1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains support for writing exception info into assembly files.
11 //===----------------------------------------------------------------------===//
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/BinaryFormat/Dwarf.h"
17 #include "llvm/CodeGen/AsmPrinter.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/MC/MCSymbol.h"
26 #include "llvm/MC/MCTargetOptions.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/LEB128.h"
29 #include "llvm/Target/TargetLoweringObjectFile.h"
37 EHStreamer::EHStreamer(AsmPrinter
*A
) : Asm(A
), MMI(Asm
->MMI
) {}
39 EHStreamer::~EHStreamer() = default;
41 /// How many leading type ids two landing pads have in common.
42 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo
*L
,
43 const LandingPadInfo
*R
) {
44 const std::vector
<int> &LIds
= L
->TypeIds
, &RIds
= R
->TypeIds
;
45 return std::mismatch(LIds
.begin(), LIds
.end(), RIds
.begin(), RIds
.end())
50 /// Compute the actions table and gather the first action index for each landing
52 void EHStreamer::computeActionsTable(
53 const SmallVectorImpl
<const LandingPadInfo
*> &LandingPads
,
54 SmallVectorImpl
<ActionEntry
> &Actions
,
55 SmallVectorImpl
<unsigned> &FirstActions
) {
56 // The action table follows the call-site table in the LSDA. The individual
57 // records are of two types:
60 // * Exception specification
62 // The two record kinds have the same format, with only small differences.
63 // They are distinguished by the "switch value" field: Catch clauses
64 // (TypeInfos) have strictly positive switch values, and exception
65 // specifications (FilterIds) have strictly negative switch values. Value 0
66 // indicates a catch-all clause.
68 // Negative type IDs index into FilterIds. Positive type IDs index into
69 // TypeInfos. The value written for a positive type ID is just the type ID
70 // itself. For a negative type ID, however, the value written is the
71 // (negative) byte offset of the corresponding FilterIds entry. The byte
72 // offset is usually equal to the type ID (because the FilterIds entries are
73 // written using a variable width encoding, which outputs one byte per entry
74 // as long as the value written is not too large) but can differ. This kind
75 // of complication does not occur for positive type IDs because type infos are
76 // output using a fixed width encoding. FilterOffsets[i] holds the byte
77 // offset corresponding to FilterIds[i].
79 const std::vector
<unsigned> &FilterIds
= Asm
->MF
->getFilterIds();
80 SmallVector
<int, 16> FilterOffsets
;
81 FilterOffsets
.reserve(FilterIds
.size());
84 for (unsigned FilterId
: FilterIds
) {
85 FilterOffsets
.push_back(Offset
);
86 Offset
-= getULEB128Size(FilterId
);
89 FirstActions
.reserve(LandingPads
.size());
92 unsigned SizeActions
= 0; // Total size of all action entries for a function
93 const LandingPadInfo
*PrevLPI
= nullptr;
95 for (const LandingPadInfo
*LPI
: LandingPads
) {
96 const std::vector
<int> &TypeIds
= LPI
->TypeIds
;
97 unsigned NumShared
= PrevLPI
? sharedTypeIDs(LPI
, PrevLPI
) : 0;
98 unsigned SizeSiteActions
= 0; // Total size of all entries for a landingpad
100 if (NumShared
< TypeIds
.size()) {
101 // Size of one action entry (typeid + next action)
102 unsigned SizeActionEntry
= 0;
103 unsigned PrevAction
= (unsigned)-1;
106 unsigned SizePrevIds
= PrevLPI
->TypeIds
.size();
107 assert(Actions
.size());
108 PrevAction
= Actions
.size() - 1;
109 SizeActionEntry
= getSLEB128Size(Actions
[PrevAction
].NextAction
) +
110 getSLEB128Size(Actions
[PrevAction
].ValueForTypeID
);
112 for (unsigned j
= NumShared
; j
!= SizePrevIds
; ++j
) {
113 assert(PrevAction
!= (unsigned)-1 && "PrevAction is invalid!");
114 SizeActionEntry
-= getSLEB128Size(Actions
[PrevAction
].ValueForTypeID
);
115 SizeActionEntry
+= -Actions
[PrevAction
].NextAction
;
116 PrevAction
= Actions
[PrevAction
].Previous
;
120 // Compute the actions.
121 for (unsigned J
= NumShared
, M
= TypeIds
.size(); J
!= M
; ++J
) {
122 int TypeID
= TypeIds
[J
];
123 assert(-1 - TypeID
< (int)FilterOffsets
.size() && "Unknown filter id!");
125 isFilterEHSelector(TypeID
) ? FilterOffsets
[-1 - TypeID
] : TypeID
;
126 unsigned SizeTypeID
= getSLEB128Size(ValueForTypeID
);
128 int NextAction
= SizeActionEntry
? -(SizeActionEntry
+ SizeTypeID
) : 0;
129 SizeActionEntry
= SizeTypeID
+ getSLEB128Size(NextAction
);
130 SizeSiteActions
+= SizeActionEntry
;
132 ActionEntry Action
= { ValueForTypeID
, NextAction
, PrevAction
};
133 Actions
.push_back(Action
);
134 PrevAction
= Actions
.size() - 1;
137 // Record the first action of the landing pad site.
138 FirstAction
= SizeActions
+ SizeSiteActions
- SizeActionEntry
+ 1;
139 } // else identical - re-use previous FirstAction
141 // Information used when creating the call-site table. The action record
142 // field of the call site record is the offset of the first associated
143 // action record, relative to the start of the actions table. This value is
144 // biased by 1 (1 indicating the start of the actions table), and 0
145 // indicates that there are no actions.
146 FirstActions
.push_back(FirstAction
);
148 // Compute this sites contribution to size.
149 SizeActions
+= SizeSiteActions
;
155 /// Return `true' if this is a call to a function marked `nounwind'. Return
156 /// `false' otherwise.
157 bool EHStreamer::callToNoUnwindFunction(const MachineInstr
*MI
) {
158 assert(MI
->isCall() && "This should be a call instruction!");
160 bool MarkedNoUnwind
= false;
161 bool SawFunc
= false;
163 for (const MachineOperand
&MO
: MI
->operands()) {
164 if (!MO
.isGlobal()) continue;
166 const Function
*F
= dyn_cast
<Function
>(MO
.getGlobal());
170 // Be conservative. If we have more than one function operand for this
171 // call, then we can't make the assumption that it's the callee and
172 // not a parameter to the call.
174 // FIXME: Determine if there's a way to say that `F' is the callee or
176 MarkedNoUnwind
= false;
180 MarkedNoUnwind
= F
->doesNotThrow();
184 return MarkedNoUnwind
;
187 void EHStreamer::computePadMap(
188 const SmallVectorImpl
<const LandingPadInfo
*> &LandingPads
,
189 RangeMapType
&PadMap
) {
190 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
191 // by try-range labels when lowered). Ordinary calls do not, so appropriate
192 // try-ranges for them need be deduced so we can put them in the LSDA.
193 for (unsigned i
= 0, N
= LandingPads
.size(); i
!= N
; ++i
) {
194 const LandingPadInfo
*LandingPad
= LandingPads
[i
];
195 for (unsigned j
= 0, E
= LandingPad
->BeginLabels
.size(); j
!= E
; ++j
) {
196 MCSymbol
*BeginLabel
= LandingPad
->BeginLabels
[j
];
197 MCSymbol
*EndLabel
= LandingPad
->BeginLabels
[j
];
198 // If we have deleted the code for a given invoke after registering it in
199 // the LandingPad label list, the associated symbols will not have been
200 // emitted. In that case, ignore this callsite entry.
201 if (!BeginLabel
->isDefined() || !EndLabel
->isDefined())
203 assert(!PadMap
.count(BeginLabel
) && "Duplicate landing pad labels!");
204 PadRange P
= { i
, j
};
205 PadMap
[BeginLabel
] = P
;
210 /// Compute the call-site table. The entry for an invoke has a try-range
211 /// containing the call, a non-zero landing pad, and an appropriate action. The
212 /// entry for an ordinary call has a try-range containing the call and zero for
213 /// the landing pad and the action. Calls marked 'nounwind' have no entry and
214 /// must not be contained in the try-range of any entry - they form gaps in the
215 /// table. Entries must be ordered by try-range address.
217 /// Call-sites are split into one or more call-site ranges associated with
218 /// different sections of the function.
220 /// - Without -basic-block-sections, all call-sites are grouped into one
221 /// call-site-range corresponding to the function section.
223 /// - With -basic-block-sections, one call-site range is created for each
224 /// section, with its FragmentBeginLabel and FragmentEndLabel respectively
225 // set to the beginning and ending of the corresponding section and its
226 // ExceptionLabel set to the exception symbol dedicated for this section.
227 // Later, one LSDA header will be emitted for each call-site range with its
228 // call-sites following. The action table and type info table will be
229 // shared across all ranges.
230 void EHStreamer::computeCallSiteTable(
231 SmallVectorImpl
<CallSiteEntry
> &CallSites
,
232 SmallVectorImpl
<CallSiteRange
> &CallSiteRanges
,
233 const SmallVectorImpl
<const LandingPadInfo
*> &LandingPads
,
234 const SmallVectorImpl
<unsigned> &FirstActions
) {
236 computePadMap(LandingPads
, PadMap
);
238 // The end label of the previous invoke or nounwind try-range.
239 MCSymbol
*LastLabel
= Asm
->getFunctionBegin();
241 // Whether there is a potentially throwing instruction (currently this means
242 // an ordinary call) between the end of the previous try-range and now.
243 bool SawPotentiallyThrowing
= false;
245 // Whether the last CallSite entry was for an invoke.
246 bool PreviousIsInvoke
= false;
248 bool IsSJLJ
= Asm
->MAI
->getExceptionHandlingType() == ExceptionHandling::SjLj
;
250 // Visit all instructions in order of address.
251 for (const auto &MBB
: *Asm
->MF
) {
252 if (&MBB
== &Asm
->MF
->front() || MBB
.isBeginSection()) {
253 // We start a call-site range upon function entry and at the beginning of
254 // every basic block section.
255 CallSiteRanges
.push_back(
256 {Asm
->MBBSectionRanges
[MBB
.getSectionIDNum()].BeginLabel
,
257 Asm
->MBBSectionRanges
[MBB
.getSectionIDNum()].EndLabel
,
258 Asm
->getMBBExceptionSym(MBB
), CallSites
.size()});
259 PreviousIsInvoke
= false;
260 SawPotentiallyThrowing
= false;
265 CallSiteRanges
.back().IsLPRange
= true;
267 for (const auto &MI
: MBB
) {
268 if (!MI
.isEHLabel()) {
270 SawPotentiallyThrowing
|= !callToNoUnwindFunction(&MI
);
274 // End of the previous try-range?
275 MCSymbol
*BeginLabel
= MI
.getOperand(0).getMCSymbol();
276 if (BeginLabel
== LastLabel
)
277 SawPotentiallyThrowing
= false;
279 // Beginning of a new try-range?
280 RangeMapType::const_iterator L
= PadMap
.find(BeginLabel
);
281 if (L
== PadMap
.end())
282 // Nope, it was just some random label.
285 const PadRange
&P
= L
->second
;
286 const LandingPadInfo
*LandingPad
= LandingPads
[P
.PadIndex
];
287 assert(BeginLabel
== LandingPad
->BeginLabels
[P
.RangeIndex
] &&
288 "Inconsistent landing pad map!");
290 // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
291 // If some instruction between the previous try-range and this one may
292 // throw, create a call-site entry with no landing pad for the region
293 // between the try-ranges.
294 if (SawPotentiallyThrowing
&&
295 (Asm
->MAI
->usesCFIForEH() ||
296 Asm
->MAI
->getExceptionHandlingType() == ExceptionHandling::AIX
)) {
297 CallSites
.push_back({LastLabel
, BeginLabel
, nullptr, 0});
298 PreviousIsInvoke
= false;
301 LastLabel
= LandingPad
->EndLabels
[P
.RangeIndex
];
302 assert(BeginLabel
&& LastLabel
&& "Invalid landing pad!");
304 if (!LandingPad
->LandingPadLabel
) {
306 PreviousIsInvoke
= false;
308 // This try-range is for an invoke.
309 CallSiteEntry Site
= {
313 FirstActions
[P
.PadIndex
]
316 // Try to merge with the previous call-site. SJLJ doesn't do this
317 if (PreviousIsInvoke
&& !IsSJLJ
) {
318 CallSiteEntry
&Prev
= CallSites
.back();
319 if (Site
.LPad
== Prev
.LPad
&& Site
.Action
== Prev
.Action
) {
320 // Extend the range of the previous entry.
321 Prev
.EndLabel
= Site
.EndLabel
;
326 // Otherwise, create a new call-site.
328 CallSites
.push_back(Site
);
330 // SjLj EH must maintain the call sites in the order assigned
331 // to them by the SjLjPrepare pass.
332 unsigned SiteNo
= Asm
->MF
->getCallSiteBeginLabel(BeginLabel
);
333 if (CallSites
.size() < SiteNo
)
334 CallSites
.resize(SiteNo
);
335 CallSites
[SiteNo
- 1] = Site
;
337 PreviousIsInvoke
= true;
341 // We end the call-site range upon function exit and at the end of every
342 // basic block section.
343 if (&MBB
== &Asm
->MF
->back() || MBB
.isEndSection()) {
344 // If some instruction between the previous try-range and the end of the
345 // function may throw, create a call-site entry with no landing pad for
346 // the region following the try-range.
347 if (SawPotentiallyThrowing
&& !IsSJLJ
) {
348 CallSiteEntry Site
= {LastLabel
, CallSiteRanges
.back().FragmentEndLabel
,
350 CallSites
.push_back(Site
);
351 SawPotentiallyThrowing
= false;
353 CallSiteRanges
.back().CallSiteEndIdx
= CallSites
.size();
358 /// Emit landing pads and actions.
360 /// The general organization of the table is complex, but the basic concepts are
361 /// easy. First there is a header which describes the location and organization
362 /// of the three components that follow.
364 /// 1. The landing pad site information describes the range of code covered by
365 /// the try. In our case it's an accumulation of the ranges covered by the
366 /// invokes in the try. There is also a reference to the landing pad that
367 /// handles the exception once processed. Finally an index into the actions
369 /// 2. The action table, in our case, is composed of pairs of type IDs and next
370 /// action offset. Starting with the action index from the landing pad
371 /// site, each type ID is checked for a match to the current exception. If
372 /// it matches then the exception and type id are passed on to the landing
373 /// pad. Otherwise the next action is looked up. This chain is terminated
374 /// with a next action of zero. If no type id is found then the frame is
375 /// unwound and handling continues.
376 /// 3. Type ID table contains references to all the C++ typeinfo for all
377 /// catches in the function. This tables is reverse indexed base 1.
379 /// Returns the starting symbol of an exception table.
380 MCSymbol
*EHStreamer::emitExceptionTable() {
381 const MachineFunction
*MF
= Asm
->MF
;
382 const std::vector
<const GlobalValue
*> &TypeInfos
= MF
->getTypeInfos();
383 const std::vector
<unsigned> &FilterIds
= MF
->getFilterIds();
384 const std::vector
<LandingPadInfo
> &PadInfos
= MF
->getLandingPads();
386 // Sort the landing pads in order of their type ids. This is used to fold
387 // duplicate actions.
388 SmallVector
<const LandingPadInfo
*, 64> LandingPads
;
389 LandingPads
.reserve(PadInfos
.size());
391 for (const LandingPadInfo
&LPI
: PadInfos
) {
392 // If a landing-pad has an associated label, but the label wasn't ever
393 // emitted, then skip it. (This can occur if the landingpad's MBB was
395 if (LPI
.LandingPadLabel
&& !LPI
.LandingPadLabel
->isDefined())
397 LandingPads
.push_back(&LPI
);
400 // Order landing pads lexicographically by type id.
401 llvm::sort(LandingPads
, [](const LandingPadInfo
*L
, const LandingPadInfo
*R
) {
402 return L
->TypeIds
< R
->TypeIds
;
405 // Compute the actions table and gather the first action index for each
407 SmallVector
<ActionEntry
, 32> Actions
;
408 SmallVector
<unsigned, 64> FirstActions
;
409 computeActionsTable(LandingPads
, Actions
, FirstActions
);
411 // Compute the call-site table and call-site ranges. Normally, there is only
412 // one call-site-range which covers the whole function. With
413 // -basic-block-sections, there is one call-site-range per basic block
415 SmallVector
<CallSiteEntry
, 64> CallSites
;
416 SmallVector
<CallSiteRange
, 4> CallSiteRanges
;
417 computeCallSiteTable(CallSites
, CallSiteRanges
, LandingPads
, FirstActions
);
419 bool IsSJLJ
= Asm
->MAI
->getExceptionHandlingType() == ExceptionHandling::SjLj
;
420 bool IsWasm
= Asm
->MAI
->getExceptionHandlingType() == ExceptionHandling::Wasm
;
421 bool HasLEB128Directives
= Asm
->MAI
->hasLEB128Directives();
422 unsigned CallSiteEncoding
=
423 IsSJLJ
? static_cast<unsigned>(dwarf::DW_EH_PE_udata4
) :
424 Asm
->getObjFileLowering().getCallSiteEncoding();
425 bool HaveTTData
= !TypeInfos
.empty() || !FilterIds
.empty();
428 MCSection
*LSDASection
= Asm
->getObjFileLowering().getSectionForLSDA(
429 MF
->getFunction(), *Asm
->CurrentFnSym
, Asm
->TM
);
430 unsigned TTypeEncoding
;
433 // If there is no TypeInfo, then we just explicitly say that we're omitting
435 TTypeEncoding
= dwarf::DW_EH_PE_omit
;
437 // Okay, we have actual filters or typeinfos to emit. As such, we need to
438 // pick a type encoding for them. We're about to emit a list of pointers to
439 // typeinfo objects at the end of the LSDA. However, unless we're in static
440 // mode, this reference will require a relocation by the dynamic linker.
442 // Because of this, we have a couple of options:
444 // 1) If we are in -static mode, we can always use an absolute reference
445 // from the LSDA, because the static linker will resolve it.
447 // 2) Otherwise, if the LSDA section is writable, we can output the direct
448 // reference to the typeinfo and allow the dynamic linker to relocate
449 // it. Since it is in a writable section, the dynamic linker won't
452 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
453 // we need to use some form of indirection. For example, on Darwin,
454 // we can output a statically-relocatable reference to a dyld stub. The
455 // offset to the stub is constant, but the contents are in a section
456 // that is updated by the dynamic linker. This is easy enough, but we
457 // need to tell the personality function of the unwinder to indirect
458 // through the dyld stub.
460 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
461 // somewhere. This predicate should be moved to a shared location that is
462 // in target-independent code.
464 TTypeEncoding
= Asm
->getObjFileLowering().getTTypeEncoding();
467 // Begin the exception table.
468 // Sometimes we want not to emit the data into separate section (e.g. ARM
469 // EHABI). In this case LSDASection will be NULL.
471 Asm
->OutStreamer
->switchSection(LSDASection
);
472 Asm
->emitAlignment(Align(4));
476 Asm
->OutContext
.getOrCreateSymbol(Twine("GCC_except_table")+
477 Twine(Asm
->getFunctionNumber()));
478 Asm
->OutStreamer
->emitLabel(GCCETSym
);
479 MCSymbol
*CstEndLabel
= Asm
->createTempSymbol(
480 CallSiteRanges
.size() > 1 ? "action_table_base" : "cst_end");
482 MCSymbol
*TTBaseLabel
= nullptr;
484 TTBaseLabel
= Asm
->createTempSymbol("ttbase");
486 const bool VerboseAsm
= Asm
->OutStreamer
->isVerboseAsm();
488 // Helper for emitting references (offsets) for type table and the end of the
489 // call-site table (which marks the beginning of the action table).
490 // * For Itanium, these references will be emitted for every callsite range.
491 // * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
492 auto EmitTypeTableRefAndCallSiteTableEndRef
= [&]() {
493 Asm
->emitEncodingByte(TTypeEncoding
, "@TType");
495 // N.B.: There is a dependency loop between the size of the TTBase uleb128
496 // here and the amount of padding before the aligned type table. The
497 // assembler must sometimes pad this uleb128 or insert extra padding
498 // before the type table. See PR35809 or GNU as bug 4029.
499 MCSymbol
*TTBaseRefLabel
= Asm
->createTempSymbol("ttbaseref");
500 Asm
->emitLabelDifferenceAsULEB128(TTBaseLabel
, TTBaseRefLabel
);
501 Asm
->OutStreamer
->emitLabel(TTBaseRefLabel
);
504 // The Action table follows the call-site table. So we emit the
505 // label difference from here (start of the call-site table for SJLJ and
506 // Wasm, and start of a call-site range for Itanium) to the end of the
507 // whole call-site table (end of the last call-site range for Itanium).
508 MCSymbol
*CstBeginLabel
= Asm
->createTempSymbol("cst_begin");
509 Asm
->emitEncodingByte(CallSiteEncoding
, "Call site");
510 Asm
->emitLabelDifferenceAsULEB128(CstEndLabel
, CstBeginLabel
);
511 Asm
->OutStreamer
->emitLabel(CstBeginLabel
);
514 // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
515 // For some platforms, the system assembler does not accept the form of
516 // `.uleb128 label2 - label1`. In those situations, we would need to calculate
517 // the size between label1 and label2 manually.
518 // In this case, we would need to calculate the LSDA size and the call
520 auto EmitTypeTableOffsetAndCallSiteTableOffset
= [&]() {
521 assert(CallSiteEncoding
== dwarf::DW_EH_PE_udata4
&& !HasLEB128Directives
&&
522 "Targets supporting .uleb128 do not need to take this path.");
523 if (CallSiteRanges
.size() > 1)
525 "-fbasic-block-sections is not yet supported on "
526 "platforms that do not have general LEB128 directive support.");
528 uint64_t CallSiteTableSize
= 0;
529 const CallSiteRange
&CSRange
= CallSiteRanges
.back();
530 for (size_t CallSiteIdx
= CSRange
.CallSiteBeginIdx
;
531 CallSiteIdx
< CSRange
.CallSiteEndIdx
; ++CallSiteIdx
) {
532 const CallSiteEntry
&S
= CallSites
[CallSiteIdx
];
533 // Each call site entry consists of 3 udata4 fields (12 bytes) and
535 CallSiteTableSize
+= 12 + getULEB128Size(S
.Action
);
536 assert(isUInt
<32>(CallSiteTableSize
) && "CallSiteTableSize overflows.");
539 Asm
->emitEncodingByte(TTypeEncoding
, "@TType");
541 const unsigned ByteSizeOfCallSiteOffset
=
542 getULEB128Size(CallSiteTableSize
);
543 uint64_t ActionTableSize
= 0;
544 for (const ActionEntry
&Action
: Actions
) {
545 // Each action entry consists of two SLEB128 fields.
546 ActionTableSize
+= getSLEB128Size(Action
.ValueForTypeID
) +
547 getSLEB128Size(Action
.NextAction
);
548 assert(isUInt
<32>(ActionTableSize
) && "ActionTableSize overflows.");
551 const unsigned TypeInfoSize
=
552 Asm
->GetSizeOfEncodedValue(TTypeEncoding
) * MF
->getTypeInfos().size();
554 const uint64_t LSDASizeBeforeAlign
=
555 1 // Call site encoding byte.
556 + ByteSizeOfCallSiteOffset
// ULEB128 encoding of CallSiteTableSize.
557 + CallSiteTableSize
// Call site table content.
558 + ActionTableSize
; // Action table content.
560 const uint64_t LSDASizeWithoutAlign
= LSDASizeBeforeAlign
+ TypeInfoSize
;
561 const unsigned ByteSizeOfLSDAWithoutAlign
=
562 getULEB128Size(LSDASizeWithoutAlign
);
563 const uint64_t DisplacementBeforeAlign
=
564 2 // LPStartEncoding and TypeTableEncoding.
565 + ByteSizeOfLSDAWithoutAlign
+ LSDASizeBeforeAlign
;
567 // The type info area starts with 4 byte alignment.
568 const unsigned NeedAlignVal
= (4 - DisplacementBeforeAlign
% 4) % 4;
569 uint64_t LSDASizeWithAlign
= LSDASizeWithoutAlign
+ NeedAlignVal
;
570 const unsigned ByteSizeOfLSDAWithAlign
=
571 getULEB128Size(LSDASizeWithAlign
);
573 // The LSDASizeWithAlign could use 1 byte less padding for alignment
574 // when the data we use to represent the LSDA Size "needs" to be 1 byte
575 // larger than the one previously calculated without alignment.
576 if (ByteSizeOfLSDAWithAlign
> ByteSizeOfLSDAWithoutAlign
)
577 LSDASizeWithAlign
-= 1;
579 Asm
->OutStreamer
->emitULEB128IntValue(LSDASizeWithAlign
,
580 ByteSizeOfLSDAWithAlign
);
583 Asm
->emitEncodingByte(CallSiteEncoding
, "Call site");
584 Asm
->OutStreamer
->emitULEB128IntValue(CallSiteTableSize
);
587 // SjLj / Wasm Exception handling
588 if (IsSJLJ
|| IsWasm
) {
589 Asm
->OutStreamer
->emitLabel(Asm
->getMBBExceptionSym(Asm
->MF
->front()));
591 // emit the LSDA header.
592 Asm
->emitEncodingByte(dwarf::DW_EH_PE_omit
, "@LPStart");
593 EmitTypeTableRefAndCallSiteTableEndRef();
596 for (SmallVectorImpl
<CallSiteEntry
>::const_iterator
597 I
= CallSites
.begin(), E
= CallSites
.end(); I
!= E
; ++I
, ++idx
) {
598 const CallSiteEntry
&S
= *I
;
600 // Index of the call site entry.
602 Asm
->OutStreamer
->AddComment(">> Call Site " + Twine(idx
) + " <<");
603 Asm
->OutStreamer
->AddComment(" On exception at call site "+Twine(idx
));
605 Asm
->emitULEB128(idx
);
607 // Offset of the first associated action record, relative to the start of
608 // the action table. This value is biased by 1 (1 indicates the start of
609 // the action table), and 0 indicates that there are no actions.
612 Asm
->OutStreamer
->AddComment(" Action: cleanup");
614 Asm
->OutStreamer
->AddComment(" Action: " +
615 Twine((S
.Action
- 1) / 2 + 1));
617 Asm
->emitULEB128(S
.Action
);
619 Asm
->OutStreamer
->emitLabel(CstEndLabel
);
621 // Itanium LSDA exception handling
623 // The call-site table is a list of all call sites that may throw an
624 // exception (including C++ 'throw' statements) in the procedure
625 // fragment. It immediately follows the LSDA header. Each entry indicates,
626 // for a given call, the first corresponding action record and corresponding
629 // The table begins with the number of bytes, stored as an LEB128
630 // compressed, unsigned integer. The records immediately follow the record
631 // count. They are sorted in increasing call-site address. Each record
634 // * The position of the call-site.
635 // * The position of the landing pad.
636 // * The first action record for that call site.
638 // A missing entry in the call-site table indicates that a call is not
639 // supposed to throw.
641 assert(CallSiteRanges
.size() != 0 && "No call-site ranges!");
643 // There should be only one call-site range which includes all the landing
644 // pads. Find that call-site range here.
645 const CallSiteRange
*LandingPadRange
= nullptr;
646 for (const CallSiteRange
&CSRange
: CallSiteRanges
) {
647 if (CSRange
.IsLPRange
) {
648 assert(LandingPadRange
== nullptr &&
649 "All landing pads must be in a single callsite range.");
650 LandingPadRange
= &CSRange
;
654 // The call-site table is split into its call-site ranges, each being
656 // [ LPStartEncoding | LPStart ]
657 // [ TypeTableEncoding | TypeTableOffset ]
658 // [ CallSiteEncoding | CallSiteTableEndOffset ]
659 // cst_begin -> { call-site entries contained in this range }
661 // and is followed by the next call-site range.
663 // For each call-site range, CallSiteTableEndOffset is computed as the
664 // difference between cst_begin of that range and the last call-site-table's
665 // end label. This offset is used to find the action table.
668 for (const CallSiteRange
&CSRange
: CallSiteRanges
) {
669 if (CSRange
.CallSiteBeginIdx
!= 0) {
670 // Align the call-site range for all ranges except the first. The
671 // first range is already aligned due to the exception table alignment.
672 Asm
->emitAlignment(Align(4));
674 Asm
->OutStreamer
->emitLabel(CSRange
.ExceptionLabel
);
676 // Emit the LSDA header.
677 // LPStart is omitted if either we have a single call-site range (in which
678 // case the function entry is treated as @LPStart) or if this function has
679 // no landing pads (in which case @LPStart is undefined).
680 if (CallSiteRanges
.size() == 1 || LandingPadRange
== nullptr) {
681 Asm
->emitEncodingByte(dwarf::DW_EH_PE_omit
, "@LPStart");
682 } else if (!Asm
->isPositionIndependent()) {
683 // For more than one call-site ranges, LPStart must be explicitly
685 // For non-PIC we can simply use the absolute value.
686 Asm
->emitEncodingByte(dwarf::DW_EH_PE_absptr
, "@LPStart");
687 Asm
->OutStreamer
->emitSymbolValue(LandingPadRange
->FragmentBeginLabel
,
688 Asm
->MAI
->getCodePointerSize());
690 // For PIC mode, we Emit a PC-relative address for LPStart.
691 Asm
->emitEncodingByte(dwarf::DW_EH_PE_pcrel
, "@LPStart");
692 MCContext
&Context
= Asm
->OutStreamer
->getContext();
693 MCSymbol
*Dot
= Context
.createTempSymbol();
694 Asm
->OutStreamer
->emitLabel(Dot
);
695 Asm
->OutStreamer
->emitValue(
696 MCBinaryExpr::createSub(
697 MCSymbolRefExpr::create(LandingPadRange
->FragmentBeginLabel
,
699 MCSymbolRefExpr::create(Dot
, Context
), Context
),
700 Asm
->MAI
->getCodePointerSize());
703 if (HasLEB128Directives
)
704 EmitTypeTableRefAndCallSiteTableEndRef();
706 EmitTypeTableOffsetAndCallSiteTableOffset();
708 for (size_t CallSiteIdx
= CSRange
.CallSiteBeginIdx
;
709 CallSiteIdx
!= CSRange
.CallSiteEndIdx
; ++CallSiteIdx
) {
710 const CallSiteEntry
&S
= CallSites
[CallSiteIdx
];
712 MCSymbol
*EHFuncBeginSym
= CSRange
.FragmentBeginLabel
;
713 MCSymbol
*EHFuncEndSym
= CSRange
.FragmentEndLabel
;
715 MCSymbol
*BeginLabel
= S
.BeginLabel
;
717 BeginLabel
= EHFuncBeginSym
;
718 MCSymbol
*EndLabel
= S
.EndLabel
;
720 EndLabel
= EHFuncEndSym
;
722 // Offset of the call site relative to the start of the procedure.
724 Asm
->OutStreamer
->AddComment(">> Call Site " + Twine(++Entry
) +
726 Asm
->emitCallSiteOffset(BeginLabel
, EHFuncBeginSym
, CallSiteEncoding
);
728 Asm
->OutStreamer
->AddComment(Twine(" Call between ") +
729 BeginLabel
->getName() + " and " +
730 EndLabel
->getName());
731 Asm
->emitCallSiteOffset(EndLabel
, BeginLabel
, CallSiteEncoding
);
733 // Offset of the landing pad relative to the start of the landing pad
737 Asm
->OutStreamer
->AddComment(" has no landing pad");
738 Asm
->emitCallSiteValue(0, CallSiteEncoding
);
741 Asm
->OutStreamer
->AddComment(Twine(" jumps to ") +
742 S
.LPad
->LandingPadLabel
->getName());
743 Asm
->emitCallSiteOffset(S
.LPad
->LandingPadLabel
,
744 LandingPadRange
->FragmentBeginLabel
,
748 // Offset of the first associated action record, relative to the start
749 // of the action table. This value is biased by 1 (1 indicates the start
750 // of the action table), and 0 indicates that there are no actions.
753 Asm
->OutStreamer
->AddComment(" On action: cleanup");
755 Asm
->OutStreamer
->AddComment(" On action: " +
756 Twine((S
.Action
- 1) / 2 + 1));
758 Asm
->emitULEB128(S
.Action
);
761 Asm
->OutStreamer
->emitLabel(CstEndLabel
);
764 // Emit the Action Table.
766 for (const ActionEntry
&Action
: Actions
) {
768 // Emit comments that decode the action table.
769 Asm
->OutStreamer
->AddComment(">> Action Record " + Twine(++Entry
) + " <<");
774 // Used by the runtime to match the type of the thrown exception to the
775 // type of the catch clauses or the types in the exception specification.
777 if (Action
.ValueForTypeID
> 0)
778 Asm
->OutStreamer
->AddComment(" Catch TypeInfo " +
779 Twine(Action
.ValueForTypeID
));
780 else if (Action
.ValueForTypeID
< 0)
781 Asm
->OutStreamer
->AddComment(" Filter TypeInfo " +
782 Twine(Action
.ValueForTypeID
));
784 Asm
->OutStreamer
->AddComment(" Cleanup");
786 Asm
->emitSLEB128(Action
.ValueForTypeID
);
790 if (Action
.Previous
== unsigned(-1)) {
791 Asm
->OutStreamer
->AddComment(" No further actions");
793 Asm
->OutStreamer
->AddComment(" Continue to action " +
794 Twine(Action
.Previous
+ 1));
797 Asm
->emitSLEB128(Action
.NextAction
);
801 Asm
->emitAlignment(Align(4));
802 emitTypeInfos(TTypeEncoding
, TTBaseLabel
);
805 Asm
->emitAlignment(Align(4));
809 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding
, MCSymbol
*TTBaseLabel
) {
810 const MachineFunction
*MF
= Asm
->MF
;
811 const std::vector
<const GlobalValue
*> &TypeInfos
= MF
->getTypeInfos();
812 const std::vector
<unsigned> &FilterIds
= MF
->getFilterIds();
814 const bool VerboseAsm
= Asm
->OutStreamer
->isVerboseAsm();
817 // Emit the Catch TypeInfos.
818 if (VerboseAsm
&& !TypeInfos
.empty()) {
819 Asm
->OutStreamer
->AddComment(">> Catch TypeInfos <<");
820 Asm
->OutStreamer
->addBlankLine();
821 Entry
= TypeInfos
.size();
824 for (const GlobalValue
*GV
: llvm::reverse(TypeInfos
)) {
826 Asm
->OutStreamer
->AddComment("TypeInfo " + Twine(Entry
--));
827 Asm
->emitTTypeReference(GV
, TTypeEncoding
);
830 Asm
->OutStreamer
->emitLabel(TTBaseLabel
);
832 // Emit the Exception Specifications.
833 if (VerboseAsm
&& !FilterIds
.empty()) {
834 Asm
->OutStreamer
->AddComment(">> Filter TypeInfos <<");
835 Asm
->OutStreamer
->addBlankLine();
838 for (std::vector
<unsigned>::const_iterator
839 I
= FilterIds
.begin(), E
= FilterIds
.end(); I
< E
; ++I
) {
840 unsigned TypeID
= *I
;
843 if (isFilterEHSelector(TypeID
))
844 Asm
->OutStreamer
->AddComment("FilterInfo " + Twine(Entry
));
847 Asm
->emitULEB128(TypeID
);