[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / AsmParser / LLParser.cpp
blobd6c5993797de11127b31e2718cbf2023bcf016ab
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/ModRef.h"
49 #include "llvm/Support/SaveAndRestore.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstring>
54 #include <optional>
55 #include <vector>
57 using namespace llvm;
59 static cl::opt<bool> AllowIncompleteIR(
60 "allow-incomplete-ir", cl::init(false), cl::Hidden,
61 cl::desc(
62 "Allow incomplete IR on a best effort basis (references to unknown "
63 "metadata will be dropped)"));
65 static std::string getTypeString(Type *T) {
66 std::string Result;
67 raw_string_ostream Tmp(Result);
68 Tmp << *T;
69 return Tmp.str();
72 /// Run: module ::= toplevelentity*
73 bool LLParser::Run(bool UpgradeDebugInfo,
74 DataLayoutCallbackTy DataLayoutCallback) {
75 // Prime the lexer.
76 Lex.Lex();
78 if (Context.shouldDiscardValueNames())
79 return error(
80 Lex.getLoc(),
81 "Can't read textual IR with a Context that discards named Values");
83 if (M) {
84 if (parseTargetDefinitions(DataLayoutCallback))
85 return true;
88 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
89 validateEndOfIndex();
92 bool LLParser::parseStandaloneConstantValue(Constant *&C,
93 const SlotMapping *Slots) {
94 restoreParsingState(Slots);
95 Lex.Lex();
97 Type *Ty = nullptr;
98 if (parseType(Ty) || parseConstantValue(Ty, C))
99 return true;
100 if (Lex.getKind() != lltok::Eof)
101 return error(Lex.getLoc(), "expected end of string");
102 return false;
105 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
106 const SlotMapping *Slots) {
107 restoreParsingState(Slots);
108 Lex.Lex();
110 Read = 0;
111 SMLoc Start = Lex.getLoc();
112 Ty = nullptr;
113 if (parseType(Ty))
114 return true;
115 SMLoc End = Lex.getLoc();
116 Read = End.getPointer() - Start.getPointer();
118 return false;
121 void LLParser::restoreParsingState(const SlotMapping *Slots) {
122 if (!Slots)
123 return;
124 NumberedVals = Slots->GlobalValues;
125 NumberedMetadata = Slots->MetadataNodes;
126 for (const auto &I : Slots->NamedTypes)
127 NamedTypes.insert(
128 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
129 for (const auto &I : Slots->Types)
130 NumberedTypes.insert(
131 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
134 static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) {
135 // White-list intrinsics that are safe to drop.
136 if (!isa<DbgInfoIntrinsic>(II) &&
137 II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl)
138 return;
140 SmallVector<MetadataAsValue *> MVs;
141 for (Value *V : II->args())
142 if (auto *MV = dyn_cast<MetadataAsValue>(V))
143 if (auto *MD = dyn_cast<MDNode>(MV->getMetadata()))
144 if (MD->isTemporary())
145 MVs.push_back(MV);
147 if (!MVs.empty()) {
148 assert(II->use_empty() && "Cannot have uses");
149 II->eraseFromParent();
151 // Also remove no longer used MetadataAsValue wrappers.
152 for (MetadataAsValue *MV : MVs)
153 if (MV->use_empty())
154 delete MV;
158 void LLParser::dropUnknownMetadataReferences() {
159 auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); };
160 for (Function &F : *M) {
161 F.eraseMetadataIf(Pred);
162 for (Instruction &I : make_early_inc_range(instructions(F))) {
163 I.eraseMetadataIf(Pred);
165 if (auto *II = dyn_cast<IntrinsicInst>(&I))
166 dropIntrinsicWithUnknownMetadataArgument(II);
170 for (GlobalVariable &GV : M->globals())
171 GV.eraseMetadataIf(Pred);
173 for (const auto &[ID, Info] : make_early_inc_range(ForwardRefMDNodes)) {
174 // Check whether there is only a single use left, which would be in our
175 // own NumberedMetadata.
176 if (Info.first->getNumTemporaryUses() == 1) {
177 NumberedMetadata.erase(ID);
178 ForwardRefMDNodes.erase(ID);
183 /// validateEndOfModule - Do final validity and basic correctness checks at the
184 /// end of the module.
185 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
186 if (!M)
187 return false;
188 // Handle any function attribute group forward references.
189 for (const auto &RAG : ForwardRefAttrGroups) {
190 Value *V = RAG.first;
191 const std::vector<unsigned> &Attrs = RAG.second;
192 AttrBuilder B(Context);
194 for (const auto &Attr : Attrs) {
195 auto R = NumberedAttrBuilders.find(Attr);
196 if (R != NumberedAttrBuilders.end())
197 B.merge(R->second);
200 if (Function *Fn = dyn_cast<Function>(V)) {
201 AttributeList AS = Fn->getAttributes();
202 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
203 AS = AS.removeFnAttributes(Context);
205 FnAttrs.merge(B);
207 // If the alignment was parsed as an attribute, move to the alignment
208 // field.
209 if (MaybeAlign A = FnAttrs.getAlignment()) {
210 Fn->setAlignment(*A);
211 FnAttrs.removeAttribute(Attribute::Alignment);
214 AS = AS.addFnAttributes(Context, FnAttrs);
215 Fn->setAttributes(AS);
216 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
217 AttributeList AS = CI->getAttributes();
218 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
219 AS = AS.removeFnAttributes(Context);
220 FnAttrs.merge(B);
221 AS = AS.addFnAttributes(Context, FnAttrs);
222 CI->setAttributes(AS);
223 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
224 AttributeList AS = II->getAttributes();
225 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
226 AS = AS.removeFnAttributes(Context);
227 FnAttrs.merge(B);
228 AS = AS.addFnAttributes(Context, FnAttrs);
229 II->setAttributes(AS);
230 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
231 AttributeList AS = CBI->getAttributes();
232 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
233 AS = AS.removeFnAttributes(Context);
234 FnAttrs.merge(B);
235 AS = AS.addFnAttributes(Context, FnAttrs);
236 CBI->setAttributes(AS);
237 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
238 AttrBuilder Attrs(M->getContext(), GV->getAttributes());
239 Attrs.merge(B);
240 GV->setAttributes(AttributeSet::get(Context,Attrs));
241 } else {
242 llvm_unreachable("invalid object with forward attribute group reference");
246 // If there are entries in ForwardRefBlockAddresses at this point, the
247 // function was never defined.
248 if (!ForwardRefBlockAddresses.empty())
249 return error(ForwardRefBlockAddresses.begin()->first.Loc,
250 "expected function name in blockaddress");
252 auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef,
253 GlobalValue *FwdRef) {
254 GlobalValue *GV = nullptr;
255 if (GVRef.Kind == ValID::t_GlobalName) {
256 GV = M->getNamedValue(GVRef.StrVal);
257 } else if (GVRef.UIntVal < NumberedVals.size()) {
258 GV = dyn_cast<GlobalValue>(NumberedVals[GVRef.UIntVal]);
261 if (!GV)
262 return error(GVRef.Loc, "unknown function '" + GVRef.StrVal +
263 "' referenced by dso_local_equivalent");
265 if (!GV->getValueType()->isFunctionTy())
266 return error(GVRef.Loc,
267 "expected a function, alias to function, or ifunc "
268 "in dso_local_equivalent");
270 auto *Equiv = DSOLocalEquivalent::get(GV);
271 FwdRef->replaceAllUsesWith(Equiv);
272 FwdRef->eraseFromParent();
273 return false;
276 // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this
277 // point, they are references after the function was defined. Resolve those
278 // now.
279 for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) {
280 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
281 return true;
283 for (auto &Iter : ForwardRefDSOLocalEquivalentNames) {
284 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
285 return true;
287 ForwardRefDSOLocalEquivalentIDs.clear();
288 ForwardRefDSOLocalEquivalentNames.clear();
290 for (const auto &NT : NumberedTypes)
291 if (NT.second.second.isValid())
292 return error(NT.second.second,
293 "use of undefined type '%" + Twine(NT.first) + "'");
295 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
296 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
297 if (I->second.second.isValid())
298 return error(I->second.second,
299 "use of undefined type named '" + I->getKey() + "'");
301 if (!ForwardRefComdats.empty())
302 return error(ForwardRefComdats.begin()->second,
303 "use of undefined comdat '$" +
304 ForwardRefComdats.begin()->first + "'");
306 // Automatically create declarations for intrinsics. Intrinsics can only be
307 // called directly, so the call function type directly determines the
308 // declaration function type.
309 for (const auto &[Name, Info] : make_early_inc_range(ForwardRefVals)) {
310 if (!StringRef(Name).starts_with("llvm."))
311 continue;
313 // Don't do anything if the intrinsic is called with different function
314 // types. This would result in a verifier error anyway.
315 auto GetCommonFunctionType = [](Value *V) -> FunctionType * {
316 FunctionType *FTy = nullptr;
317 for (User *U : V->users()) {
318 auto *CB = dyn_cast<CallBase>(U);
319 if (!CB || (FTy && FTy != CB->getFunctionType()))
320 return nullptr;
321 FTy = CB->getFunctionType();
323 return FTy;
325 if (FunctionType *FTy = GetCommonFunctionType(Info.first)) {
326 Function *Fn =
327 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
328 Info.first->replaceAllUsesWith(Fn);
329 Info.first->eraseFromParent();
330 ForwardRefVals.erase(Name);
334 if (!ForwardRefVals.empty())
335 return error(ForwardRefVals.begin()->second.second,
336 "use of undefined value '@" + ForwardRefVals.begin()->first +
337 "'");
339 if (!ForwardRefValIDs.empty())
340 return error(ForwardRefValIDs.begin()->second.second,
341 "use of undefined value '@" +
342 Twine(ForwardRefValIDs.begin()->first) + "'");
344 if (AllowIncompleteIR && !ForwardRefMDNodes.empty())
345 dropUnknownMetadataReferences();
347 if (!ForwardRefMDNodes.empty())
348 return error(ForwardRefMDNodes.begin()->second.second,
349 "use of undefined metadata '!" +
350 Twine(ForwardRefMDNodes.begin()->first) + "'");
352 // Resolve metadata cycles.
353 for (auto &N : NumberedMetadata) {
354 if (N.second && !N.second->isResolved())
355 N.second->resolveCycles();
358 for (auto *Inst : InstsWithTBAATag) {
359 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
360 // With incomplete IR, the tbaa metadata may have been dropped.
361 if (!AllowIncompleteIR)
362 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
363 if (MD) {
364 auto *UpgradedMD = UpgradeTBAANode(*MD);
365 if (MD != UpgradedMD)
366 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
370 // Look for intrinsic functions and CallInst that need to be upgraded. We use
371 // make_early_inc_range here because we may remove some functions.
372 for (Function &F : llvm::make_early_inc_range(*M))
373 UpgradeCallsToIntrinsic(&F);
375 if (UpgradeDebugInfo)
376 llvm::UpgradeDebugInfo(*M);
378 UpgradeModuleFlags(*M);
379 UpgradeSectionAttributes(*M);
381 if (!Slots)
382 return false;
383 // Initialize the slot mapping.
384 // Because by this point we've parsed and validated everything, we can "steal"
385 // the mapping from LLParser as it doesn't need it anymore.
386 Slots->GlobalValues = std::move(NumberedVals);
387 Slots->MetadataNodes = std::move(NumberedMetadata);
388 for (const auto &I : NamedTypes)
389 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
390 for (const auto &I : NumberedTypes)
391 Slots->Types.insert(std::make_pair(I.first, I.second.first));
393 return false;
396 /// Do final validity and basic correctness checks at the end of the index.
397 bool LLParser::validateEndOfIndex() {
398 if (!Index)
399 return false;
401 if (!ForwardRefValueInfos.empty())
402 return error(ForwardRefValueInfos.begin()->second.front().second,
403 "use of undefined summary '^" +
404 Twine(ForwardRefValueInfos.begin()->first) + "'");
406 if (!ForwardRefAliasees.empty())
407 return error(ForwardRefAliasees.begin()->second.front().second,
408 "use of undefined summary '^" +
409 Twine(ForwardRefAliasees.begin()->first) + "'");
411 if (!ForwardRefTypeIds.empty())
412 return error(ForwardRefTypeIds.begin()->second.front().second,
413 "use of undefined type id summary '^" +
414 Twine(ForwardRefTypeIds.begin()->first) + "'");
416 return false;
419 //===----------------------------------------------------------------------===//
420 // Top-Level Entities
421 //===----------------------------------------------------------------------===//
423 bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) {
424 // Delay parsing of the data layout string until the target triple is known.
425 // Then, pass both the the target triple and the tentative data layout string
426 // to DataLayoutCallback, allowing to override the DL string.
427 // This enables importing modules with invalid DL strings.
428 std::string TentativeDLStr = M->getDataLayoutStr();
429 LocTy DLStrLoc;
431 bool Done = false;
432 while (!Done) {
433 switch (Lex.getKind()) {
434 case lltok::kw_target:
435 if (parseTargetDefinition(TentativeDLStr, DLStrLoc))
436 return true;
437 break;
438 case lltok::kw_source_filename:
439 if (parseSourceFileName())
440 return true;
441 break;
442 default:
443 Done = true;
446 // Run the override callback to potentially change the data layout string, and
447 // parse the data layout string.
448 if (auto LayoutOverride =
449 DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) {
450 TentativeDLStr = *LayoutOverride;
451 DLStrLoc = {};
453 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr);
454 if (!MaybeDL)
455 return error(DLStrLoc, toString(MaybeDL.takeError()));
456 M->setDataLayout(MaybeDL.get());
457 return false;
460 bool LLParser::parseTopLevelEntities() {
461 // If there is no Module, then parse just the summary index entries.
462 if (!M) {
463 while (true) {
464 switch (Lex.getKind()) {
465 case lltok::Eof:
466 return false;
467 case lltok::SummaryID:
468 if (parseSummaryEntry())
469 return true;
470 break;
471 case lltok::kw_source_filename:
472 if (parseSourceFileName())
473 return true;
474 break;
475 default:
476 // Skip everything else
477 Lex.Lex();
481 while (true) {
482 switch (Lex.getKind()) {
483 default:
484 return tokError("expected top-level entity");
485 case lltok::Eof: return false;
486 case lltok::kw_declare:
487 if (parseDeclare())
488 return true;
489 break;
490 case lltok::kw_define:
491 if (parseDefine())
492 return true;
493 break;
494 case lltok::kw_module:
495 if (parseModuleAsm())
496 return true;
497 break;
498 case lltok::LocalVarID:
499 if (parseUnnamedType())
500 return true;
501 break;
502 case lltok::LocalVar:
503 if (parseNamedType())
504 return true;
505 break;
506 case lltok::GlobalID:
507 if (parseUnnamedGlobal())
508 return true;
509 break;
510 case lltok::GlobalVar:
511 if (parseNamedGlobal())
512 return true;
513 break;
514 case lltok::ComdatVar: if (parseComdat()) return true; break;
515 case lltok::exclaim:
516 if (parseStandaloneMetadata())
517 return true;
518 break;
519 case lltok::SummaryID:
520 if (parseSummaryEntry())
521 return true;
522 break;
523 case lltok::MetadataVar:
524 if (parseNamedMetadata())
525 return true;
526 break;
527 case lltok::kw_attributes:
528 if (parseUnnamedAttrGrp())
529 return true;
530 break;
531 case lltok::kw_uselistorder:
532 if (parseUseListOrder())
533 return true;
534 break;
535 case lltok::kw_uselistorder_bb:
536 if (parseUseListOrderBB())
537 return true;
538 break;
543 /// toplevelentity
544 /// ::= 'module' 'asm' STRINGCONSTANT
545 bool LLParser::parseModuleAsm() {
546 assert(Lex.getKind() == lltok::kw_module);
547 Lex.Lex();
549 std::string AsmStr;
550 if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
551 parseStringConstant(AsmStr))
552 return true;
554 M->appendModuleInlineAsm(AsmStr);
555 return false;
558 /// toplevelentity
559 /// ::= 'target' 'triple' '=' STRINGCONSTANT
560 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
561 bool LLParser::parseTargetDefinition(std::string &TentativeDLStr,
562 LocTy &DLStrLoc) {
563 assert(Lex.getKind() == lltok::kw_target);
564 std::string Str;
565 switch (Lex.Lex()) {
566 default:
567 return tokError("unknown target property");
568 case lltok::kw_triple:
569 Lex.Lex();
570 if (parseToken(lltok::equal, "expected '=' after target triple") ||
571 parseStringConstant(Str))
572 return true;
573 M->setTargetTriple(Str);
574 return false;
575 case lltok::kw_datalayout:
576 Lex.Lex();
577 if (parseToken(lltok::equal, "expected '=' after target datalayout"))
578 return true;
579 DLStrLoc = Lex.getLoc();
580 if (parseStringConstant(TentativeDLStr))
581 return true;
582 return false;
586 /// toplevelentity
587 /// ::= 'source_filename' '=' STRINGCONSTANT
588 bool LLParser::parseSourceFileName() {
589 assert(Lex.getKind() == lltok::kw_source_filename);
590 Lex.Lex();
591 if (parseToken(lltok::equal, "expected '=' after source_filename") ||
592 parseStringConstant(SourceFileName))
593 return true;
594 if (M)
595 M->setSourceFileName(SourceFileName);
596 return false;
599 /// parseUnnamedType:
600 /// ::= LocalVarID '=' 'type' type
601 bool LLParser::parseUnnamedType() {
602 LocTy TypeLoc = Lex.getLoc();
603 unsigned TypeID = Lex.getUIntVal();
604 Lex.Lex(); // eat LocalVarID;
606 if (parseToken(lltok::equal, "expected '=' after name") ||
607 parseToken(lltok::kw_type, "expected 'type' after '='"))
608 return true;
610 Type *Result = nullptr;
611 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
612 return true;
614 if (!isa<StructType>(Result)) {
615 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
616 if (Entry.first)
617 return error(TypeLoc, "non-struct types may not be recursive");
618 Entry.first = Result;
619 Entry.second = SMLoc();
622 return false;
625 /// toplevelentity
626 /// ::= LocalVar '=' 'type' type
627 bool LLParser::parseNamedType() {
628 std::string Name = Lex.getStrVal();
629 LocTy NameLoc = Lex.getLoc();
630 Lex.Lex(); // eat LocalVar.
632 if (parseToken(lltok::equal, "expected '=' after name") ||
633 parseToken(lltok::kw_type, "expected 'type' after name"))
634 return true;
636 Type *Result = nullptr;
637 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
638 return true;
640 if (!isa<StructType>(Result)) {
641 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
642 if (Entry.first)
643 return error(NameLoc, "non-struct types may not be recursive");
644 Entry.first = Result;
645 Entry.second = SMLoc();
648 return false;
651 /// toplevelentity
652 /// ::= 'declare' FunctionHeader
653 bool LLParser::parseDeclare() {
654 assert(Lex.getKind() == lltok::kw_declare);
655 Lex.Lex();
657 std::vector<std::pair<unsigned, MDNode *>> MDs;
658 while (Lex.getKind() == lltok::MetadataVar) {
659 unsigned MDK;
660 MDNode *N;
661 if (parseMetadataAttachment(MDK, N))
662 return true;
663 MDs.push_back({MDK, N});
666 Function *F;
667 SmallVector<unsigned> UnnamedArgNums;
668 if (parseFunctionHeader(F, false, UnnamedArgNums))
669 return true;
670 for (auto &MD : MDs)
671 F->addMetadata(MD.first, *MD.second);
672 return false;
675 /// toplevelentity
676 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
677 bool LLParser::parseDefine() {
678 assert(Lex.getKind() == lltok::kw_define);
679 Lex.Lex();
681 Function *F;
682 SmallVector<unsigned> UnnamedArgNums;
683 return parseFunctionHeader(F, true, UnnamedArgNums) ||
684 parseOptionalFunctionMetadata(*F) ||
685 parseFunctionBody(*F, UnnamedArgNums);
688 /// parseGlobalType
689 /// ::= 'constant'
690 /// ::= 'global'
691 bool LLParser::parseGlobalType(bool &IsConstant) {
692 if (Lex.getKind() == lltok::kw_constant)
693 IsConstant = true;
694 else if (Lex.getKind() == lltok::kw_global)
695 IsConstant = false;
696 else {
697 IsConstant = false;
698 return tokError("expected 'global' or 'constant'");
700 Lex.Lex();
701 return false;
704 bool LLParser::parseOptionalUnnamedAddr(
705 GlobalVariable::UnnamedAddr &UnnamedAddr) {
706 if (EatIfPresent(lltok::kw_unnamed_addr))
707 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
708 else if (EatIfPresent(lltok::kw_local_unnamed_addr))
709 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
710 else
711 UnnamedAddr = GlobalValue::UnnamedAddr::None;
712 return false;
715 /// parseUnnamedGlobal:
716 /// OptionalVisibility (ALIAS | IFUNC) ...
717 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
718 /// OptionalDLLStorageClass
719 /// ... -> global variable
720 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
721 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
722 /// OptionalVisibility
723 /// OptionalDLLStorageClass
724 /// ... -> global variable
725 bool LLParser::parseUnnamedGlobal() {
726 unsigned VarID = NumberedVals.size();
727 std::string Name;
728 LocTy NameLoc = Lex.getLoc();
730 // Handle the GlobalID form.
731 if (Lex.getKind() == lltok::GlobalID) {
732 if (Lex.getUIntVal() != VarID)
733 return error(Lex.getLoc(),
734 "variable expected to be numbered '%" + Twine(VarID) + "'");
735 Lex.Lex(); // eat GlobalID;
737 if (parseToken(lltok::equal, "expected '=' after name"))
738 return true;
741 bool HasLinkage;
742 unsigned Linkage, Visibility, DLLStorageClass;
743 bool DSOLocal;
744 GlobalVariable::ThreadLocalMode TLM;
745 GlobalVariable::UnnamedAddr UnnamedAddr;
746 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
747 DSOLocal) ||
748 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
749 return true;
751 switch (Lex.getKind()) {
752 default:
753 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
754 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
755 case lltok::kw_alias:
756 case lltok::kw_ifunc:
757 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
758 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
762 /// parseNamedGlobal:
763 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
764 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
765 /// OptionalVisibility OptionalDLLStorageClass
766 /// ... -> global variable
767 bool LLParser::parseNamedGlobal() {
768 assert(Lex.getKind() == lltok::GlobalVar);
769 LocTy NameLoc = Lex.getLoc();
770 std::string Name = Lex.getStrVal();
771 Lex.Lex();
773 bool HasLinkage;
774 unsigned Linkage, Visibility, DLLStorageClass;
775 bool DSOLocal;
776 GlobalVariable::ThreadLocalMode TLM;
777 GlobalVariable::UnnamedAddr UnnamedAddr;
778 if (parseToken(lltok::equal, "expected '=' in global variable") ||
779 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
780 DSOLocal) ||
781 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
782 return true;
784 switch (Lex.getKind()) {
785 default:
786 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
787 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
788 case lltok::kw_alias:
789 case lltok::kw_ifunc:
790 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
791 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
795 bool LLParser::parseComdat() {
796 assert(Lex.getKind() == lltok::ComdatVar);
797 std::string Name = Lex.getStrVal();
798 LocTy NameLoc = Lex.getLoc();
799 Lex.Lex();
801 if (parseToken(lltok::equal, "expected '=' here"))
802 return true;
804 if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
805 return tokError("expected comdat type");
807 Comdat::SelectionKind SK;
808 switch (Lex.getKind()) {
809 default:
810 return tokError("unknown selection kind");
811 case lltok::kw_any:
812 SK = Comdat::Any;
813 break;
814 case lltok::kw_exactmatch:
815 SK = Comdat::ExactMatch;
816 break;
817 case lltok::kw_largest:
818 SK = Comdat::Largest;
819 break;
820 case lltok::kw_nodeduplicate:
821 SK = Comdat::NoDeduplicate;
822 break;
823 case lltok::kw_samesize:
824 SK = Comdat::SameSize;
825 break;
827 Lex.Lex();
829 // See if the comdat was forward referenced, if so, use the comdat.
830 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
831 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
832 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
833 return error(NameLoc, "redefinition of comdat '$" + Name + "'");
835 Comdat *C;
836 if (I != ComdatSymTab.end())
837 C = &I->second;
838 else
839 C = M->getOrInsertComdat(Name);
840 C->setSelectionKind(SK);
842 return false;
845 // MDString:
846 // ::= '!' STRINGCONSTANT
847 bool LLParser::parseMDString(MDString *&Result) {
848 std::string Str;
849 if (parseStringConstant(Str))
850 return true;
851 Result = MDString::get(Context, Str);
852 return false;
855 // MDNode:
856 // ::= '!' MDNodeNumber
857 bool LLParser::parseMDNodeID(MDNode *&Result) {
858 // !{ ..., !42, ... }
859 LocTy IDLoc = Lex.getLoc();
860 unsigned MID = 0;
861 if (parseUInt32(MID))
862 return true;
864 // If not a forward reference, just return it now.
865 if (NumberedMetadata.count(MID)) {
866 Result = NumberedMetadata[MID];
867 return false;
870 // Otherwise, create MDNode forward reference.
871 auto &FwdRef = ForwardRefMDNodes[MID];
872 FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc);
874 Result = FwdRef.first.get();
875 NumberedMetadata[MID].reset(Result);
876 return false;
879 /// parseNamedMetadata:
880 /// !foo = !{ !1, !2 }
881 bool LLParser::parseNamedMetadata() {
882 assert(Lex.getKind() == lltok::MetadataVar);
883 std::string Name = Lex.getStrVal();
884 Lex.Lex();
886 if (parseToken(lltok::equal, "expected '=' here") ||
887 parseToken(lltok::exclaim, "Expected '!' here") ||
888 parseToken(lltok::lbrace, "Expected '{' here"))
889 return true;
891 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
892 if (Lex.getKind() != lltok::rbrace)
893 do {
894 MDNode *N = nullptr;
895 // parse DIExpressions inline as a special case. They are still MDNodes,
896 // so they can still appear in named metadata. Remove this logic if they
897 // become plain Metadata.
898 if (Lex.getKind() == lltok::MetadataVar &&
899 Lex.getStrVal() == "DIExpression") {
900 if (parseDIExpression(N, /*IsDistinct=*/false))
901 return true;
902 // DIArgLists should only appear inline in a function, as they may
903 // contain LocalAsMetadata arguments which require a function context.
904 } else if (Lex.getKind() == lltok::MetadataVar &&
905 Lex.getStrVal() == "DIArgList") {
906 return tokError("found DIArgList outside of function");
907 } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
908 parseMDNodeID(N)) {
909 return true;
911 NMD->addOperand(N);
912 } while (EatIfPresent(lltok::comma));
914 return parseToken(lltok::rbrace, "expected end of metadata node");
917 /// parseStandaloneMetadata:
918 /// !42 = !{...}
919 bool LLParser::parseStandaloneMetadata() {
920 assert(Lex.getKind() == lltok::exclaim);
921 Lex.Lex();
922 unsigned MetadataID = 0;
924 MDNode *Init;
925 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
926 return true;
928 // Detect common error, from old metadata syntax.
929 if (Lex.getKind() == lltok::Type)
930 return tokError("unexpected type in metadata definition");
932 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
933 if (Lex.getKind() == lltok::MetadataVar) {
934 if (parseSpecializedMDNode(Init, IsDistinct))
935 return true;
936 } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
937 parseMDTuple(Init, IsDistinct))
938 return true;
940 // See if this was forward referenced, if so, handle it.
941 auto FI = ForwardRefMDNodes.find(MetadataID);
942 if (FI != ForwardRefMDNodes.end()) {
943 auto *ToReplace = FI->second.first.get();
944 // DIAssignID has its own special forward-reference "replacement" for
945 // attachments (the temporary attachments are never actually attached).
946 if (isa<DIAssignID>(Init)) {
947 for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) {
948 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) &&
949 "Inst unexpectedly already has DIAssignID attachment");
950 Inst->setMetadata(LLVMContext::MD_DIAssignID, Init);
954 ToReplace->replaceAllUsesWith(Init);
955 ForwardRefMDNodes.erase(FI);
957 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
958 } else {
959 if (NumberedMetadata.count(MetadataID))
960 return tokError("Metadata id is already used");
961 NumberedMetadata[MetadataID].reset(Init);
964 return false;
967 // Skips a single module summary entry.
968 bool LLParser::skipModuleSummaryEntry() {
969 // Each module summary entry consists of a tag for the entry
970 // type, followed by a colon, then the fields which may be surrounded by
971 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
972 // support is in place we will look for the tokens corresponding to the
973 // expected tags.
974 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
975 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
976 Lex.getKind() != lltok::kw_blockcount)
977 return tokError(
978 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
979 "start of summary entry");
980 if (Lex.getKind() == lltok::kw_flags)
981 return parseSummaryIndexFlags();
982 if (Lex.getKind() == lltok::kw_blockcount)
983 return parseBlockCount();
984 Lex.Lex();
985 if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
986 parseToken(lltok::lparen, "expected '(' at start of summary entry"))
987 return true;
988 // Now walk through the parenthesized entry, until the number of open
989 // parentheses goes back down to 0 (the first '(' was parsed above).
990 unsigned NumOpenParen = 1;
991 do {
992 switch (Lex.getKind()) {
993 case lltok::lparen:
994 NumOpenParen++;
995 break;
996 case lltok::rparen:
997 NumOpenParen--;
998 break;
999 case lltok::Eof:
1000 return tokError("found end of file while parsing summary entry");
1001 default:
1002 // Skip everything in between parentheses.
1003 break;
1005 Lex.Lex();
1006 } while (NumOpenParen > 0);
1007 return false;
1010 /// SummaryEntry
1011 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
1012 bool LLParser::parseSummaryEntry() {
1013 assert(Lex.getKind() == lltok::SummaryID);
1014 unsigned SummaryID = Lex.getUIntVal();
1016 // For summary entries, colons should be treated as distinct tokens,
1017 // not an indication of the end of a label token.
1018 Lex.setIgnoreColonInIdentifiers(true);
1020 Lex.Lex();
1021 if (parseToken(lltok::equal, "expected '=' here"))
1022 return true;
1024 // If we don't have an index object, skip the summary entry.
1025 if (!Index)
1026 return skipModuleSummaryEntry();
1028 bool result = false;
1029 switch (Lex.getKind()) {
1030 case lltok::kw_gv:
1031 result = parseGVEntry(SummaryID);
1032 break;
1033 case lltok::kw_module:
1034 result = parseModuleEntry(SummaryID);
1035 break;
1036 case lltok::kw_typeid:
1037 result = parseTypeIdEntry(SummaryID);
1038 break;
1039 case lltok::kw_typeidCompatibleVTable:
1040 result = parseTypeIdCompatibleVtableEntry(SummaryID);
1041 break;
1042 case lltok::kw_flags:
1043 result = parseSummaryIndexFlags();
1044 break;
1045 case lltok::kw_blockcount:
1046 result = parseBlockCount();
1047 break;
1048 default:
1049 result = error(Lex.getLoc(), "unexpected summary kind");
1050 break;
1052 Lex.setIgnoreColonInIdentifiers(false);
1053 return result;
1056 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
1057 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1058 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
1060 static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) {
1061 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1062 (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass;
1065 // If there was an explicit dso_local, update GV. In the absence of an explicit
1066 // dso_local we keep the default value.
1067 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
1068 if (DSOLocal)
1069 GV.setDSOLocal(true);
1072 /// parseAliasOrIFunc:
1073 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1074 /// OptionalVisibility OptionalDLLStorageClass
1075 /// OptionalThreadLocal OptionalUnnamedAddr
1076 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs*
1078 /// AliaseeOrResolver
1079 /// ::= TypeAndValue
1081 /// SymbolAttrs
1082 /// ::= ',' 'partition' StringConstant
1084 /// Everything through OptionalUnnamedAddr has already been parsed.
1086 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
1087 unsigned L, unsigned Visibility,
1088 unsigned DLLStorageClass, bool DSOLocal,
1089 GlobalVariable::ThreadLocalMode TLM,
1090 GlobalVariable::UnnamedAddr UnnamedAddr) {
1091 bool IsAlias;
1092 if (Lex.getKind() == lltok::kw_alias)
1093 IsAlias = true;
1094 else if (Lex.getKind() == lltok::kw_ifunc)
1095 IsAlias = false;
1096 else
1097 llvm_unreachable("Not an alias or ifunc!");
1098 Lex.Lex();
1100 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
1102 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
1103 return error(NameLoc, "invalid linkage type for alias");
1105 if (!isValidVisibilityForLinkage(Visibility, L))
1106 return error(NameLoc,
1107 "symbol with local linkage must have default visibility");
1109 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L))
1110 return error(NameLoc,
1111 "symbol with local linkage cannot have a DLL storage class");
1113 Type *Ty;
1114 LocTy ExplicitTypeLoc = Lex.getLoc();
1115 if (parseType(Ty) ||
1116 parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
1117 return true;
1119 Constant *Aliasee;
1120 LocTy AliaseeLoc = Lex.getLoc();
1121 if (Lex.getKind() != lltok::kw_bitcast &&
1122 Lex.getKind() != lltok::kw_getelementptr &&
1123 Lex.getKind() != lltok::kw_addrspacecast &&
1124 Lex.getKind() != lltok::kw_inttoptr) {
1125 if (parseGlobalTypeAndValue(Aliasee))
1126 return true;
1127 } else {
1128 // The bitcast dest type is not present, it is implied by the dest type.
1129 ValID ID;
1130 if (parseValID(ID, /*PFS=*/nullptr))
1131 return true;
1132 if (ID.Kind != ValID::t_Constant)
1133 return error(AliaseeLoc, "invalid aliasee");
1134 Aliasee = ID.ConstantVal;
1137 Type *AliaseeType = Aliasee->getType();
1138 auto *PTy = dyn_cast<PointerType>(AliaseeType);
1139 if (!PTy)
1140 return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1141 unsigned AddrSpace = PTy->getAddressSpace();
1143 GlobalValue *GVal = nullptr;
1145 // See if the alias was forward referenced, if so, prepare to replace the
1146 // forward reference.
1147 if (!Name.empty()) {
1148 auto I = ForwardRefVals.find(Name);
1149 if (I != ForwardRefVals.end()) {
1150 GVal = I->second.first;
1151 ForwardRefVals.erase(Name);
1152 } else if (M->getNamedValue(Name)) {
1153 return error(NameLoc, "redefinition of global '@" + Name + "'");
1155 } else {
1156 auto I = ForwardRefValIDs.find(NumberedVals.size());
1157 if (I != ForwardRefValIDs.end()) {
1158 GVal = I->second.first;
1159 ForwardRefValIDs.erase(I);
1163 // Okay, create the alias/ifunc but do not insert it into the module yet.
1164 std::unique_ptr<GlobalAlias> GA;
1165 std::unique_ptr<GlobalIFunc> GI;
1166 GlobalValue *GV;
1167 if (IsAlias) {
1168 GA.reset(GlobalAlias::create(Ty, AddrSpace,
1169 (GlobalValue::LinkageTypes)Linkage, Name,
1170 Aliasee, /*Parent*/ nullptr));
1171 GV = GA.get();
1172 } else {
1173 GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1174 (GlobalValue::LinkageTypes)Linkage, Name,
1175 Aliasee, /*Parent*/ nullptr));
1176 GV = GI.get();
1178 GV->setThreadLocalMode(TLM);
1179 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1180 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1181 GV->setUnnamedAddr(UnnamedAddr);
1182 maybeSetDSOLocal(DSOLocal, *GV);
1184 // At this point we've parsed everything except for the IndirectSymbolAttrs.
1185 // Now parse them if there are any.
1186 while (Lex.getKind() == lltok::comma) {
1187 Lex.Lex();
1189 if (Lex.getKind() == lltok::kw_partition) {
1190 Lex.Lex();
1191 GV->setPartition(Lex.getStrVal());
1192 if (parseToken(lltok::StringConstant, "expected partition string"))
1193 return true;
1194 } else {
1195 return tokError("unknown alias or ifunc property!");
1199 if (Name.empty())
1200 NumberedVals.push_back(GV);
1202 if (GVal) {
1203 // Verify that types agree.
1204 if (GVal->getType() != GV->getType())
1205 return error(
1206 ExplicitTypeLoc,
1207 "forward reference and definition of alias have different types");
1209 // If they agree, just RAUW the old value with the alias and remove the
1210 // forward ref info.
1211 GVal->replaceAllUsesWith(GV);
1212 GVal->eraseFromParent();
1215 // Insert into the module, we know its name won't collide now.
1216 if (IsAlias)
1217 M->insertAlias(GA.release());
1218 else
1219 M->insertIFunc(GI.release());
1220 assert(GV->getName() == Name && "Should not be a name conflict!");
1222 return false;
1225 static bool isSanitizer(lltok::Kind Kind) {
1226 switch (Kind) {
1227 case lltok::kw_no_sanitize_address:
1228 case lltok::kw_no_sanitize_hwaddress:
1229 case lltok::kw_sanitize_memtag:
1230 case lltok::kw_sanitize_address_dyninit:
1231 return true;
1232 default:
1233 return false;
1237 bool LLParser::parseSanitizer(GlobalVariable *GV) {
1238 using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1239 SanitizerMetadata Meta;
1240 if (GV->hasSanitizerMetadata())
1241 Meta = GV->getSanitizerMetadata();
1243 switch (Lex.getKind()) {
1244 case lltok::kw_no_sanitize_address:
1245 Meta.NoAddress = true;
1246 break;
1247 case lltok::kw_no_sanitize_hwaddress:
1248 Meta.NoHWAddress = true;
1249 break;
1250 case lltok::kw_sanitize_memtag:
1251 Meta.Memtag = true;
1252 break;
1253 case lltok::kw_sanitize_address_dyninit:
1254 Meta.IsDynInit = true;
1255 break;
1256 default:
1257 return tokError("non-sanitizer token passed to LLParser::parseSanitizer()");
1259 GV->setSanitizerMetadata(Meta);
1260 Lex.Lex();
1261 return false;
1264 /// parseGlobal
1265 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1266 /// OptionalVisibility OptionalDLLStorageClass
1267 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1268 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1269 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1270 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1271 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1272 /// Const OptionalAttrs
1274 /// Everything up to and including OptionalUnnamedAddr has been parsed
1275 /// already.
1277 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1278 unsigned Linkage, bool HasLinkage,
1279 unsigned Visibility, unsigned DLLStorageClass,
1280 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1281 GlobalVariable::UnnamedAddr UnnamedAddr) {
1282 if (!isValidVisibilityForLinkage(Visibility, Linkage))
1283 return error(NameLoc,
1284 "symbol with local linkage must have default visibility");
1286 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
1287 return error(NameLoc,
1288 "symbol with local linkage cannot have a DLL storage class");
1290 unsigned AddrSpace;
1291 bool IsConstant, IsExternallyInitialized;
1292 LocTy IsExternallyInitializedLoc;
1293 LocTy TyLoc;
1295 Type *Ty = nullptr;
1296 if (parseOptionalAddrSpace(AddrSpace) ||
1297 parseOptionalToken(lltok::kw_externally_initialized,
1298 IsExternallyInitialized,
1299 &IsExternallyInitializedLoc) ||
1300 parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1301 return true;
1303 // If the linkage is specified and is external, then no initializer is
1304 // present.
1305 Constant *Init = nullptr;
1306 if (!HasLinkage ||
1307 !GlobalValue::isValidDeclarationLinkage(
1308 (GlobalValue::LinkageTypes)Linkage)) {
1309 if (parseGlobalValue(Ty, Init))
1310 return true;
1313 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1314 return error(TyLoc, "invalid type for global variable");
1316 GlobalValue *GVal = nullptr;
1318 // See if the global was forward referenced, if so, use the global.
1319 if (!Name.empty()) {
1320 auto I = ForwardRefVals.find(Name);
1321 if (I != ForwardRefVals.end()) {
1322 GVal = I->second.first;
1323 ForwardRefVals.erase(I);
1324 } else if (M->getNamedValue(Name)) {
1325 return error(NameLoc, "redefinition of global '@" + Name + "'");
1327 } else {
1328 auto I = ForwardRefValIDs.find(NumberedVals.size());
1329 if (I != ForwardRefValIDs.end()) {
1330 GVal = I->second.first;
1331 ForwardRefValIDs.erase(I);
1335 GlobalVariable *GV = new GlobalVariable(
1336 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1337 GlobalVariable::NotThreadLocal, AddrSpace);
1339 if (Name.empty())
1340 NumberedVals.push_back(GV);
1342 // Set the parsed properties on the global.
1343 if (Init)
1344 GV->setInitializer(Init);
1345 GV->setConstant(IsConstant);
1346 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1347 maybeSetDSOLocal(DSOLocal, *GV);
1348 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1349 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1350 GV->setExternallyInitialized(IsExternallyInitialized);
1351 GV->setThreadLocalMode(TLM);
1352 GV->setUnnamedAddr(UnnamedAddr);
1354 if (GVal) {
1355 if (GVal->getAddressSpace() != AddrSpace)
1356 return error(
1357 TyLoc,
1358 "forward reference and definition of global have different types");
1360 GVal->replaceAllUsesWith(GV);
1361 GVal->eraseFromParent();
1364 // parse attributes on the global.
1365 while (Lex.getKind() == lltok::comma) {
1366 Lex.Lex();
1368 if (Lex.getKind() == lltok::kw_section) {
1369 Lex.Lex();
1370 GV->setSection(Lex.getStrVal());
1371 if (parseToken(lltok::StringConstant, "expected global section string"))
1372 return true;
1373 } else if (Lex.getKind() == lltok::kw_partition) {
1374 Lex.Lex();
1375 GV->setPartition(Lex.getStrVal());
1376 if (parseToken(lltok::StringConstant, "expected partition string"))
1377 return true;
1378 } else if (Lex.getKind() == lltok::kw_align) {
1379 MaybeAlign Alignment;
1380 if (parseOptionalAlignment(Alignment))
1381 return true;
1382 if (Alignment)
1383 GV->setAlignment(*Alignment);
1384 } else if (Lex.getKind() == lltok::kw_code_model) {
1385 CodeModel::Model CodeModel;
1386 if (parseOptionalCodeModel(CodeModel))
1387 return true;
1388 GV->setCodeModel(CodeModel);
1389 } else if (Lex.getKind() == lltok::MetadataVar) {
1390 if (parseGlobalObjectMetadataAttachment(*GV))
1391 return true;
1392 } else if (isSanitizer(Lex.getKind())) {
1393 if (parseSanitizer(GV))
1394 return true;
1395 } else {
1396 Comdat *C;
1397 if (parseOptionalComdat(Name, C))
1398 return true;
1399 if (C)
1400 GV->setComdat(C);
1401 else
1402 return tokError("unknown global variable property!");
1406 AttrBuilder Attrs(M->getContext());
1407 LocTy BuiltinLoc;
1408 std::vector<unsigned> FwdRefAttrGrps;
1409 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1410 return true;
1411 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1412 GV->setAttributes(AttributeSet::get(Context, Attrs));
1413 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1416 return false;
1419 /// parseUnnamedAttrGrp
1420 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1421 bool LLParser::parseUnnamedAttrGrp() {
1422 assert(Lex.getKind() == lltok::kw_attributes);
1423 LocTy AttrGrpLoc = Lex.getLoc();
1424 Lex.Lex();
1426 if (Lex.getKind() != lltok::AttrGrpID)
1427 return tokError("expected attribute group id");
1429 unsigned VarID = Lex.getUIntVal();
1430 std::vector<unsigned> unused;
1431 LocTy BuiltinLoc;
1432 Lex.Lex();
1434 if (parseToken(lltok::equal, "expected '=' here") ||
1435 parseToken(lltok::lbrace, "expected '{' here"))
1436 return true;
1438 auto R = NumberedAttrBuilders.find(VarID);
1439 if (R == NumberedAttrBuilders.end())
1440 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1442 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1443 parseToken(lltok::rbrace, "expected end of attribute group"))
1444 return true;
1446 if (!R->second.hasAttributes())
1447 return error(AttrGrpLoc, "attribute group has no attributes");
1449 return false;
1452 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1453 switch (Kind) {
1454 #define GET_ATTR_NAMES
1455 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1456 case lltok::kw_##DISPLAY_NAME: \
1457 return Attribute::ENUM_NAME;
1458 #include "llvm/IR/Attributes.inc"
1459 default:
1460 return Attribute::None;
1464 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1465 bool InAttrGroup) {
1466 if (Attribute::isTypeAttrKind(Attr))
1467 return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1469 switch (Attr) {
1470 case Attribute::Alignment: {
1471 MaybeAlign Alignment;
1472 if (InAttrGroup) {
1473 uint32_t Value = 0;
1474 Lex.Lex();
1475 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1476 return true;
1477 Alignment = Align(Value);
1478 } else {
1479 if (parseOptionalAlignment(Alignment, true))
1480 return true;
1482 B.addAlignmentAttr(Alignment);
1483 return false;
1485 case Attribute::StackAlignment: {
1486 unsigned Alignment;
1487 if (InAttrGroup) {
1488 Lex.Lex();
1489 if (parseToken(lltok::equal, "expected '=' here") ||
1490 parseUInt32(Alignment))
1491 return true;
1492 } else {
1493 if (parseOptionalStackAlignment(Alignment))
1494 return true;
1496 B.addStackAlignmentAttr(Alignment);
1497 return false;
1499 case Attribute::AllocSize: {
1500 unsigned ElemSizeArg;
1501 std::optional<unsigned> NumElemsArg;
1502 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1503 return true;
1504 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1505 return false;
1507 case Attribute::VScaleRange: {
1508 unsigned MinValue, MaxValue;
1509 if (parseVScaleRangeArguments(MinValue, MaxValue))
1510 return true;
1511 B.addVScaleRangeAttr(MinValue,
1512 MaxValue > 0 ? MaxValue : std::optional<unsigned>());
1513 return false;
1515 case Attribute::Dereferenceable: {
1516 uint64_t Bytes;
1517 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1518 return true;
1519 B.addDereferenceableAttr(Bytes);
1520 return false;
1522 case Attribute::DereferenceableOrNull: {
1523 uint64_t Bytes;
1524 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1525 return true;
1526 B.addDereferenceableOrNullAttr(Bytes);
1527 return false;
1529 case Attribute::UWTable: {
1530 UWTableKind Kind;
1531 if (parseOptionalUWTableKind(Kind))
1532 return true;
1533 B.addUWTableAttr(Kind);
1534 return false;
1536 case Attribute::AllocKind: {
1537 AllocFnKind Kind = AllocFnKind::Unknown;
1538 if (parseAllocKind(Kind))
1539 return true;
1540 B.addAllocKindAttr(Kind);
1541 return false;
1543 case Attribute::Memory: {
1544 std::optional<MemoryEffects> ME = parseMemoryAttr();
1545 if (!ME)
1546 return true;
1547 B.addMemoryAttr(*ME);
1548 return false;
1550 case Attribute::NoFPClass: {
1551 if (FPClassTest NoFPClass =
1552 static_cast<FPClassTest>(parseNoFPClassAttr())) {
1553 B.addNoFPClassAttr(NoFPClass);
1554 return false;
1557 return true;
1559 default:
1560 B.addAttribute(Attr);
1561 Lex.Lex();
1562 return false;
1566 static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) {
1567 switch (Kind) {
1568 case lltok::kw_readnone:
1569 ME &= MemoryEffects::none();
1570 return true;
1571 case lltok::kw_readonly:
1572 ME &= MemoryEffects::readOnly();
1573 return true;
1574 case lltok::kw_writeonly:
1575 ME &= MemoryEffects::writeOnly();
1576 return true;
1577 case lltok::kw_argmemonly:
1578 ME &= MemoryEffects::argMemOnly();
1579 return true;
1580 case lltok::kw_inaccessiblememonly:
1581 ME &= MemoryEffects::inaccessibleMemOnly();
1582 return true;
1583 case lltok::kw_inaccessiblemem_or_argmemonly:
1584 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1585 return true;
1586 default:
1587 return false;
1591 /// parseFnAttributeValuePairs
1592 /// ::= <attr> | <attr> '=' <value>
1593 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1594 std::vector<unsigned> &FwdRefAttrGrps,
1595 bool InAttrGrp, LocTy &BuiltinLoc) {
1596 bool HaveError = false;
1598 B.clear();
1600 MemoryEffects ME = MemoryEffects::unknown();
1601 while (true) {
1602 lltok::Kind Token = Lex.getKind();
1603 if (Token == lltok::rbrace)
1604 break; // Finished.
1606 if (Token == lltok::StringConstant) {
1607 if (parseStringAttribute(B))
1608 return true;
1609 continue;
1612 if (Token == lltok::AttrGrpID) {
1613 // Allow a function to reference an attribute group:
1615 // define void @foo() #1 { ... }
1616 if (InAttrGrp) {
1617 HaveError |= error(
1618 Lex.getLoc(),
1619 "cannot have an attribute group reference in an attribute group");
1620 } else {
1621 // Save the reference to the attribute group. We'll fill it in later.
1622 FwdRefAttrGrps.push_back(Lex.getUIntVal());
1624 Lex.Lex();
1625 continue;
1628 SMLoc Loc = Lex.getLoc();
1629 if (Token == lltok::kw_builtin)
1630 BuiltinLoc = Loc;
1632 if (upgradeMemoryAttr(ME, Token)) {
1633 Lex.Lex();
1634 continue;
1637 Attribute::AttrKind Attr = tokenToAttribute(Token);
1638 if (Attr == Attribute::None) {
1639 if (!InAttrGrp)
1640 break;
1641 return error(Lex.getLoc(), "unterminated attribute group");
1644 if (parseEnumAttribute(Attr, B, InAttrGrp))
1645 return true;
1647 // As a hack, we allow function alignment to be initially parsed as an
1648 // attribute on a function declaration/definition or added to an attribute
1649 // group and later moved to the alignment field.
1650 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1651 HaveError |= error(Loc, "this attribute does not apply to functions");
1654 if (ME != MemoryEffects::unknown())
1655 B.addMemoryAttr(ME);
1656 return HaveError;
1659 //===----------------------------------------------------------------------===//
1660 // GlobalValue Reference/Resolution Routines.
1661 //===----------------------------------------------------------------------===//
1663 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1664 // The used global type does not matter. We will later RAUW it with a
1665 // global/function of the correct type.
1666 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1667 GlobalValue::ExternalWeakLinkage, nullptr, "",
1668 nullptr, GlobalVariable::NotThreadLocal,
1669 PTy->getAddressSpace());
1672 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1673 Value *Val) {
1674 Type *ValTy = Val->getType();
1675 if (ValTy == Ty)
1676 return Val;
1677 if (Ty->isLabelTy())
1678 error(Loc, "'" + Name + "' is not a basic block");
1679 else
1680 error(Loc, "'" + Name + "' defined with type '" +
1681 getTypeString(Val->getType()) + "' but expected '" +
1682 getTypeString(Ty) + "'");
1683 return nullptr;
1686 /// getGlobalVal - Get a value with the specified name or ID, creating a
1687 /// forward reference record if needed. This can return null if the value
1688 /// exists but does not have the right type.
1689 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1690 LocTy Loc) {
1691 PointerType *PTy = dyn_cast<PointerType>(Ty);
1692 if (!PTy) {
1693 error(Loc, "global variable reference must have pointer type");
1694 return nullptr;
1697 // Look this name up in the normal function symbol table.
1698 GlobalValue *Val =
1699 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1701 // If this is a forward reference for the value, see if we already created a
1702 // forward ref record.
1703 if (!Val) {
1704 auto I = ForwardRefVals.find(Name);
1705 if (I != ForwardRefVals.end())
1706 Val = I->second.first;
1709 // If we have the value in the symbol table or fwd-ref table, return it.
1710 if (Val)
1711 return cast_or_null<GlobalValue>(
1712 checkValidVariableType(Loc, "@" + Name, Ty, Val));
1714 // Otherwise, create a new forward reference for this value and remember it.
1715 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1716 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1717 return FwdVal;
1720 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1721 PointerType *PTy = dyn_cast<PointerType>(Ty);
1722 if (!PTy) {
1723 error(Loc, "global variable reference must have pointer type");
1724 return nullptr;
1727 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1729 // If this is a forward reference for the value, see if we already created a
1730 // forward ref record.
1731 if (!Val) {
1732 auto I = ForwardRefValIDs.find(ID);
1733 if (I != ForwardRefValIDs.end())
1734 Val = I->second.first;
1737 // If we have the value in the symbol table or fwd-ref table, return it.
1738 if (Val)
1739 return cast_or_null<GlobalValue>(
1740 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1742 // Otherwise, create a new forward reference for this value and remember it.
1743 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1744 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1745 return FwdVal;
1748 //===----------------------------------------------------------------------===//
1749 // Comdat Reference/Resolution Routines.
1750 //===----------------------------------------------------------------------===//
1752 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1753 // Look this name up in the comdat symbol table.
1754 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1755 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1756 if (I != ComdatSymTab.end())
1757 return &I->second;
1759 // Otherwise, create a new forward reference for this value and remember it.
1760 Comdat *C = M->getOrInsertComdat(Name);
1761 ForwardRefComdats[Name] = Loc;
1762 return C;
1765 //===----------------------------------------------------------------------===//
1766 // Helper Routines.
1767 //===----------------------------------------------------------------------===//
1769 /// parseToken - If the current token has the specified kind, eat it and return
1770 /// success. Otherwise, emit the specified error and return failure.
1771 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1772 if (Lex.getKind() != T)
1773 return tokError(ErrMsg);
1774 Lex.Lex();
1775 return false;
1778 /// parseStringConstant
1779 /// ::= StringConstant
1780 bool LLParser::parseStringConstant(std::string &Result) {
1781 if (Lex.getKind() != lltok::StringConstant)
1782 return tokError("expected string constant");
1783 Result = Lex.getStrVal();
1784 Lex.Lex();
1785 return false;
1788 /// parseUInt32
1789 /// ::= uint32
1790 bool LLParser::parseUInt32(uint32_t &Val) {
1791 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1792 return tokError("expected integer");
1793 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1794 if (Val64 != unsigned(Val64))
1795 return tokError("expected 32-bit integer (too large)");
1796 Val = Val64;
1797 Lex.Lex();
1798 return false;
1801 /// parseUInt64
1802 /// ::= uint64
1803 bool LLParser::parseUInt64(uint64_t &Val) {
1804 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1805 return tokError("expected integer");
1806 Val = Lex.getAPSIntVal().getLimitedValue();
1807 Lex.Lex();
1808 return false;
1811 /// parseTLSModel
1812 /// := 'localdynamic'
1813 /// := 'initialexec'
1814 /// := 'localexec'
1815 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1816 switch (Lex.getKind()) {
1817 default:
1818 return tokError("expected localdynamic, initialexec or localexec");
1819 case lltok::kw_localdynamic:
1820 TLM = GlobalVariable::LocalDynamicTLSModel;
1821 break;
1822 case lltok::kw_initialexec:
1823 TLM = GlobalVariable::InitialExecTLSModel;
1824 break;
1825 case lltok::kw_localexec:
1826 TLM = GlobalVariable::LocalExecTLSModel;
1827 break;
1830 Lex.Lex();
1831 return false;
1834 /// parseOptionalThreadLocal
1835 /// := /*empty*/
1836 /// := 'thread_local'
1837 /// := 'thread_local' '(' tlsmodel ')'
1838 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1839 TLM = GlobalVariable::NotThreadLocal;
1840 if (!EatIfPresent(lltok::kw_thread_local))
1841 return false;
1843 TLM = GlobalVariable::GeneralDynamicTLSModel;
1844 if (Lex.getKind() == lltok::lparen) {
1845 Lex.Lex();
1846 return parseTLSModel(TLM) ||
1847 parseToken(lltok::rparen, "expected ')' after thread local model");
1849 return false;
1852 /// parseOptionalAddrSpace
1853 /// := /*empty*/
1854 /// := 'addrspace' '(' uint32 ')'
1855 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1856 AddrSpace = DefaultAS;
1857 if (!EatIfPresent(lltok::kw_addrspace))
1858 return false;
1860 auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool {
1861 if (Lex.getKind() == lltok::StringConstant) {
1862 auto AddrSpaceStr = Lex.getStrVal();
1863 if (AddrSpaceStr == "A") {
1864 AddrSpace = M->getDataLayout().getAllocaAddrSpace();
1865 } else if (AddrSpaceStr == "G") {
1866 AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace();
1867 } else if (AddrSpaceStr == "P") {
1868 AddrSpace = M->getDataLayout().getProgramAddressSpace();
1869 } else {
1870 return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'");
1872 Lex.Lex();
1873 return false;
1875 if (Lex.getKind() != lltok::APSInt)
1876 return tokError("expected integer or string constant");
1877 SMLoc Loc = Lex.getLoc();
1878 if (parseUInt32(AddrSpace))
1879 return true;
1880 if (!isUInt<24>(AddrSpace))
1881 return error(Loc, "invalid address space, must be a 24-bit integer");
1882 return false;
1885 return parseToken(lltok::lparen, "expected '(' in address space") ||
1886 ParseAddrspaceValue(AddrSpace) ||
1887 parseToken(lltok::rparen, "expected ')' in address space");
1890 /// parseStringAttribute
1891 /// := StringConstant
1892 /// := StringConstant '=' StringConstant
1893 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1894 std::string Attr = Lex.getStrVal();
1895 Lex.Lex();
1896 std::string Val;
1897 if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1898 return true;
1899 B.addAttribute(Attr, Val);
1900 return false;
1903 /// Parse a potentially empty list of parameter or return attributes.
1904 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1905 bool HaveError = false;
1907 B.clear();
1909 while (true) {
1910 lltok::Kind Token = Lex.getKind();
1911 if (Token == lltok::StringConstant) {
1912 if (parseStringAttribute(B))
1913 return true;
1914 continue;
1917 SMLoc Loc = Lex.getLoc();
1918 Attribute::AttrKind Attr = tokenToAttribute(Token);
1919 if (Attr == Attribute::None)
1920 return HaveError;
1922 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1923 return true;
1925 if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1926 HaveError |= error(Loc, "this attribute does not apply to parameters");
1927 if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1928 HaveError |= error(Loc, "this attribute does not apply to return values");
1932 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1933 HasLinkage = true;
1934 switch (Kind) {
1935 default:
1936 HasLinkage = false;
1937 return GlobalValue::ExternalLinkage;
1938 case lltok::kw_private:
1939 return GlobalValue::PrivateLinkage;
1940 case lltok::kw_internal:
1941 return GlobalValue::InternalLinkage;
1942 case lltok::kw_weak:
1943 return GlobalValue::WeakAnyLinkage;
1944 case lltok::kw_weak_odr:
1945 return GlobalValue::WeakODRLinkage;
1946 case lltok::kw_linkonce:
1947 return GlobalValue::LinkOnceAnyLinkage;
1948 case lltok::kw_linkonce_odr:
1949 return GlobalValue::LinkOnceODRLinkage;
1950 case lltok::kw_available_externally:
1951 return GlobalValue::AvailableExternallyLinkage;
1952 case lltok::kw_appending:
1953 return GlobalValue::AppendingLinkage;
1954 case lltok::kw_common:
1955 return GlobalValue::CommonLinkage;
1956 case lltok::kw_extern_weak:
1957 return GlobalValue::ExternalWeakLinkage;
1958 case lltok::kw_external:
1959 return GlobalValue::ExternalLinkage;
1963 /// parseOptionalLinkage
1964 /// ::= /*empty*/
1965 /// ::= 'private'
1966 /// ::= 'internal'
1967 /// ::= 'weak'
1968 /// ::= 'weak_odr'
1969 /// ::= 'linkonce'
1970 /// ::= 'linkonce_odr'
1971 /// ::= 'available_externally'
1972 /// ::= 'appending'
1973 /// ::= 'common'
1974 /// ::= 'extern_weak'
1975 /// ::= 'external'
1976 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1977 unsigned &Visibility,
1978 unsigned &DLLStorageClass, bool &DSOLocal) {
1979 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1980 if (HasLinkage)
1981 Lex.Lex();
1982 parseOptionalDSOLocal(DSOLocal);
1983 parseOptionalVisibility(Visibility);
1984 parseOptionalDLLStorageClass(DLLStorageClass);
1986 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1987 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1990 return false;
1993 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1994 switch (Lex.getKind()) {
1995 default:
1996 DSOLocal = false;
1997 break;
1998 case lltok::kw_dso_local:
1999 DSOLocal = true;
2000 Lex.Lex();
2001 break;
2002 case lltok::kw_dso_preemptable:
2003 DSOLocal = false;
2004 Lex.Lex();
2005 break;
2009 /// parseOptionalVisibility
2010 /// ::= /*empty*/
2011 /// ::= 'default'
2012 /// ::= 'hidden'
2013 /// ::= 'protected'
2015 void LLParser::parseOptionalVisibility(unsigned &Res) {
2016 switch (Lex.getKind()) {
2017 default:
2018 Res = GlobalValue::DefaultVisibility;
2019 return;
2020 case lltok::kw_default:
2021 Res = GlobalValue::DefaultVisibility;
2022 break;
2023 case lltok::kw_hidden:
2024 Res = GlobalValue::HiddenVisibility;
2025 break;
2026 case lltok::kw_protected:
2027 Res = GlobalValue::ProtectedVisibility;
2028 break;
2030 Lex.Lex();
2033 /// parseOptionalDLLStorageClass
2034 /// ::= /*empty*/
2035 /// ::= 'dllimport'
2036 /// ::= 'dllexport'
2038 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2039 switch (Lex.getKind()) {
2040 default:
2041 Res = GlobalValue::DefaultStorageClass;
2042 return;
2043 case lltok::kw_dllimport:
2044 Res = GlobalValue::DLLImportStorageClass;
2045 break;
2046 case lltok::kw_dllexport:
2047 Res = GlobalValue::DLLExportStorageClass;
2048 break;
2050 Lex.Lex();
2053 /// parseOptionalCallingConv
2054 /// ::= /*empty*/
2055 /// ::= 'ccc'
2056 /// ::= 'fastcc'
2057 /// ::= 'intel_ocl_bicc'
2058 /// ::= 'coldcc'
2059 /// ::= 'cfguard_checkcc'
2060 /// ::= 'x86_stdcallcc'
2061 /// ::= 'x86_fastcallcc'
2062 /// ::= 'x86_thiscallcc'
2063 /// ::= 'x86_vectorcallcc'
2064 /// ::= 'arm_apcscc'
2065 /// ::= 'arm_aapcscc'
2066 /// ::= 'arm_aapcs_vfpcc'
2067 /// ::= 'aarch64_vector_pcs'
2068 /// ::= 'aarch64_sve_vector_pcs'
2069 /// ::= 'aarch64_sme_preservemost_from_x0'
2070 /// ::= 'aarch64_sme_preservemost_from_x2'
2071 /// ::= 'msp430_intrcc'
2072 /// ::= 'avr_intrcc'
2073 /// ::= 'avr_signalcc'
2074 /// ::= 'ptx_kernel'
2075 /// ::= 'ptx_device'
2076 /// ::= 'spir_func'
2077 /// ::= 'spir_kernel'
2078 /// ::= 'x86_64_sysvcc'
2079 /// ::= 'win64cc'
2080 /// ::= 'anyregcc'
2081 /// ::= 'preserve_mostcc'
2082 /// ::= 'preserve_allcc'
2083 /// ::= 'ghccc'
2084 /// ::= 'swiftcc'
2085 /// ::= 'swifttailcc'
2086 /// ::= 'x86_intrcc'
2087 /// ::= 'hhvmcc'
2088 /// ::= 'hhvm_ccc'
2089 /// ::= 'cxx_fast_tlscc'
2090 /// ::= 'amdgpu_vs'
2091 /// ::= 'amdgpu_ls'
2092 /// ::= 'amdgpu_hs'
2093 /// ::= 'amdgpu_es'
2094 /// ::= 'amdgpu_gs'
2095 /// ::= 'amdgpu_ps'
2096 /// ::= 'amdgpu_cs'
2097 /// ::= 'amdgpu_cs_chain'
2098 /// ::= 'amdgpu_cs_chain_preserve'
2099 /// ::= 'amdgpu_kernel'
2100 /// ::= 'tailcc'
2101 /// ::= 'm68k_rtdcc'
2102 /// ::= 'graalcc'
2103 /// ::= 'cc' UINT
2105 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2106 switch (Lex.getKind()) {
2107 default: CC = CallingConv::C; return false;
2108 case lltok::kw_ccc: CC = CallingConv::C; break;
2109 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
2110 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
2111 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2112 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
2113 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2114 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
2115 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2116 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2117 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
2118 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
2119 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2120 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2121 case lltok::kw_aarch64_sve_vector_pcs:
2122 CC = CallingConv::AArch64_SVE_VectorCall;
2123 break;
2124 case lltok::kw_aarch64_sme_preservemost_from_x0:
2125 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0;
2126 break;
2127 case lltok::kw_aarch64_sme_preservemost_from_x2:
2128 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2;
2129 break;
2130 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
2131 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
2132 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
2133 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
2134 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
2135 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
2136 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
2137 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2138 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
2139 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
2140 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
2141 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2142 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2143 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
2144 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
2145 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break;
2146 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
2147 case lltok::kw_hhvmcc:
2148 CC = CallingConv::DUMMY_HHVM;
2149 break;
2150 case lltok::kw_hhvm_ccc:
2151 CC = CallingConv::DUMMY_HHVM_C;
2152 break;
2153 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2154 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
2155 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break;
2156 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
2157 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
2158 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
2159 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
2160 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
2161 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
2162 case lltok::kw_amdgpu_cs_chain:
2163 CC = CallingConv::AMDGPU_CS_Chain;
2164 break;
2165 case lltok::kw_amdgpu_cs_chain_preserve:
2166 CC = CallingConv::AMDGPU_CS_ChainPreserve;
2167 break;
2168 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
2169 case lltok::kw_tailcc: CC = CallingConv::Tail; break;
2170 case lltok::kw_m68k_rtdcc: CC = CallingConv::M68k_RTD; break;
2171 case lltok::kw_graalcc: CC = CallingConv::GRAAL; break;
2172 case lltok::kw_cc: {
2173 Lex.Lex();
2174 return parseUInt32(CC);
2178 Lex.Lex();
2179 return false;
2182 /// parseMetadataAttachment
2183 /// ::= !dbg !42
2184 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2185 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2187 std::string Name = Lex.getStrVal();
2188 Kind = M->getMDKindID(Name);
2189 Lex.Lex();
2191 return parseMDNode(MD);
2194 /// parseInstructionMetadata
2195 /// ::= !dbg !42 (',' !dbg !57)*
2196 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2197 do {
2198 if (Lex.getKind() != lltok::MetadataVar)
2199 return tokError("expected metadata after comma");
2201 unsigned MDK;
2202 MDNode *N;
2203 if (parseMetadataAttachment(MDK, N))
2204 return true;
2206 if (MDK == LLVMContext::MD_DIAssignID)
2207 TempDIAssignIDAttachments[N].push_back(&Inst);
2208 else
2209 Inst.setMetadata(MDK, N);
2211 if (MDK == LLVMContext::MD_tbaa)
2212 InstsWithTBAATag.push_back(&Inst);
2214 // If this is the end of the list, we're done.
2215 } while (EatIfPresent(lltok::comma));
2216 return false;
2219 /// parseGlobalObjectMetadataAttachment
2220 /// ::= !dbg !57
2221 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2222 unsigned MDK;
2223 MDNode *N;
2224 if (parseMetadataAttachment(MDK, N))
2225 return true;
2227 GO.addMetadata(MDK, *N);
2228 return false;
2231 /// parseOptionalFunctionMetadata
2232 /// ::= (!dbg !57)*
2233 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2234 while (Lex.getKind() == lltok::MetadataVar)
2235 if (parseGlobalObjectMetadataAttachment(F))
2236 return true;
2237 return false;
2240 /// parseOptionalAlignment
2241 /// ::= /* empty */
2242 /// ::= 'align' 4
2243 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2244 Alignment = std::nullopt;
2245 if (!EatIfPresent(lltok::kw_align))
2246 return false;
2247 LocTy AlignLoc = Lex.getLoc();
2248 uint64_t Value = 0;
2250 LocTy ParenLoc = Lex.getLoc();
2251 bool HaveParens = false;
2252 if (AllowParens) {
2253 if (EatIfPresent(lltok::lparen))
2254 HaveParens = true;
2257 if (parseUInt64(Value))
2258 return true;
2260 if (HaveParens && !EatIfPresent(lltok::rparen))
2261 return error(ParenLoc, "expected ')'");
2263 if (!isPowerOf2_64(Value))
2264 return error(AlignLoc, "alignment is not a power of two");
2265 if (Value > Value::MaximumAlignment)
2266 return error(AlignLoc, "huge alignments are not supported yet");
2267 Alignment = Align(Value);
2268 return false;
2271 /// parseOptionalCodeModel
2272 /// ::= /* empty */
2273 /// ::= 'code_model' "large"
2274 bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) {
2275 Lex.Lex();
2276 auto StrVal = Lex.getStrVal();
2277 auto ErrMsg = "expected global code model string";
2278 if (StrVal == "tiny")
2279 model = CodeModel::Tiny;
2280 else if (StrVal == "small")
2281 model = CodeModel::Small;
2282 else if (StrVal == "kernel")
2283 model = CodeModel::Kernel;
2284 else if (StrVal == "medium")
2285 model = CodeModel::Medium;
2286 else if (StrVal == "large")
2287 model = CodeModel::Large;
2288 else
2289 return tokError(ErrMsg);
2290 if (parseToken(lltok::StringConstant, ErrMsg))
2291 return true;
2292 return false;
2295 /// parseOptionalDerefAttrBytes
2296 /// ::= /* empty */
2297 /// ::= AttrKind '(' 4 ')'
2299 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2300 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2301 uint64_t &Bytes) {
2302 assert((AttrKind == lltok::kw_dereferenceable ||
2303 AttrKind == lltok::kw_dereferenceable_or_null) &&
2304 "contract!");
2306 Bytes = 0;
2307 if (!EatIfPresent(AttrKind))
2308 return false;
2309 LocTy ParenLoc = Lex.getLoc();
2310 if (!EatIfPresent(lltok::lparen))
2311 return error(ParenLoc, "expected '('");
2312 LocTy DerefLoc = Lex.getLoc();
2313 if (parseUInt64(Bytes))
2314 return true;
2315 ParenLoc = Lex.getLoc();
2316 if (!EatIfPresent(lltok::rparen))
2317 return error(ParenLoc, "expected ')'");
2318 if (!Bytes)
2319 return error(DerefLoc, "dereferenceable bytes must be non-zero");
2320 return false;
2323 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2324 Lex.Lex();
2325 Kind = UWTableKind::Default;
2326 if (!EatIfPresent(lltok::lparen))
2327 return false;
2328 LocTy KindLoc = Lex.getLoc();
2329 if (Lex.getKind() == lltok::kw_sync)
2330 Kind = UWTableKind::Sync;
2331 else if (Lex.getKind() == lltok::kw_async)
2332 Kind = UWTableKind::Async;
2333 else
2334 return error(KindLoc, "expected unwind table kind");
2335 Lex.Lex();
2336 return parseToken(lltok::rparen, "expected ')'");
2339 bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2340 Lex.Lex();
2341 LocTy ParenLoc = Lex.getLoc();
2342 if (!EatIfPresent(lltok::lparen))
2343 return error(ParenLoc, "expected '('");
2344 LocTy KindLoc = Lex.getLoc();
2345 std::string Arg;
2346 if (parseStringConstant(Arg))
2347 return error(KindLoc, "expected allockind value");
2348 for (StringRef A : llvm::split(Arg, ",")) {
2349 if (A == "alloc") {
2350 Kind |= AllocFnKind::Alloc;
2351 } else if (A == "realloc") {
2352 Kind |= AllocFnKind::Realloc;
2353 } else if (A == "free") {
2354 Kind |= AllocFnKind::Free;
2355 } else if (A == "uninitialized") {
2356 Kind |= AllocFnKind::Uninitialized;
2357 } else if (A == "zeroed") {
2358 Kind |= AllocFnKind::Zeroed;
2359 } else if (A == "aligned") {
2360 Kind |= AllocFnKind::Aligned;
2361 } else {
2362 return error(KindLoc, Twine("unknown allockind ") + A);
2365 ParenLoc = Lex.getLoc();
2366 if (!EatIfPresent(lltok::rparen))
2367 return error(ParenLoc, "expected ')'");
2368 if (Kind == AllocFnKind::Unknown)
2369 return error(KindLoc, "expected allockind value");
2370 return false;
2373 static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) {
2374 switch (Tok) {
2375 case lltok::kw_argmem:
2376 return IRMemLocation::ArgMem;
2377 case lltok::kw_inaccessiblemem:
2378 return IRMemLocation::InaccessibleMem;
2379 default:
2380 return std::nullopt;
2384 static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) {
2385 switch (Tok) {
2386 case lltok::kw_none:
2387 return ModRefInfo::NoModRef;
2388 case lltok::kw_read:
2389 return ModRefInfo::Ref;
2390 case lltok::kw_write:
2391 return ModRefInfo::Mod;
2392 case lltok::kw_readwrite:
2393 return ModRefInfo::ModRef;
2394 default:
2395 return std::nullopt;
2399 std::optional<MemoryEffects> LLParser::parseMemoryAttr() {
2400 MemoryEffects ME = MemoryEffects::none();
2402 // We use syntax like memory(argmem: read), so the colon should not be
2403 // interpreted as a label terminator.
2404 Lex.setIgnoreColonInIdentifiers(true);
2405 auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); });
2407 Lex.Lex();
2408 if (!EatIfPresent(lltok::lparen)) {
2409 tokError("expected '('");
2410 return std::nullopt;
2413 bool SeenLoc = false;
2414 do {
2415 std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind());
2416 if (Loc) {
2417 Lex.Lex();
2418 if (!EatIfPresent(lltok::colon)) {
2419 tokError("expected ':' after location");
2420 return std::nullopt;
2424 std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind());
2425 if (!MR) {
2426 if (!Loc)
2427 tokError("expected memory location (argmem, inaccessiblemem) "
2428 "or access kind (none, read, write, readwrite)");
2429 else
2430 tokError("expected access kind (none, read, write, readwrite)");
2431 return std::nullopt;
2434 Lex.Lex();
2435 if (Loc) {
2436 SeenLoc = true;
2437 ME = ME.getWithModRef(*Loc, *MR);
2438 } else {
2439 if (SeenLoc) {
2440 tokError("default access kind must be specified first");
2441 return std::nullopt;
2443 ME = MemoryEffects(*MR);
2446 if (EatIfPresent(lltok::rparen))
2447 return ME;
2448 } while (EatIfPresent(lltok::comma));
2450 tokError("unterminated memory attribute");
2451 return std::nullopt;
2454 static unsigned keywordToFPClassTest(lltok::Kind Tok) {
2455 switch (Tok) {
2456 case lltok::kw_all:
2457 return fcAllFlags;
2458 case lltok::kw_nan:
2459 return fcNan;
2460 case lltok::kw_snan:
2461 return fcSNan;
2462 case lltok::kw_qnan:
2463 return fcQNan;
2464 case lltok::kw_inf:
2465 return fcInf;
2466 case lltok::kw_ninf:
2467 return fcNegInf;
2468 case lltok::kw_pinf:
2469 return fcPosInf;
2470 case lltok::kw_norm:
2471 return fcNormal;
2472 case lltok::kw_nnorm:
2473 return fcNegNormal;
2474 case lltok::kw_pnorm:
2475 return fcPosNormal;
2476 case lltok::kw_sub:
2477 return fcSubnormal;
2478 case lltok::kw_nsub:
2479 return fcNegSubnormal;
2480 case lltok::kw_psub:
2481 return fcPosSubnormal;
2482 case lltok::kw_zero:
2483 return fcZero;
2484 case lltok::kw_nzero:
2485 return fcNegZero;
2486 case lltok::kw_pzero:
2487 return fcPosZero;
2488 default:
2489 return 0;
2493 unsigned LLParser::parseNoFPClassAttr() {
2494 unsigned Mask = fcNone;
2496 Lex.Lex();
2497 if (!EatIfPresent(lltok::lparen)) {
2498 tokError("expected '('");
2499 return 0;
2502 do {
2503 uint64_t Value = 0;
2504 unsigned TestMask = keywordToFPClassTest(Lex.getKind());
2505 if (TestMask != 0) {
2506 Mask |= TestMask;
2507 // TODO: Disallow overlapping masks to avoid copy paste errors
2508 } else if (Mask == 0 && Lex.getKind() == lltok::APSInt &&
2509 !parseUInt64(Value)) {
2510 if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) {
2511 error(Lex.getLoc(), "invalid mask value for 'nofpclass'");
2512 return 0;
2515 if (!EatIfPresent(lltok::rparen)) {
2516 error(Lex.getLoc(), "expected ')'");
2517 return 0;
2520 return Value;
2521 } else {
2522 error(Lex.getLoc(), "expected nofpclass test mask");
2523 return 0;
2526 Lex.Lex();
2527 if (EatIfPresent(lltok::rparen))
2528 return Mask;
2529 } while (1);
2531 llvm_unreachable("unterminated nofpclass attribute");
2534 /// parseOptionalCommaAlign
2535 /// ::=
2536 /// ::= ',' align 4
2538 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2539 /// end.
2540 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2541 bool &AteExtraComma) {
2542 AteExtraComma = false;
2543 while (EatIfPresent(lltok::comma)) {
2544 // Metadata at the end is an early exit.
2545 if (Lex.getKind() == lltok::MetadataVar) {
2546 AteExtraComma = true;
2547 return false;
2550 if (Lex.getKind() != lltok::kw_align)
2551 return error(Lex.getLoc(), "expected metadata or 'align'");
2553 if (parseOptionalAlignment(Alignment))
2554 return true;
2557 return false;
2560 /// parseOptionalCommaAddrSpace
2561 /// ::=
2562 /// ::= ',' addrspace(1)
2564 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2565 /// end.
2566 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2567 bool &AteExtraComma) {
2568 AteExtraComma = false;
2569 while (EatIfPresent(lltok::comma)) {
2570 // Metadata at the end is an early exit.
2571 if (Lex.getKind() == lltok::MetadataVar) {
2572 AteExtraComma = true;
2573 return false;
2576 Loc = Lex.getLoc();
2577 if (Lex.getKind() != lltok::kw_addrspace)
2578 return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2580 if (parseOptionalAddrSpace(AddrSpace))
2581 return true;
2584 return false;
2587 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2588 std::optional<unsigned> &HowManyArg) {
2589 Lex.Lex();
2591 auto StartParen = Lex.getLoc();
2592 if (!EatIfPresent(lltok::lparen))
2593 return error(StartParen, "expected '('");
2595 if (parseUInt32(BaseSizeArg))
2596 return true;
2598 if (EatIfPresent(lltok::comma)) {
2599 auto HowManyAt = Lex.getLoc();
2600 unsigned HowMany;
2601 if (parseUInt32(HowMany))
2602 return true;
2603 if (HowMany == BaseSizeArg)
2604 return error(HowManyAt,
2605 "'allocsize' indices can't refer to the same parameter");
2606 HowManyArg = HowMany;
2607 } else
2608 HowManyArg = std::nullopt;
2610 auto EndParen = Lex.getLoc();
2611 if (!EatIfPresent(lltok::rparen))
2612 return error(EndParen, "expected ')'");
2613 return false;
2616 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2617 unsigned &MaxValue) {
2618 Lex.Lex();
2620 auto StartParen = Lex.getLoc();
2621 if (!EatIfPresent(lltok::lparen))
2622 return error(StartParen, "expected '('");
2624 if (parseUInt32(MinValue))
2625 return true;
2627 if (EatIfPresent(lltok::comma)) {
2628 if (parseUInt32(MaxValue))
2629 return true;
2630 } else
2631 MaxValue = MinValue;
2633 auto EndParen = Lex.getLoc();
2634 if (!EatIfPresent(lltok::rparen))
2635 return error(EndParen, "expected ')'");
2636 return false;
2639 /// parseScopeAndOrdering
2640 /// if isAtomic: ::= SyncScope? AtomicOrdering
2641 /// else: ::=
2643 /// This sets Scope and Ordering to the parsed values.
2644 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2645 AtomicOrdering &Ordering) {
2646 if (!IsAtomic)
2647 return false;
2649 return parseScope(SSID) || parseOrdering(Ordering);
2652 /// parseScope
2653 /// ::= syncscope("singlethread" | "<target scope>")?
2655 /// This sets synchronization scope ID to the ID of the parsed value.
2656 bool LLParser::parseScope(SyncScope::ID &SSID) {
2657 SSID = SyncScope::System;
2658 if (EatIfPresent(lltok::kw_syncscope)) {
2659 auto StartParenAt = Lex.getLoc();
2660 if (!EatIfPresent(lltok::lparen))
2661 return error(StartParenAt, "Expected '(' in syncscope");
2663 std::string SSN;
2664 auto SSNAt = Lex.getLoc();
2665 if (parseStringConstant(SSN))
2666 return error(SSNAt, "Expected synchronization scope name");
2668 auto EndParenAt = Lex.getLoc();
2669 if (!EatIfPresent(lltok::rparen))
2670 return error(EndParenAt, "Expected ')' in syncscope");
2672 SSID = Context.getOrInsertSyncScopeID(SSN);
2675 return false;
2678 /// parseOrdering
2679 /// ::= AtomicOrdering
2681 /// This sets Ordering to the parsed value.
2682 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2683 switch (Lex.getKind()) {
2684 default:
2685 return tokError("Expected ordering on atomic instruction");
2686 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2687 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2688 // Not specified yet:
2689 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2690 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2691 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2692 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2693 case lltok::kw_seq_cst:
2694 Ordering = AtomicOrdering::SequentiallyConsistent;
2695 break;
2697 Lex.Lex();
2698 return false;
2701 /// parseOptionalStackAlignment
2702 /// ::= /* empty */
2703 /// ::= 'alignstack' '(' 4 ')'
2704 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2705 Alignment = 0;
2706 if (!EatIfPresent(lltok::kw_alignstack))
2707 return false;
2708 LocTy ParenLoc = Lex.getLoc();
2709 if (!EatIfPresent(lltok::lparen))
2710 return error(ParenLoc, "expected '('");
2711 LocTy AlignLoc = Lex.getLoc();
2712 if (parseUInt32(Alignment))
2713 return true;
2714 ParenLoc = Lex.getLoc();
2715 if (!EatIfPresent(lltok::rparen))
2716 return error(ParenLoc, "expected ')'");
2717 if (!isPowerOf2_32(Alignment))
2718 return error(AlignLoc, "stack alignment is not a power of two");
2719 return false;
2722 /// parseIndexList - This parses the index list for an insert/extractvalue
2723 /// instruction. This sets AteExtraComma in the case where we eat an extra
2724 /// comma at the end of the line and find that it is followed by metadata.
2725 /// Clients that don't allow metadata can call the version of this function that
2726 /// only takes one argument.
2728 /// parseIndexList
2729 /// ::= (',' uint32)+
2731 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2732 bool &AteExtraComma) {
2733 AteExtraComma = false;
2735 if (Lex.getKind() != lltok::comma)
2736 return tokError("expected ',' as start of index list");
2738 while (EatIfPresent(lltok::comma)) {
2739 if (Lex.getKind() == lltok::MetadataVar) {
2740 if (Indices.empty())
2741 return tokError("expected index");
2742 AteExtraComma = true;
2743 return false;
2745 unsigned Idx = 0;
2746 if (parseUInt32(Idx))
2747 return true;
2748 Indices.push_back(Idx);
2751 return false;
2754 //===----------------------------------------------------------------------===//
2755 // Type Parsing.
2756 //===----------------------------------------------------------------------===//
2758 /// parseType - parse a type.
2759 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2760 SMLoc TypeLoc = Lex.getLoc();
2761 switch (Lex.getKind()) {
2762 default:
2763 return tokError(Msg);
2764 case lltok::Type:
2765 // Type ::= 'float' | 'void' (etc)
2766 Result = Lex.getTyVal();
2767 Lex.Lex();
2769 // Handle "ptr" opaque pointer type.
2771 // Type ::= ptr ('addrspace' '(' uint32 ')')?
2772 if (Result->isPointerTy()) {
2773 unsigned AddrSpace;
2774 if (parseOptionalAddrSpace(AddrSpace))
2775 return true;
2776 Result = PointerType::get(getContext(), AddrSpace);
2778 // Give a nice error for 'ptr*'.
2779 if (Lex.getKind() == lltok::star)
2780 return tokError("ptr* is invalid - use ptr instead");
2782 // Fall through to parsing the type suffixes only if this 'ptr' is a
2783 // function return. Otherwise, return success, implicitly rejecting other
2784 // suffixes.
2785 if (Lex.getKind() != lltok::lparen)
2786 return false;
2788 break;
2789 case lltok::kw_target: {
2790 // Type ::= TargetExtType
2791 if (parseTargetExtType(Result))
2792 return true;
2793 break;
2795 case lltok::lbrace:
2796 // Type ::= StructType
2797 if (parseAnonStructType(Result, false))
2798 return true;
2799 break;
2800 case lltok::lsquare:
2801 // Type ::= '[' ... ']'
2802 Lex.Lex(); // eat the lsquare.
2803 if (parseArrayVectorType(Result, false))
2804 return true;
2805 break;
2806 case lltok::less: // Either vector or packed struct.
2807 // Type ::= '<' ... '>'
2808 Lex.Lex();
2809 if (Lex.getKind() == lltok::lbrace) {
2810 if (parseAnonStructType(Result, true) ||
2811 parseToken(lltok::greater, "expected '>' at end of packed struct"))
2812 return true;
2813 } else if (parseArrayVectorType(Result, true))
2814 return true;
2815 break;
2816 case lltok::LocalVar: {
2817 // Type ::= %foo
2818 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2820 // If the type hasn't been defined yet, create a forward definition and
2821 // remember where that forward def'n was seen (in case it never is defined).
2822 if (!Entry.first) {
2823 Entry.first = StructType::create(Context, Lex.getStrVal());
2824 Entry.second = Lex.getLoc();
2826 Result = Entry.first;
2827 Lex.Lex();
2828 break;
2831 case lltok::LocalVarID: {
2832 // Type ::= %4
2833 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2835 // If the type hasn't been defined yet, create a forward definition and
2836 // remember where that forward def'n was seen (in case it never is defined).
2837 if (!Entry.first) {
2838 Entry.first = StructType::create(Context);
2839 Entry.second = Lex.getLoc();
2841 Result = Entry.first;
2842 Lex.Lex();
2843 break;
2847 // parse the type suffixes.
2848 while (true) {
2849 switch (Lex.getKind()) {
2850 // End of type.
2851 default:
2852 if (!AllowVoid && Result->isVoidTy())
2853 return error(TypeLoc, "void type only allowed for function results");
2854 return false;
2856 // Type ::= Type '*'
2857 case lltok::star:
2858 if (Result->isLabelTy())
2859 return tokError("basic block pointers are invalid");
2860 if (Result->isVoidTy())
2861 return tokError("pointers to void are invalid - use i8* instead");
2862 if (!PointerType::isValidElementType(Result))
2863 return tokError("pointer to this type is invalid");
2864 Result = PointerType::getUnqual(Result);
2865 Lex.Lex();
2866 break;
2868 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2869 case lltok::kw_addrspace: {
2870 if (Result->isLabelTy())
2871 return tokError("basic block pointers are invalid");
2872 if (Result->isVoidTy())
2873 return tokError("pointers to void are invalid; use i8* instead");
2874 if (!PointerType::isValidElementType(Result))
2875 return tokError("pointer to this type is invalid");
2876 unsigned AddrSpace;
2877 if (parseOptionalAddrSpace(AddrSpace) ||
2878 parseToken(lltok::star, "expected '*' in address space"))
2879 return true;
2881 Result = PointerType::get(Result, AddrSpace);
2882 break;
2885 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2886 case lltok::lparen:
2887 if (parseFunctionType(Result))
2888 return true;
2889 break;
2894 /// parseParameterList
2895 /// ::= '(' ')'
2896 /// ::= '(' Arg (',' Arg)* ')'
2897 /// Arg
2898 /// ::= Type OptionalAttributes Value OptionalAttributes
2899 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2900 PerFunctionState &PFS, bool IsMustTailCall,
2901 bool InVarArgsFunc) {
2902 if (parseToken(lltok::lparen, "expected '(' in call"))
2903 return true;
2905 while (Lex.getKind() != lltok::rparen) {
2906 // If this isn't the first argument, we need a comma.
2907 if (!ArgList.empty() &&
2908 parseToken(lltok::comma, "expected ',' in argument list"))
2909 return true;
2911 // parse an ellipsis if this is a musttail call in a variadic function.
2912 if (Lex.getKind() == lltok::dotdotdot) {
2913 const char *Msg = "unexpected ellipsis in argument list for ";
2914 if (!IsMustTailCall)
2915 return tokError(Twine(Msg) + "non-musttail call");
2916 if (!InVarArgsFunc)
2917 return tokError(Twine(Msg) + "musttail call in non-varargs function");
2918 Lex.Lex(); // Lex the '...', it is purely for readability.
2919 return parseToken(lltok::rparen, "expected ')' at end of argument list");
2922 // parse the argument.
2923 LocTy ArgLoc;
2924 Type *ArgTy = nullptr;
2925 Value *V;
2926 if (parseType(ArgTy, ArgLoc))
2927 return true;
2929 AttrBuilder ArgAttrs(M->getContext());
2931 if (ArgTy->isMetadataTy()) {
2932 if (parseMetadataAsValue(V, PFS))
2933 return true;
2934 } else {
2935 // Otherwise, handle normal operands.
2936 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2937 return true;
2939 ArgList.push_back(ParamInfo(
2940 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2943 if (IsMustTailCall && InVarArgsFunc)
2944 return tokError("expected '...' at end of argument list for musttail call "
2945 "in varargs function");
2947 Lex.Lex(); // Lex the ')'.
2948 return false;
2951 /// parseRequiredTypeAttr
2952 /// ::= attrname(<ty>)
2953 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2954 Attribute::AttrKind AttrKind) {
2955 Type *Ty = nullptr;
2956 if (!EatIfPresent(AttrToken))
2957 return true;
2958 if (!EatIfPresent(lltok::lparen))
2959 return error(Lex.getLoc(), "expected '('");
2960 if (parseType(Ty))
2961 return true;
2962 if (!EatIfPresent(lltok::rparen))
2963 return error(Lex.getLoc(), "expected ')'");
2965 B.addTypeAttr(AttrKind, Ty);
2966 return false;
2969 /// parseOptionalOperandBundles
2970 /// ::= /*empty*/
2971 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2973 /// OperandBundle
2974 /// ::= bundle-tag '(' ')'
2975 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2977 /// bundle-tag ::= String Constant
2978 bool LLParser::parseOptionalOperandBundles(
2979 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2980 LocTy BeginLoc = Lex.getLoc();
2981 if (!EatIfPresent(lltok::lsquare))
2982 return false;
2984 while (Lex.getKind() != lltok::rsquare) {
2985 // If this isn't the first operand bundle, we need a comma.
2986 if (!BundleList.empty() &&
2987 parseToken(lltok::comma, "expected ',' in input list"))
2988 return true;
2990 std::string Tag;
2991 if (parseStringConstant(Tag))
2992 return true;
2994 if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2995 return true;
2997 std::vector<Value *> Inputs;
2998 while (Lex.getKind() != lltok::rparen) {
2999 // If this isn't the first input, we need a comma.
3000 if (!Inputs.empty() &&
3001 parseToken(lltok::comma, "expected ',' in input list"))
3002 return true;
3004 Type *Ty = nullptr;
3005 Value *Input = nullptr;
3006 if (parseType(Ty) || parseValue(Ty, Input, PFS))
3007 return true;
3008 Inputs.push_back(Input);
3011 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
3013 Lex.Lex(); // Lex the ')'.
3016 if (BundleList.empty())
3017 return error(BeginLoc, "operand bundle set must not be empty");
3019 Lex.Lex(); // Lex the ']'.
3020 return false;
3023 bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix,
3024 unsigned NextID, unsigned ID) const {
3025 if (ID < NextID)
3026 return error(Loc, Kind + " expected to be numbered '" + Prefix +
3027 Twine(NextID) + "' or greater");
3029 return false;
3032 /// parseArgumentList - parse the argument list for a function type or function
3033 /// prototype.
3034 /// ::= '(' ArgTypeListI ')'
3035 /// ArgTypeListI
3036 /// ::= /*empty*/
3037 /// ::= '...'
3038 /// ::= ArgTypeList ',' '...'
3039 /// ::= ArgType (',' ArgType)*
3041 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
3042 SmallVectorImpl<unsigned> &UnnamedArgNums,
3043 bool &IsVarArg) {
3044 unsigned CurValID = 0;
3045 IsVarArg = false;
3046 assert(Lex.getKind() == lltok::lparen);
3047 Lex.Lex(); // eat the (.
3049 if (Lex.getKind() != lltok::rparen) {
3050 do {
3051 // Handle ... at end of arg list.
3052 if (EatIfPresent(lltok::dotdotdot)) {
3053 IsVarArg = true;
3054 break;
3057 // Otherwise must be an argument type.
3058 LocTy TypeLoc = Lex.getLoc();
3059 Type *ArgTy = nullptr;
3060 AttrBuilder Attrs(M->getContext());
3061 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
3062 return true;
3064 if (ArgTy->isVoidTy())
3065 return error(TypeLoc, "argument can not have void type");
3067 std::string Name;
3068 if (Lex.getKind() == lltok::LocalVar) {
3069 Name = Lex.getStrVal();
3070 Lex.Lex();
3071 } else {
3072 unsigned ArgID;
3073 if (Lex.getKind() == lltok::LocalVarID) {
3074 ArgID = Lex.getUIntVal();
3075 if (checkValueID(TypeLoc, "argument", "%", CurValID, ArgID))
3076 return true;
3077 Lex.Lex();
3078 } else {
3079 ArgID = CurValID;
3081 UnnamedArgNums.push_back(ArgID);
3082 CurValID = ArgID + 1;
3085 if (!ArgTy->isFirstClassType())
3086 return error(TypeLoc, "invalid type for function argument");
3088 ArgList.emplace_back(TypeLoc, ArgTy,
3089 AttributeSet::get(ArgTy->getContext(), Attrs),
3090 std::move(Name));
3091 } while (EatIfPresent(lltok::comma));
3094 return parseToken(lltok::rparen, "expected ')' at end of argument list");
3097 /// parseFunctionType
3098 /// ::= Type ArgumentList OptionalAttrs
3099 bool LLParser::parseFunctionType(Type *&Result) {
3100 assert(Lex.getKind() == lltok::lparen);
3102 if (!FunctionType::isValidReturnType(Result))
3103 return tokError("invalid function return type");
3105 SmallVector<ArgInfo, 8> ArgList;
3106 bool IsVarArg;
3107 SmallVector<unsigned> UnnamedArgNums;
3108 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg))
3109 return true;
3111 // Reject names on the arguments lists.
3112 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3113 if (!ArgList[i].Name.empty())
3114 return error(ArgList[i].Loc, "argument name invalid in function type");
3115 if (ArgList[i].Attrs.hasAttributes())
3116 return error(ArgList[i].Loc,
3117 "argument attributes invalid in function type");
3120 SmallVector<Type*, 16> ArgListTy;
3121 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3122 ArgListTy.push_back(ArgList[i].Ty);
3124 Result = FunctionType::get(Result, ArgListTy, IsVarArg);
3125 return false;
3128 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
3129 /// other structs.
3130 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
3131 SmallVector<Type*, 8> Elts;
3132 if (parseStructBody(Elts))
3133 return true;
3135 Result = StructType::get(Context, Elts, Packed);
3136 return false;
3139 /// parseStructDefinition - parse a struct in a 'type' definition.
3140 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
3141 std::pair<Type *, LocTy> &Entry,
3142 Type *&ResultTy) {
3143 // If the type was already defined, diagnose the redefinition.
3144 if (Entry.first && !Entry.second.isValid())
3145 return error(TypeLoc, "redefinition of type");
3147 // If we have opaque, just return without filling in the definition for the
3148 // struct. This counts as a definition as far as the .ll file goes.
3149 if (EatIfPresent(lltok::kw_opaque)) {
3150 // This type is being defined, so clear the location to indicate this.
3151 Entry.second = SMLoc();
3153 // If this type number has never been uttered, create it.
3154 if (!Entry.first)
3155 Entry.first = StructType::create(Context, Name);
3156 ResultTy = Entry.first;
3157 return false;
3160 // If the type starts with '<', then it is either a packed struct or a vector.
3161 bool isPacked = EatIfPresent(lltok::less);
3163 // If we don't have a struct, then we have a random type alias, which we
3164 // accept for compatibility with old files. These types are not allowed to be
3165 // forward referenced and not allowed to be recursive.
3166 if (Lex.getKind() != lltok::lbrace) {
3167 if (Entry.first)
3168 return error(TypeLoc, "forward references to non-struct type");
3170 ResultTy = nullptr;
3171 if (isPacked)
3172 return parseArrayVectorType(ResultTy, true);
3173 return parseType(ResultTy);
3176 // This type is being defined, so clear the location to indicate this.
3177 Entry.second = SMLoc();
3179 // If this type number has never been uttered, create it.
3180 if (!Entry.first)
3181 Entry.first = StructType::create(Context, Name);
3183 StructType *STy = cast<StructType>(Entry.first);
3185 SmallVector<Type*, 8> Body;
3186 if (parseStructBody(Body) ||
3187 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
3188 return true;
3190 STy->setBody(Body, isPacked);
3191 ResultTy = STy;
3192 return false;
3195 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere.
3196 /// StructType
3197 /// ::= '{' '}'
3198 /// ::= '{' Type (',' Type)* '}'
3199 /// ::= '<' '{' '}' '>'
3200 /// ::= '<' '{' Type (',' Type)* '}' '>'
3201 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
3202 assert(Lex.getKind() == lltok::lbrace);
3203 Lex.Lex(); // Consume the '{'
3205 // Handle the empty struct.
3206 if (EatIfPresent(lltok::rbrace))
3207 return false;
3209 LocTy EltTyLoc = Lex.getLoc();
3210 Type *Ty = nullptr;
3211 if (parseType(Ty))
3212 return true;
3213 Body.push_back(Ty);
3215 if (!StructType::isValidElementType(Ty))
3216 return error(EltTyLoc, "invalid element type for struct");
3218 while (EatIfPresent(lltok::comma)) {
3219 EltTyLoc = Lex.getLoc();
3220 if (parseType(Ty))
3221 return true;
3223 if (!StructType::isValidElementType(Ty))
3224 return error(EltTyLoc, "invalid element type for struct");
3226 Body.push_back(Ty);
3229 return parseToken(lltok::rbrace, "expected '}' at end of struct");
3232 /// parseArrayVectorType - parse an array or vector type, assuming the first
3233 /// token has already been consumed.
3234 /// Type
3235 /// ::= '[' APSINTVAL 'x' Types ']'
3236 /// ::= '<' APSINTVAL 'x' Types '>'
3237 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3238 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3239 bool Scalable = false;
3241 if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3242 Lex.Lex(); // consume the 'vscale'
3243 if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3244 return true;
3246 Scalable = true;
3249 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3250 Lex.getAPSIntVal().getBitWidth() > 64)
3251 return tokError("expected number in address space");
3253 LocTy SizeLoc = Lex.getLoc();
3254 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3255 Lex.Lex();
3257 if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3258 return true;
3260 LocTy TypeLoc = Lex.getLoc();
3261 Type *EltTy = nullptr;
3262 if (parseType(EltTy))
3263 return true;
3265 if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3266 "expected end of sequential type"))
3267 return true;
3269 if (IsVector) {
3270 if (Size == 0)
3271 return error(SizeLoc, "zero element vector is illegal");
3272 if ((unsigned)Size != Size)
3273 return error(SizeLoc, "size too large for vector");
3274 if (!VectorType::isValidElementType(EltTy))
3275 return error(TypeLoc, "invalid vector element type");
3276 Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3277 } else {
3278 if (!ArrayType::isValidElementType(EltTy))
3279 return error(TypeLoc, "invalid array element type");
3280 Result = ArrayType::get(EltTy, Size);
3282 return false;
3285 /// parseTargetExtType - handle target extension type syntax
3286 /// TargetExtType
3287 /// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')'
3289 /// TargetExtTypeParams
3290 /// ::= /*empty*/
3291 /// ::= ',' Type TargetExtTypeParams
3293 /// TargetExtIntParams
3294 /// ::= /*empty*/
3295 /// ::= ',' uint32 TargetExtIntParams
3296 bool LLParser::parseTargetExtType(Type *&Result) {
3297 Lex.Lex(); // Eat the 'target' keyword.
3299 // Get the mandatory type name.
3300 std::string TypeName;
3301 if (parseToken(lltok::lparen, "expected '(' in target extension type") ||
3302 parseStringConstant(TypeName))
3303 return true;
3305 // Parse all of the integer and type parameters at the same time; the use of
3306 // SeenInt will allow us to catch cases where type parameters follow integer
3307 // parameters.
3308 SmallVector<Type *> TypeParams;
3309 SmallVector<unsigned> IntParams;
3310 bool SeenInt = false;
3311 while (Lex.getKind() == lltok::comma) {
3312 Lex.Lex(); // Eat the comma.
3314 if (Lex.getKind() == lltok::APSInt) {
3315 SeenInt = true;
3316 unsigned IntVal;
3317 if (parseUInt32(IntVal))
3318 return true;
3319 IntParams.push_back(IntVal);
3320 } else if (SeenInt) {
3321 // The only other kind of parameter we support is type parameters, which
3322 // must precede the integer parameters. This is therefore an error.
3323 return tokError("expected uint32 param");
3324 } else {
3325 Type *TypeParam;
3326 if (parseType(TypeParam, /*AllowVoid=*/true))
3327 return true;
3328 TypeParams.push_back(TypeParam);
3332 if (parseToken(lltok::rparen, "expected ')' in target extension type"))
3333 return true;
3335 Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
3336 return false;
3339 //===----------------------------------------------------------------------===//
3340 // Function Semantic Analysis.
3341 //===----------------------------------------------------------------------===//
3343 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3344 int functionNumber,
3345 ArrayRef<unsigned> UnnamedArgNums)
3346 : P(p), F(f), FunctionNumber(functionNumber) {
3348 // Insert unnamed arguments into the NumberedVals list.
3349 auto It = UnnamedArgNums.begin();
3350 for (Argument &A : F.args()) {
3351 if (!A.hasName()) {
3352 unsigned ArgNum = *It++;
3353 NumberedVals.add(ArgNum, &A);
3358 LLParser::PerFunctionState::~PerFunctionState() {
3359 // If there were any forward referenced non-basicblock values, delete them.
3361 for (const auto &P : ForwardRefVals) {
3362 if (isa<BasicBlock>(P.second.first))
3363 continue;
3364 P.second.first->replaceAllUsesWith(
3365 UndefValue::get(P.second.first->getType()));
3366 P.second.first->deleteValue();
3369 for (const auto &P : ForwardRefValIDs) {
3370 if (isa<BasicBlock>(P.second.first))
3371 continue;
3372 P.second.first->replaceAllUsesWith(
3373 UndefValue::get(P.second.first->getType()));
3374 P.second.first->deleteValue();
3378 bool LLParser::PerFunctionState::finishFunction() {
3379 if (!ForwardRefVals.empty())
3380 return P.error(ForwardRefVals.begin()->second.second,
3381 "use of undefined value '%" + ForwardRefVals.begin()->first +
3382 "'");
3383 if (!ForwardRefValIDs.empty())
3384 return P.error(ForwardRefValIDs.begin()->second.second,
3385 "use of undefined value '%" +
3386 Twine(ForwardRefValIDs.begin()->first) + "'");
3387 return false;
3390 /// getVal - Get a value with the specified name or ID, creating a
3391 /// forward reference record if needed. This can return null if the value
3392 /// exists but does not have the right type.
3393 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3394 LocTy Loc) {
3395 // Look this name up in the normal function symbol table.
3396 Value *Val = F.getValueSymbolTable()->lookup(Name);
3398 // If this is a forward reference for the value, see if we already created a
3399 // forward ref record.
3400 if (!Val) {
3401 auto I = ForwardRefVals.find(Name);
3402 if (I != ForwardRefVals.end())
3403 Val = I->second.first;
3406 // If we have the value in the symbol table or fwd-ref table, return it.
3407 if (Val)
3408 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
3410 // Don't make placeholders with invalid type.
3411 if (!Ty->isFirstClassType()) {
3412 P.error(Loc, "invalid use of a non-first-class type");
3413 return nullptr;
3416 // Otherwise, create a new forward reference for this value and remember it.
3417 Value *FwdVal;
3418 if (Ty->isLabelTy()) {
3419 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3420 } else {
3421 FwdVal = new Argument(Ty, Name);
3423 if (FwdVal->getName() != Name) {
3424 P.error(Loc, "name is too long which can result in name collisions, "
3425 "consider making the name shorter or "
3426 "increasing -non-global-value-max-name-size");
3427 return nullptr;
3430 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3431 return FwdVal;
3434 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
3435 // Look this name up in the normal function symbol table.
3436 Value *Val = NumberedVals.get(ID);
3438 // If this is a forward reference for the value, see if we already created a
3439 // forward ref record.
3440 if (!Val) {
3441 auto I = ForwardRefValIDs.find(ID);
3442 if (I != ForwardRefValIDs.end())
3443 Val = I->second.first;
3446 // If we have the value in the symbol table or fwd-ref table, return it.
3447 if (Val)
3448 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
3450 if (!Ty->isFirstClassType()) {
3451 P.error(Loc, "invalid use of a non-first-class type");
3452 return nullptr;
3455 // Otherwise, create a new forward reference for this value and remember it.
3456 Value *FwdVal;
3457 if (Ty->isLabelTy()) {
3458 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3459 } else {
3460 FwdVal = new Argument(Ty);
3463 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3464 return FwdVal;
3467 /// setInstName - After an instruction is parsed and inserted into its
3468 /// basic block, this installs its name.
3469 bool LLParser::PerFunctionState::setInstName(int NameID,
3470 const std::string &NameStr,
3471 LocTy NameLoc, Instruction *Inst) {
3472 // If this instruction has void type, it cannot have a name or ID specified.
3473 if (Inst->getType()->isVoidTy()) {
3474 if (NameID != -1 || !NameStr.empty())
3475 return P.error(NameLoc, "instructions returning void cannot have a name");
3476 return false;
3479 // If this was a numbered instruction, verify that the instruction is the
3480 // expected value and resolve any forward references.
3481 if (NameStr.empty()) {
3482 // If neither a name nor an ID was specified, just use the next ID.
3483 if (NameID == -1)
3484 NameID = NumberedVals.getNext();
3486 if (P.checkValueID(NameLoc, "instruction", "%", NumberedVals.getNext(),
3487 NameID))
3488 return true;
3490 auto FI = ForwardRefValIDs.find(NameID);
3491 if (FI != ForwardRefValIDs.end()) {
3492 Value *Sentinel = FI->second.first;
3493 if (Sentinel->getType() != Inst->getType())
3494 return P.error(NameLoc, "instruction forward referenced with type '" +
3495 getTypeString(FI->second.first->getType()) +
3496 "'");
3498 Sentinel->replaceAllUsesWith(Inst);
3499 Sentinel->deleteValue();
3500 ForwardRefValIDs.erase(FI);
3503 NumberedVals.add(NameID, Inst);
3504 return false;
3507 // Otherwise, the instruction had a name. Resolve forward refs and set it.
3508 auto FI = ForwardRefVals.find(NameStr);
3509 if (FI != ForwardRefVals.end()) {
3510 Value *Sentinel = FI->second.first;
3511 if (Sentinel->getType() != Inst->getType())
3512 return P.error(NameLoc, "instruction forward referenced with type '" +
3513 getTypeString(FI->second.first->getType()) +
3514 "'");
3516 Sentinel->replaceAllUsesWith(Inst);
3517 Sentinel->deleteValue();
3518 ForwardRefVals.erase(FI);
3521 // Set the name on the instruction.
3522 Inst->setName(NameStr);
3524 if (Inst->getName() != NameStr)
3525 return P.error(NameLoc, "multiple definition of local value named '" +
3526 NameStr + "'");
3527 return false;
3530 /// getBB - Get a basic block with the specified name or ID, creating a
3531 /// forward reference record if needed.
3532 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3533 LocTy Loc) {
3534 return dyn_cast_or_null<BasicBlock>(
3535 getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3538 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3539 return dyn_cast_or_null<BasicBlock>(
3540 getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3543 /// defineBB - Define the specified basic block, which is either named or
3544 /// unnamed. If there is an error, this returns null otherwise it returns
3545 /// the block being defined.
3546 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3547 int NameID, LocTy Loc) {
3548 BasicBlock *BB;
3549 if (Name.empty()) {
3550 if (NameID != -1) {
3551 if (P.checkValueID(Loc, "label", "", NumberedVals.getNext(), NameID))
3552 return nullptr;
3553 } else {
3554 NameID = NumberedVals.getNext();
3556 BB = getBB(NameID, Loc);
3557 if (!BB) {
3558 P.error(Loc, "unable to create block numbered '" + Twine(NameID) + "'");
3559 return nullptr;
3561 } else {
3562 BB = getBB(Name, Loc);
3563 if (!BB) {
3564 P.error(Loc, "unable to create block named '" + Name + "'");
3565 return nullptr;
3569 // Move the block to the end of the function. Forward ref'd blocks are
3570 // inserted wherever they happen to be referenced.
3571 F.splice(F.end(), &F, BB->getIterator());
3573 // Remove the block from forward ref sets.
3574 if (Name.empty()) {
3575 ForwardRefValIDs.erase(NameID);
3576 NumberedVals.add(NameID, BB);
3577 } else {
3578 // BB forward references are already in the function symbol table.
3579 ForwardRefVals.erase(Name);
3582 return BB;
3585 //===----------------------------------------------------------------------===//
3586 // Constants.
3587 //===----------------------------------------------------------------------===//
3589 /// parseValID - parse an abstract value that doesn't necessarily have a
3590 /// type implied. For example, if we parse "4" we don't know what integer type
3591 /// it has. The value will later be combined with its type and checked for
3592 /// basic correctness. PFS is used to convert function-local operands of
3593 /// metadata (since metadata operands are not just parsed here but also
3594 /// converted to values). PFS can be null when we are not parsing metadata
3595 /// values inside a function.
3596 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3597 ID.Loc = Lex.getLoc();
3598 switch (Lex.getKind()) {
3599 default:
3600 return tokError("expected value token");
3601 case lltok::GlobalID: // @42
3602 ID.UIntVal = Lex.getUIntVal();
3603 ID.Kind = ValID::t_GlobalID;
3604 break;
3605 case lltok::GlobalVar: // @foo
3606 ID.StrVal = Lex.getStrVal();
3607 ID.Kind = ValID::t_GlobalName;
3608 break;
3609 case lltok::LocalVarID: // %42
3610 ID.UIntVal = Lex.getUIntVal();
3611 ID.Kind = ValID::t_LocalID;
3612 break;
3613 case lltok::LocalVar: // %foo
3614 ID.StrVal = Lex.getStrVal();
3615 ID.Kind = ValID::t_LocalName;
3616 break;
3617 case lltok::APSInt:
3618 ID.APSIntVal = Lex.getAPSIntVal();
3619 ID.Kind = ValID::t_APSInt;
3620 break;
3621 case lltok::APFloat:
3622 ID.APFloatVal = Lex.getAPFloatVal();
3623 ID.Kind = ValID::t_APFloat;
3624 break;
3625 case lltok::kw_true:
3626 ID.ConstantVal = ConstantInt::getTrue(Context);
3627 ID.Kind = ValID::t_Constant;
3628 break;
3629 case lltok::kw_false:
3630 ID.ConstantVal = ConstantInt::getFalse(Context);
3631 ID.Kind = ValID::t_Constant;
3632 break;
3633 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3634 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3635 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3636 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3637 case lltok::kw_none: ID.Kind = ValID::t_None; break;
3639 case lltok::lbrace: {
3640 // ValID ::= '{' ConstVector '}'
3641 Lex.Lex();
3642 SmallVector<Constant*, 16> Elts;
3643 if (parseGlobalValueVector(Elts) ||
3644 parseToken(lltok::rbrace, "expected end of struct constant"))
3645 return true;
3647 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3648 ID.UIntVal = Elts.size();
3649 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3650 Elts.size() * sizeof(Elts[0]));
3651 ID.Kind = ValID::t_ConstantStruct;
3652 return false;
3654 case lltok::less: {
3655 // ValID ::= '<' ConstVector '>' --> Vector.
3656 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3657 Lex.Lex();
3658 bool isPackedStruct = EatIfPresent(lltok::lbrace);
3660 SmallVector<Constant*, 16> Elts;
3661 LocTy FirstEltLoc = Lex.getLoc();
3662 if (parseGlobalValueVector(Elts) ||
3663 (isPackedStruct &&
3664 parseToken(lltok::rbrace, "expected end of packed struct")) ||
3665 parseToken(lltok::greater, "expected end of constant"))
3666 return true;
3668 if (isPackedStruct) {
3669 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3670 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3671 Elts.size() * sizeof(Elts[0]));
3672 ID.UIntVal = Elts.size();
3673 ID.Kind = ValID::t_PackedConstantStruct;
3674 return false;
3677 if (Elts.empty())
3678 return error(ID.Loc, "constant vector must not be empty");
3680 if (!Elts[0]->getType()->isIntegerTy() &&
3681 !Elts[0]->getType()->isFloatingPointTy() &&
3682 !Elts[0]->getType()->isPointerTy())
3683 return error(
3684 FirstEltLoc,
3685 "vector elements must have integer, pointer or floating point type");
3687 // Verify that all the vector elements have the same type.
3688 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3689 if (Elts[i]->getType() != Elts[0]->getType())
3690 return error(FirstEltLoc, "vector element #" + Twine(i) +
3691 " is not of type '" +
3692 getTypeString(Elts[0]->getType()));
3694 ID.ConstantVal = ConstantVector::get(Elts);
3695 ID.Kind = ValID::t_Constant;
3696 return false;
3698 case lltok::lsquare: { // Array Constant
3699 Lex.Lex();
3700 SmallVector<Constant*, 16> Elts;
3701 LocTy FirstEltLoc = Lex.getLoc();
3702 if (parseGlobalValueVector(Elts) ||
3703 parseToken(lltok::rsquare, "expected end of array constant"))
3704 return true;
3706 // Handle empty element.
3707 if (Elts.empty()) {
3708 // Use undef instead of an array because it's inconvenient to determine
3709 // the element type at this point, there being no elements to examine.
3710 ID.Kind = ValID::t_EmptyArray;
3711 return false;
3714 if (!Elts[0]->getType()->isFirstClassType())
3715 return error(FirstEltLoc, "invalid array element type: " +
3716 getTypeString(Elts[0]->getType()));
3718 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3720 // Verify all elements are correct type!
3721 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3722 if (Elts[i]->getType() != Elts[0]->getType())
3723 return error(FirstEltLoc, "array element #" + Twine(i) +
3724 " is not of type '" +
3725 getTypeString(Elts[0]->getType()));
3728 ID.ConstantVal = ConstantArray::get(ATy, Elts);
3729 ID.Kind = ValID::t_Constant;
3730 return false;
3732 case lltok::kw_c: // c "foo"
3733 Lex.Lex();
3734 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3735 false);
3736 if (parseToken(lltok::StringConstant, "expected string"))
3737 return true;
3738 ID.Kind = ValID::t_Constant;
3739 return false;
3741 case lltok::kw_asm: {
3742 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3743 // STRINGCONSTANT
3744 bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3745 Lex.Lex();
3746 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3747 parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3748 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3749 parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3750 parseStringConstant(ID.StrVal) ||
3751 parseToken(lltok::comma, "expected comma in inline asm expression") ||
3752 parseToken(lltok::StringConstant, "expected constraint string"))
3753 return true;
3754 ID.StrVal2 = Lex.getStrVal();
3755 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3756 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3757 ID.Kind = ValID::t_InlineAsm;
3758 return false;
3761 case lltok::kw_blockaddress: {
3762 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3763 Lex.Lex();
3765 ValID Fn, Label;
3767 if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3768 parseValID(Fn, PFS) ||
3769 parseToken(lltok::comma,
3770 "expected comma in block address expression") ||
3771 parseValID(Label, PFS) ||
3772 parseToken(lltok::rparen, "expected ')' in block address expression"))
3773 return true;
3775 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3776 return error(Fn.Loc, "expected function name in blockaddress");
3777 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3778 return error(Label.Loc, "expected basic block name in blockaddress");
3780 // Try to find the function (but skip it if it's forward-referenced).
3781 GlobalValue *GV = nullptr;
3782 if (Fn.Kind == ValID::t_GlobalID) {
3783 if (Fn.UIntVal < NumberedVals.size())
3784 GV = NumberedVals[Fn.UIntVal];
3785 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3786 GV = M->getNamedValue(Fn.StrVal);
3788 Function *F = nullptr;
3789 if (GV) {
3790 // Confirm that it's actually a function with a definition.
3791 if (!isa<Function>(GV))
3792 return error(Fn.Loc, "expected function name in blockaddress");
3793 F = cast<Function>(GV);
3794 if (F->isDeclaration())
3795 return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3798 if (!F) {
3799 // Make a global variable as a placeholder for this reference.
3800 GlobalValue *&FwdRef =
3801 ForwardRefBlockAddresses.insert(std::make_pair(
3802 std::move(Fn),
3803 std::map<ValID, GlobalValue *>()))
3804 .first->second.insert(std::make_pair(std::move(Label), nullptr))
3805 .first->second;
3806 if (!FwdRef) {
3807 unsigned FwdDeclAS;
3808 if (ExpectedTy) {
3809 // If we know the type that the blockaddress is being assigned to,
3810 // we can use the address space of that type.
3811 if (!ExpectedTy->isPointerTy())
3812 return error(ID.Loc,
3813 "type of blockaddress must be a pointer and not '" +
3814 getTypeString(ExpectedTy) + "'");
3815 FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3816 } else if (PFS) {
3817 // Otherwise, we default the address space of the current function.
3818 FwdDeclAS = PFS->getFunction().getAddressSpace();
3819 } else {
3820 llvm_unreachable("Unknown address space for blockaddress");
3822 FwdRef = new GlobalVariable(
3823 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3824 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3827 ID.ConstantVal = FwdRef;
3828 ID.Kind = ValID::t_Constant;
3829 return false;
3832 // We found the function; now find the basic block. Don't use PFS, since we
3833 // might be inside a constant expression.
3834 BasicBlock *BB;
3835 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3836 if (Label.Kind == ValID::t_LocalID)
3837 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3838 else
3839 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3840 if (!BB)
3841 return error(Label.Loc, "referenced value is not a basic block");
3842 } else {
3843 if (Label.Kind == ValID::t_LocalID)
3844 return error(Label.Loc, "cannot take address of numeric label after "
3845 "the function is defined");
3846 BB = dyn_cast_or_null<BasicBlock>(
3847 F->getValueSymbolTable()->lookup(Label.StrVal));
3848 if (!BB)
3849 return error(Label.Loc, "referenced value is not a basic block");
3852 ID.ConstantVal = BlockAddress::get(F, BB);
3853 ID.Kind = ValID::t_Constant;
3854 return false;
3857 case lltok::kw_dso_local_equivalent: {
3858 // ValID ::= 'dso_local_equivalent' @foo
3859 Lex.Lex();
3861 ValID Fn;
3863 if (parseValID(Fn, PFS))
3864 return true;
3866 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3867 return error(Fn.Loc,
3868 "expected global value name in dso_local_equivalent");
3870 // Try to find the function (but skip it if it's forward-referenced).
3871 GlobalValue *GV = nullptr;
3872 if (Fn.Kind == ValID::t_GlobalID) {
3873 if (Fn.UIntVal < NumberedVals.size())
3874 GV = NumberedVals[Fn.UIntVal];
3875 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3876 GV = M->getNamedValue(Fn.StrVal);
3879 if (!GV) {
3880 // Make a placeholder global variable as a placeholder for this reference.
3881 auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID)
3882 ? ForwardRefDSOLocalEquivalentIDs
3883 : ForwardRefDSOLocalEquivalentNames;
3884 GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second;
3885 if (!FwdRef) {
3886 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3887 GlobalValue::InternalLinkage, nullptr, "",
3888 nullptr, GlobalValue::NotThreadLocal);
3891 ID.ConstantVal = FwdRef;
3892 ID.Kind = ValID::t_Constant;
3893 return false;
3896 if (!GV->getValueType()->isFunctionTy())
3897 return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3898 "in dso_local_equivalent");
3900 ID.ConstantVal = DSOLocalEquivalent::get(GV);
3901 ID.Kind = ValID::t_Constant;
3902 return false;
3905 case lltok::kw_no_cfi: {
3906 // ValID ::= 'no_cfi' @foo
3907 Lex.Lex();
3909 if (parseValID(ID, PFS))
3910 return true;
3912 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3913 return error(ID.Loc, "expected global value name in no_cfi");
3915 ID.NoCFI = true;
3916 return false;
3919 case lltok::kw_trunc:
3920 case lltok::kw_bitcast:
3921 case lltok::kw_addrspacecast:
3922 case lltok::kw_inttoptr:
3923 case lltok::kw_ptrtoint: {
3924 unsigned Opc = Lex.getUIntVal();
3925 Type *DestTy = nullptr;
3926 Constant *SrcVal;
3927 Lex.Lex();
3928 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3929 parseGlobalTypeAndValue(SrcVal) ||
3930 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3931 parseType(DestTy) ||
3932 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3933 return true;
3934 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3935 return error(ID.Loc, "invalid cast opcode for cast from '" +
3936 getTypeString(SrcVal->getType()) + "' to '" +
3937 getTypeString(DestTy) + "'");
3938 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3939 SrcVal, DestTy);
3940 ID.Kind = ValID::t_Constant;
3941 return false;
3943 case lltok::kw_extractvalue:
3944 return error(ID.Loc, "extractvalue constexprs are no longer supported");
3945 case lltok::kw_insertvalue:
3946 return error(ID.Loc, "insertvalue constexprs are no longer supported");
3947 case lltok::kw_udiv:
3948 return error(ID.Loc, "udiv constexprs are no longer supported");
3949 case lltok::kw_sdiv:
3950 return error(ID.Loc, "sdiv constexprs are no longer supported");
3951 case lltok::kw_urem:
3952 return error(ID.Loc, "urem constexprs are no longer supported");
3953 case lltok::kw_srem:
3954 return error(ID.Loc, "srem constexprs are no longer supported");
3955 case lltok::kw_fadd:
3956 return error(ID.Loc, "fadd constexprs are no longer supported");
3957 case lltok::kw_fsub:
3958 return error(ID.Loc, "fsub constexprs are no longer supported");
3959 case lltok::kw_fmul:
3960 return error(ID.Loc, "fmul constexprs are no longer supported");
3961 case lltok::kw_fdiv:
3962 return error(ID.Loc, "fdiv constexprs are no longer supported");
3963 case lltok::kw_frem:
3964 return error(ID.Loc, "frem constexprs are no longer supported");
3965 case lltok::kw_and:
3966 return error(ID.Loc, "and constexprs are no longer supported");
3967 case lltok::kw_or:
3968 return error(ID.Loc, "or constexprs are no longer supported");
3969 case lltok::kw_lshr:
3970 return error(ID.Loc, "lshr constexprs are no longer supported");
3971 case lltok::kw_ashr:
3972 return error(ID.Loc, "ashr constexprs are no longer supported");
3973 case lltok::kw_fneg:
3974 return error(ID.Loc, "fneg constexprs are no longer supported");
3975 case lltok::kw_select:
3976 return error(ID.Loc, "select constexprs are no longer supported");
3977 case lltok::kw_zext:
3978 return error(ID.Loc, "zext constexprs are no longer supported");
3979 case lltok::kw_sext:
3980 return error(ID.Loc, "sext constexprs are no longer supported");
3981 case lltok::kw_fptrunc:
3982 return error(ID.Loc, "fptrunc constexprs are no longer supported");
3983 case lltok::kw_fpext:
3984 return error(ID.Loc, "fpext constexprs are no longer supported");
3985 case lltok::kw_uitofp:
3986 return error(ID.Loc, "uitofp constexprs are no longer supported");
3987 case lltok::kw_sitofp:
3988 return error(ID.Loc, "sitofp constexprs are no longer supported");
3989 case lltok::kw_fptoui:
3990 return error(ID.Loc, "fptoui constexprs are no longer supported");
3991 case lltok::kw_fptosi:
3992 return error(ID.Loc, "fptosi constexprs are no longer supported");
3993 case lltok::kw_icmp:
3994 case lltok::kw_fcmp: {
3995 unsigned PredVal, Opc = Lex.getUIntVal();
3996 Constant *Val0, *Val1;
3997 Lex.Lex();
3998 if (parseCmpPredicate(PredVal, Opc) ||
3999 parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
4000 parseGlobalTypeAndValue(Val0) ||
4001 parseToken(lltok::comma, "expected comma in compare constantexpr") ||
4002 parseGlobalTypeAndValue(Val1) ||
4003 parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
4004 return true;
4006 if (Val0->getType() != Val1->getType())
4007 return error(ID.Loc, "compare operands must have the same type");
4009 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
4011 if (Opc == Instruction::FCmp) {
4012 if (!Val0->getType()->isFPOrFPVectorTy())
4013 return error(ID.Loc, "fcmp requires floating point operands");
4014 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
4015 } else {
4016 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
4017 if (!Val0->getType()->isIntOrIntVectorTy() &&
4018 !Val0->getType()->isPtrOrPtrVectorTy())
4019 return error(ID.Loc, "icmp requires pointer or integer operands");
4020 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
4022 ID.Kind = ValID::t_Constant;
4023 return false;
4026 // Binary Operators.
4027 case lltok::kw_add:
4028 case lltok::kw_sub:
4029 case lltok::kw_mul:
4030 case lltok::kw_shl:
4031 case lltok::kw_xor: {
4032 bool NUW = false;
4033 bool NSW = false;
4034 unsigned Opc = Lex.getUIntVal();
4035 Constant *Val0, *Val1;
4036 Lex.Lex();
4037 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
4038 Opc == Instruction::Mul || Opc == Instruction::Shl) {
4039 if (EatIfPresent(lltok::kw_nuw))
4040 NUW = true;
4041 if (EatIfPresent(lltok::kw_nsw)) {
4042 NSW = true;
4043 if (EatIfPresent(lltok::kw_nuw))
4044 NUW = true;
4047 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
4048 parseGlobalTypeAndValue(Val0) ||
4049 parseToken(lltok::comma, "expected comma in binary constantexpr") ||
4050 parseGlobalTypeAndValue(Val1) ||
4051 parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
4052 return true;
4053 if (Val0->getType() != Val1->getType())
4054 return error(ID.Loc, "operands of constexpr must have same type");
4055 // Check that the type is valid for the operator.
4056 if (!Val0->getType()->isIntOrIntVectorTy())
4057 return error(ID.Loc,
4058 "constexpr requires integer or integer vector operands");
4059 unsigned Flags = 0;
4060 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
4061 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
4062 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags);
4063 ID.Kind = ValID::t_Constant;
4064 return false;
4067 case lltok::kw_splat: {
4068 Lex.Lex();
4069 if (parseToken(lltok::lparen, "expected '(' after vector splat"))
4070 return true;
4071 Constant *C;
4072 if (parseGlobalTypeAndValue(C))
4073 return true;
4074 if (parseToken(lltok::rparen, "expected ')' at end of vector splat"))
4075 return true;
4077 ID.ConstantVal = C;
4078 ID.Kind = ValID::t_ConstantSplat;
4079 return false;
4082 case lltok::kw_getelementptr:
4083 case lltok::kw_shufflevector:
4084 case lltok::kw_insertelement:
4085 case lltok::kw_extractelement: {
4086 unsigned Opc = Lex.getUIntVal();
4087 SmallVector<Constant*, 16> Elts;
4088 bool InBounds = false;
4089 Type *Ty;
4090 Lex.Lex();
4092 if (Opc == Instruction::GetElementPtr)
4093 InBounds = EatIfPresent(lltok::kw_inbounds);
4095 if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
4096 return true;
4098 if (Opc == Instruction::GetElementPtr) {
4099 if (parseType(Ty) ||
4100 parseToken(lltok::comma, "expected comma after getelementptr's type"))
4101 return true;
4104 std::optional<unsigned> InRangeOp;
4105 if (parseGlobalValueVector(
4106 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
4107 parseToken(lltok::rparen, "expected ')' in constantexpr"))
4108 return true;
4110 if (Opc == Instruction::GetElementPtr) {
4111 if (Elts.size() == 0 ||
4112 !Elts[0]->getType()->isPtrOrPtrVectorTy())
4113 return error(ID.Loc, "base of getelementptr must be a pointer");
4115 Type *BaseType = Elts[0]->getType();
4116 unsigned GEPWidth =
4117 BaseType->isVectorTy()
4118 ? cast<FixedVectorType>(BaseType)->getNumElements()
4119 : 0;
4121 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
4122 for (Constant *Val : Indices) {
4123 Type *ValTy = Val->getType();
4124 if (!ValTy->isIntOrIntVectorTy())
4125 return error(ID.Loc, "getelementptr index must be an integer");
4126 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
4127 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
4128 if (GEPWidth && (ValNumEl != GEPWidth))
4129 return error(
4130 ID.Loc,
4131 "getelementptr vector index has a wrong number of elements");
4132 // GEPWidth may have been unknown because the base is a scalar,
4133 // but it is known now.
4134 GEPWidth = ValNumEl;
4138 SmallPtrSet<Type*, 4> Visited;
4139 if (!Indices.empty() && !Ty->isSized(&Visited))
4140 return error(ID.Loc, "base element of getelementptr must be sized");
4142 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
4143 return error(ID.Loc, "invalid getelementptr indices");
4145 if (InRangeOp) {
4146 if (*InRangeOp == 0)
4147 return error(ID.Loc,
4148 "inrange keyword may not appear on pointer operand");
4149 --*InRangeOp;
4152 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
4153 InBounds, InRangeOp);
4154 } else if (Opc == Instruction::ShuffleVector) {
4155 if (Elts.size() != 3)
4156 return error(ID.Loc, "expected three operands to shufflevector");
4157 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4158 return error(ID.Loc, "invalid operands to shufflevector");
4159 SmallVector<int, 16> Mask;
4160 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
4161 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
4162 } else if (Opc == Instruction::ExtractElement) {
4163 if (Elts.size() != 2)
4164 return error(ID.Loc, "expected two operands to extractelement");
4165 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
4166 return error(ID.Loc, "invalid extractelement operands");
4167 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
4168 } else {
4169 assert(Opc == Instruction::InsertElement && "Unknown opcode");
4170 if (Elts.size() != 3)
4171 return error(ID.Loc, "expected three operands to insertelement");
4172 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4173 return error(ID.Loc, "invalid insertelement operands");
4174 ID.ConstantVal =
4175 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
4178 ID.Kind = ValID::t_Constant;
4179 return false;
4183 Lex.Lex();
4184 return false;
4187 /// parseGlobalValue - parse a global value with the specified type.
4188 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
4189 C = nullptr;
4190 ValID ID;
4191 Value *V = nullptr;
4192 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
4193 convertValIDToValue(Ty, ID, V, nullptr);
4194 if (V && !(C = dyn_cast<Constant>(V)))
4195 return error(ID.Loc, "global values must be constants");
4196 return Parsed;
4199 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
4200 Type *Ty = nullptr;
4201 return parseType(Ty) || parseGlobalValue(Ty, V);
4204 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
4205 C = nullptr;
4207 LocTy KwLoc = Lex.getLoc();
4208 if (!EatIfPresent(lltok::kw_comdat))
4209 return false;
4211 if (EatIfPresent(lltok::lparen)) {
4212 if (Lex.getKind() != lltok::ComdatVar)
4213 return tokError("expected comdat variable");
4214 C = getComdat(Lex.getStrVal(), Lex.getLoc());
4215 Lex.Lex();
4216 if (parseToken(lltok::rparen, "expected ')' after comdat var"))
4217 return true;
4218 } else {
4219 if (GlobalName.empty())
4220 return tokError("comdat cannot be unnamed");
4221 C = getComdat(std::string(GlobalName), KwLoc);
4224 return false;
4227 /// parseGlobalValueVector
4228 /// ::= /*empty*/
4229 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
4230 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
4231 std::optional<unsigned> *InRangeOp) {
4232 // Empty list.
4233 if (Lex.getKind() == lltok::rbrace ||
4234 Lex.getKind() == lltok::rsquare ||
4235 Lex.getKind() == lltok::greater ||
4236 Lex.getKind() == lltok::rparen)
4237 return false;
4239 do {
4240 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
4241 *InRangeOp = Elts.size();
4243 Constant *C;
4244 if (parseGlobalTypeAndValue(C))
4245 return true;
4246 Elts.push_back(C);
4247 } while (EatIfPresent(lltok::comma));
4249 return false;
4252 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4253 SmallVector<Metadata *, 16> Elts;
4254 if (parseMDNodeVector(Elts))
4255 return true;
4257 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4258 return false;
4261 /// MDNode:
4262 /// ::= !{ ... }
4263 /// ::= !7
4264 /// ::= !DILocation(...)
4265 bool LLParser::parseMDNode(MDNode *&N) {
4266 if (Lex.getKind() == lltok::MetadataVar)
4267 return parseSpecializedMDNode(N);
4269 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4272 bool LLParser::parseMDNodeTail(MDNode *&N) {
4273 // !{ ... }
4274 if (Lex.getKind() == lltok::lbrace)
4275 return parseMDTuple(N);
4277 // !42
4278 return parseMDNodeID(N);
4281 namespace {
4283 /// Structure to represent an optional metadata field.
4284 template <class FieldTy> struct MDFieldImpl {
4285 typedef MDFieldImpl ImplTy;
4286 FieldTy Val;
4287 bool Seen;
4289 void assign(FieldTy Val) {
4290 Seen = true;
4291 this->Val = std::move(Val);
4294 explicit MDFieldImpl(FieldTy Default)
4295 : Val(std::move(Default)), Seen(false) {}
4298 /// Structure to represent an optional metadata field that
4299 /// can be of either type (A or B) and encapsulates the
4300 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4301 /// to reimplement the specifics for representing each Field.
4302 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4303 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4304 FieldTypeA A;
4305 FieldTypeB B;
4306 bool Seen;
4308 enum {
4309 IsInvalid = 0,
4310 IsTypeA = 1,
4311 IsTypeB = 2
4312 } WhatIs;
4314 void assign(FieldTypeA A) {
4315 Seen = true;
4316 this->A = std::move(A);
4317 WhatIs = IsTypeA;
4320 void assign(FieldTypeB B) {
4321 Seen = true;
4322 this->B = std::move(B);
4323 WhatIs = IsTypeB;
4326 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4327 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4328 WhatIs(IsInvalid) {}
4331 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4332 uint64_t Max;
4334 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4335 : ImplTy(Default), Max(Max) {}
4338 struct LineField : public MDUnsignedField {
4339 LineField() : MDUnsignedField(0, UINT32_MAX) {}
4342 struct ColumnField : public MDUnsignedField {
4343 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4346 struct DwarfTagField : public MDUnsignedField {
4347 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4348 DwarfTagField(dwarf::Tag DefaultTag)
4349 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4352 struct DwarfMacinfoTypeField : public MDUnsignedField {
4353 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4354 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4355 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4358 struct DwarfAttEncodingField : public MDUnsignedField {
4359 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4362 struct DwarfVirtualityField : public MDUnsignedField {
4363 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4366 struct DwarfLangField : public MDUnsignedField {
4367 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4370 struct DwarfCCField : public MDUnsignedField {
4371 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4374 struct EmissionKindField : public MDUnsignedField {
4375 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4378 struct NameTableKindField : public MDUnsignedField {
4379 NameTableKindField()
4380 : MDUnsignedField(
4381 0, (unsigned)
4382 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4385 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4386 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4389 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4390 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4393 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4394 MDAPSIntField() : ImplTy(APSInt()) {}
4397 struct MDSignedField : public MDFieldImpl<int64_t> {
4398 int64_t Min = INT64_MIN;
4399 int64_t Max = INT64_MAX;
4401 MDSignedField(int64_t Default = 0)
4402 : ImplTy(Default) {}
4403 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4404 : ImplTy(Default), Min(Min), Max(Max) {}
4407 struct MDBoolField : public MDFieldImpl<bool> {
4408 MDBoolField(bool Default = false) : ImplTy(Default) {}
4411 struct MDField : public MDFieldImpl<Metadata *> {
4412 bool AllowNull;
4414 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4417 struct MDStringField : public MDFieldImpl<MDString *> {
4418 bool AllowEmpty;
4419 MDStringField(bool AllowEmpty = true)
4420 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4423 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4424 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4427 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4428 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4431 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4432 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4433 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4435 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4436 bool AllowNull = true)
4437 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4439 bool isMDSignedField() const { return WhatIs == IsTypeA; }
4440 bool isMDField() const { return WhatIs == IsTypeB; }
4441 int64_t getMDSignedValue() const {
4442 assert(isMDSignedField() && "Wrong field type");
4443 return A.Val;
4445 Metadata *getMDFieldValue() const {
4446 assert(isMDField() && "Wrong field type");
4447 return B.Val;
4451 } // end anonymous namespace
4453 namespace llvm {
4455 template <>
4456 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4457 if (Lex.getKind() != lltok::APSInt)
4458 return tokError("expected integer");
4460 Result.assign(Lex.getAPSIntVal());
4461 Lex.Lex();
4462 return false;
4465 template <>
4466 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4467 MDUnsignedField &Result) {
4468 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4469 return tokError("expected unsigned integer");
4471 auto &U = Lex.getAPSIntVal();
4472 if (U.ugt(Result.Max))
4473 return tokError("value for '" + Name + "' too large, limit is " +
4474 Twine(Result.Max));
4475 Result.assign(U.getZExtValue());
4476 assert(Result.Val <= Result.Max && "Expected value in range");
4477 Lex.Lex();
4478 return false;
4481 template <>
4482 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4483 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4485 template <>
4486 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4487 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4490 template <>
4491 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4492 if (Lex.getKind() == lltok::APSInt)
4493 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4495 if (Lex.getKind() != lltok::DwarfTag)
4496 return tokError("expected DWARF tag");
4498 unsigned Tag = dwarf::getTag(Lex.getStrVal());
4499 if (Tag == dwarf::DW_TAG_invalid)
4500 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4501 assert(Tag <= Result.Max && "Expected valid DWARF tag");
4503 Result.assign(Tag);
4504 Lex.Lex();
4505 return false;
4508 template <>
4509 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4510 DwarfMacinfoTypeField &Result) {
4511 if (Lex.getKind() == lltok::APSInt)
4512 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4514 if (Lex.getKind() != lltok::DwarfMacinfo)
4515 return tokError("expected DWARF macinfo type");
4517 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4518 if (Macinfo == dwarf::DW_MACINFO_invalid)
4519 return tokError("invalid DWARF macinfo type" + Twine(" '") +
4520 Lex.getStrVal() + "'");
4521 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4523 Result.assign(Macinfo);
4524 Lex.Lex();
4525 return false;
4528 template <>
4529 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4530 DwarfVirtualityField &Result) {
4531 if (Lex.getKind() == lltok::APSInt)
4532 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4534 if (Lex.getKind() != lltok::DwarfVirtuality)
4535 return tokError("expected DWARF virtuality code");
4537 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4538 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4539 return tokError("invalid DWARF virtuality code" + Twine(" '") +
4540 Lex.getStrVal() + "'");
4541 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4542 Result.assign(Virtuality);
4543 Lex.Lex();
4544 return false;
4547 template <>
4548 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4549 if (Lex.getKind() == lltok::APSInt)
4550 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4552 if (Lex.getKind() != lltok::DwarfLang)
4553 return tokError("expected DWARF language");
4555 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4556 if (!Lang)
4557 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4558 "'");
4559 assert(Lang <= Result.Max && "Expected valid DWARF language");
4560 Result.assign(Lang);
4561 Lex.Lex();
4562 return false;
4565 template <>
4566 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4567 if (Lex.getKind() == lltok::APSInt)
4568 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4570 if (Lex.getKind() != lltok::DwarfCC)
4571 return tokError("expected DWARF calling convention");
4573 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4574 if (!CC)
4575 return tokError("invalid DWARF calling convention" + Twine(" '") +
4576 Lex.getStrVal() + "'");
4577 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4578 Result.assign(CC);
4579 Lex.Lex();
4580 return false;
4583 template <>
4584 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4585 EmissionKindField &Result) {
4586 if (Lex.getKind() == lltok::APSInt)
4587 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4589 if (Lex.getKind() != lltok::EmissionKind)
4590 return tokError("expected emission kind");
4592 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4593 if (!Kind)
4594 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4595 "'");
4596 assert(*Kind <= Result.Max && "Expected valid emission kind");
4597 Result.assign(*Kind);
4598 Lex.Lex();
4599 return false;
4602 template <>
4603 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4604 NameTableKindField &Result) {
4605 if (Lex.getKind() == lltok::APSInt)
4606 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4608 if (Lex.getKind() != lltok::NameTableKind)
4609 return tokError("expected nameTable kind");
4611 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4612 if (!Kind)
4613 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4614 "'");
4615 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4616 Result.assign((unsigned)*Kind);
4617 Lex.Lex();
4618 return false;
4621 template <>
4622 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4623 DwarfAttEncodingField &Result) {
4624 if (Lex.getKind() == lltok::APSInt)
4625 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4627 if (Lex.getKind() != lltok::DwarfAttEncoding)
4628 return tokError("expected DWARF type attribute encoding");
4630 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4631 if (!Encoding)
4632 return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4633 Lex.getStrVal() + "'");
4634 assert(Encoding <= Result.Max && "Expected valid DWARF language");
4635 Result.assign(Encoding);
4636 Lex.Lex();
4637 return false;
4640 /// DIFlagField
4641 /// ::= uint32
4642 /// ::= DIFlagVector
4643 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4644 template <>
4645 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4647 // parser for a single flag.
4648 auto parseFlag = [&](DINode::DIFlags &Val) {
4649 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4650 uint32_t TempVal = static_cast<uint32_t>(Val);
4651 bool Res = parseUInt32(TempVal);
4652 Val = static_cast<DINode::DIFlags>(TempVal);
4653 return Res;
4656 if (Lex.getKind() != lltok::DIFlag)
4657 return tokError("expected debug info flag");
4659 Val = DINode::getFlag(Lex.getStrVal());
4660 if (!Val)
4661 return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4662 "'");
4663 Lex.Lex();
4664 return false;
4667 // parse the flags and combine them together.
4668 DINode::DIFlags Combined = DINode::FlagZero;
4669 do {
4670 DINode::DIFlags Val;
4671 if (parseFlag(Val))
4672 return true;
4673 Combined |= Val;
4674 } while (EatIfPresent(lltok::bar));
4676 Result.assign(Combined);
4677 return false;
4680 /// DISPFlagField
4681 /// ::= uint32
4682 /// ::= DISPFlagVector
4683 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4684 template <>
4685 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4687 // parser for a single flag.
4688 auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4689 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4690 uint32_t TempVal = static_cast<uint32_t>(Val);
4691 bool Res = parseUInt32(TempVal);
4692 Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4693 return Res;
4696 if (Lex.getKind() != lltok::DISPFlag)
4697 return tokError("expected debug info flag");
4699 Val = DISubprogram::getFlag(Lex.getStrVal());
4700 if (!Val)
4701 return tokError(Twine("invalid subprogram debug info flag '") +
4702 Lex.getStrVal() + "'");
4703 Lex.Lex();
4704 return false;
4707 // parse the flags and combine them together.
4708 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4709 do {
4710 DISubprogram::DISPFlags Val;
4711 if (parseFlag(Val))
4712 return true;
4713 Combined |= Val;
4714 } while (EatIfPresent(lltok::bar));
4716 Result.assign(Combined);
4717 return false;
4720 template <>
4721 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4722 if (Lex.getKind() != lltok::APSInt)
4723 return tokError("expected signed integer");
4725 auto &S = Lex.getAPSIntVal();
4726 if (S < Result.Min)
4727 return tokError("value for '" + Name + "' too small, limit is " +
4728 Twine(Result.Min));
4729 if (S > Result.Max)
4730 return tokError("value for '" + Name + "' too large, limit is " +
4731 Twine(Result.Max));
4732 Result.assign(S.getExtValue());
4733 assert(Result.Val >= Result.Min && "Expected value in range");
4734 assert(Result.Val <= Result.Max && "Expected value in range");
4735 Lex.Lex();
4736 return false;
4739 template <>
4740 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4741 switch (Lex.getKind()) {
4742 default:
4743 return tokError("expected 'true' or 'false'");
4744 case lltok::kw_true:
4745 Result.assign(true);
4746 break;
4747 case lltok::kw_false:
4748 Result.assign(false);
4749 break;
4751 Lex.Lex();
4752 return false;
4755 template <>
4756 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4757 if (Lex.getKind() == lltok::kw_null) {
4758 if (!Result.AllowNull)
4759 return tokError("'" + Name + "' cannot be null");
4760 Lex.Lex();
4761 Result.assign(nullptr);
4762 return false;
4765 Metadata *MD;
4766 if (parseMetadata(MD, nullptr))
4767 return true;
4769 Result.assign(MD);
4770 return false;
4773 template <>
4774 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4775 MDSignedOrMDField &Result) {
4776 // Try to parse a signed int.
4777 if (Lex.getKind() == lltok::APSInt) {
4778 MDSignedField Res = Result.A;
4779 if (!parseMDField(Loc, Name, Res)) {
4780 Result.assign(Res);
4781 return false;
4783 return true;
4786 // Otherwise, try to parse as an MDField.
4787 MDField Res = Result.B;
4788 if (!parseMDField(Loc, Name, Res)) {
4789 Result.assign(Res);
4790 return false;
4793 return true;
4796 template <>
4797 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4798 LocTy ValueLoc = Lex.getLoc();
4799 std::string S;
4800 if (parseStringConstant(S))
4801 return true;
4803 if (!Result.AllowEmpty && S.empty())
4804 return error(ValueLoc, "'" + Name + "' cannot be empty");
4806 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4807 return false;
4810 template <>
4811 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4812 SmallVector<Metadata *, 4> MDs;
4813 if (parseMDNodeVector(MDs))
4814 return true;
4816 Result.assign(std::move(MDs));
4817 return false;
4820 template <>
4821 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4822 ChecksumKindField &Result) {
4823 std::optional<DIFile::ChecksumKind> CSKind =
4824 DIFile::getChecksumKind(Lex.getStrVal());
4826 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4827 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4828 "'");
4830 Result.assign(*CSKind);
4831 Lex.Lex();
4832 return false;
4835 } // end namespace llvm
4837 template <class ParserTy>
4838 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4839 do {
4840 if (Lex.getKind() != lltok::LabelStr)
4841 return tokError("expected field label here");
4843 if (ParseField())
4844 return true;
4845 } while (EatIfPresent(lltok::comma));
4847 return false;
4850 template <class ParserTy>
4851 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4852 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4853 Lex.Lex();
4855 if (parseToken(lltok::lparen, "expected '(' here"))
4856 return true;
4857 if (Lex.getKind() != lltok::rparen)
4858 if (parseMDFieldsImplBody(ParseField))
4859 return true;
4861 ClosingLoc = Lex.getLoc();
4862 return parseToken(lltok::rparen, "expected ')' here");
4865 template <class FieldTy>
4866 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4867 if (Result.Seen)
4868 return tokError("field '" + Name + "' cannot be specified more than once");
4870 LocTy Loc = Lex.getLoc();
4871 Lex.Lex();
4872 return parseMDField(Loc, Name, Result);
4875 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4876 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4878 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4879 if (Lex.getStrVal() == #CLASS) \
4880 return parse##CLASS(N, IsDistinct);
4881 #include "llvm/IR/Metadata.def"
4883 return tokError("expected metadata type");
4886 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4887 #define NOP_FIELD(NAME, TYPE, INIT)
4888 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4889 if (!NAME.Seen) \
4890 return error(ClosingLoc, "missing required field '" #NAME "'");
4891 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4892 if (Lex.getStrVal() == #NAME) \
4893 return parseMDField(#NAME, NAME);
4894 #define PARSE_MD_FIELDS() \
4895 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4896 do { \
4897 LocTy ClosingLoc; \
4898 if (parseMDFieldsImpl( \
4899 [&]() -> bool { \
4900 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4901 return tokError(Twine("invalid field '") + Lex.getStrVal() + \
4902 "'"); \
4903 }, \
4904 ClosingLoc)) \
4905 return true; \
4906 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4907 } while (false)
4908 #define GET_OR_DISTINCT(CLASS, ARGS) \
4909 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4911 /// parseDILocationFields:
4912 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4913 /// isImplicitCode: true)
4914 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4915 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4916 OPTIONAL(line, LineField, ); \
4917 OPTIONAL(column, ColumnField, ); \
4918 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4919 OPTIONAL(inlinedAt, MDField, ); \
4920 OPTIONAL(isImplicitCode, MDBoolField, (false));
4921 PARSE_MD_FIELDS();
4922 #undef VISIT_MD_FIELDS
4924 Result =
4925 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4926 inlinedAt.Val, isImplicitCode.Val));
4927 return false;
4930 /// parseDIAssignID:
4931 /// ::= distinct !DIAssignID()
4932 bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) {
4933 if (!IsDistinct)
4934 return Lex.Error("missing 'distinct', required for !DIAssignID()");
4936 Lex.Lex();
4938 // Now eat the parens.
4939 if (parseToken(lltok::lparen, "expected '(' here"))
4940 return true;
4941 if (parseToken(lltok::rparen, "expected ')' here"))
4942 return true;
4944 Result = DIAssignID::getDistinct(Context);
4945 return false;
4948 /// parseGenericDINode:
4949 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4950 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4952 REQUIRED(tag, DwarfTagField, ); \
4953 OPTIONAL(header, MDStringField, ); \
4954 OPTIONAL(operands, MDFieldList, );
4955 PARSE_MD_FIELDS();
4956 #undef VISIT_MD_FIELDS
4958 Result = GET_OR_DISTINCT(GenericDINode,
4959 (Context, tag.Val, header.Val, operands.Val));
4960 return false;
4963 /// parseDISubrange:
4964 /// ::= !DISubrange(count: 30, lowerBound: 2)
4965 /// ::= !DISubrange(count: !node, lowerBound: 2)
4966 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4967 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4968 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4969 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4970 OPTIONAL(lowerBound, MDSignedOrMDField, ); \
4971 OPTIONAL(upperBound, MDSignedOrMDField, ); \
4972 OPTIONAL(stride, MDSignedOrMDField, );
4973 PARSE_MD_FIELDS();
4974 #undef VISIT_MD_FIELDS
4976 Metadata *Count = nullptr;
4977 Metadata *LowerBound = nullptr;
4978 Metadata *UpperBound = nullptr;
4979 Metadata *Stride = nullptr;
4981 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4982 if (Bound.isMDSignedField())
4983 return ConstantAsMetadata::get(ConstantInt::getSigned(
4984 Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4985 if (Bound.isMDField())
4986 return Bound.getMDFieldValue();
4987 return nullptr;
4990 Count = convToMetadata(count);
4991 LowerBound = convToMetadata(lowerBound);
4992 UpperBound = convToMetadata(upperBound);
4993 Stride = convToMetadata(stride);
4995 Result = GET_OR_DISTINCT(DISubrange,
4996 (Context, Count, LowerBound, UpperBound, Stride));
4998 return false;
5001 /// parseDIGenericSubrange:
5002 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
5003 /// !node3)
5004 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
5005 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5006 OPTIONAL(count, MDSignedOrMDField, ); \
5007 OPTIONAL(lowerBound, MDSignedOrMDField, ); \
5008 OPTIONAL(upperBound, MDSignedOrMDField, ); \
5009 OPTIONAL(stride, MDSignedOrMDField, );
5010 PARSE_MD_FIELDS();
5011 #undef VISIT_MD_FIELDS
5013 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5014 if (Bound.isMDSignedField())
5015 return DIExpression::get(
5016 Context, {dwarf::DW_OP_consts,
5017 static_cast<uint64_t>(Bound.getMDSignedValue())});
5018 if (Bound.isMDField())
5019 return Bound.getMDFieldValue();
5020 return nullptr;
5023 Metadata *Count = ConvToMetadata(count);
5024 Metadata *LowerBound = ConvToMetadata(lowerBound);
5025 Metadata *UpperBound = ConvToMetadata(upperBound);
5026 Metadata *Stride = ConvToMetadata(stride);
5028 Result = GET_OR_DISTINCT(DIGenericSubrange,
5029 (Context, Count, LowerBound, UpperBound, Stride));
5031 return false;
5034 /// parseDIEnumerator:
5035 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
5036 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
5037 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5038 REQUIRED(name, MDStringField, ); \
5039 REQUIRED(value, MDAPSIntField, ); \
5040 OPTIONAL(isUnsigned, MDBoolField, (false));
5041 PARSE_MD_FIELDS();
5042 #undef VISIT_MD_FIELDS
5044 if (isUnsigned.Val && value.Val.isNegative())
5045 return tokError("unsigned enumerator with negative value");
5047 APSInt Value(value.Val);
5048 // Add a leading zero so that unsigned values with the msb set are not
5049 // mistaken for negative values when used for signed enumerators.
5050 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
5051 Value = Value.zext(Value.getBitWidth() + 1);
5053 Result =
5054 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
5056 return false;
5059 /// parseDIBasicType:
5060 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
5061 /// encoding: DW_ATE_encoding, flags: 0)
5062 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
5063 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5064 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
5065 OPTIONAL(name, MDStringField, ); \
5066 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5067 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5068 OPTIONAL(encoding, DwarfAttEncodingField, ); \
5069 OPTIONAL(flags, DIFlagField, );
5070 PARSE_MD_FIELDS();
5071 #undef VISIT_MD_FIELDS
5073 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
5074 align.Val, encoding.Val, flags.Val));
5075 return false;
5078 /// parseDIStringType:
5079 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32)
5080 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
5081 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5082 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \
5083 OPTIONAL(name, MDStringField, ); \
5084 OPTIONAL(stringLength, MDField, ); \
5085 OPTIONAL(stringLengthExpression, MDField, ); \
5086 OPTIONAL(stringLocationExpression, MDField, ); \
5087 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5088 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5089 OPTIONAL(encoding, DwarfAttEncodingField, );
5090 PARSE_MD_FIELDS();
5091 #undef VISIT_MD_FIELDS
5093 Result = GET_OR_DISTINCT(
5094 DIStringType,
5095 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
5096 stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
5097 return false;
5100 /// parseDIDerivedType:
5101 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
5102 /// line: 7, scope: !1, baseType: !2, size: 32,
5103 /// align: 32, offset: 0, flags: 0, extraData: !3,
5104 /// dwarfAddressSpace: 3)
5105 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
5106 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5107 REQUIRED(tag, DwarfTagField, ); \
5108 OPTIONAL(name, MDStringField, ); \
5109 OPTIONAL(file, MDField, ); \
5110 OPTIONAL(line, LineField, ); \
5111 OPTIONAL(scope, MDField, ); \
5112 REQUIRED(baseType, MDField, ); \
5113 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5114 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5115 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
5116 OPTIONAL(flags, DIFlagField, ); \
5117 OPTIONAL(extraData, MDField, ); \
5118 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \
5119 OPTIONAL(annotations, MDField, );
5120 PARSE_MD_FIELDS();
5121 #undef VISIT_MD_FIELDS
5123 std::optional<unsigned> DWARFAddressSpace;
5124 if (dwarfAddressSpace.Val != UINT32_MAX)
5125 DWARFAddressSpace = dwarfAddressSpace.Val;
5127 Result = GET_OR_DISTINCT(DIDerivedType,
5128 (Context, tag.Val, name.Val, file.Val, line.Val,
5129 scope.Val, baseType.Val, size.Val, align.Val,
5130 offset.Val, DWARFAddressSpace, flags.Val,
5131 extraData.Val, annotations.Val));
5132 return false;
5135 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
5136 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5137 REQUIRED(tag, DwarfTagField, ); \
5138 OPTIONAL(name, MDStringField, ); \
5139 OPTIONAL(file, MDField, ); \
5140 OPTIONAL(line, LineField, ); \
5141 OPTIONAL(scope, MDField, ); \
5142 OPTIONAL(baseType, MDField, ); \
5143 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5144 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5145 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
5146 OPTIONAL(flags, DIFlagField, ); \
5147 OPTIONAL(elements, MDField, ); \
5148 OPTIONAL(runtimeLang, DwarfLangField, ); \
5149 OPTIONAL(vtableHolder, MDField, ); \
5150 OPTIONAL(templateParams, MDField, ); \
5151 OPTIONAL(identifier, MDStringField, ); \
5152 OPTIONAL(discriminator, MDField, ); \
5153 OPTIONAL(dataLocation, MDField, ); \
5154 OPTIONAL(associated, MDField, ); \
5155 OPTIONAL(allocated, MDField, ); \
5156 OPTIONAL(rank, MDSignedOrMDField, ); \
5157 OPTIONAL(annotations, MDField, );
5158 PARSE_MD_FIELDS();
5159 #undef VISIT_MD_FIELDS
5161 Metadata *Rank = nullptr;
5162 if (rank.isMDSignedField())
5163 Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
5164 Type::getInt64Ty(Context), rank.getMDSignedValue()));
5165 else if (rank.isMDField())
5166 Rank = rank.getMDFieldValue();
5168 // If this has an identifier try to build an ODR type.
5169 if (identifier.Val)
5170 if (auto *CT = DICompositeType::buildODRType(
5171 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
5172 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
5173 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
5174 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
5175 Rank, annotations.Val)) {
5176 Result = CT;
5177 return false;
5180 // Create a new node, and save it in the context if it belongs in the type
5181 // map.
5182 Result = GET_OR_DISTINCT(
5183 DICompositeType,
5184 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
5185 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
5186 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
5187 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
5188 annotations.Val));
5189 return false;
5192 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
5193 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5194 OPTIONAL(flags, DIFlagField, ); \
5195 OPTIONAL(cc, DwarfCCField, ); \
5196 REQUIRED(types, MDField, );
5197 PARSE_MD_FIELDS();
5198 #undef VISIT_MD_FIELDS
5200 Result = GET_OR_DISTINCT(DISubroutineType,
5201 (Context, flags.Val, cc.Val, types.Val));
5202 return false;
5205 /// parseDIFileType:
5206 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
5207 /// checksumkind: CSK_MD5,
5208 /// checksum: "000102030405060708090a0b0c0d0e0f",
5209 /// source: "source file contents")
5210 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
5211 // The default constructed value for checksumkind is required, but will never
5212 // be used, as the parser checks if the field was actually Seen before using
5213 // the Val.
5214 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5215 REQUIRED(filename, MDStringField, ); \
5216 REQUIRED(directory, MDStringField, ); \
5217 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
5218 OPTIONAL(checksum, MDStringField, ); \
5219 OPTIONAL(source, MDStringField, );
5220 PARSE_MD_FIELDS();
5221 #undef VISIT_MD_FIELDS
5223 std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5224 if (checksumkind.Seen && checksum.Seen)
5225 OptChecksum.emplace(checksumkind.Val, checksum.Val);
5226 else if (checksumkind.Seen || checksum.Seen)
5227 return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5229 MDString *Source = nullptr;
5230 if (source.Seen)
5231 Source = source.Val;
5232 Result = GET_OR_DISTINCT(
5233 DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source));
5234 return false;
5237 /// parseDICompileUnit:
5238 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5239 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
5240 /// splitDebugFilename: "abc.debug",
5241 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5242 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5243 /// sysroot: "/", sdk: "MacOSX.sdk")
5244 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5245 if (!IsDistinct)
5246 return Lex.Error("missing 'distinct', required for !DICompileUnit");
5248 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5249 REQUIRED(language, DwarfLangField, ); \
5250 REQUIRED(file, MDField, (/* AllowNull */ false)); \
5251 OPTIONAL(producer, MDStringField, ); \
5252 OPTIONAL(isOptimized, MDBoolField, ); \
5253 OPTIONAL(flags, MDStringField, ); \
5254 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
5255 OPTIONAL(splitDebugFilename, MDStringField, ); \
5256 OPTIONAL(emissionKind, EmissionKindField, ); \
5257 OPTIONAL(enums, MDField, ); \
5258 OPTIONAL(retainedTypes, MDField, ); \
5259 OPTIONAL(globals, MDField, ); \
5260 OPTIONAL(imports, MDField, ); \
5261 OPTIONAL(macros, MDField, ); \
5262 OPTIONAL(dwoId, MDUnsignedField, ); \
5263 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
5264 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
5265 OPTIONAL(nameTableKind, NameTableKindField, ); \
5266 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \
5267 OPTIONAL(sysroot, MDStringField, ); \
5268 OPTIONAL(sdk, MDStringField, );
5269 PARSE_MD_FIELDS();
5270 #undef VISIT_MD_FIELDS
5272 Result = DICompileUnit::getDistinct(
5273 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5274 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5275 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5276 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5277 rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5278 return false;
5281 /// parseDISubprogram:
5282 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5283 /// file: !1, line: 7, type: !2, isLocal: false,
5284 /// isDefinition: true, scopeLine: 8, containingType: !3,
5285 /// virtuality: DW_VIRTUALTIY_pure_virtual,
5286 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
5287 /// spFlags: 10, isOptimized: false, templateParams: !4,
5288 /// declaration: !5, retainedNodes: !6, thrownTypes: !7,
5289 /// annotations: !8)
5290 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5291 auto Loc = Lex.getLoc();
5292 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5293 OPTIONAL(scope, MDField, ); \
5294 OPTIONAL(name, MDStringField, ); \
5295 OPTIONAL(linkageName, MDStringField, ); \
5296 OPTIONAL(file, MDField, ); \
5297 OPTIONAL(line, LineField, ); \
5298 OPTIONAL(type, MDField, ); \
5299 OPTIONAL(isLocal, MDBoolField, ); \
5300 OPTIONAL(isDefinition, MDBoolField, (true)); \
5301 OPTIONAL(scopeLine, LineField, ); \
5302 OPTIONAL(containingType, MDField, ); \
5303 OPTIONAL(virtuality, DwarfVirtualityField, ); \
5304 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
5305 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
5306 OPTIONAL(flags, DIFlagField, ); \
5307 OPTIONAL(spFlags, DISPFlagField, ); \
5308 OPTIONAL(isOptimized, MDBoolField, ); \
5309 OPTIONAL(unit, MDField, ); \
5310 OPTIONAL(templateParams, MDField, ); \
5311 OPTIONAL(declaration, MDField, ); \
5312 OPTIONAL(retainedNodes, MDField, ); \
5313 OPTIONAL(thrownTypes, MDField, ); \
5314 OPTIONAL(annotations, MDField, ); \
5315 OPTIONAL(targetFuncName, MDStringField, );
5316 PARSE_MD_FIELDS();
5317 #undef VISIT_MD_FIELDS
5319 // An explicit spFlags field takes precedence over individual fields in
5320 // older IR versions.
5321 DISubprogram::DISPFlags SPFlags =
5322 spFlags.Seen ? spFlags.Val
5323 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5324 isOptimized.Val, virtuality.Val);
5325 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5326 return Lex.Error(
5327 Loc,
5328 "missing 'distinct', required for !DISubprogram that is a Definition");
5329 Result = GET_OR_DISTINCT(
5330 DISubprogram,
5331 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5332 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5333 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5334 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
5335 targetFuncName.Val));
5336 return false;
5339 /// parseDILexicalBlock:
5340 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5341 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5342 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5343 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5344 OPTIONAL(file, MDField, ); \
5345 OPTIONAL(line, LineField, ); \
5346 OPTIONAL(column, ColumnField, );
5347 PARSE_MD_FIELDS();
5348 #undef VISIT_MD_FIELDS
5350 Result = GET_OR_DISTINCT(
5351 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5352 return false;
5355 /// parseDILexicalBlockFile:
5356 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5357 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5358 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5359 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5360 OPTIONAL(file, MDField, ); \
5361 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5362 PARSE_MD_FIELDS();
5363 #undef VISIT_MD_FIELDS
5365 Result = GET_OR_DISTINCT(DILexicalBlockFile,
5366 (Context, scope.Val, file.Val, discriminator.Val));
5367 return false;
5370 /// parseDICommonBlock:
5371 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5372 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5373 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5374 REQUIRED(scope, MDField, ); \
5375 OPTIONAL(declaration, MDField, ); \
5376 OPTIONAL(name, MDStringField, ); \
5377 OPTIONAL(file, MDField, ); \
5378 OPTIONAL(line, LineField, );
5379 PARSE_MD_FIELDS();
5380 #undef VISIT_MD_FIELDS
5382 Result = GET_OR_DISTINCT(DICommonBlock,
5383 (Context, scope.Val, declaration.Val, name.Val,
5384 file.Val, line.Val));
5385 return false;
5388 /// parseDINamespace:
5389 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5390 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5392 REQUIRED(scope, MDField, ); \
5393 OPTIONAL(name, MDStringField, ); \
5394 OPTIONAL(exportSymbols, MDBoolField, );
5395 PARSE_MD_FIELDS();
5396 #undef VISIT_MD_FIELDS
5398 Result = GET_OR_DISTINCT(DINamespace,
5399 (Context, scope.Val, name.Val, exportSymbols.Val));
5400 return false;
5403 /// parseDIMacro:
5404 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5405 /// "SomeValue")
5406 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5407 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5408 REQUIRED(type, DwarfMacinfoTypeField, ); \
5409 OPTIONAL(line, LineField, ); \
5410 REQUIRED(name, MDStringField, ); \
5411 OPTIONAL(value, MDStringField, );
5412 PARSE_MD_FIELDS();
5413 #undef VISIT_MD_FIELDS
5415 Result = GET_OR_DISTINCT(DIMacro,
5416 (Context, type.Val, line.Val, name.Val, value.Val));
5417 return false;
5420 /// parseDIMacroFile:
5421 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5422 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5423 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5424 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
5425 OPTIONAL(line, LineField, ); \
5426 REQUIRED(file, MDField, ); \
5427 OPTIONAL(nodes, MDField, );
5428 PARSE_MD_FIELDS();
5429 #undef VISIT_MD_FIELDS
5431 Result = GET_OR_DISTINCT(DIMacroFile,
5432 (Context, type.Val, line.Val, file.Val, nodes.Val));
5433 return false;
5436 /// parseDIModule:
5437 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5438 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5439 /// file: !1, line: 4, isDecl: false)
5440 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5441 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5442 REQUIRED(scope, MDField, ); \
5443 REQUIRED(name, MDStringField, ); \
5444 OPTIONAL(configMacros, MDStringField, ); \
5445 OPTIONAL(includePath, MDStringField, ); \
5446 OPTIONAL(apinotes, MDStringField, ); \
5447 OPTIONAL(file, MDField, ); \
5448 OPTIONAL(line, LineField, ); \
5449 OPTIONAL(isDecl, MDBoolField, );
5450 PARSE_MD_FIELDS();
5451 #undef VISIT_MD_FIELDS
5453 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5454 configMacros.Val, includePath.Val,
5455 apinotes.Val, line.Val, isDecl.Val));
5456 return false;
5459 /// parseDITemplateTypeParameter:
5460 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5461 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5462 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5463 OPTIONAL(name, MDStringField, ); \
5464 REQUIRED(type, MDField, ); \
5465 OPTIONAL(defaulted, MDBoolField, );
5466 PARSE_MD_FIELDS();
5467 #undef VISIT_MD_FIELDS
5469 Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5470 (Context, name.Val, type.Val, defaulted.Val));
5471 return false;
5474 /// parseDITemplateValueParameter:
5475 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5476 /// name: "V", type: !1, defaulted: false,
5477 /// value: i32 7)
5478 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5479 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5480 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
5481 OPTIONAL(name, MDStringField, ); \
5482 OPTIONAL(type, MDField, ); \
5483 OPTIONAL(defaulted, MDBoolField, ); \
5484 REQUIRED(value, MDField, );
5486 PARSE_MD_FIELDS();
5487 #undef VISIT_MD_FIELDS
5489 Result = GET_OR_DISTINCT(
5490 DITemplateValueParameter,
5491 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5492 return false;
5495 /// parseDIGlobalVariable:
5496 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5497 /// file: !1, line: 7, type: !2, isLocal: false,
5498 /// isDefinition: true, templateParams: !3,
5499 /// declaration: !4, align: 8)
5500 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5501 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5502 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \
5503 OPTIONAL(scope, MDField, ); \
5504 OPTIONAL(linkageName, MDStringField, ); \
5505 OPTIONAL(file, MDField, ); \
5506 OPTIONAL(line, LineField, ); \
5507 OPTIONAL(type, MDField, ); \
5508 OPTIONAL(isLocal, MDBoolField, ); \
5509 OPTIONAL(isDefinition, MDBoolField, (true)); \
5510 OPTIONAL(templateParams, MDField, ); \
5511 OPTIONAL(declaration, MDField, ); \
5512 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5513 OPTIONAL(annotations, MDField, );
5514 PARSE_MD_FIELDS();
5515 #undef VISIT_MD_FIELDS
5517 Result =
5518 GET_OR_DISTINCT(DIGlobalVariable,
5519 (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5520 line.Val, type.Val, isLocal.Val, isDefinition.Val,
5521 declaration.Val, templateParams.Val, align.Val,
5522 annotations.Val));
5523 return false;
5526 /// parseDILocalVariable:
5527 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5528 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
5529 /// align: 8)
5530 /// ::= !DILocalVariable(scope: !0, name: "foo",
5531 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
5532 /// align: 8)
5533 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5534 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5535 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5536 OPTIONAL(name, MDStringField, ); \
5537 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
5538 OPTIONAL(file, MDField, ); \
5539 OPTIONAL(line, LineField, ); \
5540 OPTIONAL(type, MDField, ); \
5541 OPTIONAL(flags, DIFlagField, ); \
5542 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5543 OPTIONAL(annotations, MDField, );
5544 PARSE_MD_FIELDS();
5545 #undef VISIT_MD_FIELDS
5547 Result = GET_OR_DISTINCT(DILocalVariable,
5548 (Context, scope.Val, name.Val, file.Val, line.Val,
5549 type.Val, arg.Val, flags.Val, align.Val,
5550 annotations.Val));
5551 return false;
5554 /// parseDILabel:
5555 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5556 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5557 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5558 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5559 REQUIRED(name, MDStringField, ); \
5560 REQUIRED(file, MDField, ); \
5561 REQUIRED(line, LineField, );
5562 PARSE_MD_FIELDS();
5563 #undef VISIT_MD_FIELDS
5565 Result = GET_OR_DISTINCT(DILabel,
5566 (Context, scope.Val, name.Val, file.Val, line.Val));
5567 return false;
5570 /// parseDIExpression:
5571 /// ::= !DIExpression(0, 7, -1)
5572 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5573 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5574 Lex.Lex();
5576 if (parseToken(lltok::lparen, "expected '(' here"))
5577 return true;
5579 SmallVector<uint64_t, 8> Elements;
5580 if (Lex.getKind() != lltok::rparen)
5581 do {
5582 if (Lex.getKind() == lltok::DwarfOp) {
5583 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5584 Lex.Lex();
5585 Elements.push_back(Op);
5586 continue;
5588 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5591 if (Lex.getKind() == lltok::DwarfAttEncoding) {
5592 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5593 Lex.Lex();
5594 Elements.push_back(Op);
5595 continue;
5597 return tokError(Twine("invalid DWARF attribute encoding '") +
5598 Lex.getStrVal() + "'");
5601 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5602 return tokError("expected unsigned integer");
5604 auto &U = Lex.getAPSIntVal();
5605 if (U.ugt(UINT64_MAX))
5606 return tokError("element too large, limit is " + Twine(UINT64_MAX));
5607 Elements.push_back(U.getZExtValue());
5608 Lex.Lex();
5609 } while (EatIfPresent(lltok::comma));
5611 if (parseToken(lltok::rparen, "expected ')' here"))
5612 return true;
5614 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5615 return false;
5618 /// ParseDIArgList:
5619 /// ::= !DIArgList(i32 7, i64 %0)
5620 bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) {
5621 assert(PFS && "Expected valid function state");
5622 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5623 Lex.Lex();
5625 if (parseToken(lltok::lparen, "expected '(' here"))
5626 return true;
5628 SmallVector<ValueAsMetadata *, 4> Args;
5629 if (Lex.getKind() != lltok::rparen)
5630 do {
5631 Metadata *MD;
5632 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5633 return true;
5634 Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5635 } while (EatIfPresent(lltok::comma));
5637 if (parseToken(lltok::rparen, "expected ')' here"))
5638 return true;
5640 MD = DIArgList::get(Context, Args);
5641 return false;
5644 /// parseDIGlobalVariableExpression:
5645 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5646 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5647 bool IsDistinct) {
5648 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5649 REQUIRED(var, MDField, ); \
5650 REQUIRED(expr, MDField, );
5651 PARSE_MD_FIELDS();
5652 #undef VISIT_MD_FIELDS
5654 Result =
5655 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5656 return false;
5659 /// parseDIObjCProperty:
5660 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5661 /// getter: "getFoo", attributes: 7, type: !2)
5662 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5663 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5664 OPTIONAL(name, MDStringField, ); \
5665 OPTIONAL(file, MDField, ); \
5666 OPTIONAL(line, LineField, ); \
5667 OPTIONAL(setter, MDStringField, ); \
5668 OPTIONAL(getter, MDStringField, ); \
5669 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
5670 OPTIONAL(type, MDField, );
5671 PARSE_MD_FIELDS();
5672 #undef VISIT_MD_FIELDS
5674 Result = GET_OR_DISTINCT(DIObjCProperty,
5675 (Context, name.Val, file.Val, line.Val, setter.Val,
5676 getter.Val, attributes.Val, type.Val));
5677 return false;
5680 /// parseDIImportedEntity:
5681 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5682 /// line: 7, name: "foo", elements: !2)
5683 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5684 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5685 REQUIRED(tag, DwarfTagField, ); \
5686 REQUIRED(scope, MDField, ); \
5687 OPTIONAL(entity, MDField, ); \
5688 OPTIONAL(file, MDField, ); \
5689 OPTIONAL(line, LineField, ); \
5690 OPTIONAL(name, MDStringField, ); \
5691 OPTIONAL(elements, MDField, );
5692 PARSE_MD_FIELDS();
5693 #undef VISIT_MD_FIELDS
5695 Result = GET_OR_DISTINCT(DIImportedEntity,
5696 (Context, tag.Val, scope.Val, entity.Val, file.Val,
5697 line.Val, name.Val, elements.Val));
5698 return false;
5701 #undef PARSE_MD_FIELD
5702 #undef NOP_FIELD
5703 #undef REQUIRE_FIELD
5704 #undef DECLARE_FIELD
5706 /// parseMetadataAsValue
5707 /// ::= metadata i32 %local
5708 /// ::= metadata i32 @global
5709 /// ::= metadata i32 7
5710 /// ::= metadata !0
5711 /// ::= metadata !{...}
5712 /// ::= metadata !"string"
5713 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5714 // Note: the type 'metadata' has already been parsed.
5715 Metadata *MD;
5716 if (parseMetadata(MD, &PFS))
5717 return true;
5719 V = MetadataAsValue::get(Context, MD);
5720 return false;
5723 /// parseValueAsMetadata
5724 /// ::= i32 %local
5725 /// ::= i32 @global
5726 /// ::= i32 7
5727 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5728 PerFunctionState *PFS) {
5729 Type *Ty;
5730 LocTy Loc;
5731 if (parseType(Ty, TypeMsg, Loc))
5732 return true;
5733 if (Ty->isMetadataTy())
5734 return error(Loc, "invalid metadata-value-metadata roundtrip");
5736 Value *V;
5737 if (parseValue(Ty, V, PFS))
5738 return true;
5740 MD = ValueAsMetadata::get(V);
5741 return false;
5744 /// parseMetadata
5745 /// ::= i32 %local
5746 /// ::= i32 @global
5747 /// ::= i32 7
5748 /// ::= !42
5749 /// ::= !{...}
5750 /// ::= !"string"
5751 /// ::= !DILocation(...)
5752 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5753 if (Lex.getKind() == lltok::MetadataVar) {
5754 // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5755 // so parsing this requires a Function State.
5756 if (Lex.getStrVal() == "DIArgList") {
5757 Metadata *AL;
5758 if (parseDIArgList(AL, PFS))
5759 return true;
5760 MD = AL;
5761 return false;
5763 MDNode *N;
5764 if (parseSpecializedMDNode(N)) {
5765 return true;
5767 MD = N;
5768 return false;
5771 // ValueAsMetadata:
5772 // <type> <value>
5773 if (Lex.getKind() != lltok::exclaim)
5774 return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5776 // '!'.
5777 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5778 Lex.Lex();
5780 // MDString:
5781 // ::= '!' STRINGCONSTANT
5782 if (Lex.getKind() == lltok::StringConstant) {
5783 MDString *S;
5784 if (parseMDString(S))
5785 return true;
5786 MD = S;
5787 return false;
5790 // MDNode:
5791 // !{ ... }
5792 // !7
5793 MDNode *N;
5794 if (parseMDNodeTail(N))
5795 return true;
5796 MD = N;
5797 return false;
5800 //===----------------------------------------------------------------------===//
5801 // Function Parsing.
5802 //===----------------------------------------------------------------------===//
5804 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5805 PerFunctionState *PFS) {
5806 if (Ty->isFunctionTy())
5807 return error(ID.Loc, "functions are not values, refer to them as pointers");
5809 switch (ID.Kind) {
5810 case ValID::t_LocalID:
5811 if (!PFS)
5812 return error(ID.Loc, "invalid use of function-local name");
5813 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5814 return V == nullptr;
5815 case ValID::t_LocalName:
5816 if (!PFS)
5817 return error(ID.Loc, "invalid use of function-local name");
5818 V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5819 return V == nullptr;
5820 case ValID::t_InlineAsm: {
5821 if (!ID.FTy)
5822 return error(ID.Loc, "invalid type for inline asm constraint string");
5823 if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2))
5824 return error(ID.Loc, toString(std::move(Err)));
5825 V = InlineAsm::get(
5826 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5827 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5828 return false;
5830 case ValID::t_GlobalName:
5831 V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5832 if (V && ID.NoCFI)
5833 V = NoCFIValue::get(cast<GlobalValue>(V));
5834 return V == nullptr;
5835 case ValID::t_GlobalID:
5836 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5837 if (V && ID.NoCFI)
5838 V = NoCFIValue::get(cast<GlobalValue>(V));
5839 return V == nullptr;
5840 case ValID::t_APSInt:
5841 if (!Ty->isIntegerTy())
5842 return error(ID.Loc, "integer constant must have integer type");
5843 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5844 V = ConstantInt::get(Context, ID.APSIntVal);
5845 return false;
5846 case ValID::t_APFloat:
5847 if (!Ty->isFloatingPointTy() ||
5848 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5849 return error(ID.Loc, "floating point constant invalid for type");
5851 // The lexer has no type info, so builds all half, bfloat, float, and double
5852 // FP constants as double. Fix this here. Long double does not need this.
5853 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5854 // Check for signaling before potentially converting and losing that info.
5855 bool IsSNAN = ID.APFloatVal.isSignaling();
5856 bool Ignored;
5857 if (Ty->isHalfTy())
5858 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5859 &Ignored);
5860 else if (Ty->isBFloatTy())
5861 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5862 &Ignored);
5863 else if (Ty->isFloatTy())
5864 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5865 &Ignored);
5866 if (IsSNAN) {
5867 // The convert call above may quiet an SNaN, so manufacture another
5868 // SNaN. The bitcast works because the payload (significand) parameter
5869 // is truncated to fit.
5870 APInt Payload = ID.APFloatVal.bitcastToAPInt();
5871 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5872 ID.APFloatVal.isNegative(), &Payload);
5875 V = ConstantFP::get(Context, ID.APFloatVal);
5877 if (V->getType() != Ty)
5878 return error(ID.Loc, "floating point constant does not have type '" +
5879 getTypeString(Ty) + "'");
5881 return false;
5882 case ValID::t_Null:
5883 if (!Ty->isPointerTy())
5884 return error(ID.Loc, "null must be a pointer type");
5885 V = ConstantPointerNull::get(cast<PointerType>(Ty));
5886 return false;
5887 case ValID::t_Undef:
5888 // FIXME: LabelTy should not be a first-class type.
5889 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5890 return error(ID.Loc, "invalid type for undef constant");
5891 V = UndefValue::get(Ty);
5892 return false;
5893 case ValID::t_EmptyArray:
5894 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5895 return error(ID.Loc, "invalid empty array initializer");
5896 V = UndefValue::get(Ty);
5897 return false;
5898 case ValID::t_Zero:
5899 // FIXME: LabelTy should not be a first-class type.
5900 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5901 return error(ID.Loc, "invalid type for null constant");
5902 if (auto *TETy = dyn_cast<TargetExtType>(Ty))
5903 if (!TETy->hasProperty(TargetExtType::HasZeroInit))
5904 return error(ID.Loc, "invalid type for null constant");
5905 V = Constant::getNullValue(Ty);
5906 return false;
5907 case ValID::t_None:
5908 if (!Ty->isTokenTy())
5909 return error(ID.Loc, "invalid type for none constant");
5910 V = Constant::getNullValue(Ty);
5911 return false;
5912 case ValID::t_Poison:
5913 // FIXME: LabelTy should not be a first-class type.
5914 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5915 return error(ID.Loc, "invalid type for poison constant");
5916 V = PoisonValue::get(Ty);
5917 return false;
5918 case ValID::t_Constant:
5919 if (ID.ConstantVal->getType() != Ty)
5920 return error(ID.Loc, "constant expression type mismatch: got type '" +
5921 getTypeString(ID.ConstantVal->getType()) +
5922 "' but expected '" + getTypeString(Ty) + "'");
5923 V = ID.ConstantVal;
5924 return false;
5925 case ValID::t_ConstantSplat:
5926 if (!Ty->isVectorTy())
5927 return error(ID.Loc, "vector constant must have vector type");
5928 if (ID.ConstantVal->getType() != Ty->getScalarType())
5929 return error(ID.Loc, "constant expression type mismatch: got type '" +
5930 getTypeString(ID.ConstantVal->getType()) +
5931 "' but expected '" +
5932 getTypeString(Ty->getScalarType()) + "'");
5933 V = ConstantVector::getSplat(cast<VectorType>(Ty)->getElementCount(),
5934 ID.ConstantVal);
5935 return false;
5936 case ValID::t_ConstantStruct:
5937 case ValID::t_PackedConstantStruct:
5938 if (StructType *ST = dyn_cast<StructType>(Ty)) {
5939 if (ST->getNumElements() != ID.UIntVal)
5940 return error(ID.Loc,
5941 "initializer with struct type has wrong # elements");
5942 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5943 return error(ID.Loc, "packed'ness of initializer and type don't match");
5945 // Verify that the elements are compatible with the structtype.
5946 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5947 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5948 return error(
5949 ID.Loc,
5950 "element " + Twine(i) +
5951 " of struct initializer doesn't match struct element type");
5953 V = ConstantStruct::get(
5954 ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5955 } else
5956 return error(ID.Loc, "constant expression type mismatch");
5957 return false;
5959 llvm_unreachable("Invalid ValID");
5962 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5963 C = nullptr;
5964 ValID ID;
5965 auto Loc = Lex.getLoc();
5966 if (parseValID(ID, /*PFS=*/nullptr))
5967 return true;
5968 switch (ID.Kind) {
5969 case ValID::t_APSInt:
5970 case ValID::t_APFloat:
5971 case ValID::t_Undef:
5972 case ValID::t_Constant:
5973 case ValID::t_ConstantSplat:
5974 case ValID::t_ConstantStruct:
5975 case ValID::t_PackedConstantStruct: {
5976 Value *V;
5977 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5978 return true;
5979 assert(isa<Constant>(V) && "Expected a constant value");
5980 C = cast<Constant>(V);
5981 return false;
5983 case ValID::t_Null:
5984 C = Constant::getNullValue(Ty);
5985 return false;
5986 default:
5987 return error(Loc, "expected a constant value");
5991 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5992 V = nullptr;
5993 ValID ID;
5994 return parseValID(ID, PFS, Ty) ||
5995 convertValIDToValue(Ty, ID, V, PFS);
5998 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5999 Type *Ty = nullptr;
6000 return parseType(Ty) || parseValue(Ty, V, PFS);
6003 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
6004 PerFunctionState &PFS) {
6005 Value *V;
6006 Loc = Lex.getLoc();
6007 if (parseTypeAndValue(V, PFS))
6008 return true;
6009 if (!isa<BasicBlock>(V))
6010 return error(Loc, "expected a basic block");
6011 BB = cast<BasicBlock>(V);
6012 return false;
6015 /// FunctionHeader
6016 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
6017 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
6018 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
6019 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
6020 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine,
6021 SmallVectorImpl<unsigned> &UnnamedArgNums) {
6022 // parse the linkage.
6023 LocTy LinkageLoc = Lex.getLoc();
6024 unsigned Linkage;
6025 unsigned Visibility;
6026 unsigned DLLStorageClass;
6027 bool DSOLocal;
6028 AttrBuilder RetAttrs(M->getContext());
6029 unsigned CC;
6030 bool HasLinkage;
6031 Type *RetType = nullptr;
6032 LocTy RetTypeLoc = Lex.getLoc();
6033 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
6034 DSOLocal) ||
6035 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6036 parseType(RetType, RetTypeLoc, true /*void allowed*/))
6037 return true;
6039 // Verify that the linkage is ok.
6040 switch ((GlobalValue::LinkageTypes)Linkage) {
6041 case GlobalValue::ExternalLinkage:
6042 break; // always ok.
6043 case GlobalValue::ExternalWeakLinkage:
6044 if (IsDefine)
6045 return error(LinkageLoc, "invalid linkage for function definition");
6046 break;
6047 case GlobalValue::PrivateLinkage:
6048 case GlobalValue::InternalLinkage:
6049 case GlobalValue::AvailableExternallyLinkage:
6050 case GlobalValue::LinkOnceAnyLinkage:
6051 case GlobalValue::LinkOnceODRLinkage:
6052 case GlobalValue::WeakAnyLinkage:
6053 case GlobalValue::WeakODRLinkage:
6054 if (!IsDefine)
6055 return error(LinkageLoc, "invalid linkage for function declaration");
6056 break;
6057 case GlobalValue::AppendingLinkage:
6058 case GlobalValue::CommonLinkage:
6059 return error(LinkageLoc, "invalid function linkage type");
6062 if (!isValidVisibilityForLinkage(Visibility, Linkage))
6063 return error(LinkageLoc,
6064 "symbol with local linkage must have default visibility");
6066 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
6067 return error(LinkageLoc,
6068 "symbol with local linkage cannot have a DLL storage class");
6070 if (!FunctionType::isValidReturnType(RetType))
6071 return error(RetTypeLoc, "invalid function return type");
6073 LocTy NameLoc = Lex.getLoc();
6075 std::string FunctionName;
6076 if (Lex.getKind() == lltok::GlobalVar) {
6077 FunctionName = Lex.getStrVal();
6078 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
6079 unsigned NameID = Lex.getUIntVal();
6081 if (NameID != NumberedVals.size())
6082 return tokError("function expected to be numbered '%" +
6083 Twine(NumberedVals.size()) + "'");
6084 } else {
6085 return tokError("expected function name");
6088 Lex.Lex();
6090 if (Lex.getKind() != lltok::lparen)
6091 return tokError("expected '(' in function argument list");
6093 SmallVector<ArgInfo, 8> ArgList;
6094 bool IsVarArg;
6095 AttrBuilder FuncAttrs(M->getContext());
6096 std::vector<unsigned> FwdRefAttrGrps;
6097 LocTy BuiltinLoc;
6098 std::string Section;
6099 std::string Partition;
6100 MaybeAlign Alignment;
6101 std::string GC;
6102 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
6103 unsigned AddrSpace = 0;
6104 Constant *Prefix = nullptr;
6105 Constant *Prologue = nullptr;
6106 Constant *PersonalityFn = nullptr;
6107 Comdat *C;
6109 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) ||
6110 parseOptionalUnnamedAddr(UnnamedAddr) ||
6111 parseOptionalProgramAddrSpace(AddrSpace) ||
6112 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
6113 BuiltinLoc) ||
6114 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
6115 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
6116 parseOptionalComdat(FunctionName, C) ||
6117 parseOptionalAlignment(Alignment) ||
6118 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
6119 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
6120 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
6121 (EatIfPresent(lltok::kw_personality) &&
6122 parseGlobalTypeAndValue(PersonalityFn)))
6123 return true;
6125 if (FuncAttrs.contains(Attribute::Builtin))
6126 return error(BuiltinLoc, "'builtin' attribute not valid on function");
6128 // If the alignment was parsed as an attribute, move to the alignment field.
6129 if (MaybeAlign A = FuncAttrs.getAlignment()) {
6130 Alignment = A;
6131 FuncAttrs.removeAttribute(Attribute::Alignment);
6134 // Okay, if we got here, the function is syntactically valid. Convert types
6135 // and do semantic checks.
6136 std::vector<Type*> ParamTypeList;
6137 SmallVector<AttributeSet, 8> Attrs;
6139 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6140 ParamTypeList.push_back(ArgList[i].Ty);
6141 Attrs.push_back(ArgList[i].Attrs);
6144 AttributeList PAL =
6145 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
6146 AttributeSet::get(Context, RetAttrs), Attrs);
6148 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
6149 return error(RetTypeLoc, "functions with 'sret' argument must return void");
6151 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
6152 PointerType *PFT = PointerType::get(FT, AddrSpace);
6154 Fn = nullptr;
6155 GlobalValue *FwdFn = nullptr;
6156 if (!FunctionName.empty()) {
6157 // If this was a definition of a forward reference, remove the definition
6158 // from the forward reference table and fill in the forward ref.
6159 auto FRVI = ForwardRefVals.find(FunctionName);
6160 if (FRVI != ForwardRefVals.end()) {
6161 FwdFn = FRVI->second.first;
6162 if (FwdFn->getType() != PFT)
6163 return error(FRVI->second.second,
6164 "invalid forward reference to "
6165 "function '" +
6166 FunctionName +
6167 "' with wrong type: "
6168 "expected '" +
6169 getTypeString(PFT) + "' but was '" +
6170 getTypeString(FwdFn->getType()) + "'");
6171 ForwardRefVals.erase(FRVI);
6172 } else if ((Fn = M->getFunction(FunctionName))) {
6173 // Reject redefinitions.
6174 return error(NameLoc,
6175 "invalid redefinition of function '" + FunctionName + "'");
6176 } else if (M->getNamedValue(FunctionName)) {
6177 return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
6180 } else {
6181 // If this is a definition of a forward referenced function, make sure the
6182 // types agree.
6183 auto I = ForwardRefValIDs.find(NumberedVals.size());
6184 if (I != ForwardRefValIDs.end()) {
6185 FwdFn = I->second.first;
6186 if (FwdFn->getType() != PFT)
6187 return error(NameLoc, "type of definition and forward reference of '@" +
6188 Twine(NumberedVals.size()) +
6189 "' disagree: "
6190 "expected '" +
6191 getTypeString(PFT) + "' but was '" +
6192 getTypeString(FwdFn->getType()) + "'");
6193 ForwardRefValIDs.erase(I);
6197 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
6198 FunctionName, M);
6200 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
6202 if (FunctionName.empty())
6203 NumberedVals.push_back(Fn);
6205 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
6206 maybeSetDSOLocal(DSOLocal, *Fn);
6207 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
6208 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
6209 Fn->setCallingConv(CC);
6210 Fn->setAttributes(PAL);
6211 Fn->setUnnamedAddr(UnnamedAddr);
6212 if (Alignment)
6213 Fn->setAlignment(*Alignment);
6214 Fn->setSection(Section);
6215 Fn->setPartition(Partition);
6216 Fn->setComdat(C);
6217 Fn->setPersonalityFn(PersonalityFn);
6218 if (!GC.empty()) Fn->setGC(GC);
6219 Fn->setPrefixData(Prefix);
6220 Fn->setPrologueData(Prologue);
6221 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
6223 // Add all of the arguments we parsed to the function.
6224 Function::arg_iterator ArgIt = Fn->arg_begin();
6225 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
6226 // If the argument has a name, insert it into the argument symbol table.
6227 if (ArgList[i].Name.empty()) continue;
6229 // Set the name, if it conflicted, it will be auto-renamed.
6230 ArgIt->setName(ArgList[i].Name);
6232 if (ArgIt->getName() != ArgList[i].Name)
6233 return error(ArgList[i].Loc,
6234 "redefinition of argument '%" + ArgList[i].Name + "'");
6237 if (FwdFn) {
6238 FwdFn->replaceAllUsesWith(Fn);
6239 FwdFn->eraseFromParent();
6242 if (IsDefine)
6243 return false;
6245 // Check the declaration has no block address forward references.
6246 ValID ID;
6247 if (FunctionName.empty()) {
6248 ID.Kind = ValID::t_GlobalID;
6249 ID.UIntVal = NumberedVals.size() - 1;
6250 } else {
6251 ID.Kind = ValID::t_GlobalName;
6252 ID.StrVal = FunctionName;
6254 auto Blocks = ForwardRefBlockAddresses.find(ID);
6255 if (Blocks != ForwardRefBlockAddresses.end())
6256 return error(Blocks->first.Loc,
6257 "cannot take blockaddress inside a declaration");
6258 return false;
6261 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6262 ValID ID;
6263 if (FunctionNumber == -1) {
6264 ID.Kind = ValID::t_GlobalName;
6265 ID.StrVal = std::string(F.getName());
6266 } else {
6267 ID.Kind = ValID::t_GlobalID;
6268 ID.UIntVal = FunctionNumber;
6271 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6272 if (Blocks == P.ForwardRefBlockAddresses.end())
6273 return false;
6275 for (const auto &I : Blocks->second) {
6276 const ValID &BBID = I.first;
6277 GlobalValue *GV = I.second;
6279 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6280 "Expected local id or name");
6281 BasicBlock *BB;
6282 if (BBID.Kind == ValID::t_LocalName)
6283 BB = getBB(BBID.StrVal, BBID.Loc);
6284 else
6285 BB = getBB(BBID.UIntVal, BBID.Loc);
6286 if (!BB)
6287 return P.error(BBID.Loc, "referenced value is not a basic block");
6289 Value *ResolvedVal = BlockAddress::get(&F, BB);
6290 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6291 ResolvedVal);
6292 if (!ResolvedVal)
6293 return true;
6294 GV->replaceAllUsesWith(ResolvedVal);
6295 GV->eraseFromParent();
6298 P.ForwardRefBlockAddresses.erase(Blocks);
6299 return false;
6302 /// parseFunctionBody
6303 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
6304 bool LLParser::parseFunctionBody(Function &Fn,
6305 ArrayRef<unsigned> UnnamedArgNums) {
6306 if (Lex.getKind() != lltok::lbrace)
6307 return tokError("expected '{' in function body");
6308 Lex.Lex(); // eat the {.
6310 int FunctionNumber = -1;
6311 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6313 PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums);
6315 // Resolve block addresses and allow basic blocks to be forward-declared
6316 // within this function.
6317 if (PFS.resolveForwardRefBlockAddresses())
6318 return true;
6319 SaveAndRestore ScopeExit(BlockAddressPFS, &PFS);
6321 // We need at least one basic block.
6322 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6323 return tokError("function body requires at least one basic block");
6325 while (Lex.getKind() != lltok::rbrace &&
6326 Lex.getKind() != lltok::kw_uselistorder)
6327 if (parseBasicBlock(PFS))
6328 return true;
6330 while (Lex.getKind() != lltok::rbrace)
6331 if (parseUseListOrder(&PFS))
6332 return true;
6334 // Eat the }.
6335 Lex.Lex();
6337 // Verify function is ok.
6338 return PFS.finishFunction();
6341 /// parseBasicBlock
6342 /// ::= (LabelStr|LabelID)? Instruction*
6343 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6344 // If this basic block starts out with a name, remember it.
6345 std::string Name;
6346 int NameID = -1;
6347 LocTy NameLoc = Lex.getLoc();
6348 if (Lex.getKind() == lltok::LabelStr) {
6349 Name = Lex.getStrVal();
6350 Lex.Lex();
6351 } else if (Lex.getKind() == lltok::LabelID) {
6352 NameID = Lex.getUIntVal();
6353 Lex.Lex();
6356 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6357 if (!BB)
6358 return true;
6360 std::string NameStr;
6362 // parse the instructions in this block until we get a terminator.
6363 Instruction *Inst;
6364 do {
6365 // This instruction may have three possibilities for a name: a) none
6366 // specified, b) name specified "%foo =", c) number specified: "%4 =".
6367 LocTy NameLoc = Lex.getLoc();
6368 int NameID = -1;
6369 NameStr = "";
6371 if (Lex.getKind() == lltok::LocalVarID) {
6372 NameID = Lex.getUIntVal();
6373 Lex.Lex();
6374 if (parseToken(lltok::equal, "expected '=' after instruction id"))
6375 return true;
6376 } else if (Lex.getKind() == lltok::LocalVar) {
6377 NameStr = Lex.getStrVal();
6378 Lex.Lex();
6379 if (parseToken(lltok::equal, "expected '=' after instruction name"))
6380 return true;
6383 switch (parseInstruction(Inst, BB, PFS)) {
6384 default:
6385 llvm_unreachable("Unknown parseInstruction result!");
6386 case InstError: return true;
6387 case InstNormal:
6388 Inst->insertInto(BB, BB->end());
6390 // With a normal result, we check to see if the instruction is followed by
6391 // a comma and metadata.
6392 if (EatIfPresent(lltok::comma))
6393 if (parseInstructionMetadata(*Inst))
6394 return true;
6395 break;
6396 case InstExtraComma:
6397 Inst->insertInto(BB, BB->end());
6399 // If the instruction parser ate an extra comma at the end of it, it
6400 // *must* be followed by metadata.
6401 if (parseInstructionMetadata(*Inst))
6402 return true;
6403 break;
6406 // Set the name on the instruction.
6407 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6408 return true;
6409 } while (!Inst->isTerminator());
6411 return false;
6414 //===----------------------------------------------------------------------===//
6415 // Instruction Parsing.
6416 //===----------------------------------------------------------------------===//
6418 /// parseInstruction - parse one of the many different instructions.
6420 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6421 PerFunctionState &PFS) {
6422 lltok::Kind Token = Lex.getKind();
6423 if (Token == lltok::Eof)
6424 return tokError("found end of file when expecting more instructions");
6425 LocTy Loc = Lex.getLoc();
6426 unsigned KeywordVal = Lex.getUIntVal();
6427 Lex.Lex(); // Eat the keyword.
6429 switch (Token) {
6430 default:
6431 return error(Loc, "expected instruction opcode");
6432 // Terminator Instructions.
6433 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6434 case lltok::kw_ret:
6435 return parseRet(Inst, BB, PFS);
6436 case lltok::kw_br:
6437 return parseBr(Inst, PFS);
6438 case lltok::kw_switch:
6439 return parseSwitch(Inst, PFS);
6440 case lltok::kw_indirectbr:
6441 return parseIndirectBr(Inst, PFS);
6442 case lltok::kw_invoke:
6443 return parseInvoke(Inst, PFS);
6444 case lltok::kw_resume:
6445 return parseResume(Inst, PFS);
6446 case lltok::kw_cleanupret:
6447 return parseCleanupRet(Inst, PFS);
6448 case lltok::kw_catchret:
6449 return parseCatchRet(Inst, PFS);
6450 case lltok::kw_catchswitch:
6451 return parseCatchSwitch(Inst, PFS);
6452 case lltok::kw_catchpad:
6453 return parseCatchPad(Inst, PFS);
6454 case lltok::kw_cleanuppad:
6455 return parseCleanupPad(Inst, PFS);
6456 case lltok::kw_callbr:
6457 return parseCallBr(Inst, PFS);
6458 // Unary Operators.
6459 case lltok::kw_fneg: {
6460 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6461 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6462 if (Res != 0)
6463 return Res;
6464 if (FMF.any())
6465 Inst->setFastMathFlags(FMF);
6466 return false;
6468 // Binary Operators.
6469 case lltok::kw_add:
6470 case lltok::kw_sub:
6471 case lltok::kw_mul:
6472 case lltok::kw_shl: {
6473 bool NUW = EatIfPresent(lltok::kw_nuw);
6474 bool NSW = EatIfPresent(lltok::kw_nsw);
6475 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6477 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6478 return true;
6480 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6481 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6482 return false;
6484 case lltok::kw_fadd:
6485 case lltok::kw_fsub:
6486 case lltok::kw_fmul:
6487 case lltok::kw_fdiv:
6488 case lltok::kw_frem: {
6489 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6490 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6491 if (Res != 0)
6492 return Res;
6493 if (FMF.any())
6494 Inst->setFastMathFlags(FMF);
6495 return 0;
6498 case lltok::kw_sdiv:
6499 case lltok::kw_udiv:
6500 case lltok::kw_lshr:
6501 case lltok::kw_ashr: {
6502 bool Exact = EatIfPresent(lltok::kw_exact);
6504 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6505 return true;
6506 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6507 return false;
6510 case lltok::kw_urem:
6511 case lltok::kw_srem:
6512 return parseArithmetic(Inst, PFS, KeywordVal,
6513 /*IsFP*/ false);
6514 case lltok::kw_or: {
6515 bool Disjoint = EatIfPresent(lltok::kw_disjoint);
6516 if (parseLogical(Inst, PFS, KeywordVal))
6517 return true;
6518 if (Disjoint)
6519 cast<PossiblyDisjointInst>(Inst)->setIsDisjoint(true);
6520 return false;
6522 case lltok::kw_and:
6523 case lltok::kw_xor:
6524 return parseLogical(Inst, PFS, KeywordVal);
6525 case lltok::kw_icmp:
6526 return parseCompare(Inst, PFS, KeywordVal);
6527 case lltok::kw_fcmp: {
6528 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6529 int Res = parseCompare(Inst, PFS, KeywordVal);
6530 if (Res != 0)
6531 return Res;
6532 if (FMF.any())
6533 Inst->setFastMathFlags(FMF);
6534 return 0;
6537 // Casts.
6538 case lltok::kw_zext: {
6539 bool NonNeg = EatIfPresent(lltok::kw_nneg);
6540 bool Res = parseCast(Inst, PFS, KeywordVal);
6541 if (Res != 0)
6542 return Res;
6543 if (NonNeg)
6544 Inst->setNonNeg();
6545 return 0;
6547 case lltok::kw_trunc:
6548 case lltok::kw_sext:
6549 case lltok::kw_fptrunc:
6550 case lltok::kw_fpext:
6551 case lltok::kw_bitcast:
6552 case lltok::kw_addrspacecast:
6553 case lltok::kw_uitofp:
6554 case lltok::kw_sitofp:
6555 case lltok::kw_fptoui:
6556 case lltok::kw_fptosi:
6557 case lltok::kw_inttoptr:
6558 case lltok::kw_ptrtoint:
6559 return parseCast(Inst, PFS, KeywordVal);
6560 // Other.
6561 case lltok::kw_select: {
6562 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6563 int Res = parseSelect(Inst, PFS);
6564 if (Res != 0)
6565 return Res;
6566 if (FMF.any()) {
6567 if (!isa<FPMathOperator>(Inst))
6568 return error(Loc, "fast-math-flags specified for select without "
6569 "floating-point scalar or vector return type");
6570 Inst->setFastMathFlags(FMF);
6572 return 0;
6574 case lltok::kw_va_arg:
6575 return parseVAArg(Inst, PFS);
6576 case lltok::kw_extractelement:
6577 return parseExtractElement(Inst, PFS);
6578 case lltok::kw_insertelement:
6579 return parseInsertElement(Inst, PFS);
6580 case lltok::kw_shufflevector:
6581 return parseShuffleVector(Inst, PFS);
6582 case lltok::kw_phi: {
6583 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6584 int Res = parsePHI(Inst, PFS);
6585 if (Res != 0)
6586 return Res;
6587 if (FMF.any()) {
6588 if (!isa<FPMathOperator>(Inst))
6589 return error(Loc, "fast-math-flags specified for phi without "
6590 "floating-point scalar or vector return type");
6591 Inst->setFastMathFlags(FMF);
6593 return 0;
6595 case lltok::kw_landingpad:
6596 return parseLandingPad(Inst, PFS);
6597 case lltok::kw_freeze:
6598 return parseFreeze(Inst, PFS);
6599 // Call.
6600 case lltok::kw_call:
6601 return parseCall(Inst, PFS, CallInst::TCK_None);
6602 case lltok::kw_tail:
6603 return parseCall(Inst, PFS, CallInst::TCK_Tail);
6604 case lltok::kw_musttail:
6605 return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6606 case lltok::kw_notail:
6607 return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6608 // Memory.
6609 case lltok::kw_alloca:
6610 return parseAlloc(Inst, PFS);
6611 case lltok::kw_load:
6612 return parseLoad(Inst, PFS);
6613 case lltok::kw_store:
6614 return parseStore(Inst, PFS);
6615 case lltok::kw_cmpxchg:
6616 return parseCmpXchg(Inst, PFS);
6617 case lltok::kw_atomicrmw:
6618 return parseAtomicRMW(Inst, PFS);
6619 case lltok::kw_fence:
6620 return parseFence(Inst, PFS);
6621 case lltok::kw_getelementptr:
6622 return parseGetElementPtr(Inst, PFS);
6623 case lltok::kw_extractvalue:
6624 return parseExtractValue(Inst, PFS);
6625 case lltok::kw_insertvalue:
6626 return parseInsertValue(Inst, PFS);
6630 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6631 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6632 if (Opc == Instruction::FCmp) {
6633 switch (Lex.getKind()) {
6634 default:
6635 return tokError("expected fcmp predicate (e.g. 'oeq')");
6636 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6637 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6638 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6639 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6640 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6641 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6642 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6643 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6644 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6645 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6646 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6647 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6648 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6649 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6650 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6651 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6653 } else {
6654 switch (Lex.getKind()) {
6655 default:
6656 return tokError("expected icmp predicate (e.g. 'eq')");
6657 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
6658 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
6659 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6660 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6661 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6662 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6663 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6664 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6665 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6666 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6669 Lex.Lex();
6670 return false;
6673 //===----------------------------------------------------------------------===//
6674 // Terminator Instructions.
6675 //===----------------------------------------------------------------------===//
6677 /// parseRet - parse a return instruction.
6678 /// ::= 'ret' void (',' !dbg, !1)*
6679 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
6680 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6681 PerFunctionState &PFS) {
6682 SMLoc TypeLoc = Lex.getLoc();
6683 Type *Ty = nullptr;
6684 if (parseType(Ty, true /*void allowed*/))
6685 return true;
6687 Type *ResType = PFS.getFunction().getReturnType();
6689 if (Ty->isVoidTy()) {
6690 if (!ResType->isVoidTy())
6691 return error(TypeLoc, "value doesn't match function result type '" +
6692 getTypeString(ResType) + "'");
6694 Inst = ReturnInst::Create(Context);
6695 return false;
6698 Value *RV;
6699 if (parseValue(Ty, RV, PFS))
6700 return true;
6702 if (ResType != RV->getType())
6703 return error(TypeLoc, "value doesn't match function result type '" +
6704 getTypeString(ResType) + "'");
6706 Inst = ReturnInst::Create(Context, RV);
6707 return false;
6710 /// parseBr
6711 /// ::= 'br' TypeAndValue
6712 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6713 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6714 LocTy Loc, Loc2;
6715 Value *Op0;
6716 BasicBlock *Op1, *Op2;
6717 if (parseTypeAndValue(Op0, Loc, PFS))
6718 return true;
6720 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6721 Inst = BranchInst::Create(BB);
6722 return false;
6725 if (Op0->getType() != Type::getInt1Ty(Context))
6726 return error(Loc, "branch condition must have 'i1' type");
6728 if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6729 parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6730 parseToken(lltok::comma, "expected ',' after true destination") ||
6731 parseTypeAndBasicBlock(Op2, Loc2, PFS))
6732 return true;
6734 Inst = BranchInst::Create(Op1, Op2, Op0);
6735 return false;
6738 /// parseSwitch
6739 /// Instruction
6740 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6741 /// JumpTable
6742 /// ::= (TypeAndValue ',' TypeAndValue)*
6743 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6744 LocTy CondLoc, BBLoc;
6745 Value *Cond;
6746 BasicBlock *DefaultBB;
6747 if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6748 parseToken(lltok::comma, "expected ',' after switch condition") ||
6749 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6750 parseToken(lltok::lsquare, "expected '[' with switch table"))
6751 return true;
6753 if (!Cond->getType()->isIntegerTy())
6754 return error(CondLoc, "switch condition must have integer type");
6756 // parse the jump table pairs.
6757 SmallPtrSet<Value*, 32> SeenCases;
6758 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6759 while (Lex.getKind() != lltok::rsquare) {
6760 Value *Constant;
6761 BasicBlock *DestBB;
6763 if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6764 parseToken(lltok::comma, "expected ',' after case value") ||
6765 parseTypeAndBasicBlock(DestBB, PFS))
6766 return true;
6768 if (!SeenCases.insert(Constant).second)
6769 return error(CondLoc, "duplicate case value in switch");
6770 if (!isa<ConstantInt>(Constant))
6771 return error(CondLoc, "case value is not a constant integer");
6773 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6776 Lex.Lex(); // Eat the ']'.
6778 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6779 for (unsigned i = 0, e = Table.size(); i != e; ++i)
6780 SI->addCase(Table[i].first, Table[i].second);
6781 Inst = SI;
6782 return false;
6785 /// parseIndirectBr
6786 /// Instruction
6787 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6788 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6789 LocTy AddrLoc;
6790 Value *Address;
6791 if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6792 parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6793 parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6794 return true;
6796 if (!Address->getType()->isPointerTy())
6797 return error(AddrLoc, "indirectbr address must have pointer type");
6799 // parse the destination list.
6800 SmallVector<BasicBlock*, 16> DestList;
6802 if (Lex.getKind() != lltok::rsquare) {
6803 BasicBlock *DestBB;
6804 if (parseTypeAndBasicBlock(DestBB, PFS))
6805 return true;
6806 DestList.push_back(DestBB);
6808 while (EatIfPresent(lltok::comma)) {
6809 if (parseTypeAndBasicBlock(DestBB, PFS))
6810 return true;
6811 DestList.push_back(DestBB);
6815 if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6816 return true;
6818 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6819 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6820 IBI->addDestination(DestList[i]);
6821 Inst = IBI;
6822 return false;
6825 // If RetType is a non-function pointer type, then this is the short syntax
6826 // for the call, which means that RetType is just the return type. Infer the
6827 // rest of the function argument types from the arguments that are present.
6828 bool LLParser::resolveFunctionType(Type *RetType,
6829 const SmallVector<ParamInfo, 16> &ArgList,
6830 FunctionType *&FuncTy) {
6831 FuncTy = dyn_cast<FunctionType>(RetType);
6832 if (!FuncTy) {
6833 // Pull out the types of all of the arguments...
6834 std::vector<Type*> ParamTypes;
6835 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6836 ParamTypes.push_back(ArgList[i].V->getType());
6838 if (!FunctionType::isValidReturnType(RetType))
6839 return true;
6841 FuncTy = FunctionType::get(RetType, ParamTypes, false);
6843 return false;
6846 /// parseInvoke
6847 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6848 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6849 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6850 LocTy CallLoc = Lex.getLoc();
6851 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6852 std::vector<unsigned> FwdRefAttrGrps;
6853 LocTy NoBuiltinLoc;
6854 unsigned CC;
6855 unsigned InvokeAddrSpace;
6856 Type *RetType = nullptr;
6857 LocTy RetTypeLoc;
6858 ValID CalleeID;
6859 SmallVector<ParamInfo, 16> ArgList;
6860 SmallVector<OperandBundleDef, 2> BundleList;
6862 BasicBlock *NormalBB, *UnwindBB;
6863 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6864 parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6865 parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6866 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6867 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6868 NoBuiltinLoc) ||
6869 parseOptionalOperandBundles(BundleList, PFS) ||
6870 parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6871 parseTypeAndBasicBlock(NormalBB, PFS) ||
6872 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6873 parseTypeAndBasicBlock(UnwindBB, PFS))
6874 return true;
6876 // If RetType is a non-function pointer type, then this is the short syntax
6877 // for the call, which means that RetType is just the return type. Infer the
6878 // rest of the function argument types from the arguments that are present.
6879 FunctionType *Ty;
6880 if (resolveFunctionType(RetType, ArgList, Ty))
6881 return error(RetTypeLoc, "Invalid result type for LLVM function");
6883 CalleeID.FTy = Ty;
6885 // Look up the callee.
6886 Value *Callee;
6887 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6888 Callee, &PFS))
6889 return true;
6891 // Set up the Attribute for the function.
6892 SmallVector<Value *, 8> Args;
6893 SmallVector<AttributeSet, 8> ArgAttrs;
6895 // Loop through FunctionType's arguments and ensure they are specified
6896 // correctly. Also, gather any parameter attributes.
6897 FunctionType::param_iterator I = Ty->param_begin();
6898 FunctionType::param_iterator E = Ty->param_end();
6899 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6900 Type *ExpectedTy = nullptr;
6901 if (I != E) {
6902 ExpectedTy = *I++;
6903 } else if (!Ty->isVarArg()) {
6904 return error(ArgList[i].Loc, "too many arguments specified");
6907 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6908 return error(ArgList[i].Loc, "argument is not of expected type '" +
6909 getTypeString(ExpectedTy) + "'");
6910 Args.push_back(ArgList[i].V);
6911 ArgAttrs.push_back(ArgList[i].Attrs);
6914 if (I != E)
6915 return error(CallLoc, "not enough parameters specified for call");
6917 // Finish off the Attribute and check them
6918 AttributeList PAL =
6919 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6920 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6922 InvokeInst *II =
6923 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6924 II->setCallingConv(CC);
6925 II->setAttributes(PAL);
6926 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6927 Inst = II;
6928 return false;
6931 /// parseResume
6932 /// ::= 'resume' TypeAndValue
6933 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6934 Value *Exn; LocTy ExnLoc;
6935 if (parseTypeAndValue(Exn, ExnLoc, PFS))
6936 return true;
6938 ResumeInst *RI = ResumeInst::Create(Exn);
6939 Inst = RI;
6940 return false;
6943 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6944 PerFunctionState &PFS) {
6945 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6946 return true;
6948 while (Lex.getKind() != lltok::rsquare) {
6949 // If this isn't the first argument, we need a comma.
6950 if (!Args.empty() &&
6951 parseToken(lltok::comma, "expected ',' in argument list"))
6952 return true;
6954 // parse the argument.
6955 LocTy ArgLoc;
6956 Type *ArgTy = nullptr;
6957 if (parseType(ArgTy, ArgLoc))
6958 return true;
6960 Value *V;
6961 if (ArgTy->isMetadataTy()) {
6962 if (parseMetadataAsValue(V, PFS))
6963 return true;
6964 } else {
6965 if (parseValue(ArgTy, V, PFS))
6966 return true;
6968 Args.push_back(V);
6971 Lex.Lex(); // Lex the ']'.
6972 return false;
6975 /// parseCleanupRet
6976 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6977 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6978 Value *CleanupPad = nullptr;
6980 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6981 return true;
6983 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6984 return true;
6986 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6987 return true;
6989 BasicBlock *UnwindBB = nullptr;
6990 if (Lex.getKind() == lltok::kw_to) {
6991 Lex.Lex();
6992 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6993 return true;
6994 } else {
6995 if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6996 return true;
7000 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
7001 return false;
7004 /// parseCatchRet
7005 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
7006 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
7007 Value *CatchPad = nullptr;
7009 if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
7010 return true;
7012 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
7013 return true;
7015 BasicBlock *BB;
7016 if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
7017 parseTypeAndBasicBlock(BB, PFS))
7018 return true;
7020 Inst = CatchReturnInst::Create(CatchPad, BB);
7021 return false;
7024 /// parseCatchSwitch
7025 /// ::= 'catchswitch' within Parent
7026 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7027 Value *ParentPad;
7029 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
7030 return true;
7032 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7033 Lex.getKind() != lltok::LocalVarID)
7034 return tokError("expected scope value for catchswitch");
7036 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7037 return true;
7039 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
7040 return true;
7042 SmallVector<BasicBlock *, 32> Table;
7043 do {
7044 BasicBlock *DestBB;
7045 if (parseTypeAndBasicBlock(DestBB, PFS))
7046 return true;
7047 Table.push_back(DestBB);
7048 } while (EatIfPresent(lltok::comma));
7050 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
7051 return true;
7053 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
7054 return true;
7056 BasicBlock *UnwindBB = nullptr;
7057 if (EatIfPresent(lltok::kw_to)) {
7058 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
7059 return true;
7060 } else {
7061 if (parseTypeAndBasicBlock(UnwindBB, PFS))
7062 return true;
7065 auto *CatchSwitch =
7066 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
7067 for (BasicBlock *DestBB : Table)
7068 CatchSwitch->addHandler(DestBB);
7069 Inst = CatchSwitch;
7070 return false;
7073 /// parseCatchPad
7074 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
7075 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
7076 Value *CatchSwitch = nullptr;
7078 if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
7079 return true;
7081 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
7082 return tokError("expected scope value for catchpad");
7084 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
7085 return true;
7087 SmallVector<Value *, 8> Args;
7088 if (parseExceptionArgs(Args, PFS))
7089 return true;
7091 Inst = CatchPadInst::Create(CatchSwitch, Args);
7092 return false;
7095 /// parseCleanupPad
7096 /// ::= 'cleanuppad' within Parent ParamList
7097 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
7098 Value *ParentPad = nullptr;
7100 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
7101 return true;
7103 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7104 Lex.getKind() != lltok::LocalVarID)
7105 return tokError("expected scope value for cleanuppad");
7107 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7108 return true;
7110 SmallVector<Value *, 8> Args;
7111 if (parseExceptionArgs(Args, PFS))
7112 return true;
7114 Inst = CleanupPadInst::Create(ParentPad, Args);
7115 return false;
7118 //===----------------------------------------------------------------------===//
7119 // Unary Operators.
7120 //===----------------------------------------------------------------------===//
7122 /// parseUnaryOp
7123 /// ::= UnaryOp TypeAndValue ',' Value
7125 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7126 /// operand is allowed.
7127 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
7128 unsigned Opc, bool IsFP) {
7129 LocTy Loc; Value *LHS;
7130 if (parseTypeAndValue(LHS, Loc, PFS))
7131 return true;
7133 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7134 : LHS->getType()->isIntOrIntVectorTy();
7136 if (!Valid)
7137 return error(Loc, "invalid operand type for instruction");
7139 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
7140 return false;
7143 /// parseCallBr
7144 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
7145 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
7146 /// '[' LabelList ']'
7147 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
7148 LocTy CallLoc = Lex.getLoc();
7149 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7150 std::vector<unsigned> FwdRefAttrGrps;
7151 LocTy NoBuiltinLoc;
7152 unsigned CC;
7153 Type *RetType = nullptr;
7154 LocTy RetTypeLoc;
7155 ValID CalleeID;
7156 SmallVector<ParamInfo, 16> ArgList;
7157 SmallVector<OperandBundleDef, 2> BundleList;
7159 BasicBlock *DefaultDest;
7160 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7161 parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7162 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7163 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7164 NoBuiltinLoc) ||
7165 parseOptionalOperandBundles(BundleList, PFS) ||
7166 parseToken(lltok::kw_to, "expected 'to' in callbr") ||
7167 parseTypeAndBasicBlock(DefaultDest, PFS) ||
7168 parseToken(lltok::lsquare, "expected '[' in callbr"))
7169 return true;
7171 // parse the destination list.
7172 SmallVector<BasicBlock *, 16> IndirectDests;
7174 if (Lex.getKind() != lltok::rsquare) {
7175 BasicBlock *DestBB;
7176 if (parseTypeAndBasicBlock(DestBB, PFS))
7177 return true;
7178 IndirectDests.push_back(DestBB);
7180 while (EatIfPresent(lltok::comma)) {
7181 if (parseTypeAndBasicBlock(DestBB, PFS))
7182 return true;
7183 IndirectDests.push_back(DestBB);
7187 if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7188 return true;
7190 // If RetType is a non-function pointer type, then this is the short syntax
7191 // for the call, which means that RetType is just the return type. Infer the
7192 // rest of the function argument types from the arguments that are present.
7193 FunctionType *Ty;
7194 if (resolveFunctionType(RetType, ArgList, Ty))
7195 return error(RetTypeLoc, "Invalid result type for LLVM function");
7197 CalleeID.FTy = Ty;
7199 // Look up the callee.
7200 Value *Callee;
7201 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
7202 return true;
7204 // Set up the Attribute for the function.
7205 SmallVector<Value *, 8> Args;
7206 SmallVector<AttributeSet, 8> ArgAttrs;
7208 // Loop through FunctionType's arguments and ensure they are specified
7209 // correctly. Also, gather any parameter attributes.
7210 FunctionType::param_iterator I = Ty->param_begin();
7211 FunctionType::param_iterator E = Ty->param_end();
7212 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7213 Type *ExpectedTy = nullptr;
7214 if (I != E) {
7215 ExpectedTy = *I++;
7216 } else if (!Ty->isVarArg()) {
7217 return error(ArgList[i].Loc, "too many arguments specified");
7220 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7221 return error(ArgList[i].Loc, "argument is not of expected type '" +
7222 getTypeString(ExpectedTy) + "'");
7223 Args.push_back(ArgList[i].V);
7224 ArgAttrs.push_back(ArgList[i].Attrs);
7227 if (I != E)
7228 return error(CallLoc, "not enough parameters specified for call");
7230 // Finish off the Attribute and check them
7231 AttributeList PAL =
7232 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7233 AttributeSet::get(Context, RetAttrs), ArgAttrs);
7235 CallBrInst *CBI =
7236 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
7237 BundleList);
7238 CBI->setCallingConv(CC);
7239 CBI->setAttributes(PAL);
7240 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
7241 Inst = CBI;
7242 return false;
7245 //===----------------------------------------------------------------------===//
7246 // Binary Operators.
7247 //===----------------------------------------------------------------------===//
7249 /// parseArithmetic
7250 /// ::= ArithmeticOps TypeAndValue ',' Value
7252 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7253 /// operand is allowed.
7254 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
7255 unsigned Opc, bool IsFP) {
7256 LocTy Loc; Value *LHS, *RHS;
7257 if (parseTypeAndValue(LHS, Loc, PFS) ||
7258 parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
7259 parseValue(LHS->getType(), RHS, PFS))
7260 return true;
7262 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7263 : LHS->getType()->isIntOrIntVectorTy();
7265 if (!Valid)
7266 return error(Loc, "invalid operand type for instruction");
7268 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7269 return false;
7272 /// parseLogical
7273 /// ::= ArithmeticOps TypeAndValue ',' Value {
7274 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7275 unsigned Opc) {
7276 LocTy Loc; Value *LHS, *RHS;
7277 if (parseTypeAndValue(LHS, Loc, PFS) ||
7278 parseToken(lltok::comma, "expected ',' in logical operation") ||
7279 parseValue(LHS->getType(), RHS, PFS))
7280 return true;
7282 if (!LHS->getType()->isIntOrIntVectorTy())
7283 return error(Loc,
7284 "instruction requires integer or integer vector operands");
7286 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7287 return false;
7290 /// parseCompare
7291 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
7292 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
7293 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7294 unsigned Opc) {
7295 // parse the integer/fp comparison predicate.
7296 LocTy Loc;
7297 unsigned Pred;
7298 Value *LHS, *RHS;
7299 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7300 parseToken(lltok::comma, "expected ',' after compare value") ||
7301 parseValue(LHS->getType(), RHS, PFS))
7302 return true;
7304 if (Opc == Instruction::FCmp) {
7305 if (!LHS->getType()->isFPOrFPVectorTy())
7306 return error(Loc, "fcmp requires floating point operands");
7307 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7308 } else {
7309 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7310 if (!LHS->getType()->isIntOrIntVectorTy() &&
7311 !LHS->getType()->isPtrOrPtrVectorTy())
7312 return error(Loc, "icmp requires integer operands");
7313 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7315 return false;
7318 //===----------------------------------------------------------------------===//
7319 // Other Instructions.
7320 //===----------------------------------------------------------------------===//
7322 /// parseCast
7323 /// ::= CastOpc TypeAndValue 'to' Type
7324 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7325 unsigned Opc) {
7326 LocTy Loc;
7327 Value *Op;
7328 Type *DestTy = nullptr;
7329 if (parseTypeAndValue(Op, Loc, PFS) ||
7330 parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7331 parseType(DestTy))
7332 return true;
7334 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7335 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7336 return error(Loc, "invalid cast opcode for cast from '" +
7337 getTypeString(Op->getType()) + "' to '" +
7338 getTypeString(DestTy) + "'");
7340 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7341 return false;
7344 /// parseSelect
7345 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7346 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7347 LocTy Loc;
7348 Value *Op0, *Op1, *Op2;
7349 if (parseTypeAndValue(Op0, Loc, PFS) ||
7350 parseToken(lltok::comma, "expected ',' after select condition") ||
7351 parseTypeAndValue(Op1, PFS) ||
7352 parseToken(lltok::comma, "expected ',' after select value") ||
7353 parseTypeAndValue(Op2, PFS))
7354 return true;
7356 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7357 return error(Loc, Reason);
7359 Inst = SelectInst::Create(Op0, Op1, Op2);
7360 return false;
7363 /// parseVAArg
7364 /// ::= 'va_arg' TypeAndValue ',' Type
7365 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7366 Value *Op;
7367 Type *EltTy = nullptr;
7368 LocTy TypeLoc;
7369 if (parseTypeAndValue(Op, PFS) ||
7370 parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7371 parseType(EltTy, TypeLoc))
7372 return true;
7374 if (!EltTy->isFirstClassType())
7375 return error(TypeLoc, "va_arg requires operand with first class type");
7377 Inst = new VAArgInst(Op, EltTy);
7378 return false;
7381 /// parseExtractElement
7382 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
7383 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7384 LocTy Loc;
7385 Value *Op0, *Op1;
7386 if (parseTypeAndValue(Op0, Loc, PFS) ||
7387 parseToken(lltok::comma, "expected ',' after extract value") ||
7388 parseTypeAndValue(Op1, PFS))
7389 return true;
7391 if (!ExtractElementInst::isValidOperands(Op0, Op1))
7392 return error(Loc, "invalid extractelement operands");
7394 Inst = ExtractElementInst::Create(Op0, Op1);
7395 return false;
7398 /// parseInsertElement
7399 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7400 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7401 LocTy Loc;
7402 Value *Op0, *Op1, *Op2;
7403 if (parseTypeAndValue(Op0, Loc, PFS) ||
7404 parseToken(lltok::comma, "expected ',' after insertelement value") ||
7405 parseTypeAndValue(Op1, PFS) ||
7406 parseToken(lltok::comma, "expected ',' after insertelement value") ||
7407 parseTypeAndValue(Op2, PFS))
7408 return true;
7410 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7411 return error(Loc, "invalid insertelement operands");
7413 Inst = InsertElementInst::Create(Op0, Op1, Op2);
7414 return false;
7417 /// parseShuffleVector
7418 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7419 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7420 LocTy Loc;
7421 Value *Op0, *Op1, *Op2;
7422 if (parseTypeAndValue(Op0, Loc, PFS) ||
7423 parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7424 parseTypeAndValue(Op1, PFS) ||
7425 parseToken(lltok::comma, "expected ',' after shuffle value") ||
7426 parseTypeAndValue(Op2, PFS))
7427 return true;
7429 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7430 return error(Loc, "invalid shufflevector operands");
7432 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7433 return false;
7436 /// parsePHI
7437 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7438 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7439 Type *Ty = nullptr; LocTy TypeLoc;
7440 Value *Op0, *Op1;
7442 if (parseType(Ty, TypeLoc))
7443 return true;
7445 if (!Ty->isFirstClassType())
7446 return error(TypeLoc, "phi node must have first class type");
7448 bool First = true;
7449 bool AteExtraComma = false;
7450 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7452 while (true) {
7453 if (First) {
7454 if (Lex.getKind() != lltok::lsquare)
7455 break;
7456 First = false;
7457 } else if (!EatIfPresent(lltok::comma))
7458 break;
7460 if (Lex.getKind() == lltok::MetadataVar) {
7461 AteExtraComma = true;
7462 break;
7465 if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7466 parseValue(Ty, Op0, PFS) ||
7467 parseToken(lltok::comma, "expected ',' after insertelement value") ||
7468 parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7469 parseToken(lltok::rsquare, "expected ']' in phi value list"))
7470 return true;
7472 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7475 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7476 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7477 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7478 Inst = PN;
7479 return AteExtraComma ? InstExtraComma : InstNormal;
7482 /// parseLandingPad
7483 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7484 /// Clause
7485 /// ::= 'catch' TypeAndValue
7486 /// ::= 'filter'
7487 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7488 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7489 Type *Ty = nullptr; LocTy TyLoc;
7491 if (parseType(Ty, TyLoc))
7492 return true;
7494 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7495 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7497 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7498 LandingPadInst::ClauseType CT;
7499 if (EatIfPresent(lltok::kw_catch))
7500 CT = LandingPadInst::Catch;
7501 else if (EatIfPresent(lltok::kw_filter))
7502 CT = LandingPadInst::Filter;
7503 else
7504 return tokError("expected 'catch' or 'filter' clause type");
7506 Value *V;
7507 LocTy VLoc;
7508 if (parseTypeAndValue(V, VLoc, PFS))
7509 return true;
7511 // A 'catch' type expects a non-array constant. A filter clause expects an
7512 // array constant.
7513 if (CT == LandingPadInst::Catch) {
7514 if (isa<ArrayType>(V->getType()))
7515 error(VLoc, "'catch' clause has an invalid type");
7516 } else {
7517 if (!isa<ArrayType>(V->getType()))
7518 error(VLoc, "'filter' clause has an invalid type");
7521 Constant *CV = dyn_cast<Constant>(V);
7522 if (!CV)
7523 return error(VLoc, "clause argument must be a constant");
7524 LP->addClause(CV);
7527 Inst = LP.release();
7528 return false;
7531 /// parseFreeze
7532 /// ::= 'freeze' Type Value
7533 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7534 LocTy Loc;
7535 Value *Op;
7536 if (parseTypeAndValue(Op, Loc, PFS))
7537 return true;
7539 Inst = new FreezeInst(Op);
7540 return false;
7543 /// parseCall
7544 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
7545 /// OptionalAttrs Type Value ParameterList OptionalAttrs
7546 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7547 /// OptionalAttrs Type Value ParameterList OptionalAttrs
7548 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7549 /// OptionalAttrs Type Value ParameterList OptionalAttrs
7550 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
7551 /// OptionalAttrs Type Value ParameterList OptionalAttrs
7552 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7553 CallInst::TailCallKind TCK) {
7554 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7555 std::vector<unsigned> FwdRefAttrGrps;
7556 LocTy BuiltinLoc;
7557 unsigned CallAddrSpace;
7558 unsigned CC;
7559 Type *RetType = nullptr;
7560 LocTy RetTypeLoc;
7561 ValID CalleeID;
7562 SmallVector<ParamInfo, 16> ArgList;
7563 SmallVector<OperandBundleDef, 2> BundleList;
7564 LocTy CallLoc = Lex.getLoc();
7566 if (TCK != CallInst::TCK_None &&
7567 parseToken(lltok::kw_call,
7568 "expected 'tail call', 'musttail call', or 'notail call'"))
7569 return true;
7571 FastMathFlags FMF = EatFastMathFlagsIfPresent();
7573 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7574 parseOptionalProgramAddrSpace(CallAddrSpace) ||
7575 parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7576 parseValID(CalleeID, &PFS) ||
7577 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7578 PFS.getFunction().isVarArg()) ||
7579 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7580 parseOptionalOperandBundles(BundleList, PFS))
7581 return true;
7583 // If RetType is a non-function pointer type, then this is the short syntax
7584 // for the call, which means that RetType is just the return type. Infer the
7585 // rest of the function argument types from the arguments that are present.
7586 FunctionType *Ty;
7587 if (resolveFunctionType(RetType, ArgList, Ty))
7588 return error(RetTypeLoc, "Invalid result type for LLVM function");
7590 CalleeID.FTy = Ty;
7592 // Look up the callee.
7593 Value *Callee;
7594 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7595 &PFS))
7596 return true;
7598 // Set up the Attribute for the function.
7599 SmallVector<AttributeSet, 8> Attrs;
7601 SmallVector<Value*, 8> Args;
7603 // Loop through FunctionType's arguments and ensure they are specified
7604 // correctly. Also, gather any parameter attributes.
7605 FunctionType::param_iterator I = Ty->param_begin();
7606 FunctionType::param_iterator E = Ty->param_end();
7607 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7608 Type *ExpectedTy = nullptr;
7609 if (I != E) {
7610 ExpectedTy = *I++;
7611 } else if (!Ty->isVarArg()) {
7612 return error(ArgList[i].Loc, "too many arguments specified");
7615 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7616 return error(ArgList[i].Loc, "argument is not of expected type '" +
7617 getTypeString(ExpectedTy) + "'");
7618 Args.push_back(ArgList[i].V);
7619 Attrs.push_back(ArgList[i].Attrs);
7622 if (I != E)
7623 return error(CallLoc, "not enough parameters specified for call");
7625 // Finish off the Attribute and check them
7626 AttributeList PAL =
7627 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7628 AttributeSet::get(Context, RetAttrs), Attrs);
7630 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7631 CI->setTailCallKind(TCK);
7632 CI->setCallingConv(CC);
7633 if (FMF.any()) {
7634 if (!isa<FPMathOperator>(CI)) {
7635 CI->deleteValue();
7636 return error(CallLoc, "fast-math-flags specified for call without "
7637 "floating-point scalar or vector return type");
7639 CI->setFastMathFlags(FMF);
7641 CI->setAttributes(PAL);
7642 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7643 Inst = CI;
7644 return false;
7647 //===----------------------------------------------------------------------===//
7648 // Memory Instructions.
7649 //===----------------------------------------------------------------------===//
7651 /// parseAlloc
7652 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7653 /// (',' 'align' i32)? (',', 'addrspace(n))?
7654 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7655 Value *Size = nullptr;
7656 LocTy SizeLoc, TyLoc, ASLoc;
7657 MaybeAlign Alignment;
7658 unsigned AddrSpace = 0;
7659 Type *Ty = nullptr;
7661 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7662 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7664 if (parseType(Ty, TyLoc))
7665 return true;
7667 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7668 return error(TyLoc, "invalid type for alloca");
7670 bool AteExtraComma = false;
7671 if (EatIfPresent(lltok::comma)) {
7672 if (Lex.getKind() == lltok::kw_align) {
7673 if (parseOptionalAlignment(Alignment))
7674 return true;
7675 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7676 return true;
7677 } else if (Lex.getKind() == lltok::kw_addrspace) {
7678 ASLoc = Lex.getLoc();
7679 if (parseOptionalAddrSpace(AddrSpace))
7680 return true;
7681 } else if (Lex.getKind() == lltok::MetadataVar) {
7682 AteExtraComma = true;
7683 } else {
7684 if (parseTypeAndValue(Size, SizeLoc, PFS))
7685 return true;
7686 if (EatIfPresent(lltok::comma)) {
7687 if (Lex.getKind() == lltok::kw_align) {
7688 if (parseOptionalAlignment(Alignment))
7689 return true;
7690 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7691 return true;
7692 } else if (Lex.getKind() == lltok::kw_addrspace) {
7693 ASLoc = Lex.getLoc();
7694 if (parseOptionalAddrSpace(AddrSpace))
7695 return true;
7696 } else if (Lex.getKind() == lltok::MetadataVar) {
7697 AteExtraComma = true;
7703 if (Size && !Size->getType()->isIntegerTy())
7704 return error(SizeLoc, "element count must have integer type");
7706 SmallPtrSet<Type *, 4> Visited;
7707 if (!Alignment && !Ty->isSized(&Visited))
7708 return error(TyLoc, "Cannot allocate unsized type");
7709 if (!Alignment)
7710 Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7711 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7712 AI->setUsedWithInAlloca(IsInAlloca);
7713 AI->setSwiftError(IsSwiftError);
7714 Inst = AI;
7715 return AteExtraComma ? InstExtraComma : InstNormal;
7718 /// parseLoad
7719 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7720 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
7721 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
7722 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7723 Value *Val; LocTy Loc;
7724 MaybeAlign Alignment;
7725 bool AteExtraComma = false;
7726 bool isAtomic = false;
7727 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7728 SyncScope::ID SSID = SyncScope::System;
7730 if (Lex.getKind() == lltok::kw_atomic) {
7731 isAtomic = true;
7732 Lex.Lex();
7735 bool isVolatile = false;
7736 if (Lex.getKind() == lltok::kw_volatile) {
7737 isVolatile = true;
7738 Lex.Lex();
7741 Type *Ty;
7742 LocTy ExplicitTypeLoc = Lex.getLoc();
7743 if (parseType(Ty) ||
7744 parseToken(lltok::comma, "expected comma after load's type") ||
7745 parseTypeAndValue(Val, Loc, PFS) ||
7746 parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7747 parseOptionalCommaAlign(Alignment, AteExtraComma))
7748 return true;
7750 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7751 return error(Loc, "load operand must be a pointer to a first class type");
7752 if (isAtomic && !Alignment)
7753 return error(Loc, "atomic load must have explicit non-zero alignment");
7754 if (Ordering == AtomicOrdering::Release ||
7755 Ordering == AtomicOrdering::AcquireRelease)
7756 return error(Loc, "atomic load cannot use Release ordering");
7758 SmallPtrSet<Type *, 4> Visited;
7759 if (!Alignment && !Ty->isSized(&Visited))
7760 return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7761 if (!Alignment)
7762 Alignment = M->getDataLayout().getABITypeAlign(Ty);
7763 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7764 return AteExtraComma ? InstExtraComma : InstNormal;
7767 /// parseStore
7769 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7770 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7771 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
7772 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7773 Value *Val, *Ptr; LocTy Loc, PtrLoc;
7774 MaybeAlign Alignment;
7775 bool AteExtraComma = false;
7776 bool isAtomic = false;
7777 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7778 SyncScope::ID SSID = SyncScope::System;
7780 if (Lex.getKind() == lltok::kw_atomic) {
7781 isAtomic = true;
7782 Lex.Lex();
7785 bool isVolatile = false;
7786 if (Lex.getKind() == lltok::kw_volatile) {
7787 isVolatile = true;
7788 Lex.Lex();
7791 if (parseTypeAndValue(Val, Loc, PFS) ||
7792 parseToken(lltok::comma, "expected ',' after store operand") ||
7793 parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7794 parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7795 parseOptionalCommaAlign(Alignment, AteExtraComma))
7796 return true;
7798 if (!Ptr->getType()->isPointerTy())
7799 return error(PtrLoc, "store operand must be a pointer");
7800 if (!Val->getType()->isFirstClassType())
7801 return error(Loc, "store operand must be a first class value");
7802 if (isAtomic && !Alignment)
7803 return error(Loc, "atomic store must have explicit non-zero alignment");
7804 if (Ordering == AtomicOrdering::Acquire ||
7805 Ordering == AtomicOrdering::AcquireRelease)
7806 return error(Loc, "atomic store cannot use Acquire ordering");
7807 SmallPtrSet<Type *, 4> Visited;
7808 if (!Alignment && !Val->getType()->isSized(&Visited))
7809 return error(Loc, "storing unsized types is not allowed");
7810 if (!Alignment)
7811 Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7813 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7814 return AteExtraComma ? InstExtraComma : InstNormal;
7817 /// parseCmpXchg
7818 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7819 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7820 /// 'Align'?
7821 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7822 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7823 bool AteExtraComma = false;
7824 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7825 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7826 SyncScope::ID SSID = SyncScope::System;
7827 bool isVolatile = false;
7828 bool isWeak = false;
7829 MaybeAlign Alignment;
7831 if (EatIfPresent(lltok::kw_weak))
7832 isWeak = true;
7834 if (EatIfPresent(lltok::kw_volatile))
7835 isVolatile = true;
7837 if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7838 parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7839 parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7840 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7841 parseTypeAndValue(New, NewLoc, PFS) ||
7842 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7843 parseOrdering(FailureOrdering) ||
7844 parseOptionalCommaAlign(Alignment, AteExtraComma))
7845 return true;
7847 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7848 return tokError("invalid cmpxchg success ordering");
7849 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7850 return tokError("invalid cmpxchg failure ordering");
7851 if (!Ptr->getType()->isPointerTy())
7852 return error(PtrLoc, "cmpxchg operand must be a pointer");
7853 if (Cmp->getType() != New->getType())
7854 return error(NewLoc, "compare value and new value type do not match");
7855 if (!New->getType()->isFirstClassType())
7856 return error(NewLoc, "cmpxchg operand must be a first class value");
7858 const Align DefaultAlignment(
7859 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7860 Cmp->getType()));
7862 AtomicCmpXchgInst *CXI =
7863 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment),
7864 SuccessOrdering, FailureOrdering, SSID);
7865 CXI->setVolatile(isVolatile);
7866 CXI->setWeak(isWeak);
7868 Inst = CXI;
7869 return AteExtraComma ? InstExtraComma : InstNormal;
7872 /// parseAtomicRMW
7873 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7874 /// 'singlethread'? AtomicOrdering
7875 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7876 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7877 bool AteExtraComma = false;
7878 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7879 SyncScope::ID SSID = SyncScope::System;
7880 bool isVolatile = false;
7881 bool IsFP = false;
7882 AtomicRMWInst::BinOp Operation;
7883 MaybeAlign Alignment;
7885 if (EatIfPresent(lltok::kw_volatile))
7886 isVolatile = true;
7888 switch (Lex.getKind()) {
7889 default:
7890 return tokError("expected binary operation in atomicrmw");
7891 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7892 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7893 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7894 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7895 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7896 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7897 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7898 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7899 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7900 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7901 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7902 case lltok::kw_uinc_wrap:
7903 Operation = AtomicRMWInst::UIncWrap;
7904 break;
7905 case lltok::kw_udec_wrap:
7906 Operation = AtomicRMWInst::UDecWrap;
7907 break;
7908 case lltok::kw_fadd:
7909 Operation = AtomicRMWInst::FAdd;
7910 IsFP = true;
7911 break;
7912 case lltok::kw_fsub:
7913 Operation = AtomicRMWInst::FSub;
7914 IsFP = true;
7915 break;
7916 case lltok::kw_fmax:
7917 Operation = AtomicRMWInst::FMax;
7918 IsFP = true;
7919 break;
7920 case lltok::kw_fmin:
7921 Operation = AtomicRMWInst::FMin;
7922 IsFP = true;
7923 break;
7925 Lex.Lex(); // Eat the operation.
7927 if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7928 parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7929 parseTypeAndValue(Val, ValLoc, PFS) ||
7930 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7931 parseOptionalCommaAlign(Alignment, AteExtraComma))
7932 return true;
7934 if (Ordering == AtomicOrdering::Unordered)
7935 return tokError("atomicrmw cannot be unordered");
7936 if (!Ptr->getType()->isPointerTy())
7937 return error(PtrLoc, "atomicrmw operand must be a pointer");
7939 if (Operation == AtomicRMWInst::Xchg) {
7940 if (!Val->getType()->isIntegerTy() &&
7941 !Val->getType()->isFloatingPointTy() &&
7942 !Val->getType()->isPointerTy()) {
7943 return error(
7944 ValLoc,
7945 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7946 " operand must be an integer, floating point, or pointer type");
7948 } else if (IsFP) {
7949 if (!Val->getType()->isFloatingPointTy()) {
7950 return error(ValLoc, "atomicrmw " +
7951 AtomicRMWInst::getOperationName(Operation) +
7952 " operand must be a floating point type");
7954 } else {
7955 if (!Val->getType()->isIntegerTy()) {
7956 return error(ValLoc, "atomicrmw " +
7957 AtomicRMWInst::getOperationName(Operation) +
7958 " operand must be an integer");
7962 unsigned Size =
7963 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits(
7964 Val->getType());
7965 if (Size < 8 || (Size & (Size - 1)))
7966 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7967 " integer");
7968 const Align DefaultAlignment(
7969 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7970 Val->getType()));
7971 AtomicRMWInst *RMWI =
7972 new AtomicRMWInst(Operation, Ptr, Val,
7973 Alignment.value_or(DefaultAlignment), Ordering, SSID);
7974 RMWI->setVolatile(isVolatile);
7975 Inst = RMWI;
7976 return AteExtraComma ? InstExtraComma : InstNormal;
7979 /// parseFence
7980 /// ::= 'fence' 'singlethread'? AtomicOrdering
7981 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7982 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7983 SyncScope::ID SSID = SyncScope::System;
7984 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7985 return true;
7987 if (Ordering == AtomicOrdering::Unordered)
7988 return tokError("fence cannot be unordered");
7989 if (Ordering == AtomicOrdering::Monotonic)
7990 return tokError("fence cannot be monotonic");
7992 Inst = new FenceInst(Context, Ordering, SSID);
7993 return InstNormal;
7996 /// parseGetElementPtr
7997 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7998 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7999 Value *Ptr = nullptr;
8000 Value *Val = nullptr;
8001 LocTy Loc, EltLoc;
8003 bool InBounds = EatIfPresent(lltok::kw_inbounds);
8005 Type *Ty = nullptr;
8006 if (parseType(Ty) ||
8007 parseToken(lltok::comma, "expected comma after getelementptr's type") ||
8008 parseTypeAndValue(Ptr, Loc, PFS))
8009 return true;
8011 Type *BaseType = Ptr->getType();
8012 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
8013 if (!BasePointerType)
8014 return error(Loc, "base of getelementptr must be a pointer");
8016 SmallVector<Value*, 16> Indices;
8017 bool AteExtraComma = false;
8018 // GEP returns a vector of pointers if at least one of parameters is a vector.
8019 // All vector parameters should have the same vector width.
8020 ElementCount GEPWidth = BaseType->isVectorTy()
8021 ? cast<VectorType>(BaseType)->getElementCount()
8022 : ElementCount::getFixed(0);
8024 while (EatIfPresent(lltok::comma)) {
8025 if (Lex.getKind() == lltok::MetadataVar) {
8026 AteExtraComma = true;
8027 break;
8029 if (parseTypeAndValue(Val, EltLoc, PFS))
8030 return true;
8031 if (!Val->getType()->isIntOrIntVectorTy())
8032 return error(EltLoc, "getelementptr index must be an integer");
8034 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
8035 ElementCount ValNumEl = ValVTy->getElementCount();
8036 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
8037 return error(
8038 EltLoc,
8039 "getelementptr vector index has a wrong number of elements");
8040 GEPWidth = ValNumEl;
8042 Indices.push_back(Val);
8045 SmallPtrSet<Type*, 4> Visited;
8046 if (!Indices.empty() && !Ty->isSized(&Visited))
8047 return error(Loc, "base element of getelementptr must be sized");
8049 auto *STy = dyn_cast<StructType>(Ty);
8050 if (STy && STy->containsScalableVectorType())
8051 return error(Loc, "getelementptr cannot target structure that contains "
8052 "scalable vector type");
8054 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
8055 return error(Loc, "invalid getelementptr indices");
8056 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
8057 if (InBounds)
8058 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
8059 return AteExtraComma ? InstExtraComma : InstNormal;
8062 /// parseExtractValue
8063 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
8064 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
8065 Value *Val; LocTy Loc;
8066 SmallVector<unsigned, 4> Indices;
8067 bool AteExtraComma;
8068 if (parseTypeAndValue(Val, Loc, PFS) ||
8069 parseIndexList(Indices, AteExtraComma))
8070 return true;
8072 if (!Val->getType()->isAggregateType())
8073 return error(Loc, "extractvalue operand must be aggregate type");
8075 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
8076 return error(Loc, "invalid indices for extractvalue");
8077 Inst = ExtractValueInst::Create(Val, Indices);
8078 return AteExtraComma ? InstExtraComma : InstNormal;
8081 /// parseInsertValue
8082 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
8083 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
8084 Value *Val0, *Val1; LocTy Loc0, Loc1;
8085 SmallVector<unsigned, 4> Indices;
8086 bool AteExtraComma;
8087 if (parseTypeAndValue(Val0, Loc0, PFS) ||
8088 parseToken(lltok::comma, "expected comma after insertvalue operand") ||
8089 parseTypeAndValue(Val1, Loc1, PFS) ||
8090 parseIndexList(Indices, AteExtraComma))
8091 return true;
8093 if (!Val0->getType()->isAggregateType())
8094 return error(Loc0, "insertvalue operand must be aggregate type");
8096 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
8097 if (!IndexedType)
8098 return error(Loc0, "invalid indices for insertvalue");
8099 if (IndexedType != Val1->getType())
8100 return error(Loc1, "insertvalue operand and field disagree in type: '" +
8101 getTypeString(Val1->getType()) + "' instead of '" +
8102 getTypeString(IndexedType) + "'");
8103 Inst = InsertValueInst::Create(Val0, Val1, Indices);
8104 return AteExtraComma ? InstExtraComma : InstNormal;
8107 //===----------------------------------------------------------------------===//
8108 // Embedded metadata.
8109 //===----------------------------------------------------------------------===//
8111 /// parseMDNodeVector
8112 /// ::= { Element (',' Element)* }
8113 /// Element
8114 /// ::= 'null' | TypeAndValue
8115 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
8116 if (parseToken(lltok::lbrace, "expected '{' here"))
8117 return true;
8119 // Check for an empty list.
8120 if (EatIfPresent(lltok::rbrace))
8121 return false;
8123 do {
8124 // Null is a special case since it is typeless.
8125 if (EatIfPresent(lltok::kw_null)) {
8126 Elts.push_back(nullptr);
8127 continue;
8130 Metadata *MD;
8131 if (parseMetadata(MD, nullptr))
8132 return true;
8133 Elts.push_back(MD);
8134 } while (EatIfPresent(lltok::comma));
8136 return parseToken(lltok::rbrace, "expected end of metadata node");
8139 //===----------------------------------------------------------------------===//
8140 // Use-list order directives.
8141 //===----------------------------------------------------------------------===//
8142 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
8143 SMLoc Loc) {
8144 if (V->use_empty())
8145 return error(Loc, "value has no uses");
8147 unsigned NumUses = 0;
8148 SmallDenseMap<const Use *, unsigned, 16> Order;
8149 for (const Use &U : V->uses()) {
8150 if (++NumUses > Indexes.size())
8151 break;
8152 Order[&U] = Indexes[NumUses - 1];
8154 if (NumUses < 2)
8155 return error(Loc, "value only has one use");
8156 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
8157 return error(Loc,
8158 "wrong number of indexes, expected " + Twine(V->getNumUses()));
8160 V->sortUseList([&](const Use &L, const Use &R) {
8161 return Order.lookup(&L) < Order.lookup(&R);
8163 return false;
8166 /// parseUseListOrderIndexes
8167 /// ::= '{' uint32 (',' uint32)+ '}'
8168 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
8169 SMLoc Loc = Lex.getLoc();
8170 if (parseToken(lltok::lbrace, "expected '{' here"))
8171 return true;
8172 if (Lex.getKind() == lltok::rbrace)
8173 return Lex.Error("expected non-empty list of uselistorder indexes");
8175 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
8176 // indexes should be distinct numbers in the range [0, size-1], and should
8177 // not be in order.
8178 unsigned Offset = 0;
8179 unsigned Max = 0;
8180 bool IsOrdered = true;
8181 assert(Indexes.empty() && "Expected empty order vector");
8182 do {
8183 unsigned Index;
8184 if (parseUInt32(Index))
8185 return true;
8187 // Update consistency checks.
8188 Offset += Index - Indexes.size();
8189 Max = std::max(Max, Index);
8190 IsOrdered &= Index == Indexes.size();
8192 Indexes.push_back(Index);
8193 } while (EatIfPresent(lltok::comma));
8195 if (parseToken(lltok::rbrace, "expected '}' here"))
8196 return true;
8198 if (Indexes.size() < 2)
8199 return error(Loc, "expected >= 2 uselistorder indexes");
8200 if (Offset != 0 || Max >= Indexes.size())
8201 return error(Loc,
8202 "expected distinct uselistorder indexes in range [0, size)");
8203 if (IsOrdered)
8204 return error(Loc, "expected uselistorder indexes to change the order");
8206 return false;
8209 /// parseUseListOrder
8210 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
8211 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
8212 SMLoc Loc = Lex.getLoc();
8213 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
8214 return true;
8216 Value *V;
8217 SmallVector<unsigned, 16> Indexes;
8218 if (parseTypeAndValue(V, PFS) ||
8219 parseToken(lltok::comma, "expected comma in uselistorder directive") ||
8220 parseUseListOrderIndexes(Indexes))
8221 return true;
8223 return sortUseListOrder(V, Indexes, Loc);
8226 /// parseUseListOrderBB
8227 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
8228 bool LLParser::parseUseListOrderBB() {
8229 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
8230 SMLoc Loc = Lex.getLoc();
8231 Lex.Lex();
8233 ValID Fn, Label;
8234 SmallVector<unsigned, 16> Indexes;
8235 if (parseValID(Fn, /*PFS=*/nullptr) ||
8236 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8237 parseValID(Label, /*PFS=*/nullptr) ||
8238 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8239 parseUseListOrderIndexes(Indexes))
8240 return true;
8242 // Check the function.
8243 GlobalValue *GV;
8244 if (Fn.Kind == ValID::t_GlobalName)
8245 GV = M->getNamedValue(Fn.StrVal);
8246 else if (Fn.Kind == ValID::t_GlobalID)
8247 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
8248 else
8249 return error(Fn.Loc, "expected function name in uselistorder_bb");
8250 if (!GV)
8251 return error(Fn.Loc,
8252 "invalid function forward reference in uselistorder_bb");
8253 auto *F = dyn_cast<Function>(GV);
8254 if (!F)
8255 return error(Fn.Loc, "expected function name in uselistorder_bb");
8256 if (F->isDeclaration())
8257 return error(Fn.Loc, "invalid declaration in uselistorder_bb");
8259 // Check the basic block.
8260 if (Label.Kind == ValID::t_LocalID)
8261 return error(Label.Loc, "invalid numeric label in uselistorder_bb");
8262 if (Label.Kind != ValID::t_LocalName)
8263 return error(Label.Loc, "expected basic block name in uselistorder_bb");
8264 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
8265 if (!V)
8266 return error(Label.Loc, "invalid basic block in uselistorder_bb");
8267 if (!isa<BasicBlock>(V))
8268 return error(Label.Loc, "expected basic block in uselistorder_bb");
8270 return sortUseListOrder(V, Indexes, Loc);
8273 /// ModuleEntry
8274 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8275 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
8276 bool LLParser::parseModuleEntry(unsigned ID) {
8277 assert(Lex.getKind() == lltok::kw_module);
8278 Lex.Lex();
8280 std::string Path;
8281 if (parseToken(lltok::colon, "expected ':' here") ||
8282 parseToken(lltok::lparen, "expected '(' here") ||
8283 parseToken(lltok::kw_path, "expected 'path' here") ||
8284 parseToken(lltok::colon, "expected ':' here") ||
8285 parseStringConstant(Path) ||
8286 parseToken(lltok::comma, "expected ',' here") ||
8287 parseToken(lltok::kw_hash, "expected 'hash' here") ||
8288 parseToken(lltok::colon, "expected ':' here") ||
8289 parseToken(lltok::lparen, "expected '(' here"))
8290 return true;
8292 ModuleHash Hash;
8293 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8294 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8295 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8296 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8297 parseUInt32(Hash[4]))
8298 return true;
8300 if (parseToken(lltok::rparen, "expected ')' here") ||
8301 parseToken(lltok::rparen, "expected ')' here"))
8302 return true;
8304 auto ModuleEntry = Index->addModule(Path, Hash);
8305 ModuleIdMap[ID] = ModuleEntry->first();
8307 return false;
8310 /// TypeIdEntry
8311 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8312 bool LLParser::parseTypeIdEntry(unsigned ID) {
8313 assert(Lex.getKind() == lltok::kw_typeid);
8314 Lex.Lex();
8316 std::string Name;
8317 if (parseToken(lltok::colon, "expected ':' here") ||
8318 parseToken(lltok::lparen, "expected '(' here") ||
8319 parseToken(lltok::kw_name, "expected 'name' here") ||
8320 parseToken(lltok::colon, "expected ':' here") ||
8321 parseStringConstant(Name))
8322 return true;
8324 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8325 if (parseToken(lltok::comma, "expected ',' here") ||
8326 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8327 return true;
8329 // Check if this ID was forward referenced, and if so, update the
8330 // corresponding GUIDs.
8331 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8332 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8333 for (auto TIDRef : FwdRefTIDs->second) {
8334 assert(!*TIDRef.first &&
8335 "Forward referenced type id GUID expected to be 0");
8336 *TIDRef.first = GlobalValue::getGUID(Name);
8338 ForwardRefTypeIds.erase(FwdRefTIDs);
8341 return false;
8344 /// TypeIdSummary
8345 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8346 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8347 if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8348 parseToken(lltok::colon, "expected ':' here") ||
8349 parseToken(lltok::lparen, "expected '(' here") ||
8350 parseTypeTestResolution(TIS.TTRes))
8351 return true;
8353 if (EatIfPresent(lltok::comma)) {
8354 // Expect optional wpdResolutions field
8355 if (parseOptionalWpdResolutions(TIS.WPDRes))
8356 return true;
8359 if (parseToken(lltok::rparen, "expected ')' here"))
8360 return true;
8362 return false;
8365 static ValueInfo EmptyVI =
8366 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8368 /// TypeIdCompatibleVtableEntry
8369 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8370 /// TypeIdCompatibleVtableInfo
8371 /// ')'
8372 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8373 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8374 Lex.Lex();
8376 std::string Name;
8377 if (parseToken(lltok::colon, "expected ':' here") ||
8378 parseToken(lltok::lparen, "expected '(' here") ||
8379 parseToken(lltok::kw_name, "expected 'name' here") ||
8380 parseToken(lltok::colon, "expected ':' here") ||
8381 parseStringConstant(Name))
8382 return true;
8384 TypeIdCompatibleVtableInfo &TI =
8385 Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8386 if (parseToken(lltok::comma, "expected ',' here") ||
8387 parseToken(lltok::kw_summary, "expected 'summary' here") ||
8388 parseToken(lltok::colon, "expected ':' here") ||
8389 parseToken(lltok::lparen, "expected '(' here"))
8390 return true;
8392 IdToIndexMapType IdToIndexMap;
8393 // parse each call edge
8394 do {
8395 uint64_t Offset;
8396 if (parseToken(lltok::lparen, "expected '(' here") ||
8397 parseToken(lltok::kw_offset, "expected 'offset' here") ||
8398 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8399 parseToken(lltok::comma, "expected ',' here"))
8400 return true;
8402 LocTy Loc = Lex.getLoc();
8403 unsigned GVId;
8404 ValueInfo VI;
8405 if (parseGVReference(VI, GVId))
8406 return true;
8408 // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8409 // forward reference. We will save the location of the ValueInfo needing an
8410 // update, but can only do so once the std::vector is finalized.
8411 if (VI == EmptyVI)
8412 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8413 TI.push_back({Offset, VI});
8415 if (parseToken(lltok::rparen, "expected ')' in call"))
8416 return true;
8417 } while (EatIfPresent(lltok::comma));
8419 // Now that the TI vector is finalized, it is safe to save the locations
8420 // of any forward GV references that need updating later.
8421 for (auto I : IdToIndexMap) {
8422 auto &Infos = ForwardRefValueInfos[I.first];
8423 for (auto P : I.second) {
8424 assert(TI[P.first].VTableVI == EmptyVI &&
8425 "Forward referenced ValueInfo expected to be empty");
8426 Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8430 if (parseToken(lltok::rparen, "expected ')' here") ||
8431 parseToken(lltok::rparen, "expected ')' here"))
8432 return true;
8434 // Check if this ID was forward referenced, and if so, update the
8435 // corresponding GUIDs.
8436 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8437 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8438 for (auto TIDRef : FwdRefTIDs->second) {
8439 assert(!*TIDRef.first &&
8440 "Forward referenced type id GUID expected to be 0");
8441 *TIDRef.first = GlobalValue::getGUID(Name);
8443 ForwardRefTypeIds.erase(FwdRefTIDs);
8446 return false;
8449 /// TypeTestResolution
8450 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
8451 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8452 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8453 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8454 /// [',' 'inlinesBits' ':' UInt64]? ')'
8455 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8456 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8457 parseToken(lltok::colon, "expected ':' here") ||
8458 parseToken(lltok::lparen, "expected '(' here") ||
8459 parseToken(lltok::kw_kind, "expected 'kind' here") ||
8460 parseToken(lltok::colon, "expected ':' here"))
8461 return true;
8463 switch (Lex.getKind()) {
8464 case lltok::kw_unknown:
8465 TTRes.TheKind = TypeTestResolution::Unknown;
8466 break;
8467 case lltok::kw_unsat:
8468 TTRes.TheKind = TypeTestResolution::Unsat;
8469 break;
8470 case lltok::kw_byteArray:
8471 TTRes.TheKind = TypeTestResolution::ByteArray;
8472 break;
8473 case lltok::kw_inline:
8474 TTRes.TheKind = TypeTestResolution::Inline;
8475 break;
8476 case lltok::kw_single:
8477 TTRes.TheKind = TypeTestResolution::Single;
8478 break;
8479 case lltok::kw_allOnes:
8480 TTRes.TheKind = TypeTestResolution::AllOnes;
8481 break;
8482 default:
8483 return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8485 Lex.Lex();
8487 if (parseToken(lltok::comma, "expected ',' here") ||
8488 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8489 parseToken(lltok::colon, "expected ':' here") ||
8490 parseUInt32(TTRes.SizeM1BitWidth))
8491 return true;
8493 // parse optional fields
8494 while (EatIfPresent(lltok::comma)) {
8495 switch (Lex.getKind()) {
8496 case lltok::kw_alignLog2:
8497 Lex.Lex();
8498 if (parseToken(lltok::colon, "expected ':'") ||
8499 parseUInt64(TTRes.AlignLog2))
8500 return true;
8501 break;
8502 case lltok::kw_sizeM1:
8503 Lex.Lex();
8504 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8505 return true;
8506 break;
8507 case lltok::kw_bitMask: {
8508 unsigned Val;
8509 Lex.Lex();
8510 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8511 return true;
8512 assert(Val <= 0xff);
8513 TTRes.BitMask = (uint8_t)Val;
8514 break;
8516 case lltok::kw_inlineBits:
8517 Lex.Lex();
8518 if (parseToken(lltok::colon, "expected ':'") ||
8519 parseUInt64(TTRes.InlineBits))
8520 return true;
8521 break;
8522 default:
8523 return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8527 if (parseToken(lltok::rparen, "expected ')' here"))
8528 return true;
8530 return false;
8533 /// OptionalWpdResolutions
8534 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8535 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8536 bool LLParser::parseOptionalWpdResolutions(
8537 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8538 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8539 parseToken(lltok::colon, "expected ':' here") ||
8540 parseToken(lltok::lparen, "expected '(' here"))
8541 return true;
8543 do {
8544 uint64_t Offset;
8545 WholeProgramDevirtResolution WPDRes;
8546 if (parseToken(lltok::lparen, "expected '(' here") ||
8547 parseToken(lltok::kw_offset, "expected 'offset' here") ||
8548 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8549 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8550 parseToken(lltok::rparen, "expected ')' here"))
8551 return true;
8552 WPDResMap[Offset] = WPDRes;
8553 } while (EatIfPresent(lltok::comma));
8555 if (parseToken(lltok::rparen, "expected ')' here"))
8556 return true;
8558 return false;
8561 /// WpdRes
8562 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8563 /// [',' OptionalResByArg]? ')'
8564 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8565 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
8566 /// [',' OptionalResByArg]? ')'
8567 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8568 /// [',' OptionalResByArg]? ')'
8569 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8570 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8571 parseToken(lltok::colon, "expected ':' here") ||
8572 parseToken(lltok::lparen, "expected '(' here") ||
8573 parseToken(lltok::kw_kind, "expected 'kind' here") ||
8574 parseToken(lltok::colon, "expected ':' here"))
8575 return true;
8577 switch (Lex.getKind()) {
8578 case lltok::kw_indir:
8579 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8580 break;
8581 case lltok::kw_singleImpl:
8582 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8583 break;
8584 case lltok::kw_branchFunnel:
8585 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8586 break;
8587 default:
8588 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8590 Lex.Lex();
8592 // parse optional fields
8593 while (EatIfPresent(lltok::comma)) {
8594 switch (Lex.getKind()) {
8595 case lltok::kw_singleImplName:
8596 Lex.Lex();
8597 if (parseToken(lltok::colon, "expected ':' here") ||
8598 parseStringConstant(WPDRes.SingleImplName))
8599 return true;
8600 break;
8601 case lltok::kw_resByArg:
8602 if (parseOptionalResByArg(WPDRes.ResByArg))
8603 return true;
8604 break;
8605 default:
8606 return error(Lex.getLoc(),
8607 "expected optional WholeProgramDevirtResolution field");
8611 if (parseToken(lltok::rparen, "expected ')' here"))
8612 return true;
8614 return false;
8617 /// OptionalResByArg
8618 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8619 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8620 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8621 /// 'virtualConstProp' )
8622 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8623 /// [',' 'bit' ':' UInt32]? ')'
8624 bool LLParser::parseOptionalResByArg(
8625 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8626 &ResByArg) {
8627 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8628 parseToken(lltok::colon, "expected ':' here") ||
8629 parseToken(lltok::lparen, "expected '(' here"))
8630 return true;
8632 do {
8633 std::vector<uint64_t> Args;
8634 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8635 parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8636 parseToken(lltok::colon, "expected ':' here") ||
8637 parseToken(lltok::lparen, "expected '(' here") ||
8638 parseToken(lltok::kw_kind, "expected 'kind' here") ||
8639 parseToken(lltok::colon, "expected ':' here"))
8640 return true;
8642 WholeProgramDevirtResolution::ByArg ByArg;
8643 switch (Lex.getKind()) {
8644 case lltok::kw_indir:
8645 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8646 break;
8647 case lltok::kw_uniformRetVal:
8648 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8649 break;
8650 case lltok::kw_uniqueRetVal:
8651 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8652 break;
8653 case lltok::kw_virtualConstProp:
8654 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8655 break;
8656 default:
8657 return error(Lex.getLoc(),
8658 "unexpected WholeProgramDevirtResolution::ByArg kind");
8660 Lex.Lex();
8662 // parse optional fields
8663 while (EatIfPresent(lltok::comma)) {
8664 switch (Lex.getKind()) {
8665 case lltok::kw_info:
8666 Lex.Lex();
8667 if (parseToken(lltok::colon, "expected ':' here") ||
8668 parseUInt64(ByArg.Info))
8669 return true;
8670 break;
8671 case lltok::kw_byte:
8672 Lex.Lex();
8673 if (parseToken(lltok::colon, "expected ':' here") ||
8674 parseUInt32(ByArg.Byte))
8675 return true;
8676 break;
8677 case lltok::kw_bit:
8678 Lex.Lex();
8679 if (parseToken(lltok::colon, "expected ':' here") ||
8680 parseUInt32(ByArg.Bit))
8681 return true;
8682 break;
8683 default:
8684 return error(Lex.getLoc(),
8685 "expected optional whole program devirt field");
8689 if (parseToken(lltok::rparen, "expected ')' here"))
8690 return true;
8692 ResByArg[Args] = ByArg;
8693 } while (EatIfPresent(lltok::comma));
8695 if (parseToken(lltok::rparen, "expected ')' here"))
8696 return true;
8698 return false;
8701 /// OptionalResByArg
8702 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8703 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8704 if (parseToken(lltok::kw_args, "expected 'args' here") ||
8705 parseToken(lltok::colon, "expected ':' here") ||
8706 parseToken(lltok::lparen, "expected '(' here"))
8707 return true;
8709 do {
8710 uint64_t Val;
8711 if (parseUInt64(Val))
8712 return true;
8713 Args.push_back(Val);
8714 } while (EatIfPresent(lltok::comma));
8716 if (parseToken(lltok::rparen, "expected ')' here"))
8717 return true;
8719 return false;
8722 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8724 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8725 bool ReadOnly = Fwd->isReadOnly();
8726 bool WriteOnly = Fwd->isWriteOnly();
8727 assert(!(ReadOnly && WriteOnly));
8728 *Fwd = Resolved;
8729 if (ReadOnly)
8730 Fwd->setReadOnly();
8731 if (WriteOnly)
8732 Fwd->setWriteOnly();
8735 /// Stores the given Name/GUID and associated summary into the Index.
8736 /// Also updates any forward references to the associated entry ID.
8737 bool LLParser::addGlobalValueToIndex(
8738 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8739 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) {
8740 // First create the ValueInfo utilizing the Name or GUID.
8741 ValueInfo VI;
8742 if (GUID != 0) {
8743 assert(Name.empty());
8744 VI = Index->getOrInsertValueInfo(GUID);
8745 } else {
8746 assert(!Name.empty());
8747 if (M) {
8748 auto *GV = M->getNamedValue(Name);
8749 if (!GV)
8750 return error(Loc, "Reference to undefined global \"" + Name + "\"");
8752 VI = Index->getOrInsertValueInfo(GV);
8753 } else {
8754 assert(
8755 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8756 "Need a source_filename to compute GUID for local");
8757 GUID = GlobalValue::getGUID(
8758 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8759 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8763 // Resolve forward references from calls/refs
8764 auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8765 if (FwdRefVIs != ForwardRefValueInfos.end()) {
8766 for (auto VIRef : FwdRefVIs->second) {
8767 assert(VIRef.first->getRef() == FwdVIRef &&
8768 "Forward referenced ValueInfo expected to be empty");
8769 resolveFwdRef(VIRef.first, VI);
8771 ForwardRefValueInfos.erase(FwdRefVIs);
8774 // Resolve forward references from aliases
8775 auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8776 if (FwdRefAliasees != ForwardRefAliasees.end()) {
8777 for (auto AliaseeRef : FwdRefAliasees->second) {
8778 assert(!AliaseeRef.first->hasAliasee() &&
8779 "Forward referencing alias already has aliasee");
8780 assert(Summary && "Aliasee must be a definition");
8781 AliaseeRef.first->setAliasee(VI, Summary.get());
8783 ForwardRefAliasees.erase(FwdRefAliasees);
8786 // Add the summary if one was provided.
8787 if (Summary)
8788 Index->addGlobalValueSummary(VI, std::move(Summary));
8790 // Save the associated ValueInfo for use in later references by ID.
8791 if (ID == NumberedValueInfos.size())
8792 NumberedValueInfos.push_back(VI);
8793 else {
8794 // Handle non-continuous numbers (to make test simplification easier).
8795 if (ID > NumberedValueInfos.size())
8796 NumberedValueInfos.resize(ID + 1);
8797 NumberedValueInfos[ID] = VI;
8800 return false;
8803 /// parseSummaryIndexFlags
8804 /// ::= 'flags' ':' UInt64
8805 bool LLParser::parseSummaryIndexFlags() {
8806 assert(Lex.getKind() == lltok::kw_flags);
8807 Lex.Lex();
8809 if (parseToken(lltok::colon, "expected ':' here"))
8810 return true;
8811 uint64_t Flags;
8812 if (parseUInt64(Flags))
8813 return true;
8814 if (Index)
8815 Index->setFlags(Flags);
8816 return false;
8819 /// parseBlockCount
8820 /// ::= 'blockcount' ':' UInt64
8821 bool LLParser::parseBlockCount() {
8822 assert(Lex.getKind() == lltok::kw_blockcount);
8823 Lex.Lex();
8825 if (parseToken(lltok::colon, "expected ':' here"))
8826 return true;
8827 uint64_t BlockCount;
8828 if (parseUInt64(BlockCount))
8829 return true;
8830 if (Index)
8831 Index->setBlockCount(BlockCount);
8832 return false;
8835 /// parseGVEntry
8836 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8837 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8838 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8839 bool LLParser::parseGVEntry(unsigned ID) {
8840 assert(Lex.getKind() == lltok::kw_gv);
8841 Lex.Lex();
8843 if (parseToken(lltok::colon, "expected ':' here") ||
8844 parseToken(lltok::lparen, "expected '(' here"))
8845 return true;
8847 LocTy Loc = Lex.getLoc();
8848 std::string Name;
8849 GlobalValue::GUID GUID = 0;
8850 switch (Lex.getKind()) {
8851 case lltok::kw_name:
8852 Lex.Lex();
8853 if (parseToken(lltok::colon, "expected ':' here") ||
8854 parseStringConstant(Name))
8855 return true;
8856 // Can't create GUID/ValueInfo until we have the linkage.
8857 break;
8858 case lltok::kw_guid:
8859 Lex.Lex();
8860 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8861 return true;
8862 break;
8863 default:
8864 return error(Lex.getLoc(), "expected name or guid tag");
8867 if (!EatIfPresent(lltok::comma)) {
8868 // No summaries. Wrap up.
8869 if (parseToken(lltok::rparen, "expected ')' here"))
8870 return true;
8871 // This was created for a call to an external or indirect target.
8872 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8873 // created for indirect calls with VP. A Name with no GUID came from
8874 // an external definition. We pass ExternalLinkage since that is only
8875 // used when the GUID must be computed from Name, and in that case
8876 // the symbol must have external linkage.
8877 return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8878 nullptr, Loc);
8881 // Have a list of summaries
8882 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8883 parseToken(lltok::colon, "expected ':' here") ||
8884 parseToken(lltok::lparen, "expected '(' here"))
8885 return true;
8886 do {
8887 switch (Lex.getKind()) {
8888 case lltok::kw_function:
8889 if (parseFunctionSummary(Name, GUID, ID))
8890 return true;
8891 break;
8892 case lltok::kw_variable:
8893 if (parseVariableSummary(Name, GUID, ID))
8894 return true;
8895 break;
8896 case lltok::kw_alias:
8897 if (parseAliasSummary(Name, GUID, ID))
8898 return true;
8899 break;
8900 default:
8901 return error(Lex.getLoc(), "expected summary type");
8903 } while (EatIfPresent(lltok::comma));
8905 if (parseToken(lltok::rparen, "expected ')' here") ||
8906 parseToken(lltok::rparen, "expected ')' here"))
8907 return true;
8909 return false;
8912 /// FunctionSummary
8913 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8914 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8915 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8916 /// [',' OptionalRefs]? ')'
8917 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8918 unsigned ID) {
8919 LocTy Loc = Lex.getLoc();
8920 assert(Lex.getKind() == lltok::kw_function);
8921 Lex.Lex();
8923 StringRef ModulePath;
8924 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8925 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8926 /*NotEligibleToImport=*/false,
8927 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8928 unsigned InstCount;
8929 std::vector<FunctionSummary::EdgeTy> Calls;
8930 FunctionSummary::TypeIdInfo TypeIdInfo;
8931 std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8932 std::vector<ValueInfo> Refs;
8933 std::vector<CallsiteInfo> Callsites;
8934 std::vector<AllocInfo> Allocs;
8935 // Default is all-zeros (conservative values).
8936 FunctionSummary::FFlags FFlags = {};
8937 if (parseToken(lltok::colon, "expected ':' here") ||
8938 parseToken(lltok::lparen, "expected '(' here") ||
8939 parseModuleReference(ModulePath) ||
8940 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8941 parseToken(lltok::comma, "expected ',' here") ||
8942 parseToken(lltok::kw_insts, "expected 'insts' here") ||
8943 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8944 return true;
8946 // parse optional fields
8947 while (EatIfPresent(lltok::comma)) {
8948 switch (Lex.getKind()) {
8949 case lltok::kw_funcFlags:
8950 if (parseOptionalFFlags(FFlags))
8951 return true;
8952 break;
8953 case lltok::kw_calls:
8954 if (parseOptionalCalls(Calls))
8955 return true;
8956 break;
8957 case lltok::kw_typeIdInfo:
8958 if (parseOptionalTypeIdInfo(TypeIdInfo))
8959 return true;
8960 break;
8961 case lltok::kw_refs:
8962 if (parseOptionalRefs(Refs))
8963 return true;
8964 break;
8965 case lltok::kw_params:
8966 if (parseOptionalParamAccesses(ParamAccesses))
8967 return true;
8968 break;
8969 case lltok::kw_allocs:
8970 if (parseOptionalAllocs(Allocs))
8971 return true;
8972 break;
8973 case lltok::kw_callsites:
8974 if (parseOptionalCallsites(Callsites))
8975 return true;
8976 break;
8977 default:
8978 return error(Lex.getLoc(), "expected optional function summary field");
8982 if (parseToken(lltok::rparen, "expected ')' here"))
8983 return true;
8985 auto FS = std::make_unique<FunctionSummary>(
8986 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8987 std::move(Calls), std::move(TypeIdInfo.TypeTests),
8988 std::move(TypeIdInfo.TypeTestAssumeVCalls),
8989 std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8990 std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8991 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8992 std::move(ParamAccesses), std::move(Callsites), std::move(Allocs));
8994 FS->setModulePath(ModulePath);
8996 return addGlobalValueToIndex(Name, GUID,
8997 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
8998 std::move(FS), Loc);
9001 /// VariableSummary
9002 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9003 /// [',' OptionalRefs]? ')'
9004 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
9005 unsigned ID) {
9006 LocTy Loc = Lex.getLoc();
9007 assert(Lex.getKind() == lltok::kw_variable);
9008 Lex.Lex();
9010 StringRef ModulePath;
9011 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9012 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9013 /*NotEligibleToImport=*/false,
9014 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
9015 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
9016 /* WriteOnly */ false,
9017 /* Constant */ false,
9018 GlobalObject::VCallVisibilityPublic);
9019 std::vector<ValueInfo> Refs;
9020 VTableFuncList VTableFuncs;
9021 if (parseToken(lltok::colon, "expected ':' here") ||
9022 parseToken(lltok::lparen, "expected '(' here") ||
9023 parseModuleReference(ModulePath) ||
9024 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9025 parseToken(lltok::comma, "expected ',' here") ||
9026 parseGVarFlags(GVarFlags))
9027 return true;
9029 // parse optional fields
9030 while (EatIfPresent(lltok::comma)) {
9031 switch (Lex.getKind()) {
9032 case lltok::kw_vTableFuncs:
9033 if (parseOptionalVTableFuncs(VTableFuncs))
9034 return true;
9035 break;
9036 case lltok::kw_refs:
9037 if (parseOptionalRefs(Refs))
9038 return true;
9039 break;
9040 default:
9041 return error(Lex.getLoc(), "expected optional variable summary field");
9045 if (parseToken(lltok::rparen, "expected ')' here"))
9046 return true;
9048 auto GS =
9049 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
9051 GS->setModulePath(ModulePath);
9052 GS->setVTableFuncs(std::move(VTableFuncs));
9054 return addGlobalValueToIndex(Name, GUID,
9055 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9056 std::move(GS), Loc);
9059 /// AliasSummary
9060 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
9061 /// 'aliasee' ':' GVReference ')'
9062 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
9063 unsigned ID) {
9064 assert(Lex.getKind() == lltok::kw_alias);
9065 LocTy Loc = Lex.getLoc();
9066 Lex.Lex();
9068 StringRef ModulePath;
9069 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9070 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9071 /*NotEligibleToImport=*/false,
9072 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
9073 if (parseToken(lltok::colon, "expected ':' here") ||
9074 parseToken(lltok::lparen, "expected '(' here") ||
9075 parseModuleReference(ModulePath) ||
9076 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9077 parseToken(lltok::comma, "expected ',' here") ||
9078 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
9079 parseToken(lltok::colon, "expected ':' here"))
9080 return true;
9082 ValueInfo AliaseeVI;
9083 unsigned GVId;
9084 if (parseGVReference(AliaseeVI, GVId))
9085 return true;
9087 if (parseToken(lltok::rparen, "expected ')' here"))
9088 return true;
9090 auto AS = std::make_unique<AliasSummary>(GVFlags);
9092 AS->setModulePath(ModulePath);
9094 // Record forward reference if the aliasee is not parsed yet.
9095 if (AliaseeVI.getRef() == FwdVIRef) {
9096 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
9097 } else {
9098 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
9099 assert(Summary && "Aliasee must be a definition");
9100 AS->setAliasee(AliaseeVI, Summary);
9103 return addGlobalValueToIndex(Name, GUID,
9104 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9105 std::move(AS), Loc);
9108 /// Flag
9109 /// ::= [0|1]
9110 bool LLParser::parseFlag(unsigned &Val) {
9111 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
9112 return tokError("expected integer");
9113 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
9114 Lex.Lex();
9115 return false;
9118 /// OptionalFFlags
9119 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
9120 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
9121 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
9122 /// [',' 'noInline' ':' Flag]? ')'
9123 /// [',' 'alwaysInline' ':' Flag]? ')'
9124 /// [',' 'noUnwind' ':' Flag]? ')'
9125 /// [',' 'mayThrow' ':' Flag]? ')'
9126 /// [',' 'hasUnknownCall' ':' Flag]? ')'
9127 /// [',' 'mustBeUnreachable' ':' Flag]? ')'
9129 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
9130 assert(Lex.getKind() == lltok::kw_funcFlags);
9131 Lex.Lex();
9133 if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
9134 parseToken(lltok::lparen, "expected '(' in funcFlags"))
9135 return true;
9137 do {
9138 unsigned Val = 0;
9139 switch (Lex.getKind()) {
9140 case lltok::kw_readNone:
9141 Lex.Lex();
9142 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9143 return true;
9144 FFlags.ReadNone = Val;
9145 break;
9146 case lltok::kw_readOnly:
9147 Lex.Lex();
9148 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9149 return true;
9150 FFlags.ReadOnly = Val;
9151 break;
9152 case lltok::kw_noRecurse:
9153 Lex.Lex();
9154 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9155 return true;
9156 FFlags.NoRecurse = Val;
9157 break;
9158 case lltok::kw_returnDoesNotAlias:
9159 Lex.Lex();
9160 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9161 return true;
9162 FFlags.ReturnDoesNotAlias = Val;
9163 break;
9164 case lltok::kw_noInline:
9165 Lex.Lex();
9166 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9167 return true;
9168 FFlags.NoInline = Val;
9169 break;
9170 case lltok::kw_alwaysInline:
9171 Lex.Lex();
9172 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9173 return true;
9174 FFlags.AlwaysInline = Val;
9175 break;
9176 case lltok::kw_noUnwind:
9177 Lex.Lex();
9178 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9179 return true;
9180 FFlags.NoUnwind = Val;
9181 break;
9182 case lltok::kw_mayThrow:
9183 Lex.Lex();
9184 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9185 return true;
9186 FFlags.MayThrow = Val;
9187 break;
9188 case lltok::kw_hasUnknownCall:
9189 Lex.Lex();
9190 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9191 return true;
9192 FFlags.HasUnknownCall = Val;
9193 break;
9194 case lltok::kw_mustBeUnreachable:
9195 Lex.Lex();
9196 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9197 return true;
9198 FFlags.MustBeUnreachable = Val;
9199 break;
9200 default:
9201 return error(Lex.getLoc(), "expected function flag type");
9203 } while (EatIfPresent(lltok::comma));
9205 if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
9206 return true;
9208 return false;
9211 /// OptionalCalls
9212 /// := 'calls' ':' '(' Call [',' Call]* ')'
9213 /// Call ::= '(' 'callee' ':' GVReference
9214 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]?
9215 /// [ ',' 'tail' ]? ')'
9216 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
9217 assert(Lex.getKind() == lltok::kw_calls);
9218 Lex.Lex();
9220 if (parseToken(lltok::colon, "expected ':' in calls") ||
9221 parseToken(lltok::lparen, "expected '(' in calls"))
9222 return true;
9224 IdToIndexMapType IdToIndexMap;
9225 // parse each call edge
9226 do {
9227 ValueInfo VI;
9228 if (parseToken(lltok::lparen, "expected '(' in call") ||
9229 parseToken(lltok::kw_callee, "expected 'callee' in call") ||
9230 parseToken(lltok::colon, "expected ':'"))
9231 return true;
9233 LocTy Loc = Lex.getLoc();
9234 unsigned GVId;
9235 if (parseGVReference(VI, GVId))
9236 return true;
9238 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
9239 unsigned RelBF = 0;
9240 unsigned HasTailCall = false;
9242 // parse optional fields
9243 while (EatIfPresent(lltok::comma)) {
9244 switch (Lex.getKind()) {
9245 case lltok::kw_hotness:
9246 Lex.Lex();
9247 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
9248 return true;
9249 break;
9250 case lltok::kw_relbf:
9251 Lex.Lex();
9252 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
9253 return true;
9254 break;
9255 case lltok::kw_tail:
9256 Lex.Lex();
9257 if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall))
9258 return true;
9259 break;
9260 default:
9261 return error(Lex.getLoc(), "expected hotness, relbf, or tail");
9264 if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0)
9265 return tokError("Expected only one of hotness or relbf");
9266 // Keep track of the Call array index needing a forward reference.
9267 // We will save the location of the ValueInfo needing an update, but
9268 // can only do so once the std::vector is finalized.
9269 if (VI.getRef() == FwdVIRef)
9270 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
9271 Calls.push_back(
9272 FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)});
9274 if (parseToken(lltok::rparen, "expected ')' in call"))
9275 return true;
9276 } while (EatIfPresent(lltok::comma));
9278 // Now that the Calls vector is finalized, it is safe to save the locations
9279 // of any forward GV references that need updating later.
9280 for (auto I : IdToIndexMap) {
9281 auto &Infos = ForwardRefValueInfos[I.first];
9282 for (auto P : I.second) {
9283 assert(Calls[P.first].first.getRef() == FwdVIRef &&
9284 "Forward referenced ValueInfo expected to be empty");
9285 Infos.emplace_back(&Calls[P.first].first, P.second);
9289 if (parseToken(lltok::rparen, "expected ')' in calls"))
9290 return true;
9292 return false;
9295 /// Hotness
9296 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
9297 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
9298 switch (Lex.getKind()) {
9299 case lltok::kw_unknown:
9300 Hotness = CalleeInfo::HotnessType::Unknown;
9301 break;
9302 case lltok::kw_cold:
9303 Hotness = CalleeInfo::HotnessType::Cold;
9304 break;
9305 case lltok::kw_none:
9306 Hotness = CalleeInfo::HotnessType::None;
9307 break;
9308 case lltok::kw_hot:
9309 Hotness = CalleeInfo::HotnessType::Hot;
9310 break;
9311 case lltok::kw_critical:
9312 Hotness = CalleeInfo::HotnessType::Critical;
9313 break;
9314 default:
9315 return error(Lex.getLoc(), "invalid call edge hotness");
9317 Lex.Lex();
9318 return false;
9321 /// OptionalVTableFuncs
9322 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9323 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
9324 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9325 assert(Lex.getKind() == lltok::kw_vTableFuncs);
9326 Lex.Lex();
9328 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
9329 parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9330 return true;
9332 IdToIndexMapType IdToIndexMap;
9333 // parse each virtual function pair
9334 do {
9335 ValueInfo VI;
9336 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9337 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9338 parseToken(lltok::colon, "expected ':'"))
9339 return true;
9341 LocTy Loc = Lex.getLoc();
9342 unsigned GVId;
9343 if (parseGVReference(VI, GVId))
9344 return true;
9346 uint64_t Offset;
9347 if (parseToken(lltok::comma, "expected comma") ||
9348 parseToken(lltok::kw_offset, "expected offset") ||
9349 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9350 return true;
9352 // Keep track of the VTableFuncs array index needing a forward reference.
9353 // We will save the location of the ValueInfo needing an update, but
9354 // can only do so once the std::vector is finalized.
9355 if (VI == EmptyVI)
9356 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9357 VTableFuncs.push_back({VI, Offset});
9359 if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9360 return true;
9361 } while (EatIfPresent(lltok::comma));
9363 // Now that the VTableFuncs vector is finalized, it is safe to save the
9364 // locations of any forward GV references that need updating later.
9365 for (auto I : IdToIndexMap) {
9366 auto &Infos = ForwardRefValueInfos[I.first];
9367 for (auto P : I.second) {
9368 assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9369 "Forward referenced ValueInfo expected to be empty");
9370 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9374 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9375 return true;
9377 return false;
9380 /// ParamNo := 'param' ':' UInt64
9381 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9382 if (parseToken(lltok::kw_param, "expected 'param' here") ||
9383 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9384 return true;
9385 return false;
9388 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9389 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9390 APSInt Lower;
9391 APSInt Upper;
9392 auto ParseAPSInt = [&](APSInt &Val) {
9393 if (Lex.getKind() != lltok::APSInt)
9394 return tokError("expected integer");
9395 Val = Lex.getAPSIntVal();
9396 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9397 Val.setIsSigned(true);
9398 Lex.Lex();
9399 return false;
9401 if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9402 parseToken(lltok::colon, "expected ':' here") ||
9403 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9404 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9405 parseToken(lltok::rsquare, "expected ']' here"))
9406 return true;
9408 ++Upper;
9409 Range =
9410 (Lower == Upper && !Lower.isMaxValue())
9411 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9412 : ConstantRange(Lower, Upper);
9414 return false;
9417 /// ParamAccessCall
9418 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9419 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9420 IdLocListType &IdLocList) {
9421 if (parseToken(lltok::lparen, "expected '(' here") ||
9422 parseToken(lltok::kw_callee, "expected 'callee' here") ||
9423 parseToken(lltok::colon, "expected ':' here"))
9424 return true;
9426 unsigned GVId;
9427 ValueInfo VI;
9428 LocTy Loc = Lex.getLoc();
9429 if (parseGVReference(VI, GVId))
9430 return true;
9432 Call.Callee = VI;
9433 IdLocList.emplace_back(GVId, Loc);
9435 if (parseToken(lltok::comma, "expected ',' here") ||
9436 parseParamNo(Call.ParamNo) ||
9437 parseToken(lltok::comma, "expected ',' here") ||
9438 parseParamAccessOffset(Call.Offsets))
9439 return true;
9441 if (parseToken(lltok::rparen, "expected ')' here"))
9442 return true;
9444 return false;
9447 /// ParamAccess
9448 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9449 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9450 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9451 IdLocListType &IdLocList) {
9452 if (parseToken(lltok::lparen, "expected '(' here") ||
9453 parseParamNo(Param.ParamNo) ||
9454 parseToken(lltok::comma, "expected ',' here") ||
9455 parseParamAccessOffset(Param.Use))
9456 return true;
9458 if (EatIfPresent(lltok::comma)) {
9459 if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9460 parseToken(lltok::colon, "expected ':' here") ||
9461 parseToken(lltok::lparen, "expected '(' here"))
9462 return true;
9463 do {
9464 FunctionSummary::ParamAccess::Call Call;
9465 if (parseParamAccessCall(Call, IdLocList))
9466 return true;
9467 Param.Calls.push_back(Call);
9468 } while (EatIfPresent(lltok::comma));
9470 if (parseToken(lltok::rparen, "expected ')' here"))
9471 return true;
9474 if (parseToken(lltok::rparen, "expected ')' here"))
9475 return true;
9477 return false;
9480 /// OptionalParamAccesses
9481 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9482 bool LLParser::parseOptionalParamAccesses(
9483 std::vector<FunctionSummary::ParamAccess> &Params) {
9484 assert(Lex.getKind() == lltok::kw_params);
9485 Lex.Lex();
9487 if (parseToken(lltok::colon, "expected ':' here") ||
9488 parseToken(lltok::lparen, "expected '(' here"))
9489 return true;
9491 IdLocListType VContexts;
9492 size_t CallsNum = 0;
9493 do {
9494 FunctionSummary::ParamAccess ParamAccess;
9495 if (parseParamAccess(ParamAccess, VContexts))
9496 return true;
9497 CallsNum += ParamAccess.Calls.size();
9498 assert(VContexts.size() == CallsNum);
9499 (void)CallsNum;
9500 Params.emplace_back(std::move(ParamAccess));
9501 } while (EatIfPresent(lltok::comma));
9503 if (parseToken(lltok::rparen, "expected ')' here"))
9504 return true;
9506 // Now that the Params is finalized, it is safe to save the locations
9507 // of any forward GV references that need updating later.
9508 IdLocListType::const_iterator ItContext = VContexts.begin();
9509 for (auto &PA : Params) {
9510 for (auto &C : PA.Calls) {
9511 if (C.Callee.getRef() == FwdVIRef)
9512 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9513 ItContext->second);
9514 ++ItContext;
9517 assert(ItContext == VContexts.end());
9519 return false;
9522 /// OptionalRefs
9523 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9524 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9525 assert(Lex.getKind() == lltok::kw_refs);
9526 Lex.Lex();
9528 if (parseToken(lltok::colon, "expected ':' in refs") ||
9529 parseToken(lltok::lparen, "expected '(' in refs"))
9530 return true;
9532 struct ValueContext {
9533 ValueInfo VI;
9534 unsigned GVId;
9535 LocTy Loc;
9537 std::vector<ValueContext> VContexts;
9538 // parse each ref edge
9539 do {
9540 ValueContext VC;
9541 VC.Loc = Lex.getLoc();
9542 if (parseGVReference(VC.VI, VC.GVId))
9543 return true;
9544 VContexts.push_back(VC);
9545 } while (EatIfPresent(lltok::comma));
9547 // Sort value contexts so that ones with writeonly
9548 // and readonly ValueInfo are at the end of VContexts vector.
9549 // See FunctionSummary::specialRefCounts()
9550 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9551 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9554 IdToIndexMapType IdToIndexMap;
9555 for (auto &VC : VContexts) {
9556 // Keep track of the Refs array index needing a forward reference.
9557 // We will save the location of the ValueInfo needing an update, but
9558 // can only do so once the std::vector is finalized.
9559 if (VC.VI.getRef() == FwdVIRef)
9560 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9561 Refs.push_back(VC.VI);
9564 // Now that the Refs vector is finalized, it is safe to save the locations
9565 // of any forward GV references that need updating later.
9566 for (auto I : IdToIndexMap) {
9567 auto &Infos = ForwardRefValueInfos[I.first];
9568 for (auto P : I.second) {
9569 assert(Refs[P.first].getRef() == FwdVIRef &&
9570 "Forward referenced ValueInfo expected to be empty");
9571 Infos.emplace_back(&Refs[P.first], P.second);
9575 if (parseToken(lltok::rparen, "expected ')' in refs"))
9576 return true;
9578 return false;
9581 /// OptionalTypeIdInfo
9582 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9583 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
9584 /// [',' TypeCheckedLoadConstVCalls]? ')'
9585 bool LLParser::parseOptionalTypeIdInfo(
9586 FunctionSummary::TypeIdInfo &TypeIdInfo) {
9587 assert(Lex.getKind() == lltok::kw_typeIdInfo);
9588 Lex.Lex();
9590 if (parseToken(lltok::colon, "expected ':' here") ||
9591 parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9592 return true;
9594 do {
9595 switch (Lex.getKind()) {
9596 case lltok::kw_typeTests:
9597 if (parseTypeTests(TypeIdInfo.TypeTests))
9598 return true;
9599 break;
9600 case lltok::kw_typeTestAssumeVCalls:
9601 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9602 TypeIdInfo.TypeTestAssumeVCalls))
9603 return true;
9604 break;
9605 case lltok::kw_typeCheckedLoadVCalls:
9606 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9607 TypeIdInfo.TypeCheckedLoadVCalls))
9608 return true;
9609 break;
9610 case lltok::kw_typeTestAssumeConstVCalls:
9611 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9612 TypeIdInfo.TypeTestAssumeConstVCalls))
9613 return true;
9614 break;
9615 case lltok::kw_typeCheckedLoadConstVCalls:
9616 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9617 TypeIdInfo.TypeCheckedLoadConstVCalls))
9618 return true;
9619 break;
9620 default:
9621 return error(Lex.getLoc(), "invalid typeIdInfo list type");
9623 } while (EatIfPresent(lltok::comma));
9625 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9626 return true;
9628 return false;
9631 /// TypeTests
9632 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9633 /// [',' (SummaryID | UInt64)]* ')'
9634 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9635 assert(Lex.getKind() == lltok::kw_typeTests);
9636 Lex.Lex();
9638 if (parseToken(lltok::colon, "expected ':' here") ||
9639 parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9640 return true;
9642 IdToIndexMapType IdToIndexMap;
9643 do {
9644 GlobalValue::GUID GUID = 0;
9645 if (Lex.getKind() == lltok::SummaryID) {
9646 unsigned ID = Lex.getUIntVal();
9647 LocTy Loc = Lex.getLoc();
9648 // Keep track of the TypeTests array index needing a forward reference.
9649 // We will save the location of the GUID needing an update, but
9650 // can only do so once the std::vector is finalized.
9651 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9652 Lex.Lex();
9653 } else if (parseUInt64(GUID))
9654 return true;
9655 TypeTests.push_back(GUID);
9656 } while (EatIfPresent(lltok::comma));
9658 // Now that the TypeTests vector is finalized, it is safe to save the
9659 // locations of any forward GV references that need updating later.
9660 for (auto I : IdToIndexMap) {
9661 auto &Ids = ForwardRefTypeIds[I.first];
9662 for (auto P : I.second) {
9663 assert(TypeTests[P.first] == 0 &&
9664 "Forward referenced type id GUID expected to be 0");
9665 Ids.emplace_back(&TypeTests[P.first], P.second);
9669 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9670 return true;
9672 return false;
9675 /// VFuncIdList
9676 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9677 bool LLParser::parseVFuncIdList(
9678 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9679 assert(Lex.getKind() == Kind);
9680 Lex.Lex();
9682 if (parseToken(lltok::colon, "expected ':' here") ||
9683 parseToken(lltok::lparen, "expected '(' here"))
9684 return true;
9686 IdToIndexMapType IdToIndexMap;
9687 do {
9688 FunctionSummary::VFuncId VFuncId;
9689 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9690 return true;
9691 VFuncIdList.push_back(VFuncId);
9692 } while (EatIfPresent(lltok::comma));
9694 if (parseToken(lltok::rparen, "expected ')' here"))
9695 return true;
9697 // Now that the VFuncIdList vector is finalized, it is safe to save the
9698 // locations of any forward GV references that need updating later.
9699 for (auto I : IdToIndexMap) {
9700 auto &Ids = ForwardRefTypeIds[I.first];
9701 for (auto P : I.second) {
9702 assert(VFuncIdList[P.first].GUID == 0 &&
9703 "Forward referenced type id GUID expected to be 0");
9704 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9708 return false;
9711 /// ConstVCallList
9712 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9713 bool LLParser::parseConstVCallList(
9714 lltok::Kind Kind,
9715 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9716 assert(Lex.getKind() == Kind);
9717 Lex.Lex();
9719 if (parseToken(lltok::colon, "expected ':' here") ||
9720 parseToken(lltok::lparen, "expected '(' here"))
9721 return true;
9723 IdToIndexMapType IdToIndexMap;
9724 do {
9725 FunctionSummary::ConstVCall ConstVCall;
9726 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9727 return true;
9728 ConstVCallList.push_back(ConstVCall);
9729 } while (EatIfPresent(lltok::comma));
9731 if (parseToken(lltok::rparen, "expected ')' here"))
9732 return true;
9734 // Now that the ConstVCallList vector is finalized, it is safe to save the
9735 // locations of any forward GV references that need updating later.
9736 for (auto I : IdToIndexMap) {
9737 auto &Ids = ForwardRefTypeIds[I.first];
9738 for (auto P : I.second) {
9739 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9740 "Forward referenced type id GUID expected to be 0");
9741 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9745 return false;
9748 /// ConstVCall
9749 /// ::= '(' VFuncId ',' Args ')'
9750 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9751 IdToIndexMapType &IdToIndexMap, unsigned Index) {
9752 if (parseToken(lltok::lparen, "expected '(' here") ||
9753 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9754 return true;
9756 if (EatIfPresent(lltok::comma))
9757 if (parseArgs(ConstVCall.Args))
9758 return true;
9760 if (parseToken(lltok::rparen, "expected ')' here"))
9761 return true;
9763 return false;
9766 /// VFuncId
9767 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9768 /// 'offset' ':' UInt64 ')'
9769 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9770 IdToIndexMapType &IdToIndexMap, unsigned Index) {
9771 assert(Lex.getKind() == lltok::kw_vFuncId);
9772 Lex.Lex();
9774 if (parseToken(lltok::colon, "expected ':' here") ||
9775 parseToken(lltok::lparen, "expected '(' here"))
9776 return true;
9778 if (Lex.getKind() == lltok::SummaryID) {
9779 VFuncId.GUID = 0;
9780 unsigned ID = Lex.getUIntVal();
9781 LocTy Loc = Lex.getLoc();
9782 // Keep track of the array index needing a forward reference.
9783 // We will save the location of the GUID needing an update, but
9784 // can only do so once the caller's std::vector is finalized.
9785 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9786 Lex.Lex();
9787 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9788 parseToken(lltok::colon, "expected ':' here") ||
9789 parseUInt64(VFuncId.GUID))
9790 return true;
9792 if (parseToken(lltok::comma, "expected ',' here") ||
9793 parseToken(lltok::kw_offset, "expected 'offset' here") ||
9794 parseToken(lltok::colon, "expected ':' here") ||
9795 parseUInt64(VFuncId.Offset) ||
9796 parseToken(lltok::rparen, "expected ')' here"))
9797 return true;
9799 return false;
9802 /// GVFlags
9803 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9804 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9805 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9806 /// 'canAutoHide' ':' Flag ',' ')'
9807 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9808 assert(Lex.getKind() == lltok::kw_flags);
9809 Lex.Lex();
9811 if (parseToken(lltok::colon, "expected ':' here") ||
9812 parseToken(lltok::lparen, "expected '(' here"))
9813 return true;
9815 do {
9816 unsigned Flag = 0;
9817 switch (Lex.getKind()) {
9818 case lltok::kw_linkage:
9819 Lex.Lex();
9820 if (parseToken(lltok::colon, "expected ':'"))
9821 return true;
9822 bool HasLinkage;
9823 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9824 assert(HasLinkage && "Linkage not optional in summary entry");
9825 Lex.Lex();
9826 break;
9827 case lltok::kw_visibility:
9828 Lex.Lex();
9829 if (parseToken(lltok::colon, "expected ':'"))
9830 return true;
9831 parseOptionalVisibility(Flag);
9832 GVFlags.Visibility = Flag;
9833 break;
9834 case lltok::kw_notEligibleToImport:
9835 Lex.Lex();
9836 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9837 return true;
9838 GVFlags.NotEligibleToImport = Flag;
9839 break;
9840 case lltok::kw_live:
9841 Lex.Lex();
9842 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9843 return true;
9844 GVFlags.Live = Flag;
9845 break;
9846 case lltok::kw_dsoLocal:
9847 Lex.Lex();
9848 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9849 return true;
9850 GVFlags.DSOLocal = Flag;
9851 break;
9852 case lltok::kw_canAutoHide:
9853 Lex.Lex();
9854 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9855 return true;
9856 GVFlags.CanAutoHide = Flag;
9857 break;
9858 default:
9859 return error(Lex.getLoc(), "expected gv flag type");
9861 } while (EatIfPresent(lltok::comma));
9863 if (parseToken(lltok::rparen, "expected ')' here"))
9864 return true;
9866 return false;
9869 /// GVarFlags
9870 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9871 /// ',' 'writeonly' ':' Flag
9872 /// ',' 'constant' ':' Flag ')'
9873 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9874 assert(Lex.getKind() == lltok::kw_varFlags);
9875 Lex.Lex();
9877 if (parseToken(lltok::colon, "expected ':' here") ||
9878 parseToken(lltok::lparen, "expected '(' here"))
9879 return true;
9881 auto ParseRest = [this](unsigned int &Val) {
9882 Lex.Lex();
9883 if (parseToken(lltok::colon, "expected ':'"))
9884 return true;
9885 return parseFlag(Val);
9888 do {
9889 unsigned Flag = 0;
9890 switch (Lex.getKind()) {
9891 case lltok::kw_readonly:
9892 if (ParseRest(Flag))
9893 return true;
9894 GVarFlags.MaybeReadOnly = Flag;
9895 break;
9896 case lltok::kw_writeonly:
9897 if (ParseRest(Flag))
9898 return true;
9899 GVarFlags.MaybeWriteOnly = Flag;
9900 break;
9901 case lltok::kw_constant:
9902 if (ParseRest(Flag))
9903 return true;
9904 GVarFlags.Constant = Flag;
9905 break;
9906 case lltok::kw_vcall_visibility:
9907 if (ParseRest(Flag))
9908 return true;
9909 GVarFlags.VCallVisibility = Flag;
9910 break;
9911 default:
9912 return error(Lex.getLoc(), "expected gvar flag type");
9914 } while (EatIfPresent(lltok::comma));
9915 return parseToken(lltok::rparen, "expected ')' here");
9918 /// ModuleReference
9919 /// ::= 'module' ':' UInt
9920 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9921 // parse module id.
9922 if (parseToken(lltok::kw_module, "expected 'module' here") ||
9923 parseToken(lltok::colon, "expected ':' here") ||
9924 parseToken(lltok::SummaryID, "expected module ID"))
9925 return true;
9927 unsigned ModuleID = Lex.getUIntVal();
9928 auto I = ModuleIdMap.find(ModuleID);
9929 // We should have already parsed all module IDs
9930 assert(I != ModuleIdMap.end());
9931 ModulePath = I->second;
9932 return false;
9935 /// GVReference
9936 /// ::= SummaryID
9937 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9938 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9939 if (!ReadOnly)
9940 WriteOnly = EatIfPresent(lltok::kw_writeonly);
9941 if (parseToken(lltok::SummaryID, "expected GV ID"))
9942 return true;
9944 GVId = Lex.getUIntVal();
9945 // Check if we already have a VI for this GV
9946 if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) {
9947 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9948 VI = NumberedValueInfos[GVId];
9949 } else
9950 // We will create a forward reference to the stored location.
9951 VI = ValueInfo(false, FwdVIRef);
9953 if (ReadOnly)
9954 VI.setReadOnly();
9955 if (WriteOnly)
9956 VI.setWriteOnly();
9957 return false;
9960 /// OptionalAllocs
9961 /// := 'allocs' ':' '(' Alloc [',' Alloc]* ')'
9962 /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')'
9963 /// ',' MemProfs ')'
9964 /// Version ::= UInt32
9965 bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) {
9966 assert(Lex.getKind() == lltok::kw_allocs);
9967 Lex.Lex();
9969 if (parseToken(lltok::colon, "expected ':' in allocs") ||
9970 parseToken(lltok::lparen, "expected '(' in allocs"))
9971 return true;
9973 // parse each alloc
9974 do {
9975 if (parseToken(lltok::lparen, "expected '(' in alloc") ||
9976 parseToken(lltok::kw_versions, "expected 'versions' in alloc") ||
9977 parseToken(lltok::colon, "expected ':'") ||
9978 parseToken(lltok::lparen, "expected '(' in versions"))
9979 return true;
9981 SmallVector<uint8_t> Versions;
9982 do {
9983 uint8_t V = 0;
9984 if (parseAllocType(V))
9985 return true;
9986 Versions.push_back(V);
9987 } while (EatIfPresent(lltok::comma));
9989 if (parseToken(lltok::rparen, "expected ')' in versions") ||
9990 parseToken(lltok::comma, "expected ',' in alloc"))
9991 return true;
9993 std::vector<MIBInfo> MIBs;
9994 if (parseMemProfs(MIBs))
9995 return true;
9997 Allocs.push_back({Versions, MIBs});
9999 if (parseToken(lltok::rparen, "expected ')' in alloc"))
10000 return true;
10001 } while (EatIfPresent(lltok::comma));
10003 if (parseToken(lltok::rparen, "expected ')' in allocs"))
10004 return true;
10006 return false;
10009 /// MemProfs
10010 /// := 'memProf' ':' '(' MemProf [',' MemProf]* ')'
10011 /// MemProf ::= '(' 'type' ':' AllocType
10012 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10013 /// StackId ::= UInt64
10014 bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) {
10015 assert(Lex.getKind() == lltok::kw_memProf);
10016 Lex.Lex();
10018 if (parseToken(lltok::colon, "expected ':' in memprof") ||
10019 parseToken(lltok::lparen, "expected '(' in memprof"))
10020 return true;
10022 // parse each MIB
10023 do {
10024 if (parseToken(lltok::lparen, "expected '(' in memprof") ||
10025 parseToken(lltok::kw_type, "expected 'type' in memprof") ||
10026 parseToken(lltok::colon, "expected ':'"))
10027 return true;
10029 uint8_t AllocType;
10030 if (parseAllocType(AllocType))
10031 return true;
10033 if (parseToken(lltok::comma, "expected ',' in memprof") ||
10034 parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") ||
10035 parseToken(lltok::colon, "expected ':'") ||
10036 parseToken(lltok::lparen, "expected '(' in stackIds"))
10037 return true;
10039 SmallVector<unsigned> StackIdIndices;
10040 do {
10041 uint64_t StackId = 0;
10042 if (parseUInt64(StackId))
10043 return true;
10044 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10045 } while (EatIfPresent(lltok::comma));
10047 if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10048 return true;
10050 MIBs.push_back({(AllocationType)AllocType, StackIdIndices});
10052 if (parseToken(lltok::rparen, "expected ')' in memprof"))
10053 return true;
10054 } while (EatIfPresent(lltok::comma));
10056 if (parseToken(lltok::rparen, "expected ')' in memprof"))
10057 return true;
10059 return false;
10062 /// AllocType
10063 /// := ('none'|'notcold'|'cold'|'hot')
10064 bool LLParser::parseAllocType(uint8_t &AllocType) {
10065 switch (Lex.getKind()) {
10066 case lltok::kw_none:
10067 AllocType = (uint8_t)AllocationType::None;
10068 break;
10069 case lltok::kw_notcold:
10070 AllocType = (uint8_t)AllocationType::NotCold;
10071 break;
10072 case lltok::kw_cold:
10073 AllocType = (uint8_t)AllocationType::Cold;
10074 break;
10075 case lltok::kw_hot:
10076 AllocType = (uint8_t)AllocationType::Hot;
10077 break;
10078 default:
10079 return error(Lex.getLoc(), "invalid alloc type");
10081 Lex.Lex();
10082 return false;
10085 /// OptionalCallsites
10086 /// := 'callsites' ':' '(' Callsite [',' Callsite]* ')'
10087 /// Callsite ::= '(' 'callee' ':' GVReference
10088 /// ',' 'clones' ':' '(' Version [',' Version]* ')'
10089 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10090 /// Version ::= UInt32
10091 /// StackId ::= UInt64
10092 bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) {
10093 assert(Lex.getKind() == lltok::kw_callsites);
10094 Lex.Lex();
10096 if (parseToken(lltok::colon, "expected ':' in callsites") ||
10097 parseToken(lltok::lparen, "expected '(' in callsites"))
10098 return true;
10100 IdToIndexMapType IdToIndexMap;
10101 // parse each callsite
10102 do {
10103 if (parseToken(lltok::lparen, "expected '(' in callsite") ||
10104 parseToken(lltok::kw_callee, "expected 'callee' in callsite") ||
10105 parseToken(lltok::colon, "expected ':'"))
10106 return true;
10108 ValueInfo VI;
10109 unsigned GVId = 0;
10110 LocTy Loc = Lex.getLoc();
10111 if (!EatIfPresent(lltok::kw_null)) {
10112 if (parseGVReference(VI, GVId))
10113 return true;
10116 if (parseToken(lltok::comma, "expected ',' in callsite") ||
10117 parseToken(lltok::kw_clones, "expected 'clones' in callsite") ||
10118 parseToken(lltok::colon, "expected ':'") ||
10119 parseToken(lltok::lparen, "expected '(' in clones"))
10120 return true;
10122 SmallVector<unsigned> Clones;
10123 do {
10124 unsigned V = 0;
10125 if (parseUInt32(V))
10126 return true;
10127 Clones.push_back(V);
10128 } while (EatIfPresent(lltok::comma));
10130 if (parseToken(lltok::rparen, "expected ')' in clones") ||
10131 parseToken(lltok::comma, "expected ',' in callsite") ||
10132 parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") ||
10133 parseToken(lltok::colon, "expected ':'") ||
10134 parseToken(lltok::lparen, "expected '(' in stackIds"))
10135 return true;
10137 SmallVector<unsigned> StackIdIndices;
10138 do {
10139 uint64_t StackId = 0;
10140 if (parseUInt64(StackId))
10141 return true;
10142 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10143 } while (EatIfPresent(lltok::comma));
10145 if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10146 return true;
10148 // Keep track of the Callsites array index needing a forward reference.
10149 // We will save the location of the ValueInfo needing an update, but
10150 // can only do so once the SmallVector is finalized.
10151 if (VI.getRef() == FwdVIRef)
10152 IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc));
10153 Callsites.push_back({VI, Clones, StackIdIndices});
10155 if (parseToken(lltok::rparen, "expected ')' in callsite"))
10156 return true;
10157 } while (EatIfPresent(lltok::comma));
10159 // Now that the Callsites vector is finalized, it is safe to save the
10160 // locations of any forward GV references that need updating later.
10161 for (auto I : IdToIndexMap) {
10162 auto &Infos = ForwardRefValueInfos[I.first];
10163 for (auto P : I.second) {
10164 assert(Callsites[P.first].Callee.getRef() == FwdVIRef &&
10165 "Forward referenced ValueInfo expected to be empty");
10166 Infos.emplace_back(&Callsites[P.first].Callee, P.second);
10170 if (parseToken(lltok::rparen, "expected ')' in callsites"))
10171 return true;
10173 return false;