1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/Dominators.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
27 using namespace PatternMatch
;
29 #define DEBUG_TYPE "tti"
31 static cl::opt
<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33 cl::desc("Recognize reduction patterns."));
35 static cl::opt
<unsigned> CacheLineSize(
36 "cache-line-size", cl::init(0), cl::Hidden
,
37 cl::desc("Use this to override the target cache line size when "
38 "specified by the user."));
40 static cl::opt
<unsigned> MinPageSize(
41 "min-page-size", cl::init(0), cl::Hidden
,
42 cl::desc("Use this to override the target's minimum page size."));
44 static cl::opt
<unsigned> PredictableBranchThreshold(
45 "predictable-branch-threshold", cl::init(99), cl::Hidden
,
47 "Use this to override the target's predictable branch threshold (%)."));
50 /// No-op implementation of the TTI interface using the utility base
53 /// This is used when no target specific information is available.
54 struct NoTTIImpl
: TargetTransformInfoImplCRTPBase
<NoTTIImpl
> {
55 explicit NoTTIImpl(const DataLayout
&DL
)
56 : TargetTransformInfoImplCRTPBase
<NoTTIImpl
>(DL
) {}
60 bool HardwareLoopInfo::canAnalyze(LoopInfo
&LI
) {
61 // If the loop has irreducible control flow, it can not be converted to
63 LoopBlocksRPO
RPOT(L
);
65 if (containsIrreducibleCFG
<const BasicBlock
*>(RPOT
, LI
))
70 IntrinsicCostAttributes::IntrinsicCostAttributes(
71 Intrinsic::ID Id
, const CallBase
&CI
, InstructionCost ScalarizationCost
,
73 : II(dyn_cast
<IntrinsicInst
>(&CI
)), RetTy(CI
.getType()), IID(Id
),
74 ScalarizationCost(ScalarizationCost
) {
76 if (const auto *FPMO
= dyn_cast
<FPMathOperator
>(&CI
))
77 FMF
= FPMO
->getFastMathFlags();
80 Arguments
.insert(Arguments
.begin(), CI
.arg_begin(), CI
.arg_end());
81 FunctionType
*FTy
= CI
.getCalledFunction()->getFunctionType();
82 ParamTys
.insert(ParamTys
.begin(), FTy
->param_begin(), FTy
->param_end());
85 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id
, Type
*RTy
,
88 const IntrinsicInst
*I
,
89 InstructionCost ScalarCost
)
90 : II(I
), RetTy(RTy
), IID(Id
), FMF(Flags
), ScalarizationCost(ScalarCost
) {
91 ParamTys
.insert(ParamTys
.begin(), Tys
.begin(), Tys
.end());
94 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id
, Type
*Ty
,
95 ArrayRef
<const Value
*> Args
)
96 : RetTy(Ty
), IID(Id
) {
98 Arguments
.insert(Arguments
.begin(), Args
.begin(), Args
.end());
99 ParamTys
.reserve(Arguments
.size());
100 for (unsigned Idx
= 0, Size
= Arguments
.size(); Idx
!= Size
; ++Idx
)
101 ParamTys
.push_back(Arguments
[Idx
]->getType());
104 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id
, Type
*RTy
,
105 ArrayRef
<const Value
*> Args
,
106 ArrayRef
<Type
*> Tys
,
108 const IntrinsicInst
*I
,
109 InstructionCost ScalarCost
)
110 : II(I
), RetTy(RTy
), IID(Id
), FMF(Flags
), ScalarizationCost(ScalarCost
) {
111 ParamTys
.insert(ParamTys
.begin(), Tys
.begin(), Tys
.end());
112 Arguments
.insert(Arguments
.begin(), Args
.begin(), Args
.end());
115 HardwareLoopInfo::HardwareLoopInfo(Loop
*L
) : L(L
) {
116 // Match default options:
117 // - hardware-loop-counter-bitwidth = 32
118 // - hardware-loop-decrement = 1
119 CountType
= Type::getInt32Ty(L
->getHeader()->getContext());
120 LoopDecrement
= ConstantInt::get(CountType
, 1);
123 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution
&SE
,
124 LoopInfo
&LI
, DominatorTree
&DT
,
125 bool ForceNestedLoop
,
126 bool ForceHardwareLoopPHI
) {
127 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
128 L
->getExitingBlocks(ExitingBlocks
);
130 for (BasicBlock
*BB
: ExitingBlocks
) {
131 // If we pass the updated counter back through a phi, we need to know
132 // which latch the updated value will be coming from.
133 if (!L
->isLoopLatch(BB
)) {
134 if (ForceHardwareLoopPHI
|| CounterInReg
)
138 const SCEV
*EC
= SE
.getExitCount(L
, BB
);
139 if (isa
<SCEVCouldNotCompute
>(EC
))
141 if (const SCEVConstant
*ConstEC
= dyn_cast
<SCEVConstant
>(EC
)) {
142 if (ConstEC
->getValue()->isZero())
144 } else if (!SE
.isLoopInvariant(EC
, L
))
147 if (SE
.getTypeSizeInBits(EC
->getType()) > CountType
->getBitWidth())
150 // If this exiting block is contained in a nested loop, it is not eligible
151 // for insertion of the branch-and-decrement since the inner loop would
152 // end up messing up the value in the CTR.
153 if (!IsNestingLegal
&& LI
.getLoopFor(BB
) != L
&& !ForceNestedLoop
)
156 // We now have a loop-invariant count of loop iterations (which is not the
157 // constant zero) for which we know that this loop will not exit via this
160 // We need to make sure that this block will run on every loop iteration.
161 // For this to be true, we must dominate all blocks with backedges. Such
162 // blocks are in-loop predecessors to the header block.
163 bool NotAlways
= false;
164 for (BasicBlock
*Pred
: predecessors(L
->getHeader())) {
165 if (!L
->contains(Pred
))
168 if (!DT
.dominates(BB
, Pred
)) {
177 // Make sure this blocks ends with a conditional branch.
178 Instruction
*TI
= BB
->getTerminator();
182 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
183 if (!BI
->isConditional())
190 // Note that this block may not be the loop latch block, even if the loop
191 // has a latch block.
202 TargetTransformInfo::TargetTransformInfo(const DataLayout
&DL
)
203 : TTIImpl(new Model
<NoTTIImpl
>(NoTTIImpl(DL
))) {}
205 TargetTransformInfo::~TargetTransformInfo() = default;
207 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo
&&Arg
)
208 : TTIImpl(std::move(Arg
.TTIImpl
)) {}
210 TargetTransformInfo
&TargetTransformInfo::operator=(TargetTransformInfo
&&RHS
) {
211 TTIImpl
= std::move(RHS
.TTIImpl
);
215 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
216 return TTIImpl
->getInliningThresholdMultiplier();
220 TargetTransformInfo::getInliningCostBenefitAnalysisSavingsMultiplier() const {
221 return TTIImpl
->getInliningCostBenefitAnalysisSavingsMultiplier();
225 TargetTransformInfo::getInliningCostBenefitAnalysisProfitableMultiplier()
227 return TTIImpl
->getInliningCostBenefitAnalysisProfitableMultiplier();
231 TargetTransformInfo::adjustInliningThreshold(const CallBase
*CB
) const {
232 return TTIImpl
->adjustInliningThreshold(CB
);
235 unsigned TargetTransformInfo::getCallerAllocaCost(const CallBase
*CB
,
236 const AllocaInst
*AI
) const {
237 return TTIImpl
->getCallerAllocaCost(CB
, AI
);
240 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
241 return TTIImpl
->getInlinerVectorBonusPercent();
244 InstructionCost
TargetTransformInfo::getGEPCost(
245 Type
*PointeeType
, const Value
*Ptr
, ArrayRef
<const Value
*> Operands
,
246 Type
*AccessType
, TTI::TargetCostKind CostKind
) const {
247 return TTIImpl
->getGEPCost(PointeeType
, Ptr
, Operands
, AccessType
, CostKind
);
250 InstructionCost
TargetTransformInfo::getPointersChainCost(
251 ArrayRef
<const Value
*> Ptrs
, const Value
*Base
,
252 const TTI::PointersChainInfo
&Info
, Type
*AccessTy
,
253 TTI::TargetCostKind CostKind
) const {
254 assert((Base
|| !Info
.isSameBase()) &&
255 "If pointers have same base address it has to be provided.");
256 return TTIImpl
->getPointersChainCost(Ptrs
, Base
, Info
, AccessTy
, CostKind
);
259 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
260 const SwitchInst
&SI
, unsigned &JTSize
, ProfileSummaryInfo
*PSI
,
261 BlockFrequencyInfo
*BFI
) const {
262 return TTIImpl
->getEstimatedNumberOfCaseClusters(SI
, JTSize
, PSI
, BFI
);
266 TargetTransformInfo::getInstructionCost(const User
*U
,
267 ArrayRef
<const Value
*> Operands
,
268 enum TargetCostKind CostKind
) const {
269 InstructionCost Cost
= TTIImpl
->getInstructionCost(U
, Operands
, CostKind
);
270 assert((CostKind
== TTI::TCK_RecipThroughput
|| Cost
>= 0) &&
271 "TTI should not produce negative costs!");
275 BranchProbability
TargetTransformInfo::getPredictableBranchThreshold() const {
276 return PredictableBranchThreshold
.getNumOccurrences() > 0
277 ? BranchProbability(PredictableBranchThreshold
, 100)
278 : TTIImpl
->getPredictableBranchThreshold();
281 bool TargetTransformInfo::hasBranchDivergence(const Function
*F
) const {
282 return TTIImpl
->hasBranchDivergence(F
);
285 bool TargetTransformInfo::isSourceOfDivergence(const Value
*V
) const {
286 return TTIImpl
->isSourceOfDivergence(V
);
289 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value
*V
) const {
290 return TTIImpl
->isAlwaysUniform(V
);
293 bool llvm::TargetTransformInfo::isValidAddrSpaceCast(unsigned FromAS
,
294 unsigned ToAS
) const {
295 return TTIImpl
->isValidAddrSpaceCast(FromAS
, ToAS
);
298 bool llvm::TargetTransformInfo::addrspacesMayAlias(unsigned FromAS
,
299 unsigned ToAS
) const {
300 return TTIImpl
->addrspacesMayAlias(FromAS
, ToAS
);
303 unsigned TargetTransformInfo::getFlatAddressSpace() const {
304 return TTIImpl
->getFlatAddressSpace();
307 bool TargetTransformInfo::collectFlatAddressOperands(
308 SmallVectorImpl
<int> &OpIndexes
, Intrinsic::ID IID
) const {
309 return TTIImpl
->collectFlatAddressOperands(OpIndexes
, IID
);
312 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS
,
313 unsigned ToAS
) const {
314 return TTIImpl
->isNoopAddrSpaceCast(FromAS
, ToAS
);
317 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
319 return TTIImpl
->canHaveNonUndefGlobalInitializerInAddressSpace(AS
);
322 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value
*V
) const {
323 return TTIImpl
->getAssumedAddrSpace(V
);
326 bool TargetTransformInfo::isSingleThreaded() const {
327 return TTIImpl
->isSingleThreaded();
330 std::pair
<const Value
*, unsigned>
331 TargetTransformInfo::getPredicatedAddrSpace(const Value
*V
) const {
332 return TTIImpl
->getPredicatedAddrSpace(V
);
335 Value
*TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
336 IntrinsicInst
*II
, Value
*OldV
, Value
*NewV
) const {
337 return TTIImpl
->rewriteIntrinsicWithAddressSpace(II
, OldV
, NewV
);
340 bool TargetTransformInfo::isLoweredToCall(const Function
*F
) const {
341 return TTIImpl
->isLoweredToCall(F
);
344 bool TargetTransformInfo::isHardwareLoopProfitable(
345 Loop
*L
, ScalarEvolution
&SE
, AssumptionCache
&AC
,
346 TargetLibraryInfo
*LibInfo
, HardwareLoopInfo
&HWLoopInfo
) const {
347 return TTIImpl
->isHardwareLoopProfitable(L
, SE
, AC
, LibInfo
, HWLoopInfo
);
350 bool TargetTransformInfo::preferPredicateOverEpilogue(
351 TailFoldingInfo
*TFI
) const {
352 return TTIImpl
->preferPredicateOverEpilogue(TFI
);
355 TailFoldingStyle
TargetTransformInfo::getPreferredTailFoldingStyle(
356 bool IVUpdateMayOverflow
) const {
357 return TTIImpl
->getPreferredTailFoldingStyle(IVUpdateMayOverflow
);
360 std::optional
<Instruction
*>
361 TargetTransformInfo::instCombineIntrinsic(InstCombiner
&IC
,
362 IntrinsicInst
&II
) const {
363 return TTIImpl
->instCombineIntrinsic(IC
, II
);
366 std::optional
<Value
*> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
367 InstCombiner
&IC
, IntrinsicInst
&II
, APInt DemandedMask
, KnownBits
&Known
,
368 bool &KnownBitsComputed
) const {
369 return TTIImpl
->simplifyDemandedUseBitsIntrinsic(IC
, II
, DemandedMask
, Known
,
373 std::optional
<Value
*> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
374 InstCombiner
&IC
, IntrinsicInst
&II
, APInt DemandedElts
, APInt
&UndefElts
,
375 APInt
&UndefElts2
, APInt
&UndefElts3
,
376 std::function
<void(Instruction
*, unsigned, APInt
, APInt
&)>
377 SimplifyAndSetOp
) const {
378 return TTIImpl
->simplifyDemandedVectorEltsIntrinsic(
379 IC
, II
, DemandedElts
, UndefElts
, UndefElts2
, UndefElts3
,
383 void TargetTransformInfo::getUnrollingPreferences(
384 Loop
*L
, ScalarEvolution
&SE
, UnrollingPreferences
&UP
,
385 OptimizationRemarkEmitter
*ORE
) const {
386 return TTIImpl
->getUnrollingPreferences(L
, SE
, UP
, ORE
);
389 void TargetTransformInfo::getPeelingPreferences(Loop
*L
, ScalarEvolution
&SE
,
390 PeelingPreferences
&PP
) const {
391 return TTIImpl
->getPeelingPreferences(L
, SE
, PP
);
394 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm
) const {
395 return TTIImpl
->isLegalAddImmediate(Imm
);
398 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm
) const {
399 return TTIImpl
->isLegalICmpImmediate(Imm
);
402 bool TargetTransformInfo::isLegalAddressingMode(Type
*Ty
, GlobalValue
*BaseGV
,
404 bool HasBaseReg
, int64_t Scale
,
406 Instruction
*I
) const {
407 return TTIImpl
->isLegalAddressingMode(Ty
, BaseGV
, BaseOffset
, HasBaseReg
,
408 Scale
, AddrSpace
, I
);
411 bool TargetTransformInfo::isLSRCostLess(const LSRCost
&C1
,
412 const LSRCost
&C2
) const {
413 return TTIImpl
->isLSRCostLess(C1
, C2
);
416 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
417 return TTIImpl
->isNumRegsMajorCostOfLSR();
420 bool TargetTransformInfo::shouldFoldTerminatingConditionAfterLSR() const {
421 return TTIImpl
->shouldFoldTerminatingConditionAfterLSR();
424 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction
*I
) const {
425 return TTIImpl
->isProfitableLSRChainElement(I
);
428 bool TargetTransformInfo::canMacroFuseCmp() const {
429 return TTIImpl
->canMacroFuseCmp();
432 bool TargetTransformInfo::canSaveCmp(Loop
*L
, BranchInst
**BI
,
433 ScalarEvolution
*SE
, LoopInfo
*LI
,
434 DominatorTree
*DT
, AssumptionCache
*AC
,
435 TargetLibraryInfo
*LibInfo
) const {
436 return TTIImpl
->canSaveCmp(L
, BI
, SE
, LI
, DT
, AC
, LibInfo
);
439 TTI::AddressingModeKind
440 TargetTransformInfo::getPreferredAddressingMode(const Loop
*L
,
441 ScalarEvolution
*SE
) const {
442 return TTIImpl
->getPreferredAddressingMode(L
, SE
);
445 bool TargetTransformInfo::isLegalMaskedStore(Type
*DataType
,
446 Align Alignment
) const {
447 return TTIImpl
->isLegalMaskedStore(DataType
, Alignment
);
450 bool TargetTransformInfo::isLegalMaskedLoad(Type
*DataType
,
451 Align Alignment
) const {
452 return TTIImpl
->isLegalMaskedLoad(DataType
, Alignment
);
455 bool TargetTransformInfo::isLegalNTStore(Type
*DataType
,
456 Align Alignment
) const {
457 return TTIImpl
->isLegalNTStore(DataType
, Alignment
);
460 bool TargetTransformInfo::isLegalNTLoad(Type
*DataType
, Align Alignment
) const {
461 return TTIImpl
->isLegalNTLoad(DataType
, Alignment
);
464 bool TargetTransformInfo::isLegalBroadcastLoad(Type
*ElementTy
,
465 ElementCount NumElements
) const {
466 return TTIImpl
->isLegalBroadcastLoad(ElementTy
, NumElements
);
469 bool TargetTransformInfo::isLegalMaskedGather(Type
*DataType
,
470 Align Alignment
) const {
471 return TTIImpl
->isLegalMaskedGather(DataType
, Alignment
);
474 bool TargetTransformInfo::isLegalAltInstr(
475 VectorType
*VecTy
, unsigned Opcode0
, unsigned Opcode1
,
476 const SmallBitVector
&OpcodeMask
) const {
477 return TTIImpl
->isLegalAltInstr(VecTy
, Opcode0
, Opcode1
, OpcodeMask
);
480 bool TargetTransformInfo::isLegalMaskedScatter(Type
*DataType
,
481 Align Alignment
) const {
482 return TTIImpl
->isLegalMaskedScatter(DataType
, Alignment
);
485 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType
*DataType
,
486 Align Alignment
) const {
487 return TTIImpl
->forceScalarizeMaskedGather(DataType
, Alignment
);
490 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType
*DataType
,
491 Align Alignment
) const {
492 return TTIImpl
->forceScalarizeMaskedScatter(DataType
, Alignment
);
495 bool TargetTransformInfo::isLegalMaskedCompressStore(Type
*DataType
) const {
496 return TTIImpl
->isLegalMaskedCompressStore(DataType
);
499 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type
*DataType
) const {
500 return TTIImpl
->isLegalMaskedExpandLoad(DataType
);
503 bool TargetTransformInfo::enableOrderedReductions() const {
504 return TTIImpl
->enableOrderedReductions();
507 bool TargetTransformInfo::hasDivRemOp(Type
*DataType
, bool IsSigned
) const {
508 return TTIImpl
->hasDivRemOp(DataType
, IsSigned
);
511 bool TargetTransformInfo::hasVolatileVariant(Instruction
*I
,
512 unsigned AddrSpace
) const {
513 return TTIImpl
->hasVolatileVariant(I
, AddrSpace
);
516 bool TargetTransformInfo::prefersVectorizedAddressing() const {
517 return TTIImpl
->prefersVectorizedAddressing();
520 InstructionCost
TargetTransformInfo::getScalingFactorCost(
521 Type
*Ty
, GlobalValue
*BaseGV
, int64_t BaseOffset
, bool HasBaseReg
,
522 int64_t Scale
, unsigned AddrSpace
) const {
523 InstructionCost Cost
= TTIImpl
->getScalingFactorCost(
524 Ty
, BaseGV
, BaseOffset
, HasBaseReg
, Scale
, AddrSpace
);
525 assert(Cost
>= 0 && "TTI should not produce negative costs!");
529 bool TargetTransformInfo::LSRWithInstrQueries() const {
530 return TTIImpl
->LSRWithInstrQueries();
533 bool TargetTransformInfo::isTruncateFree(Type
*Ty1
, Type
*Ty2
) const {
534 return TTIImpl
->isTruncateFree(Ty1
, Ty2
);
537 bool TargetTransformInfo::isProfitableToHoist(Instruction
*I
) const {
538 return TTIImpl
->isProfitableToHoist(I
);
541 bool TargetTransformInfo::useAA() const { return TTIImpl
->useAA(); }
543 bool TargetTransformInfo::isTypeLegal(Type
*Ty
) const {
544 return TTIImpl
->isTypeLegal(Ty
);
547 unsigned TargetTransformInfo::getRegUsageForType(Type
*Ty
) const {
548 return TTIImpl
->getRegUsageForType(Ty
);
551 bool TargetTransformInfo::shouldBuildLookupTables() const {
552 return TTIImpl
->shouldBuildLookupTables();
555 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
557 return TTIImpl
->shouldBuildLookupTablesForConstant(C
);
560 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
561 return TTIImpl
->shouldBuildRelLookupTables();
564 bool TargetTransformInfo::useColdCCForColdCall(Function
&F
) const {
565 return TTIImpl
->useColdCCForColdCall(F
);
568 InstructionCost
TargetTransformInfo::getScalarizationOverhead(
569 VectorType
*Ty
, const APInt
&DemandedElts
, bool Insert
, bool Extract
,
570 TTI::TargetCostKind CostKind
) const {
571 return TTIImpl
->getScalarizationOverhead(Ty
, DemandedElts
, Insert
, Extract
,
575 InstructionCost
TargetTransformInfo::getOperandsScalarizationOverhead(
576 ArrayRef
<const Value
*> Args
, ArrayRef
<Type
*> Tys
,
577 TTI::TargetCostKind CostKind
) const {
578 return TTIImpl
->getOperandsScalarizationOverhead(Args
, Tys
, CostKind
);
581 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
582 return TTIImpl
->supportsEfficientVectorElementLoadStore();
585 bool TargetTransformInfo::supportsTailCalls() const {
586 return TTIImpl
->supportsTailCalls();
589 bool TargetTransformInfo::supportsTailCallFor(const CallBase
*CB
) const {
590 return TTIImpl
->supportsTailCallFor(CB
);
593 bool TargetTransformInfo::enableAggressiveInterleaving(
594 bool LoopHasReductions
) const {
595 return TTIImpl
->enableAggressiveInterleaving(LoopHasReductions
);
598 TargetTransformInfo::MemCmpExpansionOptions
599 TargetTransformInfo::enableMemCmpExpansion(bool OptSize
, bool IsZeroCmp
) const {
600 return TTIImpl
->enableMemCmpExpansion(OptSize
, IsZeroCmp
);
603 bool TargetTransformInfo::enableSelectOptimize() const {
604 return TTIImpl
->enableSelectOptimize();
607 bool TargetTransformInfo::shouldTreatInstructionLikeSelect(
608 const Instruction
*I
) const {
609 return TTIImpl
->shouldTreatInstructionLikeSelect(I
);
612 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
613 return TTIImpl
->enableInterleavedAccessVectorization();
616 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
617 return TTIImpl
->enableMaskedInterleavedAccessVectorization();
620 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
621 return TTIImpl
->isFPVectorizationPotentiallyUnsafe();
625 TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext
&Context
,
627 unsigned AddressSpace
,
629 unsigned *Fast
) const {
630 return TTIImpl
->allowsMisalignedMemoryAccesses(Context
, BitWidth
,
631 AddressSpace
, Alignment
, Fast
);
634 TargetTransformInfo::PopcntSupportKind
635 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit
) const {
636 return TTIImpl
->getPopcntSupport(IntTyWidthInBit
);
639 bool TargetTransformInfo::haveFastSqrt(Type
*Ty
) const {
640 return TTIImpl
->haveFastSqrt(Ty
);
643 bool TargetTransformInfo::isExpensiveToSpeculativelyExecute(
644 const Instruction
*I
) const {
645 return TTIImpl
->isExpensiveToSpeculativelyExecute(I
);
648 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type
*Ty
) const {
649 return TTIImpl
->isFCmpOrdCheaperThanFCmpZero(Ty
);
652 InstructionCost
TargetTransformInfo::getFPOpCost(Type
*Ty
) const {
653 InstructionCost Cost
= TTIImpl
->getFPOpCost(Ty
);
654 assert(Cost
>= 0 && "TTI should not produce negative costs!");
658 InstructionCost
TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode
,
662 InstructionCost Cost
= TTIImpl
->getIntImmCodeSizeCost(Opcode
, Idx
, Imm
, Ty
);
663 assert(Cost
>= 0 && "TTI should not produce negative costs!");
668 TargetTransformInfo::getIntImmCost(const APInt
&Imm
, Type
*Ty
,
669 TTI::TargetCostKind CostKind
) const {
670 InstructionCost Cost
= TTIImpl
->getIntImmCost(Imm
, Ty
, CostKind
);
671 assert(Cost
>= 0 && "TTI should not produce negative costs!");
675 InstructionCost
TargetTransformInfo::getIntImmCostInst(
676 unsigned Opcode
, unsigned Idx
, const APInt
&Imm
, Type
*Ty
,
677 TTI::TargetCostKind CostKind
, Instruction
*Inst
) const {
678 InstructionCost Cost
=
679 TTIImpl
->getIntImmCostInst(Opcode
, Idx
, Imm
, Ty
, CostKind
, Inst
);
680 assert(Cost
>= 0 && "TTI should not produce negative costs!");
685 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID
, unsigned Idx
,
686 const APInt
&Imm
, Type
*Ty
,
687 TTI::TargetCostKind CostKind
) const {
688 InstructionCost Cost
=
689 TTIImpl
->getIntImmCostIntrin(IID
, Idx
, Imm
, Ty
, CostKind
);
690 assert(Cost
>= 0 && "TTI should not produce negative costs!");
694 bool TargetTransformInfo::preferToKeepConstantsAttached(
695 const Instruction
&Inst
, const Function
&Fn
) const {
696 return TTIImpl
->preferToKeepConstantsAttached(Inst
, Fn
);
699 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID
) const {
700 return TTIImpl
->getNumberOfRegisters(ClassID
);
703 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector
,
705 return TTIImpl
->getRegisterClassForType(Vector
, Ty
);
708 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID
) const {
709 return TTIImpl
->getRegisterClassName(ClassID
);
712 TypeSize
TargetTransformInfo::getRegisterBitWidth(
713 TargetTransformInfo::RegisterKind K
) const {
714 return TTIImpl
->getRegisterBitWidth(K
);
717 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
718 return TTIImpl
->getMinVectorRegisterBitWidth();
721 std::optional
<unsigned> TargetTransformInfo::getMaxVScale() const {
722 return TTIImpl
->getMaxVScale();
725 std::optional
<unsigned> TargetTransformInfo::getVScaleForTuning() const {
726 return TTIImpl
->getVScaleForTuning();
729 bool TargetTransformInfo::isVScaleKnownToBeAPowerOfTwo() const {
730 return TTIImpl
->isVScaleKnownToBeAPowerOfTwo();
733 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(
734 TargetTransformInfo::RegisterKind K
) const {
735 return TTIImpl
->shouldMaximizeVectorBandwidth(K
);
738 ElementCount
TargetTransformInfo::getMinimumVF(unsigned ElemWidth
,
739 bool IsScalable
) const {
740 return TTIImpl
->getMinimumVF(ElemWidth
, IsScalable
);
743 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth
,
744 unsigned Opcode
) const {
745 return TTIImpl
->getMaximumVF(ElemWidth
, Opcode
);
748 unsigned TargetTransformInfo::getStoreMinimumVF(unsigned VF
, Type
*ScalarMemTy
,
749 Type
*ScalarValTy
) const {
750 return TTIImpl
->getStoreMinimumVF(VF
, ScalarMemTy
, ScalarValTy
);
753 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
754 const Instruction
&I
, bool &AllowPromotionWithoutCommonHeader
) const {
755 return TTIImpl
->shouldConsiderAddressTypePromotion(
756 I
, AllowPromotionWithoutCommonHeader
);
759 unsigned TargetTransformInfo::getCacheLineSize() const {
760 return CacheLineSize
.getNumOccurrences() > 0 ? CacheLineSize
761 : TTIImpl
->getCacheLineSize();
764 std::optional
<unsigned>
765 TargetTransformInfo::getCacheSize(CacheLevel Level
) const {
766 return TTIImpl
->getCacheSize(Level
);
769 std::optional
<unsigned>
770 TargetTransformInfo::getCacheAssociativity(CacheLevel Level
) const {
771 return TTIImpl
->getCacheAssociativity(Level
);
774 std::optional
<unsigned> TargetTransformInfo::getMinPageSize() const {
775 return MinPageSize
.getNumOccurrences() > 0 ? MinPageSize
776 : TTIImpl
->getMinPageSize();
779 unsigned TargetTransformInfo::getPrefetchDistance() const {
780 return TTIImpl
->getPrefetchDistance();
783 unsigned TargetTransformInfo::getMinPrefetchStride(
784 unsigned NumMemAccesses
, unsigned NumStridedMemAccesses
,
785 unsigned NumPrefetches
, bool HasCall
) const {
786 return TTIImpl
->getMinPrefetchStride(NumMemAccesses
, NumStridedMemAccesses
,
787 NumPrefetches
, HasCall
);
790 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
791 return TTIImpl
->getMaxPrefetchIterationsAhead();
794 bool TargetTransformInfo::enableWritePrefetching() const {
795 return TTIImpl
->enableWritePrefetching();
798 bool TargetTransformInfo::shouldPrefetchAddressSpace(unsigned AS
) const {
799 return TTIImpl
->shouldPrefetchAddressSpace(AS
);
802 unsigned TargetTransformInfo::getMaxInterleaveFactor(ElementCount VF
) const {
803 return TTIImpl
->getMaxInterleaveFactor(VF
);
806 TargetTransformInfo::OperandValueInfo
807 TargetTransformInfo::getOperandInfo(const Value
*V
) {
808 OperandValueKind OpInfo
= OK_AnyValue
;
809 OperandValueProperties OpProps
= OP_None
;
811 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
)) {
812 if (const auto *CI
= dyn_cast
<ConstantInt
>(V
)) {
813 if (CI
->getValue().isPowerOf2())
814 OpProps
= OP_PowerOf2
;
815 else if (CI
->getValue().isNegatedPowerOf2())
816 OpProps
= OP_NegatedPowerOf2
;
818 return {OK_UniformConstantValue
, OpProps
};
821 // A broadcast shuffle creates a uniform value.
822 // TODO: Add support for non-zero index broadcasts.
823 // TODO: Add support for different source vector width.
824 if (const auto *ShuffleInst
= dyn_cast
<ShuffleVectorInst
>(V
))
825 if (ShuffleInst
->isZeroEltSplat())
826 OpInfo
= OK_UniformValue
;
828 const Value
*Splat
= getSplatValue(V
);
830 // Check for a splat of a constant or for a non uniform vector of constants
831 // and check if the constant(s) are all powers of two.
832 if (isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) {
833 OpInfo
= OK_NonUniformConstantValue
;
835 OpInfo
= OK_UniformConstantValue
;
836 if (auto *CI
= dyn_cast
<ConstantInt
>(Splat
)) {
837 if (CI
->getValue().isPowerOf2())
838 OpProps
= OP_PowerOf2
;
839 else if (CI
->getValue().isNegatedPowerOf2())
840 OpProps
= OP_NegatedPowerOf2
;
842 } else if (const auto *CDS
= dyn_cast
<ConstantDataSequential
>(V
)) {
843 bool AllPow2
= true, AllNegPow2
= true;
844 for (unsigned I
= 0, E
= CDS
->getNumElements(); I
!= E
; ++I
) {
845 if (auto *CI
= dyn_cast
<ConstantInt
>(CDS
->getElementAsConstant(I
))) {
846 AllPow2
&= CI
->getValue().isPowerOf2();
847 AllNegPow2
&= CI
->getValue().isNegatedPowerOf2();
848 if (AllPow2
|| AllNegPow2
)
851 AllPow2
= AllNegPow2
= false;
854 OpProps
= AllPow2
? OP_PowerOf2
: OpProps
;
855 OpProps
= AllNegPow2
? OP_NegatedPowerOf2
: OpProps
;
859 // Check for a splat of a uniform value. This is not loop aware, so return
860 // true only for the obviously uniform cases (argument, globalvalue)
861 if (Splat
&& (isa
<Argument
>(Splat
) || isa
<GlobalValue
>(Splat
)))
862 OpInfo
= OK_UniformValue
;
864 return {OpInfo
, OpProps
};
867 InstructionCost
TargetTransformInfo::getArithmeticInstrCost(
868 unsigned Opcode
, Type
*Ty
, TTI::TargetCostKind CostKind
,
869 OperandValueInfo Op1Info
, OperandValueInfo Op2Info
,
870 ArrayRef
<const Value
*> Args
, const Instruction
*CxtI
) const {
871 InstructionCost Cost
=
872 TTIImpl
->getArithmeticInstrCost(Opcode
, Ty
, CostKind
,
875 assert(Cost
>= 0 && "TTI should not produce negative costs!");
879 InstructionCost
TargetTransformInfo::getAltInstrCost(
880 VectorType
*VecTy
, unsigned Opcode0
, unsigned Opcode1
,
881 const SmallBitVector
&OpcodeMask
, TTI::TargetCostKind CostKind
) const {
882 InstructionCost Cost
=
883 TTIImpl
->getAltInstrCost(VecTy
, Opcode0
, Opcode1
, OpcodeMask
, CostKind
);
884 assert(Cost
>= 0 && "TTI should not produce negative costs!");
888 InstructionCost
TargetTransformInfo::getShuffleCost(
889 ShuffleKind Kind
, VectorType
*Ty
, ArrayRef
<int> Mask
,
890 TTI::TargetCostKind CostKind
, int Index
, VectorType
*SubTp
,
891 ArrayRef
<const Value
*> Args
) const {
892 InstructionCost Cost
=
893 TTIImpl
->getShuffleCost(Kind
, Ty
, Mask
, CostKind
, Index
, SubTp
, Args
);
894 assert(Cost
>= 0 && "TTI should not produce negative costs!");
899 TargetTransformInfo::getCastContextHint(const Instruction
*I
) {
901 return CastContextHint::None
;
903 auto getLoadStoreKind
= [](const Value
*V
, unsigned LdStOp
, unsigned MaskedOp
,
904 unsigned GatScatOp
) {
905 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
907 return CastContextHint::None
;
909 if (I
->getOpcode() == LdStOp
)
910 return CastContextHint::Normal
;
912 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
913 if (II
->getIntrinsicID() == MaskedOp
)
914 return TTI::CastContextHint::Masked
;
915 if (II
->getIntrinsicID() == GatScatOp
)
916 return TTI::CastContextHint::GatherScatter
;
919 return TTI::CastContextHint::None
;
922 switch (I
->getOpcode()) {
923 case Instruction::ZExt
:
924 case Instruction::SExt
:
925 case Instruction::FPExt
:
926 return getLoadStoreKind(I
->getOperand(0), Instruction::Load
,
927 Intrinsic::masked_load
, Intrinsic::masked_gather
);
928 case Instruction::Trunc
:
929 case Instruction::FPTrunc
:
931 return getLoadStoreKind(*I
->user_begin(), Instruction::Store
,
932 Intrinsic::masked_store
,
933 Intrinsic::masked_scatter
);
936 return CastContextHint::None
;
939 return TTI::CastContextHint::None
;
942 InstructionCost
TargetTransformInfo::getCastInstrCost(
943 unsigned Opcode
, Type
*Dst
, Type
*Src
, CastContextHint CCH
,
944 TTI::TargetCostKind CostKind
, const Instruction
*I
) const {
945 assert((I
== nullptr || I
->getOpcode() == Opcode
) &&
946 "Opcode should reflect passed instruction.");
947 InstructionCost Cost
=
948 TTIImpl
->getCastInstrCost(Opcode
, Dst
, Src
, CCH
, CostKind
, I
);
949 assert(Cost
>= 0 && "TTI should not produce negative costs!");
953 InstructionCost
TargetTransformInfo::getExtractWithExtendCost(
954 unsigned Opcode
, Type
*Dst
, VectorType
*VecTy
, unsigned Index
) const {
955 InstructionCost Cost
=
956 TTIImpl
->getExtractWithExtendCost(Opcode
, Dst
, VecTy
, Index
);
957 assert(Cost
>= 0 && "TTI should not produce negative costs!");
961 InstructionCost
TargetTransformInfo::getCFInstrCost(
962 unsigned Opcode
, TTI::TargetCostKind CostKind
, const Instruction
*I
) const {
963 assert((I
== nullptr || I
->getOpcode() == Opcode
) &&
964 "Opcode should reflect passed instruction.");
965 InstructionCost Cost
= TTIImpl
->getCFInstrCost(Opcode
, CostKind
, I
);
966 assert(Cost
>= 0 && "TTI should not produce negative costs!");
970 InstructionCost
TargetTransformInfo::getCmpSelInstrCost(
971 unsigned Opcode
, Type
*ValTy
, Type
*CondTy
, CmpInst::Predicate VecPred
,
972 TTI::TargetCostKind CostKind
, const Instruction
*I
) const {
973 assert((I
== nullptr || I
->getOpcode() == Opcode
) &&
974 "Opcode should reflect passed instruction.");
975 InstructionCost Cost
=
976 TTIImpl
->getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, VecPred
, CostKind
, I
);
977 assert(Cost
>= 0 && "TTI should not produce negative costs!");
981 InstructionCost
TargetTransformInfo::getVectorInstrCost(
982 unsigned Opcode
, Type
*Val
, TTI::TargetCostKind CostKind
, unsigned Index
,
983 Value
*Op0
, Value
*Op1
) const {
984 // FIXME: Assert that Opcode is either InsertElement or ExtractElement.
985 // This is mentioned in the interface description and respected by all
986 // callers, but never asserted upon.
987 InstructionCost Cost
=
988 TTIImpl
->getVectorInstrCost(Opcode
, Val
, CostKind
, Index
, Op0
, Op1
);
989 assert(Cost
>= 0 && "TTI should not produce negative costs!");
994 TargetTransformInfo::getVectorInstrCost(const Instruction
&I
, Type
*Val
,
995 TTI::TargetCostKind CostKind
,
996 unsigned Index
) const {
997 // FIXME: Assert that Opcode is either InsertElement or ExtractElement.
998 // This is mentioned in the interface description and respected by all
999 // callers, but never asserted upon.
1000 InstructionCost Cost
= TTIImpl
->getVectorInstrCost(I
, Val
, CostKind
, Index
);
1001 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1005 InstructionCost
TargetTransformInfo::getReplicationShuffleCost(
1006 Type
*EltTy
, int ReplicationFactor
, int VF
, const APInt
&DemandedDstElts
,
1007 TTI::TargetCostKind CostKind
) {
1008 InstructionCost Cost
= TTIImpl
->getReplicationShuffleCost(
1009 EltTy
, ReplicationFactor
, VF
, DemandedDstElts
, CostKind
);
1010 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1014 InstructionCost
TargetTransformInfo::getMemoryOpCost(
1015 unsigned Opcode
, Type
*Src
, Align Alignment
, unsigned AddressSpace
,
1016 TTI::TargetCostKind CostKind
, TTI::OperandValueInfo OpInfo
,
1017 const Instruction
*I
) const {
1018 assert((I
== nullptr || I
->getOpcode() == Opcode
) &&
1019 "Opcode should reflect passed instruction.");
1020 InstructionCost Cost
= TTIImpl
->getMemoryOpCost(
1021 Opcode
, Src
, Alignment
, AddressSpace
, CostKind
, OpInfo
, I
);
1022 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1026 InstructionCost
TargetTransformInfo::getMaskedMemoryOpCost(
1027 unsigned Opcode
, Type
*Src
, Align Alignment
, unsigned AddressSpace
,
1028 TTI::TargetCostKind CostKind
) const {
1029 InstructionCost Cost
= TTIImpl
->getMaskedMemoryOpCost(Opcode
, Src
, Alignment
,
1030 AddressSpace
, CostKind
);
1031 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1035 InstructionCost
TargetTransformInfo::getGatherScatterOpCost(
1036 unsigned Opcode
, Type
*DataTy
, const Value
*Ptr
, bool VariableMask
,
1037 Align Alignment
, TTI::TargetCostKind CostKind
, const Instruction
*I
) const {
1038 InstructionCost Cost
= TTIImpl
->getGatherScatterOpCost(
1039 Opcode
, DataTy
, Ptr
, VariableMask
, Alignment
, CostKind
, I
);
1040 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1044 InstructionCost
TargetTransformInfo::getInterleavedMemoryOpCost(
1045 unsigned Opcode
, Type
*VecTy
, unsigned Factor
, ArrayRef
<unsigned> Indices
,
1046 Align Alignment
, unsigned AddressSpace
, TTI::TargetCostKind CostKind
,
1047 bool UseMaskForCond
, bool UseMaskForGaps
) const {
1048 InstructionCost Cost
= TTIImpl
->getInterleavedMemoryOpCost(
1049 Opcode
, VecTy
, Factor
, Indices
, Alignment
, AddressSpace
, CostKind
,
1050 UseMaskForCond
, UseMaskForGaps
);
1051 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1056 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes
&ICA
,
1057 TTI::TargetCostKind CostKind
) const {
1058 InstructionCost Cost
= TTIImpl
->getIntrinsicInstrCost(ICA
, CostKind
);
1059 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1064 TargetTransformInfo::getCallInstrCost(Function
*F
, Type
*RetTy
,
1065 ArrayRef
<Type
*> Tys
,
1066 TTI::TargetCostKind CostKind
) const {
1067 InstructionCost Cost
= TTIImpl
->getCallInstrCost(F
, RetTy
, Tys
, CostKind
);
1068 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1072 unsigned TargetTransformInfo::getNumberOfParts(Type
*Tp
) const {
1073 return TTIImpl
->getNumberOfParts(Tp
);
1077 TargetTransformInfo::getAddressComputationCost(Type
*Tp
, ScalarEvolution
*SE
,
1078 const SCEV
*Ptr
) const {
1079 InstructionCost Cost
= TTIImpl
->getAddressComputationCost(Tp
, SE
, Ptr
);
1080 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1084 InstructionCost
TargetTransformInfo::getMemcpyCost(const Instruction
*I
) const {
1085 InstructionCost Cost
= TTIImpl
->getMemcpyCost(I
);
1086 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1090 uint64_t TargetTransformInfo::getMaxMemIntrinsicInlineSizeThreshold() const {
1091 return TTIImpl
->getMaxMemIntrinsicInlineSizeThreshold();
1094 InstructionCost
TargetTransformInfo::getArithmeticReductionCost(
1095 unsigned Opcode
, VectorType
*Ty
, std::optional
<FastMathFlags
> FMF
,
1096 TTI::TargetCostKind CostKind
) const {
1097 InstructionCost Cost
=
1098 TTIImpl
->getArithmeticReductionCost(Opcode
, Ty
, FMF
, CostKind
);
1099 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1103 InstructionCost
TargetTransformInfo::getMinMaxReductionCost(
1104 Intrinsic::ID IID
, VectorType
*Ty
, FastMathFlags FMF
,
1105 TTI::TargetCostKind CostKind
) const {
1106 InstructionCost Cost
=
1107 TTIImpl
->getMinMaxReductionCost(IID
, Ty
, FMF
, CostKind
);
1108 assert(Cost
>= 0 && "TTI should not produce negative costs!");
1112 InstructionCost
TargetTransformInfo::getExtendedReductionCost(
1113 unsigned Opcode
, bool IsUnsigned
, Type
*ResTy
, VectorType
*Ty
,
1114 FastMathFlags FMF
, TTI::TargetCostKind CostKind
) const {
1115 return TTIImpl
->getExtendedReductionCost(Opcode
, IsUnsigned
, ResTy
, Ty
, FMF
,
1119 InstructionCost
TargetTransformInfo::getMulAccReductionCost(
1120 bool IsUnsigned
, Type
*ResTy
, VectorType
*Ty
,
1121 TTI::TargetCostKind CostKind
) const {
1122 return TTIImpl
->getMulAccReductionCost(IsUnsigned
, ResTy
, Ty
, CostKind
);
1126 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef
<Type
*> Tys
) const {
1127 return TTIImpl
->getCostOfKeepingLiveOverCall(Tys
);
1130 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst
*Inst
,
1131 MemIntrinsicInfo
&Info
) const {
1132 return TTIImpl
->getTgtMemIntrinsic(Inst
, Info
);
1135 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
1136 return TTIImpl
->getAtomicMemIntrinsicMaxElementSize();
1139 Value
*TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
1140 IntrinsicInst
*Inst
, Type
*ExpectedType
) const {
1141 return TTIImpl
->getOrCreateResultFromMemIntrinsic(Inst
, ExpectedType
);
1144 Type
*TargetTransformInfo::getMemcpyLoopLoweringType(
1145 LLVMContext
&Context
, Value
*Length
, unsigned SrcAddrSpace
,
1146 unsigned DestAddrSpace
, unsigned SrcAlign
, unsigned DestAlign
,
1147 std::optional
<uint32_t> AtomicElementSize
) const {
1148 return TTIImpl
->getMemcpyLoopLoweringType(Context
, Length
, SrcAddrSpace
,
1149 DestAddrSpace
, SrcAlign
, DestAlign
,
1153 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
1154 SmallVectorImpl
<Type
*> &OpsOut
, LLVMContext
&Context
,
1155 unsigned RemainingBytes
, unsigned SrcAddrSpace
, unsigned DestAddrSpace
,
1156 unsigned SrcAlign
, unsigned DestAlign
,
1157 std::optional
<uint32_t> AtomicCpySize
) const {
1158 TTIImpl
->getMemcpyLoopResidualLoweringType(
1159 OpsOut
, Context
, RemainingBytes
, SrcAddrSpace
, DestAddrSpace
, SrcAlign
,
1160 DestAlign
, AtomicCpySize
);
1163 bool TargetTransformInfo::areInlineCompatible(const Function
*Caller
,
1164 const Function
*Callee
) const {
1165 return TTIImpl
->areInlineCompatible(Caller
, Callee
);
1169 TargetTransformInfo::getInlineCallPenalty(const Function
*F
,
1170 const CallBase
&Call
,
1171 unsigned DefaultCallPenalty
) const {
1172 return TTIImpl
->getInlineCallPenalty(F
, Call
, DefaultCallPenalty
);
1175 bool TargetTransformInfo::areTypesABICompatible(
1176 const Function
*Caller
, const Function
*Callee
,
1177 const ArrayRef
<Type
*> &Types
) const {
1178 return TTIImpl
->areTypesABICompatible(Caller
, Callee
, Types
);
1181 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode
,
1183 return TTIImpl
->isIndexedLoadLegal(Mode
, Ty
);
1186 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode
,
1188 return TTIImpl
->isIndexedStoreLegal(Mode
, Ty
);
1191 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS
) const {
1192 return TTIImpl
->getLoadStoreVecRegBitWidth(AS
);
1195 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst
*LI
) const {
1196 return TTIImpl
->isLegalToVectorizeLoad(LI
);
1199 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst
*SI
) const {
1200 return TTIImpl
->isLegalToVectorizeStore(SI
);
1203 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1204 unsigned ChainSizeInBytes
, Align Alignment
, unsigned AddrSpace
) const {
1205 return TTIImpl
->isLegalToVectorizeLoadChain(ChainSizeInBytes
, Alignment
,
1209 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1210 unsigned ChainSizeInBytes
, Align Alignment
, unsigned AddrSpace
) const {
1211 return TTIImpl
->isLegalToVectorizeStoreChain(ChainSizeInBytes
, Alignment
,
1215 bool TargetTransformInfo::isLegalToVectorizeReduction(
1216 const RecurrenceDescriptor
&RdxDesc
, ElementCount VF
) const {
1217 return TTIImpl
->isLegalToVectorizeReduction(RdxDesc
, VF
);
1220 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type
*Ty
) const {
1221 return TTIImpl
->isElementTypeLegalForScalableVector(Ty
);
1224 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF
,
1226 unsigned ChainSizeInBytes
,
1227 VectorType
*VecTy
) const {
1228 return TTIImpl
->getLoadVectorFactor(VF
, LoadSize
, ChainSizeInBytes
, VecTy
);
1231 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF
,
1233 unsigned ChainSizeInBytes
,
1234 VectorType
*VecTy
) const {
1235 return TTIImpl
->getStoreVectorFactor(VF
, StoreSize
, ChainSizeInBytes
, VecTy
);
1238 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode
, Type
*Ty
,
1239 ReductionFlags Flags
) const {
1240 return TTIImpl
->preferInLoopReduction(Opcode
, Ty
, Flags
);
1243 bool TargetTransformInfo::preferPredicatedReductionSelect(
1244 unsigned Opcode
, Type
*Ty
, ReductionFlags Flags
) const {
1245 return TTIImpl
->preferPredicatedReductionSelect(Opcode
, Ty
, Flags
);
1248 bool TargetTransformInfo::preferEpilogueVectorization() const {
1249 return TTIImpl
->preferEpilogueVectorization();
1252 TargetTransformInfo::VPLegalization
1253 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic
&VPI
) const {
1254 return TTIImpl
->getVPLegalizationStrategy(VPI
);
1257 bool TargetTransformInfo::hasArmWideBranch(bool Thumb
) const {
1258 return TTIImpl
->hasArmWideBranch(Thumb
);
1261 unsigned TargetTransformInfo::getMaxNumArgs() const {
1262 return TTIImpl
->getMaxNumArgs();
1265 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst
*II
) const {
1266 return TTIImpl
->shouldExpandReduction(II
);
1269 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1270 return TTIImpl
->getGISelRematGlobalCost();
1273 unsigned TargetTransformInfo::getMinTripCountTailFoldingThreshold() const {
1274 return TTIImpl
->getMinTripCountTailFoldingThreshold();
1277 bool TargetTransformInfo::supportsScalableVectors() const {
1278 return TTIImpl
->supportsScalableVectors();
1281 bool TargetTransformInfo::enableScalableVectorization() const {
1282 return TTIImpl
->enableScalableVectorization();
1285 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode
, Type
*DataType
,
1286 Align Alignment
) const {
1287 return TTIImpl
->hasActiveVectorLength(Opcode
, DataType
, Alignment
);
1290 TargetTransformInfo::Concept::~Concept() = default;
1292 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI
) {}
1294 TargetIRAnalysis::TargetIRAnalysis(
1295 std::function
<Result(const Function
&)> TTICallback
)
1296 : TTICallback(std::move(TTICallback
)) {}
1298 TargetIRAnalysis::Result
TargetIRAnalysis::run(const Function
&F
,
1299 FunctionAnalysisManager
&) {
1300 return TTICallback(F
);
1303 AnalysisKey
TargetIRAnalysis::Key
;
1305 TargetIRAnalysis::Result
TargetIRAnalysis::getDefaultTTI(const Function
&F
) {
1306 return Result(F
.getParent()->getDataLayout());
1309 // Register the basic pass.
1310 INITIALIZE_PASS(TargetTransformInfoWrapperPass
, "tti",
1311 "Target Transform Information", false, true)
1312 char TargetTransformInfoWrapperPass::ID
= 0;
1314 void TargetTransformInfoWrapperPass::anchor() {}
1316 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1317 : ImmutablePass(ID
) {
1318 initializeTargetTransformInfoWrapperPassPass(
1319 *PassRegistry::getPassRegistry());
1322 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1323 TargetIRAnalysis TIRA
)
1324 : ImmutablePass(ID
), TIRA(std::move(TIRA
)) {
1325 initializeTargetTransformInfoWrapperPassPass(
1326 *PassRegistry::getPassRegistry());
1329 TargetTransformInfo
&TargetTransformInfoWrapperPass::getTTI(const Function
&F
) {
1330 FunctionAnalysisManager DummyFAM
;
1331 TTI
= TIRA
.run(F
, DummyFAM
);
1336 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA
) {
1337 return new TargetTransformInfoWrapperPass(std::move(TIRA
));