1 //===-- AssignmentTrackingAnalysis.cpp ------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
10 #include "LiveDebugValues/LiveDebugValues.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/DenseMapInfo.h"
13 #include "llvm/ADT/IntervalMap.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/UniqueVector.h"
18 #include "llvm/Analysis/Interval.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugProgramInstruction.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/IR/PrintPasses.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include <unordered_map>
42 #define DEBUG_TYPE "debug-ata"
44 STATISTIC(NumDefsScanned
, "Number of dbg locs that get scanned for removal");
45 STATISTIC(NumDefsRemoved
, "Number of dbg locs removed");
46 STATISTIC(NumWedgesScanned
, "Number of dbg wedges scanned");
47 STATISTIC(NumWedgesChanged
, "Number of dbg wedges changed");
49 static cl::opt
<unsigned>
50 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
51 cl::desc("Maximum num basic blocks before debug info dropped"),
53 /// Option for debugging the pass, determines if the memory location fragment
54 /// filling happens after generating the variable locations.
55 static cl::opt
<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
57 /// Print the results of the analysis. Respects -filter-print-funcs.
58 static cl::opt
<bool> PrintResults("print-debug-ata", cl::init(false),
61 /// Coalesce adjacent dbg locs describing memory locations that have contiguous
62 /// fragments. This reduces the cost of LiveDebugValues which does SSA
63 /// construction for each explicitly stated variable fragment.
64 static cl::opt
<cl::boolOrDefault
>
65 CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden
);
67 // Implicit conversions are disabled for enum class types, so unfortunately we
68 // need to create a DenseMapInfo wrapper around the specified underlying type.
69 template <> struct llvm::DenseMapInfo
<VariableID
> {
70 using Wrapped
= DenseMapInfo
<unsigned>;
71 static inline VariableID
getEmptyKey() {
72 return static_cast<VariableID
>(Wrapped::getEmptyKey());
74 static inline VariableID
getTombstoneKey() {
75 return static_cast<VariableID
>(Wrapped::getTombstoneKey());
77 static unsigned getHashValue(const VariableID
&Val
) {
78 return Wrapped::getHashValue(static_cast<unsigned>(Val
));
80 static bool isEqual(const VariableID
&LHS
, const VariableID
&RHS
) {
85 using VarLocInsertPt
= PointerUnion
<const Instruction
*, const DPValue
*>;
88 template <> struct hash
<VarLocInsertPt
> {
89 using argument_type
= VarLocInsertPt
;
90 using result_type
= std::size_t;
92 result_type
operator()(const argument_type
&Arg
) const {
93 return std::hash
<void *>()(Arg
.getOpaqueValue());
98 /// Helper class to build FunctionVarLocs, since that class isn't easy to
99 /// modify. TODO: There's not a great deal of value in the split, it could be
100 /// worth merging the two classes.
101 class FunctionVarLocsBuilder
{
102 friend FunctionVarLocs
;
103 UniqueVector
<DebugVariable
> Variables
;
104 // Use an unordered_map so we don't invalidate iterators after
105 // insert/modifications.
106 std::unordered_map
<VarLocInsertPt
, SmallVector
<VarLocInfo
>> VarLocsBeforeInst
;
108 SmallVector
<VarLocInfo
> SingleLocVars
;
111 unsigned getNumVariables() const { return Variables
.size(); }
113 /// Find or insert \p V and return the ID.
114 VariableID
insertVariable(DebugVariable V
) {
115 return static_cast<VariableID
>(Variables
.insert(V
));
118 /// Get a variable from its \p ID.
119 const DebugVariable
&getVariable(VariableID ID
) const {
120 return Variables
[static_cast<unsigned>(ID
)];
123 /// Return ptr to wedge of defs or nullptr if no defs come just before /p
125 const SmallVectorImpl
<VarLocInfo
> *getWedge(VarLocInsertPt Before
) const {
126 auto R
= VarLocsBeforeInst
.find(Before
);
127 if (R
== VarLocsBeforeInst
.end())
132 /// Replace the defs that come just before /p Before with /p Wedge.
133 void setWedge(VarLocInsertPt Before
, SmallVector
<VarLocInfo
> &&Wedge
) {
134 VarLocsBeforeInst
[Before
] = std::move(Wedge
);
137 /// Add a def for a variable that is valid for its lifetime.
138 void addSingleLocVar(DebugVariable Var
, DIExpression
*Expr
, DebugLoc DL
,
139 RawLocationWrapper R
) {
141 VarLoc
.VariableID
= insertVariable(Var
);
145 SingleLocVars
.emplace_back(VarLoc
);
148 /// Add a def to the wedge of defs just before /p Before.
149 void addVarLoc(VarLocInsertPt Before
, DebugVariable Var
, DIExpression
*Expr
,
150 DebugLoc DL
, RawLocationWrapper R
) {
152 VarLoc
.VariableID
= insertVariable(Var
);
156 VarLocsBeforeInst
[Before
].emplace_back(VarLoc
);
160 void FunctionVarLocs::print(raw_ostream
&OS
, const Function
&Fn
) const {
161 // Print the variable table first. TODO: Sorting by variable could make the
162 // output more stable?
163 unsigned Counter
= -1;
164 OS
<< "=== Variables ===\n";
165 for (const DebugVariable
&V
: Variables
) {
167 // Skip first entry because it is a dummy entry.
171 OS
<< "[" << Counter
<< "] " << V
.getVariable()->getName();
172 if (auto F
= V
.getFragment())
173 OS
<< " bits [" << F
->OffsetInBits
<< ", "
174 << F
->OffsetInBits
+ F
->SizeInBits
<< ")";
175 if (const auto *IA
= V
.getInlinedAt())
176 OS
<< " inlined-at " << *IA
;
180 auto PrintLoc
= [&OS
](const VarLocInfo
&Loc
) {
181 OS
<< "DEF Var=[" << (unsigned)Loc
.VariableID
<< "]"
182 << " Expr=" << *Loc
.Expr
<< " Values=(";
183 for (auto *Op
: Loc
.Values
.location_ops()) {
184 errs() << Op
->getName() << " ";
189 // Print the single location variables.
190 OS
<< "=== Single location vars ===\n";
191 for (auto It
= single_locs_begin(), End
= single_locs_end(); It
!= End
;
196 // Print the non-single-location defs in line with IR.
197 OS
<< "=== In-line variable defs ===";
198 for (const BasicBlock
&BB
: Fn
) {
199 OS
<< "\n" << BB
.getName() << ":\n";
200 for (const Instruction
&I
: BB
) {
201 for (auto It
= locs_begin(&I
), End
= locs_end(&I
); It
!= End
; ++It
) {
209 void FunctionVarLocs::init(FunctionVarLocsBuilder
&Builder
) {
210 // Add the single-location variables first.
211 for (const auto &VarLoc
: Builder
.SingleLocVars
)
212 VarLocRecords
.emplace_back(VarLoc
);
213 // Mark the end of the section.
214 SingleVarLocEnd
= VarLocRecords
.size();
216 // Insert a contiguous block of VarLocInfos for each instruction, mapping it
217 // to the start and end position in the vector with VarLocsBeforeInst. This
218 // block includes VarLocs for any DPValues attached to that instruction.
219 for (auto &P
: Builder
.VarLocsBeforeInst
) {
220 // Process VarLocs attached to a DPValue alongside their marker Instruction.
221 if (isa
<const DPValue
*>(P
.first
))
223 const Instruction
*I
= cast
<const Instruction
*>(P
.first
);
224 unsigned BlockStart
= VarLocRecords
.size();
225 // Any VarLocInfos attached to a DPValue should now be remapped to their
226 // marker Instruction, in order of DPValue appearance and prior to any
227 // VarLocInfos attached directly to that instruction.
228 for (const DPValue
&DPV
: I
->getDbgValueRange()) {
229 // Even though DPV defines a variable location, VarLocsBeforeInst can
230 // still be empty if that VarLoc was redundant.
231 if (!Builder
.VarLocsBeforeInst
.count(&DPV
))
233 for (const VarLocInfo
&VarLoc
: Builder
.VarLocsBeforeInst
[&DPV
])
234 VarLocRecords
.emplace_back(VarLoc
);
236 for (const VarLocInfo
&VarLoc
: P
.second
)
237 VarLocRecords
.emplace_back(VarLoc
);
238 unsigned BlockEnd
= VarLocRecords
.size();
239 // Record the start and end indices.
240 if (BlockEnd
!= BlockStart
)
241 VarLocsBeforeInst
[I
] = {BlockStart
, BlockEnd
};
244 // Copy the Variables vector from the builder's UniqueVector.
245 assert(Variables
.empty() && "Expect clear before init");
246 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
247 // are one-based) so reserve an extra and insert a dummy.
248 Variables
.reserve(Builder
.Variables
.size() + 1);
249 Variables
.push_back(DebugVariable(nullptr, std::nullopt
, nullptr));
250 Variables
.append(Builder
.Variables
.begin(), Builder
.Variables
.end());
253 void FunctionVarLocs::clear() {
255 VarLocRecords
.clear();
256 VarLocsBeforeInst
.clear();
260 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p
261 /// Start as far as possible. Prepend \Expression with the offset and append it
262 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
263 /// value and modified expression.
264 static std::pair
<Value
*, DIExpression
*>
265 walkToAllocaAndPrependOffsetDeref(const DataLayout
&DL
, Value
*Start
,
266 DIExpression
*Expression
) {
267 APInt
OffsetInBytes(DL
.getTypeSizeInBits(Start
->getType()), false);
269 Start
->stripAndAccumulateInBoundsConstantOffsets(DL
, OffsetInBytes
);
270 SmallVector
<uint64_t, 3> Ops
;
271 if (OffsetInBytes
.getBoolValue()) {
272 Ops
= {dwarf::DW_OP_plus_uconst
, OffsetInBytes
.getZExtValue()};
273 Expression
= DIExpression::prependOpcodes(
274 Expression
, Ops
, /*StackValue=*/false, /*EntryValue=*/false);
276 Expression
= DIExpression::append(Expression
, {dwarf::DW_OP_deref
});
277 return {End
, Expression
};
280 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
281 /// doesn't explicitly describe a memory location with DW_OP_deref or if the
282 /// expression is too complex to interpret.
283 static std::optional
<int64_t>
284 getDerefOffsetInBytes(const DIExpression
*DIExpr
) {
286 const unsigned NumElements
= DIExpr
->getNumElements();
287 const auto Elements
= DIExpr
->getElements();
288 unsigned ExpectedDerefIdx
= 0;
289 // Extract the offset.
290 if (NumElements
> 2 && Elements
[0] == dwarf::DW_OP_plus_uconst
) {
291 Offset
= Elements
[1];
292 ExpectedDerefIdx
= 2;
293 } else if (NumElements
> 3 && Elements
[0] == dwarf::DW_OP_constu
) {
294 ExpectedDerefIdx
= 3;
295 if (Elements
[2] == dwarf::DW_OP_plus
)
296 Offset
= Elements
[1];
297 else if (Elements
[2] == dwarf::DW_OP_minus
)
298 Offset
= -Elements
[1];
303 // If that's all there is it means there's no deref.
304 if (ExpectedDerefIdx
>= NumElements
)
307 // Check the next element is DW_OP_deref - otherwise this is too complex or
308 // isn't a deref expression.
309 if (Elements
[ExpectedDerefIdx
] != dwarf::DW_OP_deref
)
312 // Check the final operation is either the DW_OP_deref or is a fragment.
313 if (NumElements
== ExpectedDerefIdx
+ 1)
314 return Offset
; // Ends with deref.
315 unsigned ExpectedFragFirstIdx
= ExpectedDerefIdx
+ 1;
316 unsigned ExpectedFragFinalIdx
= ExpectedFragFirstIdx
+ 2;
317 if (NumElements
== ExpectedFragFinalIdx
+ 1 &&
318 Elements
[ExpectedFragFirstIdx
] == dwarf::DW_OP_LLVM_fragment
)
319 return Offset
; // Ends with deref + fragment.
321 // Don't bother trying to interpret anything more complex.
325 /// A whole (unfragmented) source variable.
326 using DebugAggregate
= std::pair
<const DILocalVariable
*, const DILocation
*>;
327 static DebugAggregate
getAggregate(const DbgVariableIntrinsic
*DII
) {
328 return DebugAggregate(DII
->getVariable(), DII
->getDebugLoc().getInlinedAt());
330 static DebugAggregate
getAggregate(const DebugVariable
&Var
) {
331 return DebugAggregate(Var
.getVariable(), Var
.getInlinedAt());
334 static bool shouldCoalesceFragments(Function
&F
) {
335 // Enabling fragment coalescing reduces compiler run time when instruction
336 // referencing is enabled. However, it may cause LiveDebugVariables to create
337 // incorrect locations. Since instruction-referencing mode effectively
338 // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
339 // has not been explicitly set and instruction-referencing is turned on.
340 switch (CoalesceAdjacentFragmentsOpt
) {
341 case cl::boolOrDefault::BOU_UNSET
:
342 return debuginfoShouldUseDebugInstrRef(
343 Triple(F
.getParent()->getTargetTriple()));
344 case cl::boolOrDefault::BOU_TRUE
:
346 case cl::boolOrDefault::BOU_FALSE
:
349 llvm_unreachable("Unknown boolOrDefault value");
353 /// In dwarf emission, the following sequence
354 /// 1. dbg.value ... Fragment(0, 64)
355 /// 2. dbg.value ... Fragment(0, 32)
356 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
357 /// the intersection of the fragments to having "no location"). This makes
358 /// sense for implicit location values because splitting the computed values
359 /// could be troublesome, and is probably quite uncommon. When we convert
360 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
361 /// a location (memory) rather than a value means we don't need to worry about
362 /// splitting any values, so we try to recover the rest of the fragment
364 /// This class performs a(nother) dataflow analysis over the function, adding
365 /// variable locations so that any bits of a variable with a memory location
366 /// have that location explicitly reinstated at each subsequent variable
367 /// location definition that that doesn't overwrite those bits. i.e. after a
368 /// variable location def, insert new defs for the memory location with
369 /// fragments for the difference of "all bits currently in memory" and "the
370 /// fragment of the second def".
371 class MemLocFragmentFill
{
373 FunctionVarLocsBuilder
*FnVarLocs
;
374 const DenseSet
<DebugAggregate
> *VarsWithStackSlot
;
375 bool CoalesceAdjacentFragments
;
377 // 0 = no memory location.
378 using BaseAddress
= unsigned;
379 using OffsetInBitsTy
= unsigned;
380 using FragTraits
= IntervalMapHalfOpenInfo
<OffsetInBitsTy
>;
381 using FragsInMemMap
= IntervalMap
<
382 OffsetInBitsTy
, BaseAddress
,
383 IntervalMapImpl::NodeSizer
<OffsetInBitsTy
, BaseAddress
>::LeafSize
,
385 FragsInMemMap::Allocator IntervalMapAlloc
;
386 using VarFragMap
= DenseMap
<unsigned, FragsInMemMap
>;
388 /// IDs for memory location base addresses in maps. Use 0 to indicate that
389 /// there's no memory location.
390 UniqueVector
<RawLocationWrapper
> Bases
;
391 UniqueVector
<DebugAggregate
> Aggregates
;
392 DenseMap
<const BasicBlock
*, VarFragMap
> LiveIn
;
393 DenseMap
<const BasicBlock
*, VarFragMap
> LiveOut
;
398 unsigned OffsetInBits
;
402 using InsertMap
= MapVector
<VarLocInsertPt
, SmallVector
<FragMemLoc
>>;
404 /// BBInsertBeforeMap holds a description for the set of location defs to be
405 /// inserted after the analysis is complete. It is updated during the dataflow
406 /// and the entry for a block is CLEARED each time it is (re-)visited. After
407 /// the dataflow is complete, each block entry will contain the set of defs
408 /// calculated during the final (fixed-point) iteration.
409 DenseMap
<const BasicBlock
*, InsertMap
> BBInsertBeforeMap
;
411 static bool intervalMapsAreEqual(const FragsInMemMap
&A
,
412 const FragsInMemMap
&B
) {
413 auto AIt
= A
.begin(), AEnd
= A
.end();
414 auto BIt
= B
.begin(), BEnd
= B
.end();
415 for (; AIt
!= AEnd
; ++AIt
, ++BIt
) {
417 return false; // B has fewer elements than A.
418 if (AIt
.start() != BIt
.start() || AIt
.stop() != BIt
.stop())
419 return false; // Interval is different.
421 return false; // Value at interval is different.
423 // AIt == AEnd. Check BIt is also now at end.
427 static bool varFragMapsAreEqual(const VarFragMap
&A
, const VarFragMap
&B
) {
428 if (A
.size() != B
.size())
430 for (const auto &APair
: A
) {
431 auto BIt
= B
.find(APair
.first
);
434 if (!intervalMapsAreEqual(APair
.second
, BIt
->second
))
440 /// Return a string for the value that \p BaseID represents.
441 std::string
toString(unsigned BaseID
) {
443 return Bases
[BaseID
].getVariableLocationOp(0)->getName().str();
448 /// Format string describing an FragsInMemMap (IntervalMap) interval.
449 std::string
toString(FragsInMemMap::const_iterator It
, bool Newline
= true) {
451 std::stringstream
S(String
);
453 S
<< "[" << It
.start() << ", " << It
.stop()
454 << "): " << toString(It
.value());
456 S
<< "invalid iterator (end)";
463 FragsInMemMap
meetFragments(const FragsInMemMap
&A
, const FragsInMemMap
&B
) {
464 FragsInMemMap
Result(IntervalMapAlloc
);
465 for (auto AIt
= A
.begin(), AEnd
= A
.end(); AIt
!= AEnd
; ++AIt
) {
466 LLVM_DEBUG(dbgs() << "a " << toString(AIt
));
467 // This is basically copied from process() and inverted (process is
468 // performing something like a union whereas this is more of an
471 // There's no work to do if interval `a` overlaps no fragments in map `B`.
472 if (!B
.overlaps(AIt
.start(), AIt
.stop()))
475 // Does StartBit intersect an existing fragment?
476 auto FirstOverlap
= B
.find(AIt
.start());
477 assert(FirstOverlap
!= B
.end());
478 bool IntersectStart
= FirstOverlap
.start() < AIt
.start();
479 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap
, false)
480 << ", IntersectStart: " << IntersectStart
<< "\n");
482 // Does EndBit intersect an existing fragment?
483 auto LastOverlap
= B
.find(AIt
.stop());
485 LastOverlap
!= B
.end() && LastOverlap
.start() < AIt
.stop();
486 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap
, false)
487 << ", IntersectEnd: " << IntersectEnd
<< "\n");
489 // Check if both ends of `a` intersect the same interval `b`.
490 if (IntersectStart
&& IntersectEnd
&& FirstOverlap
== LastOverlap
) {
491 // Insert `a` (`a` is contained in `b`) if the values match.
496 LLVM_DEBUG(dbgs() << "- a is contained within "
497 << toString(FirstOverlap
));
498 if (*AIt
&& *AIt
== *FirstOverlap
)
499 Result
.insert(AIt
.start(), AIt
.stop(), *AIt
);
501 // There's an overlap but `a` is not fully contained within
502 // `b`. Shorten any end-point intersections.
507 auto Next
= FirstOverlap
;
508 if (IntersectStart
) {
509 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
510 << toString(FirstOverlap
));
511 if (*AIt
&& *AIt
== *FirstOverlap
)
512 Result
.insert(AIt
.start(), FirstOverlap
.stop(), *AIt
);
520 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
521 << toString(LastOverlap
));
522 if (*AIt
&& *AIt
== *LastOverlap
)
523 Result
.insert(LastOverlap
.start(), AIt
.stop(), *AIt
);
526 // Insert all intervals in map `B` that are contained within interval
527 // `a` where the values match.
532 while (Next
!= B
.end() && Next
.start() < AIt
.stop() &&
533 Next
.stop() <= AIt
.stop()) {
535 << "- insert intersection of a and " << toString(Next
));
536 if (*AIt
&& *AIt
== *Next
)
537 Result
.insert(Next
.start(), Next
.stop(), *Next
);
545 /// Meet \p A and \p B, storing the result in \p A.
546 void meetVars(VarFragMap
&A
, const VarFragMap
&B
) {
549 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
550 for (auto It
= A
.begin(), End
= A
.end(); It
!= End
; ++It
) {
551 unsigned AVar
= It
->first
;
552 FragsInMemMap
&AFrags
= It
->second
;
553 auto BIt
= B
.find(AVar
);
554 if (BIt
== B
.end()) {
556 continue; // Var has no bits defined in B.
558 LLVM_DEBUG(dbgs() << "meet fragment maps for "
559 << Aggregates
[AVar
].first
->getName() << "\n");
560 AFrags
= meetFragments(AFrags
, BIt
->second
);
564 bool meet(const BasicBlock
&BB
,
565 const SmallPtrSet
<BasicBlock
*, 16> &Visited
) {
566 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB
.getName()
570 bool FirstMeet
= true;
571 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
573 for (auto I
= pred_begin(&BB
), E
= pred_end(&BB
); I
!= E
; I
++) {
574 // Ignore preds that haven't been processed yet. This is essentially the
575 // same as initialising all variables to implicit top value (⊤) which is
576 // the identity value for the meet operation.
577 const BasicBlock
*Pred
= *I
;
578 if (!Visited
.count(Pred
))
581 auto PredLiveOut
= LiveOut
.find(Pred
);
582 assert(PredLiveOut
!= LiveOut
.end());
585 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred
->getName() << "\n");
586 BBLiveIn
= PredLiveOut
->second
;
589 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred
->getName()
591 meetVars(BBLiveIn
, PredLiveOut
->second
);
594 // An empty set is ⊥ for the intersect-like meet operation. If we've
595 // already got ⊥ there's no need to run the code - we know the result is
596 // ⊥ since `meet(a, ⊥) = ⊥`.
597 if (BBLiveIn
.size() == 0)
601 auto CurrentLiveInEntry
= LiveIn
.find(&BB
);
602 // If there's no LiveIn entry for the block yet, add it.
603 if (CurrentLiveInEntry
== LiveIn
.end()) {
604 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB
.getName()
606 LiveIn
[&BB
] = std::move(BBLiveIn
);
607 return /*Changed=*/true;
610 // If the LiveIn set has changed (expensive check) update it and return
612 if (!varFragMapsAreEqual(BBLiveIn
, CurrentLiveInEntry
->second
)) {
613 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB
.getName() << "\n");
614 CurrentLiveInEntry
->second
= std::move(BBLiveIn
);
615 return /*Changed=*/true;
618 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB
.getName() << "\n");
619 return /*Changed=*/false;
622 void insertMemLoc(BasicBlock
&BB
, VarLocInsertPt Before
, unsigned Var
,
623 unsigned StartBit
, unsigned EndBit
, unsigned Base
,
625 assert(StartBit
< EndBit
&& "Cannot create fragment of size <= 0");
630 Loc
.OffsetInBits
= StartBit
;
631 Loc
.SizeInBits
= EndBit
- StartBit
;
632 assert(Base
&& "Expected a non-zero ID for Base address");
635 BBInsertBeforeMap
[&BB
][Before
].push_back(Loc
);
636 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates
[Var
].first
->getName()
637 << " bits [" << StartBit
<< ", " << EndBit
<< ")\n");
640 /// Inserts a new dbg def if the interval found when looking up \p StartBit
641 /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
642 /// indicates - assuming StartBit->EndBit has just been inserted - that the
643 /// slice has been coalesced in the map).
644 void coalesceFragments(BasicBlock
&BB
, VarLocInsertPt Before
, unsigned Var
,
645 unsigned StartBit
, unsigned EndBit
, unsigned Base
,
646 DebugLoc DL
, const FragsInMemMap
&FragMap
) {
647 if (!CoalesceAdjacentFragments
)
649 // We've inserted the location into the map. The map will have coalesced
650 // adjacent intervals (variable fragments) that describe the same memory
651 // location. Use this knowledge to insert a debug location that describes
652 // that coalesced fragment. This may eclipse other locs we've just
653 // inserted. This is okay as redundant locs will be cleaned up later.
654 auto CoalescedFrag
= FragMap
.find(StartBit
);
655 // Bail if no coalescing has taken place.
656 if (CoalescedFrag
.start() == StartBit
&& CoalescedFrag
.stop() == EndBit
)
659 LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag
.start()
660 << " to " << CoalescedFrag
.stop() << "\n");
661 insertMemLoc(BB
, Before
, Var
, CoalescedFrag
.start(), CoalescedFrag
.stop(),
665 void addDef(const VarLocInfo
&VarLoc
, VarLocInsertPt Before
, BasicBlock
&BB
,
666 VarFragMap
&LiveSet
) {
667 DebugVariable DbgVar
= FnVarLocs
->getVariable(VarLoc
.VariableID
);
668 if (skipVariable(DbgVar
.getVariable()))
670 // Don't bother doing anything for this variables if we know it's fully
671 // promoted. We're only interested in variables that (sometimes) live on
673 if (!VarsWithStackSlot
->count(getAggregate(DbgVar
)))
675 unsigned Var
= Aggregates
.insert(
676 DebugAggregate(DbgVar
.getVariable(), VarLoc
.DL
.getInlinedAt()));
678 // [StartBit: EndBit) are the bits affected by this def.
679 const DIExpression
*DIExpr
= VarLoc
.Expr
;
682 if (auto Frag
= DIExpr
->getFragmentInfo()) {
683 StartBit
= Frag
->OffsetInBits
;
684 EndBit
= StartBit
+ Frag
->SizeInBits
;
686 assert(static_cast<bool>(DbgVar
.getVariable()->getSizeInBits()));
688 EndBit
= *DbgVar
.getVariable()->getSizeInBits();
691 // We will only fill fragments for simple memory-describing dbg.value
692 // intrinsics. If the fragment offset is the same as the offset from the
693 // base pointer, do The Thing, otherwise fall back to normal dbg.value
694 // behaviour. AssignmentTrackingLowering has generated DIExpressions
695 // written in terms of the base pointer.
696 // TODO: Remove this condition since the fragment offset doesn't always
697 // equal the offset from base pointer (e.g. for a SROA-split variable).
698 const auto DerefOffsetInBytes
= getDerefOffsetInBytes(DIExpr
);
699 const unsigned Base
=
700 DerefOffsetInBytes
&& *DerefOffsetInBytes
* 8 == StartBit
701 ? Bases
.insert(VarLoc
.Values
)
703 LLVM_DEBUG(dbgs() << "DEF " << DbgVar
.getVariable()->getName() << " ["
704 << StartBit
<< ", " << EndBit
<< "): " << toString(Base
)
707 // First of all, any locs that use mem that are disrupted need reinstating.
708 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
709 // with existing intervals so this code involves a lot of fiddling around
710 // with intervals to do that manually.
711 auto FragIt
= LiveSet
.find(Var
);
713 // Check if the variable does not exist in the map.
714 if (FragIt
== LiveSet
.end()) {
715 // Add this variable to the BB map.
716 auto P
= LiveSet
.try_emplace(Var
, FragsInMemMap(IntervalMapAlloc
));
717 assert(P
.second
&& "Var already in map?");
718 // Add the interval to the fragment map.
719 P
.first
->second
.insert(StartBit
, EndBit
, Base
);
722 // The variable has an entry in the map.
724 FragsInMemMap
&FragMap
= FragIt
->second
;
725 // First check the easy case: the new fragment `f` doesn't overlap with any
727 if (!FragMap
.overlaps(StartBit
, EndBit
)) {
728 LLVM_DEBUG(dbgs() << "- No overlaps\n");
729 FragMap
.insert(StartBit
, EndBit
, Base
);
730 coalesceFragments(BB
, Before
, Var
, StartBit
, EndBit
, Base
, VarLoc
.DL
,
734 // There is at least one overlap.
736 // Does StartBit intersect an existing fragment?
737 auto FirstOverlap
= FragMap
.find(StartBit
);
738 assert(FirstOverlap
!= FragMap
.end());
739 bool IntersectStart
= FirstOverlap
.start() < StartBit
;
741 // Does EndBit intersect an existing fragment?
742 auto LastOverlap
= FragMap
.find(EndBit
);
743 bool IntersectEnd
= LastOverlap
.valid() && LastOverlap
.start() < EndBit
;
745 // Check if both ends of `f` intersect the same interval `i`.
746 if (IntersectStart
&& IntersectEnd
&& FirstOverlap
== LastOverlap
) {
747 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
748 // Shorten `i` so that there's space to insert `f`.
754 // Save values for use after inserting a new interval.
755 auto EndBitOfOverlap
= FirstOverlap
.stop();
756 unsigned OverlapValue
= FirstOverlap
.value();
758 // Shorten the overlapping interval.
759 FirstOverlap
.setStop(StartBit
);
760 insertMemLoc(BB
, Before
, Var
, FirstOverlap
.start(), StartBit
,
761 OverlapValue
, VarLoc
.DL
);
763 // Insert a new interval to represent the end part.
764 FragMap
.insert(EndBit
, EndBitOfOverlap
, OverlapValue
);
765 insertMemLoc(BB
, Before
, Var
, EndBit
, EndBitOfOverlap
, OverlapValue
,
768 // Insert the new (middle) fragment now there is space.
769 FragMap
.insert(StartBit
, EndBit
, Base
);
771 // There's an overlap but `f` may not be fully contained within
772 // `i`. Shorten any end-point intersections so that we can then
778 // Shorten any end-point intersections.
779 if (IntersectStart
) {
780 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
781 // Split off at the intersection.
782 FirstOverlap
.setStop(StartBit
);
783 insertMemLoc(BB
, Before
, Var
, FirstOverlap
.start(), StartBit
,
784 *FirstOverlap
, VarLoc
.DL
);
791 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
792 // Split off at the intersection.
793 LastOverlap
.setStart(EndBit
);
794 insertMemLoc(BB
, Before
, Var
, EndBit
, LastOverlap
.stop(), *LastOverlap
,
798 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
799 // FirstOverlap and LastOverlap have been shortened such that they're
800 // no longer overlapping with [StartBit, EndBit). Delete any overlaps
801 // that remain (these will be fully contained within `f`).
803 // [ - i - ] } Intersection shortening that has happened above.
807 // [i2 ] } Intervals fully contained within `f` get erased.
809 // [ - f - ][ i ] } Completed insertion.
810 auto It
= FirstOverlap
;
812 ++It
; // IntersectStart: first overlap has been shortened.
813 while (It
.valid() && It
.start() >= StartBit
&& It
.stop() <= EndBit
) {
814 LLVM_DEBUG(dbgs() << "- Erase " << toString(It
));
815 It
.erase(); // This increments It after removing the interval.
817 // We've dealt with all the overlaps now!
818 assert(!FragMap
.overlaps(StartBit
, EndBit
));
819 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
820 FragMap
.insert(StartBit
, EndBit
, Base
);
823 coalesceFragments(BB
, Before
, Var
, StartBit
, EndBit
, Base
, VarLoc
.DL
,
827 bool skipVariable(const DILocalVariable
*V
) { return !V
->getSizeInBits(); }
829 void process(BasicBlock
&BB
, VarFragMap
&LiveSet
) {
830 BBInsertBeforeMap
[&BB
].clear();
832 for (auto &DPV
: I
.getDbgValueRange()) {
833 if (const auto *Locs
= FnVarLocs
->getWedge(&DPV
)) {
834 for (const VarLocInfo
&Loc
: *Locs
) {
835 addDef(Loc
, &DPV
, *I
.getParent(), LiveSet
);
839 if (const auto *Locs
= FnVarLocs
->getWedge(&I
)) {
840 for (const VarLocInfo
&Loc
: *Locs
) {
841 addDef(Loc
, &I
, *I
.getParent(), LiveSet
);
848 MemLocFragmentFill(Function
&Fn
,
849 const DenseSet
<DebugAggregate
> *VarsWithStackSlot
,
850 bool CoalesceAdjacentFragments
)
851 : Fn(Fn
), VarsWithStackSlot(VarsWithStackSlot
),
852 CoalesceAdjacentFragments(CoalesceAdjacentFragments
) {}
854 /// Add variable locations to \p FnVarLocs so that any bits of a variable
855 /// with a memory location have that location explicitly reinstated at each
856 /// subsequent variable location definition that that doesn't overwrite those
857 /// bits. i.e. after a variable location def, insert new defs for the memory
858 /// location with fragments for the difference of "all bits currently in
859 /// memory" and "the fragment of the second def". e.g.
863 /// var x bits 0 to 63: value in memory
864 /// more instructions
865 /// var x bits 0 to 31: value is %0
869 /// var x bits 0 to 63: value in memory
870 /// more instructions
871 /// var x bits 0 to 31: value is %0
872 /// var x bits 32 to 61: value in memory ; <-- new loc def
874 void run(FunctionVarLocsBuilder
*FnVarLocs
) {
875 if (!EnableMemLocFragFill
)
878 this->FnVarLocs
= FnVarLocs
;
880 // Prepare for traversal.
882 ReversePostOrderTraversal
<Function
*> RPOT(&Fn
);
883 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
884 std::greater
<unsigned int>>
886 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
887 std::greater
<unsigned int>>
889 DenseMap
<unsigned int, BasicBlock
*> OrderToBB
;
890 DenseMap
<BasicBlock
*, unsigned int> BBToOrder
;
891 { // Init OrderToBB and BBToOrder.
892 unsigned int RPONumber
= 0;
893 for (auto RI
= RPOT
.begin(), RE
= RPOT
.end(); RI
!= RE
; ++RI
) {
894 OrderToBB
[RPONumber
] = *RI
;
895 BBToOrder
[*RI
] = RPONumber
;
896 Worklist
.push(RPONumber
);
899 LiveIn
.init(RPONumber
);
900 LiveOut
.init(RPONumber
);
903 // Perform the traversal.
905 // This is a standard "intersect of predecessor outs" dataflow problem. To
906 // solve it, we perform meet() and process() using the two worklist method
907 // until the LiveIn data for each block becomes unchanging.
909 // This dataflow is essentially working on maps of sets and at each meet we
910 // intersect the maps and the mapped sets. So, initialized live-in maps
911 // monotonically decrease in value throughout the dataflow.
912 SmallPtrSet
<BasicBlock
*, 16> Visited
;
913 while (!Worklist
.empty() || !Pending
.empty()) {
914 // We track what is on the pending worklist to avoid inserting the same
915 // thing twice. We could avoid this with a custom priority queue, but
916 // this is probably not worth it.
917 SmallPtrSet
<BasicBlock
*, 16> OnPending
;
918 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
919 while (!Worklist
.empty()) {
920 BasicBlock
*BB
= OrderToBB
[Worklist
.top()];
921 LLVM_DEBUG(dbgs() << "\nPop BB " << BB
->getName() << "\n");
923 bool InChanged
= meet(*BB
, Visited
);
924 // Always consider LiveIn changed on the first visit.
925 InChanged
|= Visited
.insert(BB
).second
;
928 << BB
->getName() << " has new InLocs, process it\n");
929 // Mutate a copy of LiveIn while processing BB. Once we've processed
930 // the terminator LiveSet is the LiveOut set for BB.
931 // This is an expensive copy!
932 VarFragMap LiveSet
= LiveIn
[BB
];
934 // Process the instructions in the block.
935 process(*BB
, LiveSet
);
937 // Relatively expensive check: has anything changed in LiveOut for BB?
938 if (!varFragMapsAreEqual(LiveOut
[BB
], LiveSet
)) {
939 LLVM_DEBUG(dbgs() << BB
->getName()
940 << " has new OutLocs, add succs to worklist: [ ");
941 LiveOut
[BB
] = std::move(LiveSet
);
942 for (auto I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; I
++) {
943 if (OnPending
.insert(*I
).second
) {
944 LLVM_DEBUG(dbgs() << I
->getName() << " ");
945 Pending
.push(BBToOrder
[*I
]);
948 LLVM_DEBUG(dbgs() << "]\n");
952 Worklist
.swap(Pending
);
953 // At this point, pending must be empty, since it was just the empty
955 assert(Pending
.empty() && "Pending should be empty");
958 // Insert new location defs.
959 for (auto &Pair
: BBInsertBeforeMap
) {
960 InsertMap
&Map
= Pair
.second
;
961 for (auto &Pair
: Map
) {
962 auto InsertBefore
= Pair
.first
;
963 assert(InsertBefore
&& "should never be null");
964 auto FragMemLocs
= Pair
.second
;
965 auto &Ctx
= Fn
.getContext();
967 for (auto &FragMemLoc
: FragMemLocs
) {
968 DIExpression
*Expr
= DIExpression::get(Ctx
, std::nullopt
);
969 if (FragMemLoc
.SizeInBits
!=
970 *Aggregates
[FragMemLoc
.Var
].first
->getSizeInBits())
971 Expr
= *DIExpression::createFragmentExpression(
972 Expr
, FragMemLoc
.OffsetInBits
, FragMemLoc
.SizeInBits
);
973 Expr
= DIExpression::prepend(Expr
, DIExpression::DerefAfter
,
974 FragMemLoc
.OffsetInBits
/ 8);
975 DebugVariable
Var(Aggregates
[FragMemLoc
.Var
].first
, Expr
,
976 FragMemLoc
.DL
.getInlinedAt());
977 FnVarLocs
->addVarLoc(InsertBefore
, Var
, Expr
, FragMemLoc
.DL
,
978 Bases
[FragMemLoc
.Base
]);
985 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
986 /// that interprets assignment tracking debug info metadata and stores in IR to
987 /// create a map of variable locations.
988 class AssignmentTrackingLowering
{
990 /// The kind of location in use for a variable, where Mem is the stack home,
991 /// Val is an SSA value or const, and None means that there is not one single
992 /// kind (either because there are multiple or because there is none; it may
993 /// prove useful to split this into two values in the future).
995 /// LocKind is a join-semilattice with the partial order:
999 /// join(Mem, Mem) = Mem
1000 /// join(Val, Val) = Val
1001 /// join(Mem, Val) = None
1002 /// join(None, Mem) = None
1003 /// join(None, Val) = None
1004 /// join(None, None) = None
1006 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
1007 /// to name assignments and are not tracking the actual stored values.
1008 /// Therefore currently there's no way to ensure that Mem values and Val
1009 /// values are the same. This could be a future extension, though it's not
1010 /// clear that many additional locations would be recovered that way in
1011 /// practice as the likelihood of this sitation arising naturally seems
1013 enum class LocKind
{ Mem
, Val
, None
};
1015 /// An abstraction of the assignment of a value to a variable or memory
1018 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
1019 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
1020 /// can't) know the ID of the last assignment that took place.
1022 /// The Status of the Assignment (Known or NoneOrPhi) is another
1023 /// join-semilattice. The partial order is:
1024 /// NoneOrPhi > Known {id_0, id_1, ...id_N}
1026 /// i.e. for all values x and y where x != y:
1028 /// join(x, y) = NoneOrPhi
1029 using AssignRecord
= PointerUnion
<DbgAssignIntrinsic
*, DPValue
*>;
1031 enum S
{ Known
, NoneOrPhi
} Status
;
1032 /// ID of the assignment. nullptr if Status is not Known.
1034 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
1036 AssignRecord Source
;
1038 bool isSameSourceAssignment(const Assignment
&Other
) const {
1039 // Don't include Source in the equality check. Assignments are
1040 // defined by their ID, not debug intrinsic(s).
1041 return std::tie(Status
, ID
) == std::tie(Other
.Status
, Other
.ID
);
1043 void dump(raw_ostream
&OS
) {
1044 static const char *LUT
[] = {"Known", "NoneOrPhi"};
1045 OS
<< LUT
[Status
] << "(id=";
1051 if (Source
.isNull())
1053 else if (isa
<DbgAssignIntrinsic
*>(Source
))
1054 OS
<< Source
.get
<DbgAssignIntrinsic
*>();
1056 OS
<< Source
.get
<DPValue
*>();
1060 static Assignment
make(DIAssignID
*ID
, DbgAssignIntrinsic
*Source
) {
1061 return Assignment(Known
, ID
, Source
);
1063 static Assignment
make(DIAssignID
*ID
, DPValue
*Source
) {
1064 assert(Source
->isDbgAssign() &&
1065 "Cannot make an assignment from a non-assign DPValue");
1066 return Assignment(Known
, ID
, Source
);
1068 static Assignment
make(DIAssignID
*ID
, AssignRecord Source
) {
1069 return Assignment(Known
, ID
, Source
);
1071 static Assignment
makeFromMemDef(DIAssignID
*ID
) {
1072 return Assignment(Known
, ID
);
1074 static Assignment
makeNoneOrPhi() { return Assignment(NoneOrPhi
, nullptr); }
1075 // Again, need a Top value?
1076 Assignment() : Status(NoneOrPhi
), ID(nullptr) {} // Can we delete this?
1077 Assignment(S Status
, DIAssignID
*ID
) : Status(Status
), ID(ID
) {
1078 // If the Status is Known then we expect there to be an assignment ID.
1079 assert(Status
== NoneOrPhi
|| ID
);
1081 Assignment(S Status
, DIAssignID
*ID
, DbgAssignIntrinsic
*Source
)
1082 : Status(Status
), ID(ID
), Source(Source
) {
1083 // If the Status is Known then we expect there to be an assignment ID.
1084 assert(Status
== NoneOrPhi
|| ID
);
1086 Assignment(S Status
, DIAssignID
*ID
, DPValue
*Source
)
1087 : Status(Status
), ID(ID
), Source(Source
) {
1088 // If the Status is Known then we expect there to be an assignment ID.
1089 assert(Status
== NoneOrPhi
|| ID
);
1091 Assignment(S Status
, DIAssignID
*ID
, AssignRecord Source
)
1092 : Status(Status
), ID(ID
), Source(Source
) {
1093 // If the Status is Known then we expect there to be an assignment ID.
1094 assert(Status
== NoneOrPhi
|| ID
);
1098 using AssignmentMap
= SmallVector
<Assignment
>;
1099 using LocMap
= SmallVector
<LocKind
>;
1100 using OverlapMap
= DenseMap
<VariableID
, SmallVector
<VariableID
>>;
1101 using UntaggedStoreAssignmentMap
=
1102 DenseMap
<const Instruction
*,
1103 SmallVector
<std::pair
<VariableID
, at::AssignmentInfo
>>>;
1106 /// The highest numbered VariableID for partially promoted variables plus 1,
1107 /// the values for which start at 1.
1108 unsigned TrackedVariablesVectorSize
= 0;
1109 /// Map a variable to the set of variables that it fully contains.
1110 OverlapMap VarContains
;
1111 /// Map untagged stores to the variable fragments they assign to. Used by
1112 /// processUntaggedInstruction.
1113 UntaggedStoreAssignmentMap UntaggedStoreVars
;
1115 // Machinery to defer inserting dbg.values.
1116 using InstInsertMap
= MapVector
<VarLocInsertPt
, SmallVector
<VarLocInfo
>>;
1117 InstInsertMap InsertBeforeMap
;
1118 /// Clear the location definitions currently cached for insertion after /p
1120 void resetInsertionPoint(Instruction
&After
);
1121 void resetInsertionPoint(DPValue
&After
);
1123 // emitDbgValue can be called with:
1124 // Source=[AssignRecord|DbgValueInst*|DbgAssignIntrinsic*|DPValue*]
1125 // Since AssignRecord can be cast to one of the latter two types, and all
1126 // other types have a shared interface, we use a template to handle the latter
1127 // three types, and an explicit overload for AssignRecord that forwards to
1128 // the template version with the right type.
1129 void emitDbgValue(LocKind Kind
, AssignRecord Source
, VarLocInsertPt After
);
1130 template <typename T
>
1131 void emitDbgValue(LocKind Kind
, const T Source
, VarLocInsertPt After
);
1133 static bool mapsAreEqual(const BitVector
&Mask
, const AssignmentMap
&A
,
1134 const AssignmentMap
&B
) {
1135 return llvm::all_of(Mask
.set_bits(), [&](unsigned VarID
) {
1136 return A
[VarID
].isSameSourceAssignment(B
[VarID
]);
1140 /// Represents the stack and debug assignments in a block. Used to describe
1141 /// the live-in and live-out values for blocks, as well as the "current"
1142 /// value as we process each instruction in a block.
1144 /// The set of variables (VariableID) being tracked in this block.
1145 BitVector VariableIDsInBlock
;
1146 /// Dominating assignment to memory for each variable, indexed by
1148 AssignmentMap StackHomeValue
;
1149 /// Dominating assignemnt to each variable, indexed by VariableID.
1150 AssignmentMap DebugValue
;
1151 /// Location kind for each variable. LiveLoc indicates whether the
1152 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1153 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1154 /// preference. This cannot be derived by inspecting DebugValue and
1155 /// StackHomeValue due to the fact that there's no distinction in
1156 /// Assignment (the class) between whether an assignment is unknown or a
1157 /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1158 /// words, the memory location may well be valid while both DebugValue and
1159 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1160 /// Indexed by VariableID.
1164 enum AssignmentKind
{ Stack
, Debug
};
1165 const AssignmentMap
&getAssignmentMap(AssignmentKind Kind
) const {
1168 return StackHomeValue
;
1172 llvm_unreachable("Unknown AssignmentKind");
1174 AssignmentMap
&getAssignmentMap(AssignmentKind Kind
) {
1175 return const_cast<AssignmentMap
&>(
1176 const_cast<const BlockInfo
*>(this)->getAssignmentMap(Kind
));
1179 bool isVariableTracked(VariableID Var
) const {
1180 return VariableIDsInBlock
[static_cast<unsigned>(Var
)];
1183 const Assignment
&getAssignment(AssignmentKind Kind
, VariableID Var
) const {
1184 assert(isVariableTracked(Var
) && "Var not tracked in block");
1185 return getAssignmentMap(Kind
)[static_cast<unsigned>(Var
)];
1188 LocKind
getLocKind(VariableID Var
) const {
1189 assert(isVariableTracked(Var
) && "Var not tracked in block");
1190 return LiveLoc
[static_cast<unsigned>(Var
)];
1193 /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1194 /// fragments contained win \p Var.
1195 void setLocKind(VariableID Var
, LocKind K
) {
1196 VariableIDsInBlock
.set(static_cast<unsigned>(Var
));
1197 LiveLoc
[static_cast<unsigned>(Var
)] = K
;
1200 /// Set the assignment in the \p Kind assignment map for \p Var only: does
1201 /// not set the assignment for VariableIDs of fragments contained win \p
1203 void setAssignment(AssignmentKind Kind
, VariableID Var
,
1204 const Assignment
&AV
) {
1205 VariableIDsInBlock
.set(static_cast<unsigned>(Var
));
1206 getAssignmentMap(Kind
)[static_cast<unsigned>(Var
)] = AV
;
1209 /// Return true if there is an assignment matching \p AV in the \p Kind
1210 /// assignment map. Does consider assignments for VariableIDs of fragments
1211 /// contained win \p Var.
1212 bool hasAssignment(AssignmentKind Kind
, VariableID Var
,
1213 const Assignment
&AV
) const {
1214 if (!isVariableTracked(Var
))
1216 return AV
.isSameSourceAssignment(getAssignment(Kind
, Var
));
1219 /// Compare every element in each map to determine structural equality
1221 bool operator==(const BlockInfo
&Other
) const {
1222 return VariableIDsInBlock
== Other
.VariableIDsInBlock
&&
1223 LiveLoc
== Other
.LiveLoc
&&
1224 mapsAreEqual(VariableIDsInBlock
, StackHomeValue
,
1225 Other
.StackHomeValue
) &&
1226 mapsAreEqual(VariableIDsInBlock
, DebugValue
, Other
.DebugValue
);
1228 bool operator!=(const BlockInfo
&Other
) const { return !(*this == Other
); }
1230 return LiveLoc
.size() == DebugValue
.size() &&
1231 LiveLoc
.size() == StackHomeValue
.size();
1234 /// Clear everything and initialise with ⊤-values for all variables.
1235 void init(int NumVars
) {
1236 StackHomeValue
.clear();
1239 VariableIDsInBlock
= BitVector(NumVars
);
1240 StackHomeValue
.insert(StackHomeValue
.begin(), NumVars
,
1241 Assignment::makeNoneOrPhi());
1242 DebugValue
.insert(DebugValue
.begin(), NumVars
,
1243 Assignment::makeNoneOrPhi());
1244 LiveLoc
.insert(LiveLoc
.begin(), NumVars
, LocKind::None
);
1247 /// Helper for join.
1248 template <typename ElmtType
, typename FnInputType
>
1249 static void joinElmt(int Index
, SmallVector
<ElmtType
> &Target
,
1250 const SmallVector
<ElmtType
> &A
,
1251 const SmallVector
<ElmtType
> &B
,
1252 ElmtType (*Fn
)(FnInputType
, FnInputType
)) {
1253 Target
[Index
] = Fn(A
[Index
], B
[Index
]);
1256 /// See comment for AssignmentTrackingLowering::joinBlockInfo.
1257 static BlockInfo
join(const BlockInfo
&A
, const BlockInfo
&B
, int NumVars
) {
1260 // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1261 // Difference = join(x, ⊤) for x where Var(x) is in A xor B
1262 // Join = Intersect ∪ Difference
1264 // This is achieved by performing a join on elements from A and B with
1265 // variables common to both A and B (join elements indexed by var
1266 // intersect), then adding ⊤-value elements for vars in A xor B. The
1267 // latter part is equivalent to performing join on elements with variables
1268 // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
1269 // BlockInfo::init initializes all variable entries to the ⊤ value so we
1270 // don't need to explicitly perform that step as Join.VariableIDsInBlock
1271 // is set to the union of the variables in A and B at the end of this
1276 BitVector Intersect
= A
.VariableIDsInBlock
;
1277 Intersect
&= B
.VariableIDsInBlock
;
1279 for (auto VarID
: Intersect
.set_bits()) {
1280 joinElmt(VarID
, Join
.LiveLoc
, A
.LiveLoc
, B
.LiveLoc
, joinKind
);
1281 joinElmt(VarID
, Join
.DebugValue
, A
.DebugValue
, B
.DebugValue
,
1283 joinElmt(VarID
, Join
.StackHomeValue
, A
.StackHomeValue
, B
.StackHomeValue
,
1287 Join
.VariableIDsInBlock
= A
.VariableIDsInBlock
;
1288 Join
.VariableIDsInBlock
|= B
.VariableIDsInBlock
;
1289 assert(Join
.isValid());
1295 const DataLayout
&Layout
;
1296 const DenseSet
<DebugAggregate
> *VarsWithStackSlot
;
1297 FunctionVarLocsBuilder
*FnVarLocs
;
1298 DenseMap
<const BasicBlock
*, BlockInfo
> LiveIn
;
1299 DenseMap
<const BasicBlock
*, BlockInfo
> LiveOut
;
1301 /// Helper for process methods to track variables touched each frame.
1302 DenseSet
<VariableID
> VarsTouchedThisFrame
;
1304 /// The set of variables that sometimes are not located in their stack home.
1305 DenseSet
<DebugAggregate
> NotAlwaysStackHomed
;
1307 VariableID
getVariableID(const DebugVariable
&Var
) {
1308 return static_cast<VariableID
>(FnVarLocs
->insertVariable(Var
));
1311 /// Join the LiveOut values of preds that are contained in \p Visited into
1312 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1313 /// values monotonically increase. See the @link joinMethods join methods
1314 /// @endlink documentation for more info.
1315 bool join(const BasicBlock
&BB
, const SmallPtrSet
<BasicBlock
*, 16> &Visited
);
1316 ///@name joinMethods
1317 /// Functions that implement `join` (the least upper bound) for the
1318 /// join-semilattice types used in the dataflow. There is an explicit bottom
1319 /// value (⊥) for some types and and explicit top value (⊤) for all types.
1322 /// Join(A, B) >= A && Join(A, B) >= B
1323 /// Join(A, ⊥) = A
1324 /// Join(A, ⊤) = ⊤
1326 /// These invariants are important for monotonicity.
1328 /// For the map-type functions, all unmapped keys in an empty map are
1329 /// associated with a bottom value (⊥). This represents their values being
1330 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1331 /// only present in one) represents either a variable going out of scope or
1332 /// dropped debug info. It is assumed the key is associated with a top value
1333 /// (⊤) in this case (unknown location / assignment).
1335 static LocKind
joinKind(LocKind A
, LocKind B
);
1336 static Assignment
joinAssignment(const Assignment
&A
, const Assignment
&B
);
1337 BlockInfo
joinBlockInfo(const BlockInfo
&A
, const BlockInfo
&B
);
1340 /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1341 /// LiveSet must be initialized with the current live-in locations before
1343 void process(BasicBlock
&BB
, BlockInfo
*LiveSet
);
1344 ///@name processMethods
1345 /// Methods to process instructions in order to update the LiveSet (current
1346 /// location information).
1348 void processNonDbgInstruction(Instruction
&I
, BlockInfo
*LiveSet
);
1349 void processDbgInstruction(DbgInfoIntrinsic
&I
, BlockInfo
*LiveSet
);
1350 /// Update \p LiveSet after encountering an instruction with a DIAssignID
1351 /// attachment, \p I.
1352 void processTaggedInstruction(Instruction
&I
, BlockInfo
*LiveSet
);
1353 /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1354 /// attachment, \p I.
1355 void processUntaggedInstruction(Instruction
&I
, BlockInfo
*LiveSet
);
1356 void processDbgAssign(AssignRecord Assign
, BlockInfo
*LiveSet
);
1357 void processDPValue(DPValue
&DPV
, BlockInfo
*LiveSet
);
1358 void processDbgValue(PointerUnion
<DbgValueInst
*, DPValue
*> DbgValueRecord
,
1359 BlockInfo
*LiveSet
);
1360 /// Add an assignment to memory for the variable /p Var.
1361 void addMemDef(BlockInfo
*LiveSet
, VariableID Var
, const Assignment
&AV
);
1362 /// Add an assignment to the variable /p Var.
1363 void addDbgDef(BlockInfo
*LiveSet
, VariableID Var
, const Assignment
&AV
);
1366 /// Set the LocKind for \p Var.
1367 void setLocKind(BlockInfo
*LiveSet
, VariableID Var
, LocKind K
);
1368 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1369 /// have been called for \p Var first.
1370 LocKind
getLocKind(BlockInfo
*LiveSet
, VariableID Var
);
1371 /// Return true if \p Var has an assignment in \p M matching \p AV.
1372 bool hasVarWithAssignment(BlockInfo
*LiveSet
, BlockInfo::AssignmentKind Kind
,
1373 VariableID Var
, const Assignment
&AV
);
1374 /// Return the set of VariableIDs corresponding the fragments contained fully
1375 /// within the variable/fragment \p Var.
1376 ArrayRef
<VariableID
> getContainedFragments(VariableID Var
) const;
1378 /// Mark \p Var as having been touched this frame. Note, this applies only
1379 /// to the exact fragment \p Var and not to any fragments contained within.
1380 void touchFragment(VariableID Var
);
1382 /// Emit info for variables that are fully promoted.
1383 bool emitPromotedVarLocs(FunctionVarLocsBuilder
*FnVarLocs
);
1386 AssignmentTrackingLowering(Function
&Fn
, const DataLayout
&Layout
,
1387 const DenseSet
<DebugAggregate
> *VarsWithStackSlot
)
1388 : Fn(Fn
), Layout(Layout
), VarsWithStackSlot(VarsWithStackSlot
) {}
1389 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1390 /// true if any variable locations have been added to FnVarLocs.
1391 bool run(FunctionVarLocsBuilder
*FnVarLocs
);
1395 ArrayRef
<VariableID
>
1396 AssignmentTrackingLowering::getContainedFragments(VariableID Var
) const {
1397 auto R
= VarContains
.find(Var
);
1398 if (R
== VarContains
.end())
1399 return std::nullopt
;
1403 void AssignmentTrackingLowering::touchFragment(VariableID Var
) {
1404 VarsTouchedThisFrame
.insert(Var
);
1407 void AssignmentTrackingLowering::setLocKind(BlockInfo
*LiveSet
, VariableID Var
,
1409 auto SetKind
= [this](BlockInfo
*LiveSet
, VariableID Var
, LocKind K
) {
1410 LiveSet
->setLocKind(Var
, K
);
1413 SetKind(LiveSet
, Var
, K
);
1415 // Update the LocKind for all fragments contained within Var.
1416 for (VariableID Frag
: getContainedFragments(Var
))
1417 SetKind(LiveSet
, Frag
, K
);
1420 AssignmentTrackingLowering::LocKind
1421 AssignmentTrackingLowering::getLocKind(BlockInfo
*LiveSet
, VariableID Var
) {
1422 return LiveSet
->getLocKind(Var
);
1425 void AssignmentTrackingLowering::addMemDef(BlockInfo
*LiveSet
, VariableID Var
,
1426 const Assignment
&AV
) {
1427 LiveSet
->setAssignment(BlockInfo::Stack
, Var
, AV
);
1429 // Use this assigment for all fragments contained within Var, but do not
1430 // provide a Source because we cannot convert Var's value to a value for the
1432 Assignment FragAV
= AV
;
1433 FragAV
.Source
= nullptr;
1434 for (VariableID Frag
: getContainedFragments(Var
))
1435 LiveSet
->setAssignment(BlockInfo::Stack
, Frag
, FragAV
);
1438 void AssignmentTrackingLowering::addDbgDef(BlockInfo
*LiveSet
, VariableID Var
,
1439 const Assignment
&AV
) {
1440 LiveSet
->setAssignment(BlockInfo::Debug
, Var
, AV
);
1442 // Use this assigment for all fragments contained within Var, but do not
1443 // provide a Source because we cannot convert Var's value to a value for the
1445 Assignment FragAV
= AV
;
1446 FragAV
.Source
= nullptr;
1447 for (VariableID Frag
: getContainedFragments(Var
))
1448 LiveSet
->setAssignment(BlockInfo::Debug
, Frag
, FragAV
);
1451 static DIAssignID
*getIDFromInst(const Instruction
&I
) {
1452 return cast
<DIAssignID
>(I
.getMetadata(LLVMContext::MD_DIAssignID
));
1455 static DIAssignID
*getIDFromMarker(const DbgAssignIntrinsic
&DAI
) {
1456 return cast
<DIAssignID
>(DAI
.getAssignID());
1459 static DIAssignID
*getIDFromMarker(const DPValue
&DPV
) {
1460 assert(DPV
.isDbgAssign() &&
1461 "Cannot get a DIAssignID from a non-assign DPValue!");
1462 return DPV
.getAssignID();
1465 /// Return true if \p Var has an assignment in \p M matching \p AV.
1466 bool AssignmentTrackingLowering::hasVarWithAssignment(
1467 BlockInfo
*LiveSet
, BlockInfo::AssignmentKind Kind
, VariableID Var
,
1468 const Assignment
&AV
) {
1469 if (!LiveSet
->hasAssignment(Kind
, Var
, AV
))
1472 // Check all the frags contained within Var as these will have all been
1473 // mapped to AV at the last store to Var.
1474 for (VariableID Frag
: getContainedFragments(Var
))
1475 if (!LiveSet
->hasAssignment(Kind
, Frag
, AV
))
1481 const char *locStr(AssignmentTrackingLowering::LocKind Loc
) {
1482 using LocKind
= AssignmentTrackingLowering::LocKind
;
1491 llvm_unreachable("unknown LocKind");
1495 VarLocInsertPt
getNextNode(const DPValue
*DPV
) {
1496 auto NextIt
= ++(DPV
->getIterator());
1497 if (NextIt
== DPV
->getMarker()->getDbgValueRange().end())
1498 return DPV
->getMarker()->MarkedInstr
;
1501 VarLocInsertPt
getNextNode(const Instruction
*Inst
) {
1502 const Instruction
*Next
= Inst
->getNextNode();
1503 if (!Next
->hasDbgValues())
1505 return &*Next
->getDbgValueRange().begin();
1507 VarLocInsertPt
getNextNode(VarLocInsertPt InsertPt
) {
1508 if (isa
<const Instruction
*>(InsertPt
))
1509 return getNextNode(cast
<const Instruction
*>(InsertPt
));
1510 return getNextNode(cast
<const DPValue
*>(InsertPt
));
1513 DbgAssignIntrinsic
*CastToDbgAssign(DbgVariableIntrinsic
*DVI
) {
1514 return cast
<DbgAssignIntrinsic
>(DVI
);
1517 DPValue
*CastToDbgAssign(DPValue
*DPV
) {
1518 assert(DPV
->isDbgAssign() &&
1519 "Attempted to cast non-assign DPValue to DPVAssign.");
1523 void AssignmentTrackingLowering::emitDbgValue(
1524 AssignmentTrackingLowering::LocKind Kind
,
1525 AssignmentTrackingLowering::AssignRecord Source
, VarLocInsertPt After
) {
1526 if (isa
<DbgAssignIntrinsic
*>(Source
))
1527 emitDbgValue(Kind
, cast
<DbgAssignIntrinsic
*>(Source
), After
);
1529 emitDbgValue(Kind
, cast
<DPValue
*>(Source
), After
);
1531 template <typename T
>
1532 void AssignmentTrackingLowering::emitDbgValue(
1533 AssignmentTrackingLowering::LocKind Kind
, const T Source
,
1534 VarLocInsertPt After
) {
1536 DILocation
*DL
= Source
->getDebugLoc();
1537 auto Emit
= [this, Source
, After
, DL
](Metadata
*Val
, DIExpression
*Expr
) {
1540 Val
= ValueAsMetadata::get(
1541 PoisonValue::get(Type::getInt1Ty(Source
->getContext())));
1543 // Find a suitable insert point.
1544 auto InsertBefore
= getNextNode(After
);
1545 assert(InsertBefore
&& "Shouldn't be inserting after a terminator");
1547 VariableID Var
= getVariableID(DebugVariable(Source
));
1549 VarLoc
.VariableID
= static_cast<VariableID
>(Var
);
1551 VarLoc
.Values
= RawLocationWrapper(Val
);
1553 // Insert it into the map for later.
1554 InsertBeforeMap
[InsertBefore
].push_back(VarLoc
);
1557 // NOTE: This block can mutate Kind.
1558 if (Kind
== LocKind::Mem
) {
1559 const auto *Assign
= CastToDbgAssign(Source
);
1560 // Check the address hasn't been dropped (e.g. the debug uses may not have
1561 // been replaced before deleting a Value).
1562 if (Assign
->isKillAddress()) {
1563 // The address isn't valid so treat this as a non-memory def.
1564 Kind
= LocKind::Val
;
1566 Value
*Val
= Assign
->getAddress();
1567 DIExpression
*Expr
= Assign
->getAddressExpression();
1568 assert(!Expr
->getFragmentInfo() &&
1569 "fragment info should be stored in value-expression only");
1570 // Copy the fragment info over from the value-expression to the new
1572 if (auto OptFragInfo
= Source
->getExpression()->getFragmentInfo()) {
1573 auto FragInfo
= *OptFragInfo
;
1574 Expr
= *DIExpression::createFragmentExpression(
1575 Expr
, FragInfo
.OffsetInBits
, FragInfo
.SizeInBits
);
1577 // The address-expression has an implicit deref, add it now.
1578 std::tie(Val
, Expr
) =
1579 walkToAllocaAndPrependOffsetDeref(Layout
, Val
, Expr
);
1580 Emit(ValueAsMetadata::get(Val
), Expr
);
1585 if (Kind
== LocKind::Val
) {
1586 Emit(Source
->getRawLocation(), Source
->getExpression());
1590 if (Kind
== LocKind::None
) {
1591 Emit(nullptr, Source
->getExpression());
1596 void AssignmentTrackingLowering::processNonDbgInstruction(
1597 Instruction
&I
, AssignmentTrackingLowering::BlockInfo
*LiveSet
) {
1598 if (I
.hasMetadata(LLVMContext::MD_DIAssignID
))
1599 processTaggedInstruction(I
, LiveSet
);
1601 processUntaggedInstruction(I
, LiveSet
);
1604 void AssignmentTrackingLowering::processUntaggedInstruction(
1605 Instruction
&I
, AssignmentTrackingLowering::BlockInfo
*LiveSet
) {
1606 // Interpret stack stores that are not tagged as an assignment in memory for
1607 // the variables associated with that address. These stores may not be tagged
1608 // because a) the store cannot be represented using dbg.assigns (non-const
1609 // length or offset) or b) the tag was accidentally dropped during
1610 // optimisations. For these stores we fall back to assuming that the stack
1611 // home is a valid location for the variables. The benefit is that this
1612 // prevents us missing an assignment and therefore incorrectly maintaining
1613 // earlier location definitions, and in many cases it should be a reasonable
1614 // assumption. However, this will occasionally lead to slight
1615 // inaccuracies. The value of a hoisted untagged store will be visible
1616 // "early", for example.
1617 assert(!I
.hasMetadata(LLVMContext::MD_DIAssignID
));
1618 auto It
= UntaggedStoreVars
.find(&I
);
1619 if (It
== UntaggedStoreVars
.end())
1620 return; // No variables associated with the store destination.
1622 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1624 // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1625 // and mem def, set lockind to Mem, and emit a location def for each.
1626 for (auto [Var
, Info
] : It
->second
) {
1627 // This instruction is treated as both a debug and memory assignment,
1628 // meaning the memory location should be used. We don't have an assignment
1629 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1630 addMemDef(LiveSet
, Var
, Assignment::makeNoneOrPhi());
1631 addDbgDef(LiveSet
, Var
, Assignment::makeNoneOrPhi());
1632 setLocKind(LiveSet
, Var
, LocKind::Mem
);
1633 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem
)
1635 // Build the dbg location def to insert.
1637 // DIExpression: Add fragment and offset.
1638 DebugVariable V
= FnVarLocs
->getVariable(Var
);
1639 DIExpression
*DIE
= DIExpression::get(I
.getContext(), std::nullopt
);
1640 if (auto Frag
= V
.getFragment()) {
1641 auto R
= DIExpression::createFragmentExpression(DIE
, Frag
->OffsetInBits
,
1643 assert(R
&& "unexpected createFragmentExpression failure");
1646 SmallVector
<uint64_t, 3> Ops
;
1647 if (Info
.OffsetInBits
)
1648 Ops
= {dwarf::DW_OP_plus_uconst
, Info
.OffsetInBits
/ 8};
1649 Ops
.push_back(dwarf::DW_OP_deref
);
1650 DIE
= DIExpression::prependOpcodes(DIE
, Ops
, /*StackValue=*/false,
1651 /*EntryValue=*/false);
1652 // Find a suitable insert point, before the next instruction or DPValue
1654 auto InsertBefore
= getNextNode(&I
);
1655 assert(InsertBefore
&& "Shouldn't be inserting after a terminator");
1657 // Get DILocation for this unrecorded assignment.
1658 DILocation
*InlinedAt
= const_cast<DILocation
*>(V
.getInlinedAt());
1659 const DILocation
*DILoc
= DILocation::get(
1660 Fn
.getContext(), 0, 0, V
.getVariable()->getScope(), InlinedAt
);
1663 VarLoc
.VariableID
= static_cast<VariableID
>(Var
);
1665 VarLoc
.Values
= RawLocationWrapper(
1666 ValueAsMetadata::get(const_cast<AllocaInst
*>(Info
.Base
)));
1668 // 3. Insert it into the map for later.
1669 InsertBeforeMap
[InsertBefore
].push_back(VarLoc
);
1673 void AssignmentTrackingLowering::processTaggedInstruction(
1674 Instruction
&I
, AssignmentTrackingLowering::BlockInfo
*LiveSet
) {
1675 auto Linked
= at::getAssignmentMarkers(&I
);
1676 auto LinkedDPAssigns
= at::getDPVAssignmentMarkers(&I
);
1677 // No dbg.assign intrinsics linked.
1678 // FIXME: All vars that have a stack slot this store modifies that don't have
1679 // a dbg.assign linked to it should probably treat this like an untagged
1681 if (Linked
.empty() && LinkedDPAssigns
.empty())
1684 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I
<< "\n");
1685 auto ProcessLinkedAssign
= [&](auto *Assign
) {
1686 VariableID Var
= getVariableID(DebugVariable(Assign
));
1687 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1688 // that is linked to a store.
1689 assert(VarsWithStackSlot
->count(getAggregate(Assign
)) &&
1690 "expected Assign's variable to have stack slot");
1692 Assignment AV
= Assignment::makeFromMemDef(getIDFromInst(I
));
1693 addMemDef(LiveSet
, Var
, AV
);
1695 LLVM_DEBUG(dbgs() << " linked to " << *Assign
<< "\n");
1696 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet
, Var
))
1699 // The last assignment to the stack is now AV. Check if the last debug
1700 // assignment has a matching Assignment.
1701 if (hasVarWithAssignment(LiveSet
, BlockInfo::Debug
, Var
, AV
)) {
1702 // The StackHomeValue and DebugValue for this variable match so we can
1703 // emit a stack home location here.
1704 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1705 LLVM_DEBUG(dbgs() << " Stack val: "; AV
.dump(dbgs()); dbgs() << "\n");
1706 LLVM_DEBUG(dbgs() << " Debug val: ";
1707 LiveSet
->DebugValue
[static_cast<unsigned>(Var
)].dump(dbgs());
1709 setLocKind(LiveSet
, Var
, LocKind::Mem
);
1710 emitDbgValue(LocKind::Mem
, Assign
, &I
);
1714 // The StackHomeValue and DebugValue for this variable do not match. I.e.
1715 // The value currently stored in the stack is not what we'd expect to
1716 // see, so we cannot use emit a stack home location here. Now we will
1717 // look at the live LocKind for the variable and determine an appropriate
1718 // dbg.value to emit.
1719 LocKind PrevLoc
= getLocKind(LiveSet
, Var
);
1721 case LocKind::Val
: {
1722 // The value in memory in memory has changed but we're not currently
1723 // using the memory location. Do nothing.
1724 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1725 setLocKind(LiveSet
, Var
, LocKind::Val
);
1727 case LocKind::Mem
: {
1728 // There's been an assignment to memory that we were using as a
1729 // location for this variable, and the Assignment doesn't match what
1730 // we'd expect to see in memory.
1731 Assignment DbgAV
= LiveSet
->getAssignment(BlockInfo::Debug
, Var
);
1732 if (DbgAV
.Status
== Assignment::NoneOrPhi
) {
1733 // We need to terminate any previously open location now.
1734 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1735 setLocKind(LiveSet
, Var
, LocKind::None
);
1736 emitDbgValue(LocKind::None
, Assign
, &I
);
1738 // The previous DebugValue Value can be used here.
1739 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1740 setLocKind(LiveSet
, Var
, LocKind::Val
);
1742 emitDbgValue(LocKind::Val
, DbgAV
.Source
, &I
);
1744 // PrevAV.Source is nullptr so we must emit undef here.
1745 emitDbgValue(LocKind::None
, Assign
, &I
);
1749 case LocKind::None
: {
1750 // There's been an assignment to memory and we currently are
1751 // not tracking a location for the variable. Do not emit anything.
1752 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1753 setLocKind(LiveSet
, Var
, LocKind::None
);
1757 for (DbgAssignIntrinsic
*DAI
: Linked
)
1758 ProcessLinkedAssign(DAI
);
1759 for (DPValue
*DPV
: LinkedDPAssigns
)
1760 ProcessLinkedAssign(DPV
);
1763 void AssignmentTrackingLowering::processDbgAssign(AssignRecord Assign
,
1764 BlockInfo
*LiveSet
) {
1765 auto ProcessDbgAssignImpl
= [&](auto *DbgAssign
) {
1766 // Only bother tracking variables that are at some point stack homed. Other
1767 // variables can be dealt with trivially later.
1768 if (!VarsWithStackSlot
->count(getAggregate(DbgAssign
)))
1771 VariableID Var
= getVariableID(DebugVariable(DbgAssign
));
1772 Assignment AV
= Assignment::make(getIDFromMarker(*DbgAssign
), DbgAssign
);
1773 addDbgDef(LiveSet
, Var
, AV
);
1775 LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign
<< "\n";);
1776 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet
, Var
))
1779 // Check if the DebugValue and StackHomeValue both hold the same
1781 if (hasVarWithAssignment(LiveSet
, BlockInfo::Stack
, Var
, AV
)) {
1782 // They match. We can use the stack home because the debug intrinsics
1783 // state that an assignment happened here, and we know that specific
1784 // assignment was the last one to take place in memory for this variable.
1786 if (DbgAssign
->isKillAddress()) {
1789 << "Val, Stack matches Debug program but address is killed\n";);
1790 Kind
= LocKind::Val
;
1792 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1793 Kind
= LocKind::Mem
;
1795 setLocKind(LiveSet
, Var
, Kind
);
1796 emitDbgValue(Kind
, DbgAssign
, DbgAssign
);
1798 // The last assignment to the memory location isn't the one that we want
1799 // to show to the user so emit a dbg.value(Value). Value may be undef.
1800 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1801 setLocKind(LiveSet
, Var
, LocKind::Val
);
1802 emitDbgValue(LocKind::Val
, DbgAssign
, DbgAssign
);
1805 if (isa
<DPValue
*>(Assign
))
1806 return ProcessDbgAssignImpl(cast
<DPValue
*>(Assign
));
1807 return ProcessDbgAssignImpl(cast
<DbgAssignIntrinsic
*>(Assign
));
1810 void AssignmentTrackingLowering::processDbgValue(
1811 PointerUnion
<DbgValueInst
*, DPValue
*> DbgValueRecord
,
1812 BlockInfo
*LiveSet
) {
1813 auto ProcessDbgValueImpl
= [&](auto *DbgValue
) {
1814 // Only other tracking variables that are at some point stack homed.
1815 // Other variables can be dealt with trivally later.
1816 if (!VarsWithStackSlot
->count(getAggregate(DbgValue
)))
1819 VariableID Var
= getVariableID(DebugVariable(DbgValue
));
1820 // We have no ID to create an Assignment with so we mark this assignment as
1821 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1822 // the assignment responsible for setting this value.
1823 // This is fine; dbg.values are essentially interchangable with unlinked
1824 // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1825 // PHIs for promoted variables.
1826 Assignment AV
= Assignment::makeNoneOrPhi();
1827 addDbgDef(LiveSet
, Var
, AV
);
1829 LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue
<< "\n";);
1830 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet
, Var
))
1831 << " -> Val, dbg.value override");
1833 setLocKind(LiveSet
, Var
, LocKind::Val
);
1834 emitDbgValue(LocKind::Val
, DbgValue
, DbgValue
);
1836 if (isa
<DPValue
*>(DbgValueRecord
))
1837 return ProcessDbgValueImpl(cast
<DPValue
*>(DbgValueRecord
));
1838 return ProcessDbgValueImpl(cast
<DbgValueInst
*>(DbgValueRecord
));
1841 template <typename T
> static bool hasZeroSizedFragment(T
&DbgValue
) {
1842 if (auto F
= DbgValue
.getExpression()->getFragmentInfo())
1843 return F
->SizeInBits
== 0;
1847 void AssignmentTrackingLowering::processDbgInstruction(
1848 DbgInfoIntrinsic
&I
, AssignmentTrackingLowering::BlockInfo
*LiveSet
) {
1849 auto *DVI
= dyn_cast
<DbgVariableIntrinsic
>(&I
);
1853 // Ignore assignments to zero bits of the variable.
1854 if (hasZeroSizedFragment(*DVI
))
1857 if (auto *DAI
= dyn_cast
<DbgAssignIntrinsic
>(&I
))
1858 processDbgAssign(DAI
, LiveSet
);
1859 else if (auto *DVI
= dyn_cast
<DbgValueInst
>(&I
))
1860 processDbgValue(DVI
, LiveSet
);
1862 void AssignmentTrackingLowering::processDPValue(
1863 DPValue
&DPV
, AssignmentTrackingLowering::BlockInfo
*LiveSet
) {
1864 // Ignore assignments to zero bits of the variable.
1865 if (hasZeroSizedFragment(DPV
))
1868 if (DPV
.isDbgAssign())
1869 processDbgAssign(&DPV
, LiveSet
);
1870 else if (DPV
.isDbgValue())
1871 processDbgValue(&DPV
, LiveSet
);
1874 void AssignmentTrackingLowering::resetInsertionPoint(Instruction
&After
) {
1875 assert(!After
.isTerminator() && "Can't insert after a terminator");
1876 auto *R
= InsertBeforeMap
.find(getNextNode(&After
));
1877 if (R
== InsertBeforeMap
.end())
1881 void AssignmentTrackingLowering::resetInsertionPoint(DPValue
&After
) {
1882 auto *R
= InsertBeforeMap
.find(getNextNode(&After
));
1883 if (R
== InsertBeforeMap
.end())
1888 void AssignmentTrackingLowering::process(BasicBlock
&BB
, BlockInfo
*LiveSet
) {
1889 // If the block starts with DPValues, we need to process those DPValues as
1890 // their own frame without processing any instructions first.
1891 bool ProcessedLeadingDPValues
= !BB
.begin()->hasDbgValues();
1892 for (auto II
= BB
.begin(), EI
= BB
.end(); II
!= EI
;) {
1893 assert(VarsTouchedThisFrame
.empty());
1894 // Process the instructions in "frames". A "frame" includes a single
1895 // non-debug instruction followed any debug instructions before the
1896 // next non-debug instruction.
1898 // Skip the current instruction if it has unprocessed DPValues attached (see
1899 // comment above `ProcessedLeadingDPValues`).
1900 if (ProcessedLeadingDPValues
) {
1901 // II is now either a debug intrinsic, a non-debug instruction with no
1902 // attached DPValues, or a non-debug instruction with attached processed
1904 // II has not been processed.
1905 if (!isa
<DbgInfoIntrinsic
>(&*II
)) {
1906 if (II
->isTerminator())
1908 resetInsertionPoint(*II
);
1909 processNonDbgInstruction(*II
, LiveSet
);
1910 assert(LiveSet
->isValid());
1914 // II is now either a debug intrinsic, a non-debug instruction with no
1915 // attached DPValues, or a non-debug instruction with attached unprocessed
1917 if (II
!= EI
&& II
->hasDbgValues()) {
1918 for (DPValue
&DPV
: II
->getDbgValueRange()) {
1919 resetInsertionPoint(DPV
);
1920 processDPValue(DPV
, LiveSet
);
1921 assert(LiveSet
->isValid());
1924 ProcessedLeadingDPValues
= true;
1926 auto *Dbg
= dyn_cast
<DbgInfoIntrinsic
>(&*II
);
1929 resetInsertionPoint(*II
);
1930 processDbgInstruction(*Dbg
, LiveSet
);
1931 assert(LiveSet
->isValid());
1934 // II is now a non-debug instruction either with no attached DPValues, or
1935 // with attached processed DPValues. II has not been processed, and all
1936 // debug instructions or DPValues in the frame preceding II have been
1939 // We've processed everything in the "frame". Now determine which variables
1940 // cannot be represented by a dbg.declare.
1941 for (auto Var
: VarsTouchedThisFrame
) {
1942 LocKind Loc
= getLocKind(LiveSet
, Var
);
1943 // If a variable's LocKind is anything other than LocKind::Mem then we
1944 // must note that it cannot be represented with a dbg.declare.
1945 // Note that this check is enough without having to check the result of
1946 // joins() because for join to produce anything other than Mem after
1947 // we've already seen a Mem we'd be joining None or Val with Mem. In that
1948 // case, we've already hit this codepath when we set the LocKind to Val
1949 // or None in that block.
1950 if (Loc
!= LocKind::Mem
) {
1951 DebugVariable DbgVar
= FnVarLocs
->getVariable(Var
);
1952 DebugAggregate Aggr
{DbgVar
.getVariable(), DbgVar
.getInlinedAt()};
1953 NotAlwaysStackHomed
.insert(Aggr
);
1956 VarsTouchedThisFrame
.clear();
1960 AssignmentTrackingLowering::LocKind
1961 AssignmentTrackingLowering::joinKind(LocKind A
, LocKind B
) {
1964 return A
== B
? A
: LocKind::None
;
1967 AssignmentTrackingLowering::Assignment
1968 AssignmentTrackingLowering::joinAssignment(const Assignment
&A
,
1969 const Assignment
&B
) {
1971 // NoneOrPhi(null, null) > Known(v, ?s)
1973 // If either are NoneOrPhi the join is NoneOrPhi.
1974 // If either value is different then the result is
1975 // NoneOrPhi (joining two values is a Phi).
1976 if (!A
.isSameSourceAssignment(B
))
1977 return Assignment::makeNoneOrPhi();
1978 if (A
.Status
== Assignment::NoneOrPhi
)
1979 return Assignment::makeNoneOrPhi();
1981 // Source is used to lookup the value + expression in the debug program if
1982 // the stack slot gets assigned a value earlier than expected. Because
1983 // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1984 // It's unlikely that we're losing out on much coverage by avoiding that
1986 // The Source may differ in this situation:
1988 // dbg.assign i32 0, ..., !1, ...
1990 // dbg.assign i32 1, ..., !1, ...
1991 // Here the same assignment (!1) was performed in both preds in the source,
1992 // but we can't use either one unless they are identical (e.g. .we don't
1993 // want to arbitrarily pick between constant values).
1994 auto JoinSource
= [&]() -> AssignRecord
{
1995 if (A
.Source
== B
.Source
)
1997 if (!A
.Source
|| !B
.Source
)
1998 return AssignRecord();
1999 assert(isa
<DPValue
*>(A
.Source
) == isa
<DPValue
*>(B
.Source
));
2000 if (isa
<DPValue
*>(A
.Source
) &&
2001 cast
<DPValue
*>(A
.Source
)->isEquivalentTo(*cast
<DPValue
*>(B
.Source
)))
2003 if (isa
<DbgAssignIntrinsic
*>(A
.Source
) &&
2004 cast
<DbgAssignIntrinsic
*>(A
.Source
)->isIdenticalTo(
2005 cast
<DbgAssignIntrinsic
*>(B
.Source
)))
2007 return AssignRecord();
2009 AssignRecord Source
= JoinSource();
2010 assert(A
.Status
== B
.Status
&& A
.Status
== Assignment::Known
);
2011 assert(A
.ID
== B
.ID
);
2012 return Assignment::make(A
.ID
, Source
);
2015 AssignmentTrackingLowering::BlockInfo
2016 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo
&A
,
2017 const BlockInfo
&B
) {
2018 return BlockInfo::join(A
, B
, TrackedVariablesVectorSize
);
2021 bool AssignmentTrackingLowering::join(
2022 const BasicBlock
&BB
, const SmallPtrSet
<BasicBlock
*, 16> &Visited
) {
2024 SmallVector
<const BasicBlock
*> VisitedPreds
;
2025 // Ignore backedges if we have not visited the predecessor yet. As the
2026 // predecessor hasn't yet had locations propagated into it, most locations
2027 // will not yet be valid, so treat them as all being uninitialized and
2028 // potentially valid. If a location guessed to be correct here is
2029 // invalidated later, we will remove it when we revisit this block. This
2030 // is essentially the same as initialising all LocKinds and Assignments to
2031 // an implicit ⊥ value which is the identity value for the join operation.
2032 for (const BasicBlock
*Pred
: predecessors(&BB
)) {
2033 if (Visited
.count(Pred
))
2034 VisitedPreds
.push_back(Pred
);
2037 // No preds visited yet.
2038 if (VisitedPreds
.empty()) {
2039 auto It
= LiveIn
.try_emplace(&BB
, BlockInfo());
2040 bool DidInsert
= It
.second
;
2042 It
.first
->second
.init(TrackedVariablesVectorSize
);
2043 return /*Changed*/ DidInsert
;
2046 // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
2047 if (VisitedPreds
.size() == 1) {
2048 const BlockInfo
&PredLiveOut
= LiveOut
.find(VisitedPreds
[0])->second
;
2049 auto CurrentLiveInEntry
= LiveIn
.find(&BB
);
2051 // Check if there isn't an entry, or there is but the LiveIn set has
2052 // changed (expensive check).
2053 if (CurrentLiveInEntry
== LiveIn
.end())
2054 LiveIn
.insert(std::make_pair(&BB
, PredLiveOut
));
2055 else if (PredLiveOut
!= CurrentLiveInEntry
->second
)
2056 CurrentLiveInEntry
->second
= PredLiveOut
;
2058 return /*Changed*/ false;
2059 return /*Changed*/ true;
2062 // More than one pred. Join LiveOuts of blocks 1 and 2.
2063 assert(VisitedPreds
.size() > 1);
2064 const BlockInfo
&PredLiveOut0
= LiveOut
.find(VisitedPreds
[0])->second
;
2065 const BlockInfo
&PredLiveOut1
= LiveOut
.find(VisitedPreds
[1])->second
;
2066 BlockInfo BBLiveIn
= joinBlockInfo(PredLiveOut0
, PredLiveOut1
);
2068 // Join the LiveOuts of subsequent blocks.
2069 ArrayRef Tail
= ArrayRef(VisitedPreds
).drop_front(2);
2070 for (const BasicBlock
*Pred
: Tail
) {
2071 const auto &PredLiveOut
= LiveOut
.find(Pred
);
2072 assert(PredLiveOut
!= LiveOut
.end() &&
2073 "block should have been processed already");
2074 BBLiveIn
= joinBlockInfo(std::move(BBLiveIn
), PredLiveOut
->second
);
2077 // Save the joined result for BB.
2078 auto CurrentLiveInEntry
= LiveIn
.find(&BB
);
2079 // Check if there isn't an entry, or there is but the LiveIn set has changed
2080 // (expensive check).
2081 if (CurrentLiveInEntry
== LiveIn
.end())
2082 LiveIn
.try_emplace(&BB
, std::move(BBLiveIn
));
2083 else if (BBLiveIn
!= CurrentLiveInEntry
->second
)
2084 CurrentLiveInEntry
->second
= std::move(BBLiveIn
);
2086 return /*Changed*/ false;
2087 return /*Changed*/ true;
2090 /// Return true if A fully contains B.
2091 static bool fullyContains(DIExpression::FragmentInfo A
,
2092 DIExpression::FragmentInfo B
) {
2093 auto ALeft
= A
.OffsetInBits
;
2094 auto BLeft
= B
.OffsetInBits
;
2098 auto ARight
= ALeft
+ A
.SizeInBits
;
2099 auto BRight
= BLeft
+ B
.SizeInBits
;
2100 if (BRight
> ARight
)
2105 static std::optional
<at::AssignmentInfo
>
2106 getUntaggedStoreAssignmentInfo(const Instruction
&I
, const DataLayout
&Layout
) {
2107 // Don't bother checking if this is an AllocaInst. We know this
2108 // instruction has no tag which means there are no variables associated
2110 if (const auto *SI
= dyn_cast
<StoreInst
>(&I
))
2111 return at::getAssignmentInfo(Layout
, SI
);
2112 if (const auto *MI
= dyn_cast
<MemIntrinsic
>(&I
))
2113 return at::getAssignmentInfo(Layout
, MI
);
2114 // Alloca or non-store-like inst.
2115 return std::nullopt
;
2118 DbgDeclareInst
*DynCastToDbgDeclare(DbgVariableIntrinsic
*DVI
) {
2119 return dyn_cast
<DbgDeclareInst
>(DVI
);
2122 DPValue
*DynCastToDbgDeclare(DPValue
*DPV
) {
2123 return DPV
->isDbgDeclare() ? DPV
: nullptr;
2126 /// Build a map of {Variable x: Variables y} where all variable fragments
2127 /// contained within the variable fragment x are in set y. This means that
2128 /// y does not contain all overlaps because partial overlaps are excluded.
2130 /// While we're iterating over the function, add single location defs for
2131 /// dbg.declares to \p FnVarLocs.
2133 /// Variables that are interesting to this pass in are added to
2134 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
2135 /// the last interesting variable plus 1, meaning variables with ID 1
2136 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
2137 /// subsequent variables are either stack homed or fully promoted.
2139 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
2140 /// the stored-to variable fragments.
2142 /// These tasks are bundled together to reduce the number of times we need
2143 /// to iterate over the function as they can be achieved together in one pass.
2144 static AssignmentTrackingLowering::OverlapMap
buildOverlapMapAndRecordDeclares(
2145 Function
&Fn
, FunctionVarLocsBuilder
*FnVarLocs
,
2146 const DenseSet
<DebugAggregate
> &VarsWithStackSlot
,
2147 AssignmentTrackingLowering::UntaggedStoreAssignmentMap
&UntaggedStoreVars
,
2148 unsigned &TrackedVariablesVectorSize
) {
2149 DenseSet
<DebugVariable
> Seen
;
2150 // Map of Variable: [Fragments].
2151 DenseMap
<DebugAggregate
, SmallVector
<DebugVariable
, 8>> FragmentMap
;
2152 // Iterate over all instructions:
2153 // - dbg.declare -> add single location variable record
2154 // - dbg.* -> Add fragments to FragmentMap
2155 // - untagged store -> Add fragments to FragmentMap and update
2156 // UntaggedStoreVars.
2157 // We need to add fragments for untagged stores too so that we can correctly
2158 // clobber overlapped fragment locations later.
2159 SmallVector
<DbgDeclareInst
*> InstDeclares
;
2160 SmallVector
<DPValue
*> DPDeclares
;
2161 auto ProcessDbgRecord
= [&](auto *Record
, auto &DeclareList
) {
2162 if (auto *Declare
= DynCastToDbgDeclare(Record
)) {
2163 DeclareList
.push_back(Declare
);
2166 DebugVariable DV
= DebugVariable(Record
);
2167 DebugAggregate DA
= {DV
.getVariable(), DV
.getInlinedAt()};
2168 if (!VarsWithStackSlot
.contains(DA
))
2170 if (Seen
.insert(DV
).second
)
2171 FragmentMap
[DA
].push_back(DV
);
2173 for (auto &BB
: Fn
) {
2174 for (auto &I
: BB
) {
2175 for (auto &DPV
: I
.getDbgValueRange())
2176 ProcessDbgRecord(&DPV
, DPDeclares
);
2177 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
2178 ProcessDbgRecord(DII
, InstDeclares
);
2179 } else if (auto Info
= getUntaggedStoreAssignmentInfo(
2180 I
, Fn
.getParent()->getDataLayout())) {
2181 // Find markers linked to this alloca.
2182 auto HandleDbgAssignForStore
= [&](auto *Assign
) {
2183 std::optional
<DIExpression::FragmentInfo
> FragInfo
;
2185 // Skip this assignment if the affected bits are outside of the
2186 // variable fragment.
2187 if (!at::calculateFragmentIntersect(
2188 I
.getModule()->getDataLayout(), Info
->Base
,
2189 Info
->OffsetInBits
, Info
->SizeInBits
, Assign
, FragInfo
) ||
2190 (FragInfo
&& FragInfo
->SizeInBits
== 0))
2193 // FragInfo from calculateFragmentIntersect is nullopt if the
2194 // resultant fragment matches DAI's fragment or entire variable - in
2195 // which case copy the fragment info from DAI. If FragInfo is still
2196 // nullopt after the copy it means "no fragment info" instead, which
2197 // is how it is usually interpreted.
2199 FragInfo
= Assign
->getExpression()->getFragmentInfo();
2202 DebugVariable(Assign
->getVariable(), FragInfo
,
2203 Assign
->getDebugLoc().getInlinedAt());
2204 DebugAggregate DA
= {DV
.getVariable(), DV
.getInlinedAt()};
2205 if (!VarsWithStackSlot
.contains(DA
))
2208 // Cache this info for later.
2209 UntaggedStoreVars
[&I
].push_back(
2210 {FnVarLocs
->insertVariable(DV
), *Info
});
2212 if (Seen
.insert(DV
).second
)
2213 FragmentMap
[DA
].push_back(DV
);
2215 for (DbgAssignIntrinsic
*DAI
: at::getAssignmentMarkers(Info
->Base
))
2216 HandleDbgAssignForStore(DAI
);
2217 for (DPValue
*DPV
: at::getDPVAssignmentMarkers(Info
->Base
))
2218 HandleDbgAssignForStore(DPV
);
2223 // Sort the fragment map for each DebugAggregate in ascending
2224 // order of fragment size - there should be no duplicates.
2225 for (auto &Pair
: FragmentMap
) {
2226 SmallVector
<DebugVariable
, 8> &Frags
= Pair
.second
;
2227 std::sort(Frags
.begin(), Frags
.end(),
2228 [](const DebugVariable
&Next
, const DebugVariable
&Elmt
) {
2229 return Elmt
.getFragmentOrDefault().SizeInBits
>
2230 Next
.getFragmentOrDefault().SizeInBits
;
2232 // Check for duplicates.
2233 assert(std::adjacent_find(Frags
.begin(), Frags
.end()) == Frags
.end());
2237 AssignmentTrackingLowering::OverlapMap Map
;
2238 for (auto &Pair
: FragmentMap
) {
2239 auto &Frags
= Pair
.second
;
2240 for (auto It
= Frags
.begin(), IEnd
= Frags
.end(); It
!= IEnd
; ++It
) {
2241 DIExpression::FragmentInfo Frag
= It
->getFragmentOrDefault();
2242 // Find the frags that this is contained within.
2244 // Because Frags is sorted by size and none have the same offset and
2245 // size, we know that this frag can only be contained by subsequent
2247 SmallVector
<DebugVariable
, 8>::iterator OtherIt
= It
;
2249 VariableID ThisVar
= FnVarLocs
->insertVariable(*It
);
2250 for (; OtherIt
!= IEnd
; ++OtherIt
) {
2251 DIExpression::FragmentInfo OtherFrag
= OtherIt
->getFragmentOrDefault();
2252 VariableID OtherVar
= FnVarLocs
->insertVariable(*OtherIt
);
2253 if (fullyContains(OtherFrag
, Frag
))
2254 Map
[OtherVar
].push_back(ThisVar
);
2259 // VariableIDs are 1-based so the variable-tracking bitvector needs
2260 // NumVariables plus 1 bits.
2261 TrackedVariablesVectorSize
= FnVarLocs
->getNumVariables() + 1;
2263 // Finally, insert the declares afterwards, so the first IDs are all
2264 // partially stack homed vars.
2265 for (auto *DDI
: InstDeclares
)
2266 FnVarLocs
->addSingleLocVar(DebugVariable(DDI
), DDI
->getExpression(),
2267 DDI
->getDebugLoc(), DDI
->getWrappedLocation());
2268 for (auto *DPV
: DPDeclares
)
2269 FnVarLocs
->addSingleLocVar(DebugVariable(DPV
), DPV
->getExpression(),
2271 RawLocationWrapper(DPV
->getRawLocation()));
2275 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder
*FnVarLocsBuilder
) {
2276 if (Fn
.size() > MaxNumBlocks
) {
2277 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn
.getName()
2278 << ": too many blocks (" << Fn
.size() << ")\n");
2283 FnVarLocs
= FnVarLocsBuilder
;
2285 // The general structure here is inspired by VarLocBasedImpl.cpp
2286 // (LiveDebugValues).
2288 // Build the variable fragment overlap map.
2289 // Note that this pass doesn't handle partial overlaps correctly (FWIW
2290 // neither does LiveDebugVariables) because that is difficult to do and
2291 // appears to be rare occurance.
2292 VarContains
= buildOverlapMapAndRecordDeclares(
2293 Fn
, FnVarLocs
, *VarsWithStackSlot
, UntaggedStoreVars
,
2294 TrackedVariablesVectorSize
);
2296 // Prepare for traversal.
2297 ReversePostOrderTraversal
<Function
*> RPOT(&Fn
);
2298 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
2299 std::greater
<unsigned int>>
2301 std::priority_queue
<unsigned int, std::vector
<unsigned int>,
2302 std::greater
<unsigned int>>
2304 DenseMap
<unsigned int, BasicBlock
*> OrderToBB
;
2305 DenseMap
<BasicBlock
*, unsigned int> BBToOrder
;
2306 { // Init OrderToBB and BBToOrder.
2307 unsigned int RPONumber
= 0;
2308 for (auto RI
= RPOT
.begin(), RE
= RPOT
.end(); RI
!= RE
; ++RI
) {
2309 OrderToBB
[RPONumber
] = *RI
;
2310 BBToOrder
[*RI
] = RPONumber
;
2311 Worklist
.push(RPONumber
);
2314 LiveIn
.init(RPONumber
);
2315 LiveOut
.init(RPONumber
);
2318 // Perform the traversal.
2320 // This is a standard "union of predecessor outs" dataflow problem. To solve
2321 // it, we perform join() and process() using the two worklist method until
2322 // the LiveIn data for each block becomes unchanging. The "proof" that this
2323 // terminates can be put together by looking at the comments around LocKind,
2324 // Assignment, and the various join methods, which show that all the elements
2325 // involved are made up of join-semilattices; LiveIn(n) can only
2326 // monotonically increase in value throughout the dataflow.
2328 SmallPtrSet
<BasicBlock
*, 16> Visited
;
2329 while (!Worklist
.empty()) {
2330 // We track what is on the pending worklist to avoid inserting the same
2332 SmallPtrSet
<BasicBlock
*, 16> OnPending
;
2333 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2334 while (!Worklist
.empty()) {
2335 BasicBlock
*BB
= OrderToBB
[Worklist
.top()];
2336 LLVM_DEBUG(dbgs() << "\nPop BB " << BB
->getName() << "\n");
2338 bool InChanged
= join(*BB
, Visited
);
2339 // Always consider LiveIn changed on the first visit.
2340 InChanged
|= Visited
.insert(BB
).second
;
2342 LLVM_DEBUG(dbgs() << BB
->getName() << " has new InLocs, process it\n");
2343 // Mutate a copy of LiveIn while processing BB. After calling process
2344 // LiveSet is the LiveOut set for BB.
2345 BlockInfo LiveSet
= LiveIn
[BB
];
2347 // Process the instructions in the block.
2348 process(*BB
, &LiveSet
);
2350 // Relatively expensive check: has anything changed in LiveOut for BB?
2351 if (LiveOut
[BB
] != LiveSet
) {
2352 LLVM_DEBUG(dbgs() << BB
->getName()
2353 << " has new OutLocs, add succs to worklist: [ ");
2354 LiveOut
[BB
] = std::move(LiveSet
);
2355 for (auto I
= succ_begin(BB
), E
= succ_end(BB
); I
!= E
; I
++) {
2356 if (OnPending
.insert(*I
).second
) {
2357 LLVM_DEBUG(dbgs() << I
->getName() << " ");
2358 Pending
.push(BBToOrder
[*I
]);
2361 LLVM_DEBUG(dbgs() << "]\n");
2365 Worklist
.swap(Pending
);
2366 // At this point, pending must be empty, since it was just the empty
2368 assert(Pending
.empty() && "Pending should be empty");
2371 // That's the hard part over. Now we just have some admin to do.
2373 // Record whether we inserted any intrinsics.
2374 bool InsertedAnyIntrinsics
= false;
2376 // Identify and add defs for single location variables.
2378 // Go through all of the defs that we plan to add. If the aggregate variable
2379 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2380 // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2381 // we can identify those uneeded defs later.
2382 DenseSet
<DebugAggregate
> AlwaysStackHomed
;
2383 for (const auto &Pair
: InsertBeforeMap
) {
2384 auto &Vec
= Pair
.second
;
2385 for (VarLocInfo VarLoc
: Vec
) {
2386 DebugVariable Var
= FnVarLocs
->getVariable(VarLoc
.VariableID
);
2387 DebugAggregate Aggr
{Var
.getVariable(), Var
.getInlinedAt()};
2389 // Skip this Var if it's not always stack homed.
2390 if (NotAlwaysStackHomed
.contains(Aggr
))
2393 // Skip complex cases such as when different fragments of a variable have
2394 // been split into different allocas. Skipping in this case means falling
2395 // back to using a list of defs (which could reduce coverage, but is no
2398 VarLoc
.Expr
->getNumElements() == 1 && VarLoc
.Expr
->startsWithDeref();
2400 NotAlwaysStackHomed
.insert(Aggr
);
2404 // All source assignments to this variable remain and all stores to any
2405 // part of the variable store to the same address (with varying
2406 // offsets). We can just emit a single location for the whole variable.
2408 // Unless we've already done so, create the single location def now.
2409 if (AlwaysStackHomed
.insert(Aggr
).second
) {
2410 assert(!VarLoc
.Values
.hasArgList());
2411 // TODO: When more complex cases are handled VarLoc.Expr should be
2412 // built appropriately rather than always using an empty DIExpression.
2413 // The assert below is a reminder.
2415 VarLoc
.Expr
= DIExpression::get(Fn
.getContext(), std::nullopt
);
2416 DebugVariable Var
= FnVarLocs
->getVariable(VarLoc
.VariableID
);
2417 FnVarLocs
->addSingleLocVar(Var
, VarLoc
.Expr
, VarLoc
.DL
, VarLoc
.Values
);
2418 InsertedAnyIntrinsics
= true;
2423 // Insert the other DEFs.
2424 for (const auto &[InsertBefore
, Vec
] : InsertBeforeMap
) {
2425 SmallVector
<VarLocInfo
> NewDefs
;
2426 for (const VarLocInfo
&VarLoc
: Vec
) {
2427 DebugVariable Var
= FnVarLocs
->getVariable(VarLoc
.VariableID
);
2428 DebugAggregate Aggr
{Var
.getVariable(), Var
.getInlinedAt()};
2429 // If this variable is always stack homed then we have already inserted a
2430 // dbg.declare and deleted this dbg.value.
2431 if (AlwaysStackHomed
.contains(Aggr
))
2433 NewDefs
.push_back(VarLoc
);
2434 InsertedAnyIntrinsics
= true;
2437 FnVarLocs
->setWedge(InsertBefore
, std::move(NewDefs
));
2440 InsertedAnyIntrinsics
|= emitPromotedVarLocs(FnVarLocs
);
2442 return InsertedAnyIntrinsics
;
2445 bool AssignmentTrackingLowering::emitPromotedVarLocs(
2446 FunctionVarLocsBuilder
*FnVarLocs
) {
2447 bool InsertedAnyIntrinsics
= false;
2448 // Go through every block, translating debug intrinsics for fully promoted
2449 // variables into FnVarLocs location defs. No analysis required for these.
2450 auto TranslateDbgRecord
= [&](auto *Record
) {
2451 // Skip variables that haven't been promoted - we've dealt with those
2453 if (VarsWithStackSlot
->contains(getAggregate(Record
)))
2455 auto InsertBefore
= getNextNode(Record
);
2456 assert(InsertBefore
&& "Unexpected: debug intrinsics after a terminator");
2457 FnVarLocs
->addVarLoc(InsertBefore
, DebugVariable(Record
),
2458 Record
->getExpression(), Record
->getDebugLoc(),
2459 RawLocationWrapper(Record
->getRawLocation()));
2460 InsertedAnyIntrinsics
= true;
2462 for (auto &BB
: Fn
) {
2463 for (auto &I
: BB
) {
2464 // Skip instructions other than dbg.values and dbg.assigns.
2465 for (DPValue
&DPV
: I
.getDbgValueRange())
2466 if (DPV
.isDbgValue() || DPV
.isDbgAssign())
2467 TranslateDbgRecord(&DPV
);
2468 auto *DVI
= dyn_cast
<DbgValueInst
>(&I
);
2470 TranslateDbgRecord(DVI
);
2473 return InsertedAnyIntrinsics
;
2476 /// Remove redundant definitions within sequences of consecutive location defs.
2477 /// This is done using a backward scan to keep the last def describing a
2478 /// specific variable/fragment.
2480 /// This implements removeRedundantDbgInstrsUsingBackwardScan from
2481 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2482 /// FunctionVarLocsBuilder instead of with intrinsics.
2484 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock
*BB
,
2485 FunctionVarLocsBuilder
&FnVarLocs
) {
2486 bool Changed
= false;
2487 SmallDenseMap
<DebugAggregate
, BitVector
> VariableDefinedBytes
;
2488 // Scan over the entire block, not just over the instructions mapped by
2489 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2491 for (const Instruction
&I
: reverse(*BB
)) {
2492 if (!isa
<DbgVariableIntrinsic
>(I
)) {
2493 // Sequence of consecutive defs ended. Clear map for the next one.
2494 VariableDefinedBytes
.clear();
2497 auto HandleLocsForWedge
= [&](auto *WedgePosition
) {
2498 // Get the location defs that start just before this instruction.
2499 const auto *Locs
= FnVarLocs
.getWedge(WedgePosition
);
2504 bool ChangedThisWedge
= false;
2505 // The new pruned set of defs, reversed because we're scanning backwards.
2506 SmallVector
<VarLocInfo
> NewDefsReversed
;
2508 // Iterate over the existing defs in reverse.
2509 for (auto RIt
= Locs
->rbegin(), REnd
= Locs
->rend(); RIt
!= REnd
; ++RIt
) {
2511 DebugAggregate Aggr
=
2512 getAggregate(FnVarLocs
.getVariable(RIt
->VariableID
));
2513 uint64_t SizeInBits
= Aggr
.first
->getSizeInBits().value_or(0);
2514 uint64_t SizeInBytes
= divideCeil(SizeInBits
, 8);
2516 // Cutoff for large variables to prevent expensive bitvector operations.
2517 const uint64_t MaxSizeBytes
= 2048;
2519 if (SizeInBytes
== 0 || SizeInBytes
> MaxSizeBytes
) {
2520 // If the size is unknown (0) then keep this location def to be safe.
2521 // Do the same for defs of large variables, which would be expensive
2522 // to represent with a BitVector.
2523 NewDefsReversed
.push_back(*RIt
);
2527 // Only keep this location definition if it is not fully eclipsed by
2528 // other definitions in this wedge that come after it
2530 // Inert the bytes the location definition defines.
2532 VariableDefinedBytes
.try_emplace(Aggr
, BitVector(SizeInBytes
));
2533 bool FirstDefinition
= InsertResult
.second
;
2534 BitVector
&DefinedBytes
= InsertResult
.first
->second
;
2536 DIExpression::FragmentInfo Fragment
=
2537 RIt
->Expr
->getFragmentInfo().value_or(
2538 DIExpression::FragmentInfo(SizeInBits
, 0));
2539 bool InvalidFragment
= Fragment
.endInBits() > SizeInBits
;
2540 uint64_t StartInBytes
= Fragment
.startInBits() / 8;
2541 uint64_t EndInBytes
= divideCeil(Fragment
.endInBits(), 8);
2543 // If this defines any previously undefined bytes, keep it.
2544 if (FirstDefinition
|| InvalidFragment
||
2545 DefinedBytes
.find_first_unset_in(StartInBytes
, EndInBytes
) != -1) {
2546 if (!InvalidFragment
)
2547 DefinedBytes
.set(StartInBytes
, EndInBytes
);
2548 NewDefsReversed
.push_back(*RIt
);
2552 // Redundant def found: throw it away. Since the wedge of defs is being
2553 // rebuilt, doing nothing is the same as deleting an entry.
2554 ChangedThisWedge
= true;
2558 // Un-reverse the defs and replace the wedge with the pruned version.
2559 if (ChangedThisWedge
) {
2560 std::reverse(NewDefsReversed
.begin(), NewDefsReversed
.end());
2561 FnVarLocs
.setWedge(WedgePosition
, std::move(NewDefsReversed
));
2566 HandleLocsForWedge(&I
);
2567 for (DPValue
&DPV
: reverse(I
.getDbgValueRange()))
2568 HandleLocsForWedge(&DPV
);
2574 /// Remove redundant location defs using a forward scan. This can remove a
2575 /// location definition that is redundant due to indicating that a variable has
2576 /// the same value as is already being indicated by an earlier def.
2578 /// This implements removeRedundantDbgInstrsUsingForwardScan from
2579 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2580 /// FunctionVarLocsBuilder instead of with intrinsics
2582 removeRedundantDbgLocsUsingForwardScan(const BasicBlock
*BB
,
2583 FunctionVarLocsBuilder
&FnVarLocs
) {
2584 bool Changed
= false;
2585 DenseMap
<DebugVariable
, std::pair
<RawLocationWrapper
, DIExpression
*>>
2588 // Scan over the entire block, not just over the instructions mapped by
2589 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2591 for (const Instruction
&I
: *BB
) {
2592 // Get the defs that come just before this instruction.
2593 auto HandleLocsForWedge
= [&](auto *WedgePosition
) {
2594 const auto *Locs
= FnVarLocs
.getWedge(WedgePosition
);
2599 bool ChangedThisWedge
= false;
2600 // The new pruned set of defs.
2601 SmallVector
<VarLocInfo
> NewDefs
;
2603 // Iterate over the existing defs.
2604 for (const VarLocInfo
&Loc
: *Locs
) {
2606 DebugVariable
Key(FnVarLocs
.getVariable(Loc
.VariableID
).getVariable(),
2607 std::nullopt
, Loc
.DL
.getInlinedAt());
2608 auto VMI
= VariableMap
.find(Key
);
2610 // Update the map if we found a new value/expression describing the
2611 // variable, or if the variable wasn't mapped already.
2612 if (VMI
== VariableMap
.end() || VMI
->second
.first
!= Loc
.Values
||
2613 VMI
->second
.second
!= Loc
.Expr
) {
2614 VariableMap
[Key
] = {Loc
.Values
, Loc
.Expr
};
2615 NewDefs
.push_back(Loc
);
2619 // Did not insert this Loc, which is the same as removing it.
2620 ChangedThisWedge
= true;
2624 // Replace the existing wedge with the pruned version.
2625 if (ChangedThisWedge
) {
2626 FnVarLocs
.setWedge(WedgePosition
, std::move(NewDefs
));
2632 for (DPValue
&DPV
: I
.getDbgValueRange())
2633 HandleLocsForWedge(&DPV
);
2634 HandleLocsForWedge(&I
);
2641 removeUndefDbgLocsFromEntryBlock(const BasicBlock
*BB
,
2642 FunctionVarLocsBuilder
&FnVarLocs
) {
2643 assert(BB
->isEntryBlock());
2644 // Do extra work to ensure that we remove semantically unimportant undefs.
2646 // This is to work around the fact that SelectionDAG will hoist dbg.values
2647 // using argument values to the top of the entry block. That can move arg
2648 // dbg.values before undef and constant dbg.values which they previously
2649 // followed. The easiest thing to do is to just try to feed SelectionDAG
2650 // input it's happy with.
2652 // Map of {Variable x: Fragments y} where the fragments y of variable x have
2653 // have at least one non-undef location defined already. Don't use directly,
2654 // instead call DefineBits and HasDefinedBits.
2655 SmallDenseMap
<DebugAggregate
, SmallDenseSet
<DIExpression::FragmentInfo
>>
2657 // Specify that V (a fragment of A) has a non-undef location.
2658 auto DefineBits
= [&VarsWithDef
](DebugAggregate A
, DebugVariable V
) {
2659 VarsWithDef
[A
].insert(V
.getFragmentOrDefault());
2661 // Return true if a non-undef location has been defined for V (a fragment of
2662 // A). Doesn't imply that the location is currently non-undef, just that a
2663 // non-undef location has been seen previously.
2664 auto HasDefinedBits
= [&VarsWithDef
](DebugAggregate A
, DebugVariable V
) {
2665 auto FragsIt
= VarsWithDef
.find(A
);
2666 if (FragsIt
== VarsWithDef
.end())
2668 return llvm::any_of(FragsIt
->second
, [V
](auto Frag
) {
2669 return DIExpression::fragmentsOverlap(Frag
, V
.getFragmentOrDefault());
2673 bool Changed
= false;
2674 DenseMap
<DebugVariable
, std::pair
<Value
*, DIExpression
*>> VariableMap
;
2676 // Scan over the entire block, not just over the instructions mapped by
2677 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2679 for (const Instruction
&I
: *BB
) {
2680 // Get the defs that come just before this instruction.
2681 auto HandleLocsForWedge
= [&](auto *WedgePosition
) {
2682 const auto *Locs
= FnVarLocs
.getWedge(WedgePosition
);
2687 bool ChangedThisWedge
= false;
2688 // The new pruned set of defs.
2689 SmallVector
<VarLocInfo
> NewDefs
;
2691 // Iterate over the existing defs.
2692 for (const VarLocInfo
&Loc
: *Locs
) {
2694 DebugAggregate Aggr
{FnVarLocs
.getVariable(Loc
.VariableID
).getVariable(),
2695 Loc
.DL
.getInlinedAt()};
2696 DebugVariable Var
= FnVarLocs
.getVariable(Loc
.VariableID
);
2698 // Remove undef entries that are encountered before any non-undef
2699 // intrinsics from the entry block.
2700 if (Loc
.Values
.isKillLocation(Loc
.Expr
) && !HasDefinedBits(Aggr
, Var
)) {
2701 // Did not insert this Loc, which is the same as removing it.
2703 ChangedThisWedge
= true;
2707 DefineBits(Aggr
, Var
);
2708 NewDefs
.push_back(Loc
);
2711 // Replace the existing wedge with the pruned version.
2712 if (ChangedThisWedge
) {
2713 FnVarLocs
.setWedge(WedgePosition
, std::move(NewDefs
));
2718 for (DPValue
&DPV
: I
.getDbgValueRange())
2719 HandleLocsForWedge(&DPV
);
2720 HandleLocsForWedge(&I
);
2726 static bool removeRedundantDbgLocs(const BasicBlock
*BB
,
2727 FunctionVarLocsBuilder
&FnVarLocs
) {
2728 bool MadeChanges
= false;
2729 MadeChanges
|= removeRedundantDbgLocsUsingBackwardScan(BB
, FnVarLocs
);
2730 if (BB
->isEntryBlock())
2731 MadeChanges
|= removeUndefDbgLocsFromEntryBlock(BB
, FnVarLocs
);
2732 MadeChanges
|= removeRedundantDbgLocsUsingForwardScan(BB
, FnVarLocs
);
2735 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB
->getName()
2740 static DenseSet
<DebugAggregate
> findVarsWithStackSlot(Function
&Fn
) {
2741 DenseSet
<DebugAggregate
> Result
;
2742 for (auto &BB
: Fn
) {
2743 for (auto &I
: BB
) {
2744 // Any variable linked to an instruction is considered
2745 // interesting. Ideally we only need to check Allocas, however, a
2746 // DIAssignID might get dropped from an alloca but not stores. In that
2747 // case, we need to consider the variable interesting for NFC behaviour
2748 // with this change. TODO: Consider only looking at allocas.
2749 for (DbgAssignIntrinsic
*DAI
: at::getAssignmentMarkers(&I
)) {
2750 Result
.insert({DAI
->getVariable(), DAI
->getDebugLoc().getInlinedAt()});
2752 for (DPValue
*DPV
: at::getDPVAssignmentMarkers(&I
)) {
2753 Result
.insert({DPV
->getVariable(), DPV
->getDebugLoc().getInlinedAt()});
2760 static void analyzeFunction(Function
&Fn
, const DataLayout
&Layout
,
2761 FunctionVarLocsBuilder
*FnVarLocs
) {
2762 // The analysis will generate location definitions for all variables, but we
2763 // only need to perform a dataflow on the set of variables which have a stack
2764 // slot. Find those now.
2765 DenseSet
<DebugAggregate
> VarsWithStackSlot
= findVarsWithStackSlot(Fn
);
2767 bool Changed
= false;
2769 // Use a scope block to clean up AssignmentTrackingLowering before running
2770 // MemLocFragmentFill to reduce peak memory consumption.
2772 AssignmentTrackingLowering
Pass(Fn
, Layout
, &VarsWithStackSlot
);
2773 Changed
= Pass
.run(FnVarLocs
);
2777 MemLocFragmentFill
Pass(Fn
, &VarsWithStackSlot
,
2778 shouldCoalesceFragments(Fn
));
2779 Pass
.run(FnVarLocs
);
2781 // Remove redundant entries. As well as reducing memory consumption and
2782 // avoiding waiting cycles later by burning some now, this has another
2783 // important job. That is to work around some SelectionDAG quirks. See
2784 // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2786 removeRedundantDbgLocs(&BB
, *FnVarLocs
);
2791 DebugAssignmentTrackingAnalysis::run(Function
&F
,
2792 FunctionAnalysisManager
&FAM
) {
2793 if (!isAssignmentTrackingEnabled(*F
.getParent()))
2794 return FunctionVarLocs();
2796 auto &DL
= F
.getParent()->getDataLayout();
2798 FunctionVarLocsBuilder Builder
;
2799 analyzeFunction(F
, DL
, &Builder
);
2801 // Save these results.
2802 FunctionVarLocs Results
;
2803 Results
.init(Builder
);
2807 AnalysisKey
DebugAssignmentTrackingAnalysis::Key
;
2810 DebugAssignmentTrackingPrinterPass::run(Function
&F
,
2811 FunctionAnalysisManager
&FAM
) {
2812 FAM
.getResult
<DebugAssignmentTrackingAnalysis
>(F
).print(OS
, F
);
2813 return PreservedAnalyses::all();
2816 bool AssignmentTrackingAnalysis::runOnFunction(Function
&F
) {
2817 if (!isAssignmentTrackingEnabled(*F
.getParent()))
2820 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F
.getName()
2822 auto DL
= std::make_unique
<DataLayout
>(F
.getParent());
2824 // Clear previous results.
2827 FunctionVarLocsBuilder Builder
;
2828 analyzeFunction(F
, *DL
.get(), &Builder
);
2830 // Save these results.
2831 Results
->init(Builder
);
2833 if (PrintResults
&& isFunctionInPrintList(F
.getName()))
2834 Results
->print(errs(), F
);
2836 // Return false because this pass does not modify the function.
2840 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2841 : FunctionPass(ID
), Results(std::make_unique
<FunctionVarLocs
>()) {}
2843 char AssignmentTrackingAnalysis::ID
= 0;
2845 INITIALIZE_PASS(AssignmentTrackingAnalysis
, DEBUG_TYPE
,
2846 "Assignment Tracking Analysis", false, true)