current
) &&
793 "liveOnEntry wasn't treated as a clobber?");
795 const auto *Target
= getWalkTarget(Current
);
796 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
797 // optimization for the prior phi.
798 assert(all_of(TerminatedPaths
, [&](const TerminatedPath
&P
) {
799 return MSSA
.dominates(P
.Clobber
, Target
);
802 // FIXME: This is broken, because the Blocker may be reported to be
803 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
804 // For the moment, this is fine, since we do nothing with blocker info.
805 if (std::optional
<TerminatedPath
> Blocker
= getBlockingAccess(
806 Target
, PausedSearches
, NewPaused
, TerminatedPaths
)) {
808 // Find the node we started at. We can't search based on N->Last, since
809 // we may have gone around a loop with a different MemoryLocation.
810 auto Iter
= find_if(def_path(Blocker
->LastNode
), [&](const DefPath
&N
) {
811 return defPathIndex(N
) < PriorPathsSize
;
813 assert(Iter
!= def_path_iterator());
815 DefPath
&CurNode
= *Iter
;
816 assert(CurNode
.Last
== Current
);
819 // A. We can't reliably cache all of NewPaused back. Consider a case
820 // where we have two paths in NewPaused; one of which can't optimize
821 // above this phi, whereas the other can. If we cache the second path
822 // back, we'll end up with suboptimal cache entries. We can handle
823 // cases like this a bit better when we either try to find all
824 // clobbers that block phi optimization, or when our cache starts
825 // supporting unfinished searches.
826 // B. We can't reliably cache TerminatedPaths back here without doing
827 // extra checks; consider a case like:
833 // Where T is our target, C is a node with a clobber on it, D is a
834 // diamond (with a clobber *only* on the left or right node, N), and
835 // S is our start. Say we walk to D, through the node opposite N
836 // (read: ignoring the clobber), and see a cache entry in the top
837 // node of D. That cache entry gets put into TerminatedPaths. We then
838 // walk up to C (N is later in our worklist), find the clobber, and
839 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
840 // the bottom part of D to the cached clobber, ignoring the clobber
841 // in N. Again, this problem goes away if we start tracking all
842 // blockers for a given phi optimization.
843 TerminatedPath Result
{CurNode
.Last
, defPathIndex(CurNode
)};
847 // If there's nothing left to search, then all paths led to valid clobbers
848 // that we got from our cache; pick the nearest to the start, and allow
849 // the rest to be cached back.
850 if (NewPaused
.empty()) {
851 MoveDominatedPathToEnd(TerminatedPaths
);
852 TerminatedPath Result
= TerminatedPaths
.pop_back_val();
853 return {Result
, std::move(TerminatedPaths
)};
856 MemoryAccess
*DefChainEnd
= nullptr;
857 SmallVector
<TerminatedPath
, 4> Clobbers
;
858 for (ListIndex Paused
: NewPaused
) {
859 UpwardsWalkResult WR
= walkToPhiOrClobber(Paths
[Paused
]);
860 if (WR
.IsKnownClobber
)
861 Clobbers
.push_back({WR
.Result
, Paused
});
863 // Micro-opt: If we hit the end of the chain, save it.
864 DefChainEnd
= WR
.Result
;
867 if (!TerminatedPaths
.empty()) {
868 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
871 for (auto *MA
: def_chain(const_cast<MemoryAccess
*>(Target
)))
873 assert(DefChainEnd
&& "Failed to find dominating phi/liveOnEntry");
875 // If any of the terminated paths don't dominate the phi we'll try to
876 // optimize, we need to figure out what they are and quit.
877 const BasicBlock
*ChainBB
= DefChainEnd
->getBlock();
878 for (const TerminatedPath
&TP
: TerminatedPaths
) {
879 // Because we know that DefChainEnd is as "high" as we can go, we
880 // don't need local dominance checks; BB dominance is sufficient.
881 if (DT
.dominates(ChainBB
, TP
.Clobber
->getBlock()))
882 Clobbers
.push_back(TP
);
886 // If we have clobbers in the def chain, find the one closest to Current
888 if (!Clobbers
.empty()) {
889 MoveDominatedPathToEnd(Clobbers
);
890 TerminatedPath Result
= Clobbers
.pop_back_val();
891 return {Result
, std::move(Clobbers
)};
894 assert(all_of(NewPaused
,
895 [&](ListIndex I
) { return Paths
[I
].Last
== DefChainEnd
; }));
897 // Because liveOnEntry is a clobber, this must be a phi.
898 auto *DefChainPhi
= cast
<MemoryPhi
>(DefChainEnd
);
900 PriorPathsSize
= Paths
.size();
901 PausedSearches
.clear();
902 for (ListIndex I
: NewPaused
)
903 addSearches(DefChainPhi
, PausedSearches
, I
);
906 Current
= DefChainPhi
;
910 void verifyOptResult(const OptznResult
&R
) const {
911 assert(all_of(R
.OtherClobbers
, [&](const TerminatedPath
&P
) {
912 return MSSA
.dominates(P
.Clobber
, R
.PrimaryClobber
.Clobber
);
916 void resetPhiOptznState() {
922 ClobberWalker(const MemorySSA
&MSSA
, DominatorTree
&DT
)
923 : MSSA(MSSA
), DT(DT
) {}
925 /// Finds the nearest clobber for the given query, optimizing phis if
927 MemoryAccess
*findClobber(BatchAAResults
&BAA
, MemoryAccess
*Start
,
928 UpwardsMemoryQuery
&Q
, unsigned &UpWalkLimit
) {
931 UpwardWalkLimit
= &UpWalkLimit
;
932 // Starting limit must be > 0.
936 MemoryAccess
*Current
= Start
;
937 // This walker pretends uses don't exist. If we're handed one, silently grab
938 // its def. (This has the nice side-effect of ensuring we never cache uses)
939 if (auto *MU
= dyn_cast
<MemoryUse
>(Start
))
940 Current
= MU
->getDefiningAccess();
942 DefPath
FirstDesc(Q
.StartingLoc
, Current
, Current
, std::nullopt
);
943 // Fast path for the overly-common case (no crazy phi optimization
945 UpwardsWalkResult WalkResult
= walkToPhiOrClobber(FirstDesc
);
946 MemoryAccess
*Result
;
947 if (WalkResult
.IsKnownClobber
) {
948 Result
= WalkResult
.Result
;
950 OptznResult OptRes
= tryOptimizePhi(cast
<MemoryPhi
>(FirstDesc
.Last
),
951 Current
, Q
.StartingLoc
);
952 verifyOptResult(OptRes
);
953 resetPhiOptznState();
954 Result
= OptRes
.PrimaryClobber
.Clobber
;
957 #ifdef EXPENSIVE_CHECKS
958 if (!Q
.SkipSelfAccess
&& *UpwardWalkLimit
> 0)
959 checkClobberSanity(Current
, Result
, Q
.StartingLoc
, MSSA
, Q
, BAA
);
965 struct RenamePassData
{
967 DomTreeNode::const_iterator ChildIt
;
968 MemoryAccess
*IncomingVal
;
970 RenamePassData(DomTreeNode
*D
, DomTreeNode::const_iterator It
,
972 : DTN(D
), ChildIt(It
), IncomingVal(M
) {}
974 void swap(RenamePassData
&RHS
) {
975 std::swap(DTN
, RHS
.DTN
);
976 std::swap(ChildIt
, RHS
.ChildIt
);
977 std::swap(IncomingVal
, RHS
.IncomingVal
);
981 } // end anonymous namespace
985 class MemorySSA::ClobberWalkerBase
{
986 ClobberWalker Walker
;
990 ClobberWalkerBase(MemorySSA
*M
, DominatorTree
*D
) : Walker(*M
, *D
), MSSA(M
) {}
992 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*,
993 const MemoryLocation
&,
994 BatchAAResults
&, unsigned &);
995 // Third argument (bool), defines whether the clobber search should skip the
996 // original queried access. If true, there will be a follow-up query searching
997 // for a clobber access past "self". Note that the Optimized access is not
998 // updated if a new clobber is found by this SkipSelf search. If this
999 // additional query becomes heavily used we may decide to cache the result.
1000 // Walker instantiations will decide how to set the SkipSelf bool.
1001 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*, BatchAAResults
&,
1003 bool UseInvariantGroup
= true);
1006 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1007 /// longer does caching on its own, but the name has been retained for the
1009 class MemorySSA::CachingWalker final
: public MemorySSAWalker
{
1010 ClobberWalkerBase
*Walker
;
1013 CachingWalker(MemorySSA
*M
, ClobberWalkerBase
*W
)
1014 : MemorySSAWalker(M
), Walker(W
) {}
1015 ~CachingWalker() override
= default;
1017 using MemorySSAWalker::getClobberingMemoryAccess
;
1019 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
, BatchAAResults
&BAA
,
1021 return Walker
->getClobberingMemoryAccessBase(MA
, BAA
, UWL
, false);
1023 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1024 const MemoryLocation
&Loc
,
1025 BatchAAResults
&BAA
, unsigned &UWL
) {
1026 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
, BAA
, UWL
);
1028 // This method is not accessible outside of this file.
1029 MemoryAccess
*getClobberingMemoryAccessWithoutInvariantGroup(
1030 MemoryAccess
*MA
, BatchAAResults
&BAA
, unsigned &UWL
) {
1031 return Walker
->getClobberingMemoryAccessBase(MA
, BAA
, UWL
, false, false);
1034 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1035 BatchAAResults
&BAA
) override
{
1036 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1037 return getClobberingMemoryAccess(MA
, BAA
, UpwardWalkLimit
);
1039 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1040 const MemoryLocation
&Loc
,
1041 BatchAAResults
&BAA
) override
{
1042 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1043 return getClobberingMemoryAccess(MA
, Loc
, BAA
, UpwardWalkLimit
);
1046 void invalidateInfo(MemoryAccess
*MA
) override
{
1047 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1048 MUD
->resetOptimized();
1052 class MemorySSA::SkipSelfWalker final
: public MemorySSAWalker
{
1053 ClobberWalkerBase
*Walker
;
1056 SkipSelfWalker(MemorySSA
*M
, ClobberWalkerBase
*W
)
1057 : MemorySSAWalker(M
), Walker(W
) {}
1058 ~SkipSelfWalker() override
= default;
1060 using MemorySSAWalker::getClobberingMemoryAccess
;
1062 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
, BatchAAResults
&BAA
,
1064 return Walker
->getClobberingMemoryAccessBase(MA
, BAA
, UWL
, true);
1066 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1067 const MemoryLocation
&Loc
,
1068 BatchAAResults
&BAA
, unsigned &UWL
) {
1069 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
, BAA
, UWL
);
1072 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1073 BatchAAResults
&BAA
) override
{
1074 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1075 return getClobberingMemoryAccess(MA
, BAA
, UpwardWalkLimit
);
1077 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1078 const MemoryLocation
&Loc
,
1079 BatchAAResults
&BAA
) override
{
1080 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1081 return getClobberingMemoryAccess(MA
, Loc
, BAA
, UpwardWalkLimit
);
1084 void invalidateInfo(MemoryAccess
*MA
) override
{
1085 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1086 MUD
->resetOptimized();
1090 } // end namespace llvm
1092 void MemorySSA::renameSuccessorPhis(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1093 bool RenameAllUses
) {
1094 // Pass through values to our successors
1095 for (const BasicBlock
*S
: successors(BB
)) {
1096 auto It
= PerBlockAccesses
.find(S
);
1097 // Rename the phi nodes in our successor block
1098 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1100 AccessList
*Accesses
= It
->second
.get();
1101 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1102 if (RenameAllUses
) {
1103 bool ReplacementDone
= false;
1104 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
)
1105 if (Phi
->getIncomingBlock(I
) == BB
) {
1106 Phi
->setIncomingValue(I
, IncomingVal
);
1107 ReplacementDone
= true;
1109 (void) ReplacementDone
;
1110 assert(ReplacementDone
&& "Incomplete phi during partial rename");
1112 Phi
->addIncoming(IncomingVal
, BB
);
1116 /// Rename a single basic block into MemorySSA form.
1117 /// Uses the standard SSA renaming algorithm.
1118 /// \returns The new incoming value.
1119 MemoryAccess
*MemorySSA::renameBlock(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1120 bool RenameAllUses
) {
1121 auto It
= PerBlockAccesses
.find(BB
);
1122 // Skip most processing if the list is empty.
1123 if (It
!= PerBlockAccesses
.end()) {
1124 AccessList
*Accesses
= It
->second
.get();
1125 for (MemoryAccess
&L
: *Accesses
) {
1126 if (MemoryUseOrDef
*MUD
= dyn_cast
<MemoryUseOrDef
>(&L
)) {
1127 if (MUD
->getDefiningAccess() == nullptr || RenameAllUses
)
1128 MUD
->setDefiningAccess(IncomingVal
);
1129 if (isa
<MemoryDef
>(&L
))
1139 /// This is the standard SSA renaming algorithm.
1141 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1142 /// in phi nodes in our successors.
1143 void MemorySSA::renamePass(DomTreeNode
*Root
, MemoryAccess
*IncomingVal
,
1144 SmallPtrSetImpl
<BasicBlock
*> &Visited
,
1145 bool SkipVisited
, bool RenameAllUses
) {
1146 assert(Root
&& "Trying to rename accesses in an unreachable block");
1148 SmallVector
<RenamePassData
, 32> WorkStack
;
1149 // Skip everything if we already renamed this block and we are skipping.
1150 // Note: You can't sink this into the if, because we need it to occur
1151 // regardless of whether we skip blocks or not.
1152 bool AlreadyVisited
= !Visited
.insert(Root
->getBlock()).second
;
1153 if (SkipVisited
&& AlreadyVisited
)
1156 IncomingVal
= renameBlock(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1157 renameSuccessorPhis(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1158 WorkStack
.push_back({Root
, Root
->begin(), IncomingVal
});
1160 while (!WorkStack
.empty()) {
1161 DomTreeNode
*Node
= WorkStack
.back().DTN
;
1162 DomTreeNode::const_iterator ChildIt
= WorkStack
.back().ChildIt
;
1163 IncomingVal
= WorkStack
.back().IncomingVal
;
1165 if (ChildIt
== Node
->end()) {
1166 WorkStack
.pop_back();
1168 DomTreeNode
*Child
= *ChildIt
;
1169 ++WorkStack
.back().ChildIt
;
1170 BasicBlock
*BB
= Child
->getBlock();
1171 // Note: You can't sink this into the if, because we need it to occur
1172 // regardless of whether we skip blocks or not.
1173 AlreadyVisited
= !Visited
.insert(BB
).second
;
1174 if (SkipVisited
&& AlreadyVisited
) {
1175 // We already visited this during our renaming, which can happen when
1176 // being asked to rename multiple blocks. Figure out the incoming val,
1177 // which is the last def.
1178 // Incoming value can only change if there is a block def, and in that
1179 // case, it's the last block def in the list.
1180 if (auto *BlockDefs
= getWritableBlockDefs(BB
))
1181 IncomingVal
= &*BlockDefs
->rbegin();
1183 IncomingVal
= renameBlock(BB
, IncomingVal
, RenameAllUses
);
1184 renameSuccessorPhis(BB
, IncomingVal
, RenameAllUses
);
1185 WorkStack
.push_back({Child
, Child
->begin(), IncomingVal
});
1190 /// This handles unreachable block accesses by deleting phi nodes in
1191 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1192 /// being uses of the live on entry definition.
1193 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock
*BB
) {
1194 assert(!DT
->isReachableFromEntry(BB
) &&
1195 "Reachable block found while handling unreachable blocks");
1197 // Make sure phi nodes in our reachable successors end up with a
1198 // LiveOnEntryDef for our incoming edge, even though our block is forward
1199 // unreachable. We could just disconnect these blocks from the CFG fully,
1200 // but we do not right now.
1201 for (const BasicBlock
*S
: successors(BB
)) {
1202 if (!DT
->isReachableFromEntry(S
))
1204 auto It
= PerBlockAccesses
.find(S
);
1205 // Rename the phi nodes in our successor block
1206 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1208 AccessList
*Accesses
= It
->second
.get();
1209 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1210 Phi
->addIncoming(LiveOnEntryDef
.get(), BB
);
1213 auto It
= PerBlockAccesses
.find(BB
);
1214 if (It
== PerBlockAccesses
.end())
1217 auto &Accesses
= It
->second
;
1218 for (auto AI
= Accesses
->begin(), AE
= Accesses
->end(); AI
!= AE
;) {
1219 auto Next
= std::next(AI
);
1220 // If we have a phi, just remove it. We are going to replace all
1221 // users with live on entry.
1222 if (auto *UseOrDef
= dyn_cast
<MemoryUseOrDef
>(AI
))
1223 UseOrDef
->setDefiningAccess(LiveOnEntryDef
.get());
1225 Accesses
->erase(AI
);
1230 MemorySSA::MemorySSA(Function
&Func
, AliasAnalysis
*AA
, DominatorTree
*DT
)
1231 : DT(DT
), F(Func
), LiveOnEntryDef(nullptr), Walker(nullptr),
1232 SkipWalker(nullptr) {
1233 // Build MemorySSA using a batch alias analysis. This reuses the internal
1234 // state that AA collects during an alias()/getModRefInfo() call. This is
1235 // safe because there are no CFG changes while building MemorySSA and can
1236 // significantly reduce the time spent by the compiler in AA, because we will
1237 // make queries about all the instructions in the Function.
1238 assert(AA
&& "No alias analysis?");
1239 BatchAAResults
BatchAA(*AA
);
1240 buildMemorySSA(BatchAA
);
1241 // Intentionally leave AA to nullptr while building so we don't accidently
1242 // use non-batch AliasAnalysis.
1244 // Also create the walker here.
1248 MemorySSA::~MemorySSA() {
1249 // Drop all our references
1250 for (const auto &Pair
: PerBlockAccesses
)
1251 for (MemoryAccess
&MA
: *Pair
.second
)
1252 MA
.dropAllReferences();
1255 MemorySSA::AccessList
*MemorySSA::getOrCreateAccessList(const BasicBlock
*BB
) {
1256 auto Res
= PerBlockAccesses
.insert(std::make_pair(BB
, nullptr));
1259 Res
.first
->second
= std::make_unique
<AccessList
>();
1260 return Res
.first
->second
.get();
1263 MemorySSA::DefsList
*MemorySSA::getOrCreateDefsList(const BasicBlock
*BB
) {
1264 auto Res
= PerBlockDefs
.insert(std::make_pair(BB
, nullptr));
1267 Res
.first
->second
= std::make_unique
<DefsList
>();
1268 return Res
.first
->second
.get();
1273 /// This class is a batch walker of all MemoryUse's in the program, and points
1274 /// their defining access at the thing that actually clobbers them. Because it
1275 /// is a batch walker that touches everything, it does not operate like the
1276 /// other walkers. This walker is basically performing a top-down SSA renaming
1277 /// pass, where the version stack is used as the cache. This enables it to be
1278 /// significantly more time and memory efficient than using the regular walker,
1279 /// which is walking bottom-up.
1280 class MemorySSA::OptimizeUses
{
1282 OptimizeUses(MemorySSA
*MSSA
, CachingWalker
*Walker
, BatchAAResults
*BAA
,
1284 : MSSA(MSSA
), Walker(Walker
), AA(BAA
), DT(DT
) {}
1286 void optimizeUses();
1289 /// This represents where a given memorylocation is in the stack.
1290 struct MemlocStackInfo
{
1291 // This essentially is keeping track of versions of the stack. Whenever
1292 // the stack changes due to pushes or pops, these versions increase.
1293 unsigned long StackEpoch
;
1294 unsigned long PopEpoch
;
1295 // This is the lower bound of places on the stack to check. It is equal to
1296 // the place the last stack walk ended.
1297 // Note: Correctness depends on this being initialized to 0, which densemap
1299 unsigned long LowerBound
;
1300 const BasicBlock
*LowerBoundBlock
;
1301 // This is where the last walk for this memory location ended.
1302 unsigned long LastKill
;
1306 void optimizeUsesInBlock(const BasicBlock
*, unsigned long &, unsigned long &,
1307 SmallVectorImpl
<MemoryAccess
*> &,
1308 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &);
1311 CachingWalker
*Walker
;
1316 } // end namespace llvm
1318 /// Optimize the uses in a given block This is basically the SSA renaming
1319 /// algorithm, with one caveat: We are able to use a single stack for all
1320 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1321 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1322 /// going to be some position in that stack of possible ones.
1324 /// We track the stack positions that each MemoryLocation needs
1325 /// to check, and last ended at. This is because we only want to check the
1326 /// things that changed since last time. The same MemoryLocation should
1327 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1328 /// things like this, and if they start, we can modify MemoryLocOrCall to
1329 /// include relevant data)
1330 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1331 const BasicBlock
*BB
, unsigned long &StackEpoch
, unsigned long &PopEpoch
,
1332 SmallVectorImpl
<MemoryAccess
*> &VersionStack
,
1333 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &LocStackInfo
) {
1335 /// If no accesses, nothing to do.
1336 MemorySSA::AccessList
*Accesses
= MSSA
->getWritableBlockAccesses(BB
);
1337 if (Accesses
== nullptr)
1340 // Pop everything that doesn't dominate the current block off the stack,
1341 // increment the PopEpoch to account for this.
1344 !VersionStack
.empty() &&
1345 "Version stack should have liveOnEntry sentinel dominating everything");
1346 BasicBlock
*BackBlock
= VersionStack
.back()->getBlock();
1347 if (DT
->dominates(BackBlock
, BB
))
1349 while (VersionStack
.back()->getBlock() == BackBlock
)
1350 VersionStack
.pop_back();
1354 for (MemoryAccess
&MA
: *Accesses
) {
1355 auto *MU
= dyn_cast
<MemoryUse
>(&MA
);
1357 VersionStack
.push_back(&MA
);
1362 if (MU
->isOptimized())
1365 MemoryLocOrCall
UseMLOC(MU
);
1366 auto &LocInfo
= LocStackInfo
[UseMLOC
];
1367 // If the pop epoch changed, it means we've removed stuff from top of
1368 // stack due to changing blocks. We may have to reset the lower bound or
1370 if (LocInfo
.PopEpoch
!= PopEpoch
) {
1371 LocInfo
.PopEpoch
= PopEpoch
;
1372 LocInfo
.StackEpoch
= StackEpoch
;
1373 // If the lower bound was in something that no longer dominates us, we
1374 // have to reset it.
1375 // We can't simply track stack size, because the stack may have had
1376 // pushes/pops in the meantime.
1377 // XXX: This is non-optimal, but only is slower cases with heavily
1378 // branching dominator trees. To get the optimal number of queries would
1379 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1380 // the top of that stack dominates us. This does not seem worth it ATM.
1381 // A much cheaper optimization would be to always explore the deepest
1382 // branch of the dominator tree first. This will guarantee this resets on
1383 // the smallest set of blocks.
1384 if (LocInfo
.LowerBoundBlock
&& LocInfo
.LowerBoundBlock
!= BB
&&
1385 !DT
->dominates(LocInfo
.LowerBoundBlock
, BB
)) {
1386 // Reset the lower bound of things to check.
1387 // TODO: Some day we should be able to reset to last kill, rather than
1389 LocInfo
.LowerBound
= 0;
1390 LocInfo
.LowerBoundBlock
= VersionStack
[0]->getBlock();
1391 LocInfo
.LastKillValid
= false;
1393 } else if (LocInfo
.StackEpoch
!= StackEpoch
) {
1394 // If all that has changed is the StackEpoch, we only have to check the
1395 // new things on the stack, because we've checked everything before. In
1396 // this case, the lower bound of things to check remains the same.
1397 LocInfo
.PopEpoch
= PopEpoch
;
1398 LocInfo
.StackEpoch
= StackEpoch
;
1400 if (!LocInfo
.LastKillValid
) {
1401 LocInfo
.LastKill
= VersionStack
.size() - 1;
1402 LocInfo
.LastKillValid
= true;
1405 // At this point, we should have corrected last kill and LowerBound to be
1407 assert(LocInfo
.LowerBound
< VersionStack
.size() &&
1408 "Lower bound out of range");
1409 assert(LocInfo
.LastKill
< VersionStack
.size() &&
1410 "Last kill info out of range");
1411 // In any case, the new upper bound is the top of the stack.
1412 unsigned long UpperBound
= VersionStack
.size() - 1;
1414 if (UpperBound
- LocInfo
.LowerBound
> MaxCheckLimit
) {
1415 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU
<< " ("
1416 << *(MU
->getMemoryInst()) << ")"
1417 << " because there are "
1418 << UpperBound
- LocInfo
.LowerBound
1419 << " stores to disambiguate\n");
1420 // Because we did not walk, LastKill is no longer valid, as this may
1421 // have been a kill.
1422 LocInfo
.LastKillValid
= false;
1425 bool FoundClobberResult
= false;
1426 unsigned UpwardWalkLimit
= MaxCheckLimit
;
1427 while (UpperBound
> LocInfo
.LowerBound
) {
1428 if (isa
<MemoryPhi
>(VersionStack
[UpperBound
])) {
1429 // For phis, use the walker, see where we ended up, go there.
1430 // The invariant.group handling in MemorySSA is ad-hoc and doesn't
1431 // support updates, so don't use it to optimize uses.
1432 MemoryAccess
*Result
=
1433 Walker
->getClobberingMemoryAccessWithoutInvariantGroup(
1434 MU
, *AA
, UpwardWalkLimit
);
1435 // We are guaranteed to find it or something is wrong.
1436 while (VersionStack
[UpperBound
] != Result
) {
1437 assert(UpperBound
!= 0);
1440 FoundClobberResult
= true;
1444 MemoryDef
*MD
= cast
<MemoryDef
>(VersionStack
[UpperBound
]);
1445 if (instructionClobbersQuery(MD
, MU
, UseMLOC
, *AA
)) {
1446 FoundClobberResult
= true;
1452 // At the end of this loop, UpperBound is either a clobber, or lower bound
1453 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1454 if (FoundClobberResult
|| UpperBound
< LocInfo
.LastKill
) {
1455 MU
->setDefiningAccess(VersionStack
[UpperBound
], true);
1456 LocInfo
.LastKill
= UpperBound
;
1458 // Otherwise, we checked all the new ones, and now we know we can get to
1460 MU
->setDefiningAccess(VersionStack
[LocInfo
.LastKill
], true);
1462 LocInfo
.LowerBound
= VersionStack
.size() - 1;
1463 LocInfo
.LowerBoundBlock
= BB
;
1467 /// Optimize uses to point to their actual clobbering definitions.
1468 void MemorySSA::OptimizeUses::optimizeUses() {
1469 SmallVector
<MemoryAccess
*, 16> VersionStack
;
1470 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> LocStackInfo
;
1471 VersionStack
.push_back(MSSA
->getLiveOnEntryDef());
1473 unsigned long StackEpoch
= 1;
1474 unsigned long PopEpoch
= 1;
1475 // We perform a non-recursive top-down dominator tree walk.
1476 for (const auto *DomNode
: depth_first(DT
->getRootNode()))
1477 optimizeUsesInBlock(DomNode
->getBlock(), StackEpoch
, PopEpoch
, VersionStack
,
1481 void MemorySSA::placePHINodes(
1482 const SmallPtrSetImpl
<BasicBlock
*> &DefiningBlocks
) {
1483 // Determine where our MemoryPhi's should go
1484 ForwardIDFCalculator
IDFs(*DT
);
1485 IDFs
.setDefiningBlocks(DefiningBlocks
);
1486 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
1487 IDFs
.calculate(IDFBlocks
);
1489 // Now place MemoryPhi nodes.
1490 for (auto &BB
: IDFBlocks
)
1491 createMemoryPhi(BB
);
1494 void MemorySSA::buildMemorySSA(BatchAAResults
&BAA
) {
1495 // We create an access to represent "live on entry", for things like
1496 // arguments or users of globals, where the memory they use is defined before
1497 // the beginning of the function. We do not actually insert it into the IR.
1498 // We do not define a live on exit for the immediate uses, and thus our
1499 // semantics do *not* imply that something with no immediate uses can simply
1501 BasicBlock
&StartingPoint
= F
.getEntryBlock();
1502 LiveOnEntryDef
.reset(new MemoryDef(F
.getContext(), nullptr, nullptr,
1503 &StartingPoint
, NextID
++));
1505 // We maintain lists of memory accesses per-block, trading memory for time. We
1506 // could just look up the memory access for every possible instruction in the
1508 SmallPtrSet
<BasicBlock
*, 32> DefiningBlocks
;
1509 // Go through each block, figure out where defs occur, and chain together all
1511 for (BasicBlock
&B
: F
) {
1512 bool InsertIntoDef
= false;
1513 AccessList
*Accesses
= nullptr;
1514 DefsList
*Defs
= nullptr;
1515 for (Instruction
&I
: B
) {
1516 MemoryUseOrDef
*MUD
= createNewAccess(&I
, &BAA
);
1521 Accesses
= getOrCreateAccessList(&B
);
1522 Accesses
->push_back(MUD
);
1523 if (isa
<MemoryDef
>(MUD
)) {
1524 InsertIntoDef
= true;
1526 Defs
= getOrCreateDefsList(&B
);
1527 Defs
->push_back(*MUD
);
1531 DefiningBlocks
.insert(&B
);
1533 placePHINodes(DefiningBlocks
);
1535 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1536 // filled in with all blocks.
1537 SmallPtrSet
<BasicBlock
*, 16> Visited
;
1538 renamePass(DT
->getRootNode(), LiveOnEntryDef
.get(), Visited
);
1540 // Mark the uses in unreachable blocks as live on entry, so that they go
1543 if (!Visited
.count(&BB
))
1544 markUnreachableAsLiveOnEntry(&BB
);
1547 MemorySSAWalker
*MemorySSA::getWalker() { return getWalkerImpl(); }
1549 MemorySSA::CachingWalker
*MemorySSA::getWalkerImpl() {
1551 return Walker
.get();
1554 WalkerBase
= std::make_unique
<ClobberWalkerBase
>(this, DT
);
1556 Walker
= std::make_unique
<CachingWalker
>(this, WalkerBase
.get());
1557 return Walker
.get();
1560 MemorySSAWalker
*MemorySSA::getSkipSelfWalker() {
1562 return SkipWalker
.get();
1565 WalkerBase
= std::make_unique
<ClobberWalkerBase
>(this, DT
);
1567 SkipWalker
= std::make_unique
<SkipSelfWalker
>(this, WalkerBase
.get());
1568 return SkipWalker
.get();
1572 // This is a helper function used by the creation routines. It places NewAccess
1573 // into the access and defs lists for a given basic block, at the given
1575 void MemorySSA::insertIntoListsForBlock(MemoryAccess
*NewAccess
,
1576 const BasicBlock
*BB
,
1577 InsertionPlace Point
) {
1578 auto *Accesses
= getOrCreateAccessList(BB
);
1579 if (Point
== Beginning
) {
1580 // If it's a phi node, it goes first, otherwise, it goes after any phi
1582 if (isa
<MemoryPhi
>(NewAccess
)) {
1583 Accesses
->push_front(NewAccess
);
1584 auto *Defs
= getOrCreateDefsList(BB
);
1585 Defs
->push_front(*NewAccess
);
1587 auto AI
= find_if_not(
1588 *Accesses
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1589 Accesses
->insert(AI
, NewAccess
);
1590 if (!isa
<MemoryUse
>(NewAccess
)) {
1591 auto *Defs
= getOrCreateDefsList(BB
);
1592 auto DI
= find_if_not(
1593 *Defs
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1594 Defs
->insert(DI
, *NewAccess
);
1598 Accesses
->push_back(NewAccess
);
1599 if (!isa
<MemoryUse
>(NewAccess
)) {
1600 auto *Defs
= getOrCreateDefsList(BB
);
1601 Defs
->push_back(*NewAccess
);
1604 BlockNumberingValid
.erase(BB
);
1607 void MemorySSA::insertIntoListsBefore(MemoryAccess
*What
, const BasicBlock
*BB
,
1608 AccessList::iterator InsertPt
) {
1609 auto *Accesses
= getWritableBlockAccesses(BB
);
1610 bool WasEnd
= InsertPt
== Accesses
->end();
1611 Accesses
->insert(AccessList::iterator(InsertPt
), What
);
1612 if (!isa
<MemoryUse
>(What
)) {
1613 auto *Defs
= getOrCreateDefsList(BB
);
1614 // If we got asked to insert at the end, we have an easy job, just shove it
1615 // at the end. If we got asked to insert before an existing def, we also get
1616 // an iterator. If we got asked to insert before a use, we have to hunt for
1619 Defs
->push_back(*What
);
1620 } else if (isa
<MemoryDef
>(InsertPt
)) {
1621 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1623 while (InsertPt
!= Accesses
->end() && !isa
<MemoryDef
>(InsertPt
))
1625 // Either we found a def, or we are inserting at the end
1626 if (InsertPt
== Accesses
->end())
1627 Defs
->push_back(*What
);
1629 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1632 BlockNumberingValid
.erase(BB
);
1635 void MemorySSA::prepareForMoveTo(MemoryAccess
*What
, BasicBlock
*BB
) {
1636 // Keep it in the lookup tables, remove from the lists
1637 removeFromLists(What
, false);
1639 // Note that moving should implicitly invalidate the optimized state of a
1640 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1642 if (auto *MD
= dyn_cast
<MemoryDef
>(What
))
1643 MD
->resetOptimized();
1647 // Move What before Where in the IR. The end result is that What will belong to
1648 // the right lists and have the right Block set, but will not otherwise be
1649 // correct. It will not have the right defining access, and if it is a def,
1650 // things below it will not properly be updated.
1651 void MemorySSA::moveTo(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1652 AccessList::iterator Where
) {
1653 prepareForMoveTo(What
, BB
);
1654 insertIntoListsBefore(What
, BB
, Where
);
1657 void MemorySSA::moveTo(MemoryAccess
*What
, BasicBlock
*BB
,
1658 InsertionPlace Point
) {
1659 if (isa
<MemoryPhi
>(What
)) {
1660 assert(Point
== Beginning
&&
1661 "Can only move a Phi at the beginning of the block");
1662 // Update lookup table entry
1663 ValueToMemoryAccess
.erase(What
->getBlock());
1664 bool Inserted
= ValueToMemoryAccess
.insert({BB
, What
}).second
;
1666 assert(Inserted
&& "Cannot move a Phi to a block that already has one");
1669 prepareForMoveTo(What
, BB
);
1670 insertIntoListsForBlock(What
, BB
, Point
);
1673 MemoryPhi
*MemorySSA::createMemoryPhi(BasicBlock
*BB
) {
1674 assert(!getMemoryAccess(BB
) && "MemoryPhi already exists for this BB");
1675 MemoryPhi
*Phi
= new MemoryPhi(BB
->getContext(), BB
, NextID
++);
1676 // Phi's always are placed at the front of the block.
1677 insertIntoListsForBlock(Phi
, BB
, Beginning
);
1678 ValueToMemoryAccess
[BB
] = Phi
;
1682 MemoryUseOrDef
*MemorySSA::createDefinedAccess(Instruction
*I
,
1683 MemoryAccess
*Definition
,
1684 const MemoryUseOrDef
*Template
,
1685 bool CreationMustSucceed
) {
1686 assert(!isa
<PHINode
>(I
) && "Cannot create a defined access for a PHI");
1687 MemoryUseOrDef
*NewAccess
= createNewAccess(I
, AA
, Template
);
1688 if (CreationMustSucceed
)
1689 assert(NewAccess
!= nullptr && "Tried to create a memory access for a "
1690 "non-memory touching instruction");
1692 assert((!Definition
|| !isa
<MemoryUse
>(Definition
)) &&
1693 "A use cannot be a defining access");
1694 NewAccess
->setDefiningAccess(Definition
);
1699 // Return true if the instruction has ordering constraints.
1700 // Note specifically that this only considers stores and loads
1701 // because others are still considered ModRef by getModRefInfo.
1702 static inline bool isOrdered(const Instruction
*I
) {
1703 if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
1704 if (!SI
->isUnordered())
1706 } else if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
1707 if (!LI
->isUnordered())
1713 /// Helper function to create new memory accesses
1714 template <typename AliasAnalysisType
>
1715 MemoryUseOrDef
*MemorySSA::createNewAccess(Instruction
*I
,
1716 AliasAnalysisType
*AAP
,
1717 const MemoryUseOrDef
*Template
) {
1718 // The assume intrinsic has a control dependency which we model by claiming
1719 // that it writes arbitrarily. Debuginfo intrinsics may be considered
1720 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1721 // dependencies here.
1722 // FIXME: Replace this special casing with a more accurate modelling of
1723 // assume's control dependency.
1724 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
1725 switch (II
->getIntrinsicID()) {
1728 case Intrinsic::assume
:
1729 case Intrinsic::experimental_noalias_scope_decl
:
1730 case Intrinsic::pseudoprobe
:
1735 // Using a nonstandard AA pipelines might leave us with unexpected modref
1736 // results for I, so add a check to not model instructions that may not read
1737 // from or write to memory. This is necessary for correctness.
1738 if (!I
->mayReadFromMemory() && !I
->mayWriteToMemory())
1743 Def
= isa
<MemoryDef
>(Template
);
1744 Use
= isa
<MemoryUse
>(Template
);
1745 #if !defined(NDEBUG)
1746 ModRefInfo ModRef
= AAP
->getModRefInfo(I
, std::nullopt
);
1747 bool DefCheck
, UseCheck
;
1748 DefCheck
= isModSet(ModRef
) || isOrdered(I
);
1749 UseCheck
= isRefSet(ModRef
);
1750 // Memory accesses should only be reduced and can not be increased since AA
1751 // just might return better results as a result of some transformations.
1752 assert((Def
== DefCheck
|| !DefCheck
) &&
1753 "Memory accesses should only be reduced");
1754 if (!Def
&& Use
!= UseCheck
) {
1755 // New Access should not have more power than template access
1756 assert(!UseCheck
&& "Invalid template");
1760 // Find out what affect this instruction has on memory.
1761 ModRefInfo ModRef
= AAP
->getModRefInfo(I
, std::nullopt
);
1762 // The isOrdered check is used to ensure that volatiles end up as defs
1763 // (atomics end up as ModRef right now anyway). Until we separate the
1764 // ordering chain from the memory chain, this enables people to see at least
1765 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1766 // will still give an answer that bypasses other volatile loads. TODO:
1767 // Separate memory aliasing and ordering into two different chains so that
1768 // we can precisely represent both "what memory will this read/write/is
1769 // clobbered by" and "what instructions can I move this past".
1770 Def
= isModSet(ModRef
) || isOrdered(I
);
1771 Use
= isRefSet(ModRef
);
1774 // It's possible for an instruction to not modify memory at all. During
1775 // construction, we ignore them.
1779 MemoryUseOrDef
*MUD
;
1781 MUD
= new MemoryDef(I
->getContext(), nullptr, I
, I
->getParent(), NextID
++);
1783 MUD
= new MemoryUse(I
->getContext(), nullptr, I
, I
->getParent());
1784 if (isUseTriviallyOptimizableToLiveOnEntry(*AAP
, I
)) {
1785 MemoryAccess
*LiveOnEntry
= getLiveOnEntryDef();
1786 MUD
->setOptimized(LiveOnEntry
);
1789 ValueToMemoryAccess
[I
] = MUD
;
1793 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1794 void MemorySSA::removeFromLookups(MemoryAccess
*MA
) {
1795 assert(MA
->use_empty() &&
1796 "Trying to remove memory access that still has uses");
1797 BlockNumbering
.erase(MA
);
1798 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1799 MUD
->setDefiningAccess(nullptr);
1800 // Invalidate our walker's cache if necessary
1801 if (!isa
<MemoryUse
>(MA
))
1802 getWalker()->invalidateInfo(MA
);
1805 if (const auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1806 MemoryInst
= MUD
->getMemoryInst();
1808 MemoryInst
= MA
->getBlock();
1810 auto VMA
= ValueToMemoryAccess
.find(MemoryInst
);
1811 if (VMA
->second
== MA
)
1812 ValueToMemoryAccess
.erase(VMA
);
1815 /// Properly remove \p MA from all of MemorySSA's lists.
1817 /// Because of the way the intrusive list and use lists work, it is important to
1818 /// do removal in the right order.
1819 /// ShouldDelete defaults to true, and will cause the memory access to also be
1820 /// deleted, not just removed.
1821 void MemorySSA::removeFromLists(MemoryAccess
*MA
, bool ShouldDelete
) {
1822 BasicBlock
*BB
= MA
->getBlock();
1823 // The access list owns the reference, so we erase it from the non-owning list
1825 if (!isa
<MemoryUse
>(MA
)) {
1826 auto DefsIt
= PerBlockDefs
.find(BB
);
1827 std::unique_ptr
<DefsList
> &Defs
= DefsIt
->second
;
1830 PerBlockDefs
.erase(DefsIt
);
1833 // The erase call here will delete it. If we don't want it deleted, we call
1835 auto AccessIt
= PerBlockAccesses
.find(BB
);
1836 std::unique_ptr
<AccessList
> &Accesses
= AccessIt
->second
;
1838 Accesses
->erase(MA
);
1840 Accesses
->remove(MA
);
1842 if (Accesses
->empty()) {
1843 PerBlockAccesses
.erase(AccessIt
);
1844 BlockNumberingValid
.erase(BB
);
1848 void MemorySSA::print(raw_ostream
&OS
) const {
1849 MemorySSAAnnotatedWriter
Writer(this);
1850 F
.print(OS
, &Writer
);
1853 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1854 LLVM_DUMP_METHOD
void MemorySSA::dump() const { print(dbgs()); }
1857 void MemorySSA::verifyMemorySSA(VerificationLevel VL
) const {
1858 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1859 VL
= VerificationLevel::Full
;
1863 verifyOrderingDominationAndDefUses(F
, VL
);
1864 verifyDominationNumbers(F
);
1865 if (VL
== VerificationLevel::Full
)
1866 verifyPrevDefInPhis(F
);
1868 // Previously, the verification used to also verify that the clobberingAccess
1869 // cached by MemorySSA is the same as the clobberingAccess found at a later
1870 // query to AA. This does not hold true in general due to the current fragility
1871 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1872 // up. As a result, transformations that are correct, will lead to BasicAA
1873 // returning different Alias answers before and after that transformation.
1874 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1875 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1876 // every transformation, which defeats the purpose of using it. For such an
1877 // example, see test4 added in D51960.
1880 void MemorySSA::verifyPrevDefInPhis(Function
&F
) const {
1881 for (const BasicBlock
&BB
: F
) {
1882 if (MemoryPhi
*Phi
= getMemoryAccess(&BB
)) {
1883 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
) {
1884 auto *Pred
= Phi
->getIncomingBlock(I
);
1885 auto *IncAcc
= Phi
->getIncomingValue(I
);
1886 // If Pred has no unreachable predecessors, get last def looking at
1887 // IDoms. If, while walkings IDoms, any of these has an unreachable
1888 // predecessor, then the incoming def can be any access.
1889 if (auto *DTNode
= DT
->getNode(Pred
)) {
1891 if (auto *DefList
= getBlockDefs(DTNode
->getBlock())) {
1892 auto *LastAcc
= &*(--DefList
->end());
1893 assert(LastAcc
== IncAcc
&&
1894 "Incorrect incoming access into phi.");
1899 DTNode
= DTNode
->getIDom();
1902 // If Pred has unreachable predecessors, but has at least a Def, the
1903 // incoming access can be the last Def in Pred, or it could have been
1904 // optimized to LoE. After an update, though, the LoE may have been
1905 // replaced by another access, so IncAcc may be any access.
1906 // If Pred has unreachable predecessors and no Defs, incoming access
1907 // should be LoE; However, after an update, it may be any access.
1914 /// Verify that all of the blocks we believe to have valid domination numbers
1915 /// actually have valid domination numbers.
1916 void MemorySSA::verifyDominationNumbers(const Function
&F
) const {
1917 if (BlockNumberingValid
.empty())
1920 SmallPtrSet
<const BasicBlock
*, 16> ValidBlocks
= BlockNumberingValid
;
1921 for (const BasicBlock
&BB
: F
) {
1922 if (!ValidBlocks
.count(&BB
))
1925 ValidBlocks
.erase(&BB
);
1927 const AccessList
*Accesses
= getBlockAccesses(&BB
);
1928 // It's correct to say an empty block has valid numbering.
1932 // Block numbering starts at 1.
1933 unsigned long LastNumber
= 0;
1934 for (const MemoryAccess
&MA
: *Accesses
) {
1935 auto ThisNumberIter
= BlockNumbering
.find(&MA
);
1936 assert(ThisNumberIter
!= BlockNumbering
.end() &&
1937 "MemoryAccess has no domination number in a valid block!");
1939 unsigned long ThisNumber
= ThisNumberIter
->second
;
1940 assert(ThisNumber
> LastNumber
&&
1941 "Domination numbers should be strictly increasing!");
1943 LastNumber
= ThisNumber
;
1947 assert(ValidBlocks
.empty() &&
1948 "All valid BasicBlocks should exist in F -- dangling pointers?");
1951 /// Verify ordering: the order and existence of MemoryAccesses matches the
1952 /// order and existence of memory affecting instructions.
1953 /// Verify domination: each definition dominates all of its uses.
1954 /// Verify def-uses: the immediate use information - walk all the memory
1955 /// accesses and verifying that, for each use, it appears in the appropriate
1957 void MemorySSA::verifyOrderingDominationAndDefUses(Function
&F
,
1958 VerificationLevel VL
) const {
1959 // Walk all the blocks, comparing what the lookups think and what the access
1960 // lists think, as well as the order in the blocks vs the order in the access
1962 SmallVector
<MemoryAccess
*, 32> ActualAccesses
;
1963 SmallVector
<MemoryAccess
*, 32> ActualDefs
;
1964 for (BasicBlock
&B
: F
) {
1965 const AccessList
*AL
= getBlockAccesses(&B
);
1966 const auto *DL
= getBlockDefs(&B
);
1967 MemoryPhi
*Phi
= getMemoryAccess(&B
);
1970 ActualAccesses
.push_back(Phi
);
1971 ActualDefs
.push_back(Phi
);
1972 // Verify domination
1973 for (const Use
&U
: Phi
->uses()) {
1974 assert(dominates(Phi
, U
) && "Memory PHI does not dominate it's uses");
1977 // Verify def-uses for full verify.
1978 if (VL
== VerificationLevel::Full
) {
1979 assert(Phi
->getNumOperands() == static_cast<unsigned>(std::distance(
1980 pred_begin(&B
), pred_end(&B
))) &&
1981 "Incomplete MemoryPhi Node");
1982 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
) {
1983 verifyUseInDefs(Phi
->getIncomingValue(I
), Phi
);
1984 assert(is_contained(predecessors(&B
), Phi
->getIncomingBlock(I
)) &&
1985 "Incoming phi block not a block predecessor");
1990 for (Instruction
&I
: B
) {
1991 MemoryUseOrDef
*MA
= getMemoryAccess(&I
);
1992 assert((!MA
|| (AL
&& (isa
<MemoryUse
>(MA
) || DL
))) &&
1993 "We have memory affecting instructions "
1994 "in this block but they are not in the "
1995 "access list or defs list");
1998 ActualAccesses
.push_back(MA
);
1999 if (MemoryAccess
*MD
= dyn_cast
<MemoryDef
>(MA
)) {
2001 ActualDefs
.push_back(MA
);
2002 // Verify domination.
2003 for (const Use
&U
: MD
->uses()) {
2004 assert(dominates(MD
, U
) &&
2005 "Memory Def does not dominate it's uses");
2009 // Verify def-uses for full verify.
2010 if (VL
== VerificationLevel::Full
)
2011 verifyUseInDefs(MA
->getDefiningAccess(), MA
);
2014 // Either we hit the assert, really have no accesses, or we have both
2015 // accesses and an access list. Same with defs.
2019 assert(AL
->size() == ActualAccesses
.size() &&
2020 "We don't have the same number of accesses in the block as on the "
2022 assert((DL
|| ActualDefs
.size() == 0) &&
2023 "Either we should have a defs list, or we should have no defs");
2024 assert((!DL
|| DL
->size() == ActualDefs
.size()) &&
2025 "We don't have the same number of defs in the block as on the "
2027 auto ALI
= AL
->begin();
2028 auto AAI
= ActualAccesses
.begin();
2029 while (ALI
!= AL
->end() && AAI
!= ActualAccesses
.end()) {
2030 assert(&*ALI
== *AAI
&& "Not the same accesses in the same order");
2034 ActualAccesses
.clear();
2036 auto DLI
= DL
->begin();
2037 auto ADI
= ActualDefs
.begin();
2038 while (DLI
!= DL
->end() && ADI
!= ActualDefs
.end()) {
2039 assert(&*DLI
== *ADI
&& "Not the same defs in the same order");
2048 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2049 /// appears in the use list of \p Def.
2050 void MemorySSA::verifyUseInDefs(MemoryAccess
*Def
, MemoryAccess
*Use
) const {
2051 // The live on entry use may cause us to get a NULL def here
2053 assert(isLiveOnEntryDef(Use
) &&
2054 "Null def but use not point to live on entry def");
2056 assert(is_contained(Def
->users(), Use
) &&
2057 "Did not find use in def's use list");
2060 /// Perform a local numbering on blocks so that instruction ordering can be
2061 /// determined in constant time.
2062 /// TODO: We currently just number in order. If we numbered by N, we could
2063 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2064 /// log2(N) sequences of mixed before and after) without needing to invalidate
2066 void MemorySSA::renumberBlock(const BasicBlock
*B
) const {
2067 // The pre-increment ensures the numbers really start at 1.
2068 unsigned long CurrentNumber
= 0;
2069 const AccessList
*AL
= getBlockAccesses(B
);
2070 assert(AL
!= nullptr && "Asking to renumber an empty block");
2071 for (const auto &I
: *AL
)
2072 BlockNumbering
[&I
] = ++CurrentNumber
;
2073 BlockNumberingValid
.insert(B
);
2076 /// Determine, for two memory accesses in the same block,
2077 /// whether \p Dominator dominates \p Dominatee.
2078 /// \returns True if \p Dominator dominates \p Dominatee.
2079 bool MemorySSA::locallyDominates(const MemoryAccess
*Dominator
,
2080 const MemoryAccess
*Dominatee
) const {
2081 const BasicBlock
*DominatorBlock
= Dominator
->getBlock();
2083 assert((DominatorBlock
== Dominatee
->getBlock()) &&
2084 "Asking for local domination when accesses are in different blocks!");
2085 // A node dominates itself.
2086 if (Dominatee
== Dominator
)
2089 // When Dominatee is defined on function entry, it is not dominated by another
2091 if (isLiveOnEntryDef(Dominatee
))
2094 // When Dominator is defined on function entry, it dominates the other memory
2096 if (isLiveOnEntryDef(Dominator
))
2099 if (!BlockNumberingValid
.count(DominatorBlock
))
2100 renumberBlock(DominatorBlock
);
2102 unsigned long DominatorNum
= BlockNumbering
.lookup(Dominator
);
2103 // All numbers start with 1
2104 assert(DominatorNum
!= 0 && "Block was not numbered properly");
2105 unsigned long DominateeNum
= BlockNumbering
.lookup(Dominatee
);
2106 assert(DominateeNum
!= 0 && "Block was not numbered properly");
2107 return DominatorNum
< DominateeNum
;
2110 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2111 const MemoryAccess
*Dominatee
) const {
2112 if (Dominator
== Dominatee
)
2115 if (isLiveOnEntryDef(Dominatee
))
2118 if (Dominator
->getBlock() != Dominatee
->getBlock())
2119 return DT
->dominates(Dominator
->getBlock(), Dominatee
->getBlock());
2120 return locallyDominates(Dominator
, Dominatee
);
2123 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2124 const Use
&Dominatee
) const {
2125 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(Dominatee
.getUser())) {
2126 BasicBlock
*UseBB
= MP
->getIncomingBlock(Dominatee
);
2127 // The def must dominate the incoming block of the phi.
2128 if (UseBB
!= Dominator
->getBlock())
2129 return DT
->dominates(Dominator
->getBlock(), UseBB
);
2130 // If the UseBB and the DefBB are the same, compare locally.
2131 return locallyDominates(Dominator
, cast
<MemoryAccess
>(Dominatee
));
2133 // If it's not a PHI node use, the normal dominates can already handle it.
2134 return dominates(Dominator
, cast
<MemoryAccess
>(Dominatee
.getUser()));
2137 void MemorySSA::ensureOptimizedUses() {
2141 BatchAAResults
BatchAA(*AA
);
2142 ClobberWalkerBase
WalkerBase(this, DT
);
2143 CachingWalker
WalkerLocal(this, &WalkerBase
);
2144 OptimizeUses(this, &WalkerLocal
, &BatchAA
, DT
).optimizeUses();
2148 void MemoryAccess::print(raw_ostream
&OS
) const {
2149 switch (getValueID()) {
2150 case MemoryPhiVal
: return static_cast<const MemoryPhi
*>(this)->print(OS
);
2151 case MemoryDefVal
: return static_cast<const MemoryDef
*>(this)->print(OS
);
2152 case MemoryUseVal
: return static_cast<const MemoryUse
*>(this)->print(OS
);
2154 llvm_unreachable("invalid value id");
2157 void MemoryDef::print(raw_ostream
&OS
) const {
2158 MemoryAccess
*UO
= getDefiningAccess();
2160 auto printID
= [&OS
](MemoryAccess
*A
) {
2161 if (A
&& A
->getID())
2164 OS
<< LiveOnEntryStr
;
2167 OS
<< getID() << " = MemoryDef(";
2171 if (isOptimized()) {
2173 printID(getOptimized());
2177 void MemoryPhi::print(raw_ostream
&OS
) const {
2178 ListSeparator
LS(",");
2179 OS
<< getID() << " = MemoryPhi(";
2180 for (const auto &Op
: operands()) {
2181 BasicBlock
*BB
= getIncomingBlock(Op
);
2182 MemoryAccess
*MA
= cast
<MemoryAccess
>(Op
);
2186 OS
<< BB
->getName();
2188 BB
->printAsOperand(OS
, false);
2190 if (unsigned ID
= MA
->getID())
2193 OS
<< LiveOnEntryStr
;
2199 void MemoryUse::print(raw_ostream
&OS
) const {
2200 MemoryAccess
*UO
= getDefiningAccess();
2202 if (UO
&& UO
->getID())
2205 OS
<< LiveOnEntryStr
;
2209 void MemoryAccess::dump() const {
2210 // Cannot completely remove virtual function even in release mode.
2211 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2217 class DOTFuncMSSAInfo
{
2220 MemorySSAAnnotatedWriter MSSAWriter
;
2223 DOTFuncMSSAInfo(const Function
&F
, MemorySSA
&MSSA
)
2224 : F(F
), MSSAWriter(&MSSA
) {}
2226 const Function
*getFunction() { return &F
; }
2227 MemorySSAAnnotatedWriter
&getWriter() { return MSSAWriter
; }
2233 struct GraphTraits
<DOTFuncMSSAInfo
*> : public GraphTraits
<const BasicBlock
*> {
2234 static NodeRef
getEntryNode(DOTFuncMSSAInfo
*CFGInfo
) {
2235 return &(CFGInfo
->getFunction()->getEntryBlock());
2238 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
2239 using nodes_iterator
= pointer_iterator
<Function::const_iterator
>;
2241 static nodes_iterator
nodes_begin(DOTFuncMSSAInfo
*CFGInfo
) {
2242 return nodes_iterator(CFGInfo
->getFunction()->begin());
2245 static nodes_iterator
nodes_end(DOTFuncMSSAInfo
*CFGInfo
) {
2246 return nodes_iterator(CFGInfo
->getFunction()->end());
2249 static size_t size(DOTFuncMSSAInfo
*CFGInfo
) {
2250 return CFGInfo
->getFunction()->size();
2255 struct DOTGraphTraits
<DOTFuncMSSAInfo
*> : public DefaultDOTGraphTraits
{
2257 DOTGraphTraits(bool IsSimple
= false) : DefaultDOTGraphTraits(IsSimple
) {}
2259 static std::string
getGraphName(DOTFuncMSSAInfo
*CFGInfo
) {
2260 return "MSSA CFG for '" + CFGInfo
->getFunction()->getName().str() +
2264 std::string
getNodeLabel(const BasicBlock
*Node
, DOTFuncMSSAInfo
*CFGInfo
) {
2265 return DOTGraphTraits
<DOTFuncInfo
*>::getCompleteNodeLabel(
2267 [CFGInfo
](raw_string_ostream
&OS
, const BasicBlock
&BB
) -> void {
2268 BB
.print(OS
, &CFGInfo
->getWriter(), true, true);
2270 [](std::string
&S
, unsigned &I
, unsigned Idx
) -> void {
2271 std::string Str
= S
.substr(I
, Idx
- I
);
2273 if (SR
.count(" = MemoryDef(") || SR
.count(" = MemoryPhi(") ||
2274 SR
.count("MemoryUse("))
2276 DOTGraphTraits
<DOTFuncInfo
*>::eraseComment(S
, I
, Idx
);
2280 static std::string
getEdgeSourceLabel(const BasicBlock
*Node
,
2281 const_succ_iterator I
) {
2282 return DOTGraphTraits
<DOTFuncInfo
*>::getEdgeSourceLabel(Node
, I
);
2285 /// Display the raw branch weights from PGO.
2286 std::string
getEdgeAttributes(const BasicBlock
*Node
, const_succ_iterator I
,
2287 DOTFuncMSSAInfo
*CFGInfo
) {
2291 std::string
getNodeAttributes(const BasicBlock
*Node
,
2292 DOTFuncMSSAInfo
*CFGInfo
) {
2293 return getNodeLabel(Node
, CFGInfo
).find(';') != std::string::npos
2294 ? "style=filled, fillcolor=lightpink"
2301 AnalysisKey
MemorySSAAnalysis::Key
;
2303 MemorySSAAnalysis::Result
MemorySSAAnalysis::run(Function
&F
,
2304 FunctionAnalysisManager
&AM
) {
2305 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
2306 auto &AA
= AM
.getResult
<AAManager
>(F
);
2307 return MemorySSAAnalysis::Result(std::make_unique
<MemorySSA
>(F
, &AA
, &DT
));
2310 bool MemorySSAAnalysis::Result::invalidate(
2311 Function
&F
, const PreservedAnalyses
&PA
,
2312 FunctionAnalysisManager::Invalidator
&Inv
) {
2313 auto PAC
= PA
.getChecker
<MemorySSAAnalysis
>();
2314 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
2315 Inv
.invalidate
<AAManager
>(F
, PA
) ||
2316 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
);
2319 PreservedAnalyses
MemorySSAPrinterPass::run(Function
&F
,
2320 FunctionAnalysisManager
&AM
) {
2321 auto &MSSA
= AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA();
2322 if (EnsureOptimizedUses
)
2323 MSSA
.ensureOptimizedUses();
2324 if (DotCFGMSSA
!= "") {
2325 DOTFuncMSSAInfo
CFGInfo(F
, MSSA
);
2326 WriteGraph(&CFGInfo
, "", false, "MSSA", DotCFGMSSA
);
2328 OS
<< "MemorySSA for function: " << F
.getName() << "\n";
2332 return PreservedAnalyses::all();
2335 PreservedAnalyses
MemorySSAWalkerPrinterPass::run(Function
&F
,
2336 FunctionAnalysisManager
&AM
) {
2337 auto &MSSA
= AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA();
2338 OS
<< "MemorySSA (walker) for function: " << F
.getName() << "\n";
2339 MemorySSAWalkerAnnotatedWriter
Writer(&MSSA
);
2340 F
.print(OS
, &Writer
);
2342 return PreservedAnalyses::all();
2345 PreservedAnalyses
MemorySSAVerifierPass::run(Function
&F
,
2346 FunctionAnalysisManager
&AM
) {
2347 AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA().verifyMemorySSA();
2349 return PreservedAnalyses::all();
2352 char MemorySSAWrapperPass::ID
= 0;
2354 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID
) {
2355 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2358 void MemorySSAWrapperPass::releaseMemory() { MSSA
.reset(); }
2360 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2361 AU
.setPreservesAll();
2362 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
2363 AU
.addRequiredTransitive
<AAResultsWrapperPass
>();
2366 bool MemorySSAWrapperPass::runOnFunction(Function
&F
) {
2367 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2368 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
2369 MSSA
.reset(new MemorySSA(F
, &AA
, &DT
));
2373 void MemorySSAWrapperPass::verifyAnalysis() const {
2374 if (VerifyMemorySSA
)
2375 MSSA
->verifyMemorySSA();
2378 void MemorySSAWrapperPass::print(raw_ostream
&OS
, const Module
*M
) const {
2382 MemorySSAWalker::MemorySSAWalker(MemorySSA
*M
) : MSSA(M
) {}
2384 /// Walk the use-def chains starting at \p StartingAccess and find
2385 /// the MemoryAccess that actually clobbers Loc.
2387 /// \returns our clobbering memory access
2388 MemoryAccess
*MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2389 MemoryAccess
*StartingAccess
, const MemoryLocation
&Loc
,
2390 BatchAAResults
&BAA
, unsigned &UpwardWalkLimit
) {
2391 assert(!isa
<MemoryUse
>(StartingAccess
) && "Use cannot be defining access");
2393 // If location is undefined, conservatively return starting access.
2394 if (Loc
.Ptr
== nullptr)
2395 return StartingAccess
;
2397 Instruction
*I
= nullptr;
2398 if (auto *StartingUseOrDef
= dyn_cast
<MemoryUseOrDef
>(StartingAccess
)) {
2399 if (MSSA
->isLiveOnEntryDef(StartingUseOrDef
))
2400 return StartingUseOrDef
;
2402 I
= StartingUseOrDef
->getMemoryInst();
2404 // Conservatively, fences are always clobbers, so don't perform the walk if
2406 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2407 return StartingUseOrDef
;
2410 UpwardsMemoryQuery Q
;
2411 Q
.OriginalAccess
= StartingAccess
;
2412 Q
.StartingLoc
= Loc
;
2416 // Unlike the other function, do not walk to the def of a def, because we are
2417 // handed something we already believe is the clobbering access.
2418 // We never set SkipSelf to true in Q in this method.
2419 MemoryAccess
*Clobber
=
2420 Walker
.findClobber(BAA
, StartingAccess
, Q
, UpwardWalkLimit
);
2422 dbgs() << "Clobber starting at access " << *StartingAccess
<< "\n";
2424 dbgs() << " for instruction " << *I
<< "\n";
2425 dbgs() << " is " << *Clobber
<< "\n";
2430 static const Instruction
*
2431 getInvariantGroupClobberingInstruction(Instruction
&I
, DominatorTree
&DT
) {
2432 if (!I
.hasMetadata(LLVMContext::MD_invariant_group
) || I
.isVolatile())
2435 // We consider bitcasts and zero GEPs to be the same pointer value. Start by
2436 // stripping bitcasts and zero GEPs, then we will recursively look at loads
2437 // and stores through bitcasts and zero GEPs.
2438 Value
*PointerOperand
= getLoadStorePointerOperand(&I
)->stripPointerCasts();
2440 // It's not safe to walk the use list of a global value because function
2441 // passes aren't allowed to look outside their functions.
2442 // FIXME: this could be fixed by filtering instructions from outside of
2443 // current function.
2444 if (isa
<Constant
>(PointerOperand
))
2447 // Queue to process all pointers that are equivalent to load operand.
2448 SmallVector
<const Value
*, 8> PointerUsesQueue
;
2449 PointerUsesQueue
.push_back(PointerOperand
);
2451 const Instruction
*MostDominatingInstruction
= &I
;
2453 // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case
2454 // we will see all the instructions. It may not matter in practice. If it
2455 // does, we will have to support MemorySSA construction and updates.
2456 while (!PointerUsesQueue
.empty()) {
2457 const Value
*Ptr
= PointerUsesQueue
.pop_back_val();
2458 assert(Ptr
&& !isa
<GlobalValue
>(Ptr
) &&
2459 "Null or GlobalValue should not be inserted");
2461 for (const User
*Us
: Ptr
->users()) {
2462 auto *U
= dyn_cast
<Instruction
>(Us
);
2463 if (!U
|| U
== &I
|| !DT
.dominates(U
, MostDominatingInstruction
))
2466 // Add bitcasts and zero GEPs to queue.
2467 if (isa
<BitCastInst
>(U
)) {
2468 PointerUsesQueue
.push_back(U
);
2471 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
2472 if (GEP
->hasAllZeroIndices())
2473 PointerUsesQueue
.push_back(U
);
2477 // If we hit a load/store with an invariant.group metadata and the same
2478 // pointer operand, we can assume that value pointed to by the pointer
2479 // operand didn't change.
2480 if (U
->hasMetadata(LLVMContext::MD_invariant_group
) &&
2481 getLoadStorePointerOperand(U
) == Ptr
&& !U
->isVolatile()) {
2482 MostDominatingInstruction
= U
;
2486 return MostDominatingInstruction
== &I
? nullptr : MostDominatingInstruction
;
2489 MemoryAccess
*MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2490 MemoryAccess
*MA
, BatchAAResults
&BAA
, unsigned &UpwardWalkLimit
,
2491 bool SkipSelf
, bool UseInvariantGroup
) {
2492 auto *StartingAccess
= dyn_cast
<MemoryUseOrDef
>(MA
);
2493 // If this is a MemoryPhi, we can't do anything.
2494 if (!StartingAccess
)
2497 if (UseInvariantGroup
) {
2498 if (auto *I
= getInvariantGroupClobberingInstruction(
2499 *StartingAccess
->getMemoryInst(), MSSA
->getDomTree())) {
2500 assert(isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
));
2502 auto *ClobberMA
= MSSA
->getMemoryAccess(I
);
2504 if (isa
<MemoryUse
>(ClobberMA
))
2505 return ClobberMA
->getDefiningAccess();
2510 bool IsOptimized
= false;
2512 // If this is an already optimized use or def, return the optimized result.
2513 // Note: Currently, we store the optimized def result in a separate field,
2514 // since we can't use the defining access.
2515 if (StartingAccess
->isOptimized()) {
2516 if (!SkipSelf
|| !isa
<MemoryDef
>(StartingAccess
))
2517 return StartingAccess
->getOptimized();
2521 const Instruction
*I
= StartingAccess
->getMemoryInst();
2522 // We can't sanely do anything with a fence, since they conservatively clobber
2523 // all memory, and have no locations to get pointers from to try to
2525 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2526 return StartingAccess
;
2528 UpwardsMemoryQuery
Q(I
, StartingAccess
);
2530 if (isUseTriviallyOptimizableToLiveOnEntry(BAA
, I
)) {
2531 MemoryAccess
*LiveOnEntry
= MSSA
->getLiveOnEntryDef();
2532 StartingAccess
->setOptimized(LiveOnEntry
);
2536 MemoryAccess
*OptimizedAccess
;
2538 // Start with the thing we already think clobbers this location
2539 MemoryAccess
*DefiningAccess
= StartingAccess
->getDefiningAccess();
2541 // At this point, DefiningAccess may be the live on entry def.
2542 // If it is, we will not get a better result.
2543 if (MSSA
->isLiveOnEntryDef(DefiningAccess
)) {
2544 StartingAccess
->setOptimized(DefiningAccess
);
2545 return DefiningAccess
;
2549 Walker
.findClobber(BAA
, DefiningAccess
, Q
, UpwardWalkLimit
);
2550 StartingAccess
->setOptimized(OptimizedAccess
);
2552 OptimizedAccess
= StartingAccess
->getOptimized();
2554 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I
<< " is ");
2555 LLVM_DEBUG(dbgs() << *StartingAccess
<< "\n");
2556 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I
<< " is ");
2557 LLVM_DEBUG(dbgs() << *OptimizedAccess
<< "\n");
2559 MemoryAccess
*Result
;
2560 if (SkipSelf
&& isa
<MemoryPhi
>(OptimizedAccess
) &&
2561 isa
<MemoryDef
>(StartingAccess
) && UpwardWalkLimit
) {
2562 assert(isa
<MemoryDef
>(Q
.OriginalAccess
));
2563 Q
.SkipSelfAccess
= true;
2564 Result
= Walker
.findClobber(BAA
, OptimizedAccess
, Q
, UpwardWalkLimit
);
2566 Result
= OptimizedAccess
;
2568 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf
);
2569 LLVM_DEBUG(dbgs() << "] for " << *I
<< " is " << *Result
<< "\n");
2575 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess
*MA
,
2577 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(MA
))
2578 return Use
->getDefiningAccess();
2582 MemoryAccess
*DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2583 MemoryAccess
*StartingAccess
, const MemoryLocation
&, BatchAAResults
&) {
2584 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(StartingAccess
))
2585 return Use
->getDefiningAccess();
2586 return StartingAccess
;
2589 void MemoryPhi::deleteMe(DerivedUser
*Self
) {
2590 delete static_cast<MemoryPhi
*>(Self
);
2593 void MemoryDef::deleteMe(DerivedUser
*Self
) {
2594 delete static_cast<MemoryDef
*>(Self
);
2597 void MemoryUse::deleteMe(DerivedUser
*Self
) {
2598 delete static_cast<MemoryUse
*>(Self
);
2601 bool upward_defs_iterator::IsGuaranteedLoopInvariant(const Value
*Ptr
) const {
2602 auto IsGuaranteedLoopInvariantBase
= [](const Value
*Ptr
) {
2603 Ptr
= Ptr
->stripPointerCasts();
2604 if (!isa
<Instruction
>(Ptr
))
2606 return isa
<AllocaInst
>(Ptr
);
2609 Ptr
= Ptr
->stripPointerCasts();
2610 if (auto *I
= dyn_cast
<Instruction
>(Ptr
)) {
2611 if (I
->getParent()->isEntryBlock())
2614 if (auto *GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
2615 return IsGuaranteedLoopInvariantBase(GEP
->getPointerOperand()) &&
2616 GEP
->hasAllConstantIndices();
2618 return IsGuaranteedLoopInvariantBase(Ptr
);