[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / AssignmentTrackingAnalysis.cpp
blobf8ce8f98864ea37c9104180ee4479a4cb7b9e6e1
1 //===-- AssignmentTrackingAnalysis.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
10 #include "LiveDebugValues/LiveDebugValues.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/DenseMapInfo.h"
13 #include "llvm/ADT/IntervalMap.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/UniqueVector.h"
18 #include "llvm/Analysis/Interval.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugProgramInstruction.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/IR/PrintPasses.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include <assert.h>
35 #include <cstdint>
36 #include <optional>
37 #include <queue>
38 #include <sstream>
39 #include <unordered_map>
41 using namespace llvm;
42 #define DEBUG_TYPE "debug-ata"
44 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
45 STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
46 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
47 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
49 static cl::opt<unsigned>
50 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
51 cl::desc("Maximum num basic blocks before debug info dropped"),
52 cl::Hidden);
53 /// Option for debugging the pass, determines if the memory location fragment
54 /// filling happens after generating the variable locations.
55 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
56 cl::Hidden);
57 /// Print the results of the analysis. Respects -filter-print-funcs.
58 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
59 cl::Hidden);
61 /// Coalesce adjacent dbg locs describing memory locations that have contiguous
62 /// fragments. This reduces the cost of LiveDebugValues which does SSA
63 /// construction for each explicitly stated variable fragment.
64 static cl::opt<cl::boolOrDefault>
65 CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden);
67 // Implicit conversions are disabled for enum class types, so unfortunately we
68 // need to create a DenseMapInfo wrapper around the specified underlying type.
69 template <> struct llvm::DenseMapInfo<VariableID> {
70 using Wrapped = DenseMapInfo<unsigned>;
71 static inline VariableID getEmptyKey() {
72 return static_cast<VariableID>(Wrapped::getEmptyKey());
74 static inline VariableID getTombstoneKey() {
75 return static_cast<VariableID>(Wrapped::getTombstoneKey());
77 static unsigned getHashValue(const VariableID &Val) {
78 return Wrapped::getHashValue(static_cast<unsigned>(Val));
80 static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
81 return LHS == RHS;
85 using VarLocInsertPt = PointerUnion<const Instruction *, const DPValue *>;
87 namespace std {
88 template <> struct hash<VarLocInsertPt> {
89 using argument_type = VarLocInsertPt;
90 using result_type = std::size_t;
92 result_type operator()(const argument_type &Arg) const {
93 return std::hash<void *>()(Arg.getOpaqueValue());
96 } // namespace std
98 /// Helper class to build FunctionVarLocs, since that class isn't easy to
99 /// modify. TODO: There's not a great deal of value in the split, it could be
100 /// worth merging the two classes.
101 class FunctionVarLocsBuilder {
102 friend FunctionVarLocs;
103 UniqueVector<DebugVariable> Variables;
104 // Use an unordered_map so we don't invalidate iterators after
105 // insert/modifications.
106 std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst;
108 SmallVector<VarLocInfo> SingleLocVars;
110 public:
111 unsigned getNumVariables() const { return Variables.size(); }
113 /// Find or insert \p V and return the ID.
114 VariableID insertVariable(DebugVariable V) {
115 return static_cast<VariableID>(Variables.insert(V));
118 /// Get a variable from its \p ID.
119 const DebugVariable &getVariable(VariableID ID) const {
120 return Variables[static_cast<unsigned>(ID)];
123 /// Return ptr to wedge of defs or nullptr if no defs come just before /p
124 /// Before.
125 const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const {
126 auto R = VarLocsBeforeInst.find(Before);
127 if (R == VarLocsBeforeInst.end())
128 return nullptr;
129 return &R->second;
132 /// Replace the defs that come just before /p Before with /p Wedge.
133 void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) {
134 VarLocsBeforeInst[Before] = std::move(Wedge);
137 /// Add a def for a variable that is valid for its lifetime.
138 void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
139 RawLocationWrapper R) {
140 VarLocInfo VarLoc;
141 VarLoc.VariableID = insertVariable(Var);
142 VarLoc.Expr = Expr;
143 VarLoc.DL = DL;
144 VarLoc.Values = R;
145 SingleLocVars.emplace_back(VarLoc);
148 /// Add a def to the wedge of defs just before /p Before.
149 void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr,
150 DebugLoc DL, RawLocationWrapper R) {
151 VarLocInfo VarLoc;
152 VarLoc.VariableID = insertVariable(Var);
153 VarLoc.Expr = Expr;
154 VarLoc.DL = DL;
155 VarLoc.Values = R;
156 VarLocsBeforeInst[Before].emplace_back(VarLoc);
160 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
161 // Print the variable table first. TODO: Sorting by variable could make the
162 // output more stable?
163 unsigned Counter = -1;
164 OS << "=== Variables ===\n";
165 for (const DebugVariable &V : Variables) {
166 ++Counter;
167 // Skip first entry because it is a dummy entry.
168 if (Counter == 0) {
169 continue;
171 OS << "[" << Counter << "] " << V.getVariable()->getName();
172 if (auto F = V.getFragment())
173 OS << " bits [" << F->OffsetInBits << ", "
174 << F->OffsetInBits + F->SizeInBits << ")";
175 if (const auto *IA = V.getInlinedAt())
176 OS << " inlined-at " << *IA;
177 OS << "\n";
180 auto PrintLoc = [&OS](const VarLocInfo &Loc) {
181 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
182 << " Expr=" << *Loc.Expr << " Values=(";
183 for (auto *Op : Loc.Values.location_ops()) {
184 errs() << Op->getName() << " ";
186 errs() << ")\n";
189 // Print the single location variables.
190 OS << "=== Single location vars ===\n";
191 for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
192 ++It) {
193 PrintLoc(*It);
196 // Print the non-single-location defs in line with IR.
197 OS << "=== In-line variable defs ===";
198 for (const BasicBlock &BB : Fn) {
199 OS << "\n" << BB.getName() << ":\n";
200 for (const Instruction &I : BB) {
201 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
202 PrintLoc(*It);
204 OS << I << "\n";
209 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
210 // Add the single-location variables first.
211 for (const auto &VarLoc : Builder.SingleLocVars)
212 VarLocRecords.emplace_back(VarLoc);
213 // Mark the end of the section.
214 SingleVarLocEnd = VarLocRecords.size();
216 // Insert a contiguous block of VarLocInfos for each instruction, mapping it
217 // to the start and end position in the vector with VarLocsBeforeInst. This
218 // block includes VarLocs for any DPValues attached to that instruction.
219 for (auto &P : Builder.VarLocsBeforeInst) {
220 // Process VarLocs attached to a DPValue alongside their marker Instruction.
221 if (isa<const DPValue *>(P.first))
222 continue;
223 const Instruction *I = cast<const Instruction *>(P.first);
224 unsigned BlockStart = VarLocRecords.size();
225 // Any VarLocInfos attached to a DPValue should now be remapped to their
226 // marker Instruction, in order of DPValue appearance and prior to any
227 // VarLocInfos attached directly to that instruction.
228 for (const DPValue &DPV : I->getDbgValueRange()) {
229 // Even though DPV defines a variable location, VarLocsBeforeInst can
230 // still be empty if that VarLoc was redundant.
231 if (!Builder.VarLocsBeforeInst.count(&DPV))
232 continue;
233 for (const VarLocInfo &VarLoc : Builder.VarLocsBeforeInst[&DPV])
234 VarLocRecords.emplace_back(VarLoc);
236 for (const VarLocInfo &VarLoc : P.second)
237 VarLocRecords.emplace_back(VarLoc);
238 unsigned BlockEnd = VarLocRecords.size();
239 // Record the start and end indices.
240 if (BlockEnd != BlockStart)
241 VarLocsBeforeInst[I] = {BlockStart, BlockEnd};
244 // Copy the Variables vector from the builder's UniqueVector.
245 assert(Variables.empty() && "Expect clear before init");
246 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
247 // are one-based) so reserve an extra and insert a dummy.
248 Variables.reserve(Builder.Variables.size() + 1);
249 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
250 Variables.append(Builder.Variables.begin(), Builder.Variables.end());
253 void FunctionVarLocs::clear() {
254 Variables.clear();
255 VarLocRecords.clear();
256 VarLocsBeforeInst.clear();
257 SingleVarLocEnd = 0;
260 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p
261 /// Start as far as possible. Prepend \Expression with the offset and append it
262 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
263 /// value and modified expression.
264 static std::pair<Value *, DIExpression *>
265 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
266 DIExpression *Expression) {
267 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
268 Value *End =
269 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
270 SmallVector<uint64_t, 3> Ops;
271 if (OffsetInBytes.getBoolValue()) {
272 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
273 Expression = DIExpression::prependOpcodes(
274 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
276 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
277 return {End, Expression};
280 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
281 /// doesn't explicitly describe a memory location with DW_OP_deref or if the
282 /// expression is too complex to interpret.
283 static std::optional<int64_t>
284 getDerefOffsetInBytes(const DIExpression *DIExpr) {
285 int64_t Offset = 0;
286 const unsigned NumElements = DIExpr->getNumElements();
287 const auto Elements = DIExpr->getElements();
288 unsigned ExpectedDerefIdx = 0;
289 // Extract the offset.
290 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
291 Offset = Elements[1];
292 ExpectedDerefIdx = 2;
293 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
294 ExpectedDerefIdx = 3;
295 if (Elements[2] == dwarf::DW_OP_plus)
296 Offset = Elements[1];
297 else if (Elements[2] == dwarf::DW_OP_minus)
298 Offset = -Elements[1];
299 else
300 return std::nullopt;
303 // If that's all there is it means there's no deref.
304 if (ExpectedDerefIdx >= NumElements)
305 return std::nullopt;
307 // Check the next element is DW_OP_deref - otherwise this is too complex or
308 // isn't a deref expression.
309 if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref)
310 return std::nullopt;
312 // Check the final operation is either the DW_OP_deref or is a fragment.
313 if (NumElements == ExpectedDerefIdx + 1)
314 return Offset; // Ends with deref.
315 unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1;
316 unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2;
317 if (NumElements == ExpectedFragFinalIdx + 1 &&
318 Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment)
319 return Offset; // Ends with deref + fragment.
321 // Don't bother trying to interpret anything more complex.
322 return std::nullopt;
325 /// A whole (unfragmented) source variable.
326 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
327 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
328 return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
330 static DebugAggregate getAggregate(const DebugVariable &Var) {
331 return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
334 static bool shouldCoalesceFragments(Function &F) {
335 // Enabling fragment coalescing reduces compiler run time when instruction
336 // referencing is enabled. However, it may cause LiveDebugVariables to create
337 // incorrect locations. Since instruction-referencing mode effectively
338 // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
339 // has not been explicitly set and instruction-referencing is turned on.
340 switch (CoalesceAdjacentFragmentsOpt) {
341 case cl::boolOrDefault::BOU_UNSET:
342 return debuginfoShouldUseDebugInstrRef(
343 Triple(F.getParent()->getTargetTriple()));
344 case cl::boolOrDefault::BOU_TRUE:
345 return true;
346 case cl::boolOrDefault::BOU_FALSE:
347 return false;
349 llvm_unreachable("Unknown boolOrDefault value");
352 namespace {
353 /// In dwarf emission, the following sequence
354 /// 1. dbg.value ... Fragment(0, 64)
355 /// 2. dbg.value ... Fragment(0, 32)
356 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
357 /// the intersection of the fragments to having "no location"). This makes
358 /// sense for implicit location values because splitting the computed values
359 /// could be troublesome, and is probably quite uncommon. When we convert
360 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
361 /// a location (memory) rather than a value means we don't need to worry about
362 /// splitting any values, so we try to recover the rest of the fragment
363 /// location here.
364 /// This class performs a(nother) dataflow analysis over the function, adding
365 /// variable locations so that any bits of a variable with a memory location
366 /// have that location explicitly reinstated at each subsequent variable
367 /// location definition that that doesn't overwrite those bits. i.e. after a
368 /// variable location def, insert new defs for the memory location with
369 /// fragments for the difference of "all bits currently in memory" and "the
370 /// fragment of the second def".
371 class MemLocFragmentFill {
372 Function &Fn;
373 FunctionVarLocsBuilder *FnVarLocs;
374 const DenseSet<DebugAggregate> *VarsWithStackSlot;
375 bool CoalesceAdjacentFragments;
377 // 0 = no memory location.
378 using BaseAddress = unsigned;
379 using OffsetInBitsTy = unsigned;
380 using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
381 using FragsInMemMap = IntervalMap<
382 OffsetInBitsTy, BaseAddress,
383 IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
384 FragTraits>;
385 FragsInMemMap::Allocator IntervalMapAlloc;
386 using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
388 /// IDs for memory location base addresses in maps. Use 0 to indicate that
389 /// there's no memory location.
390 UniqueVector<RawLocationWrapper> Bases;
391 UniqueVector<DebugAggregate> Aggregates;
392 DenseMap<const BasicBlock *, VarFragMap> LiveIn;
393 DenseMap<const BasicBlock *, VarFragMap> LiveOut;
395 struct FragMemLoc {
396 unsigned Var;
397 unsigned Base;
398 unsigned OffsetInBits;
399 unsigned SizeInBits;
400 DebugLoc DL;
402 using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>;
404 /// BBInsertBeforeMap holds a description for the set of location defs to be
405 /// inserted after the analysis is complete. It is updated during the dataflow
406 /// and the entry for a block is CLEARED each time it is (re-)visited. After
407 /// the dataflow is complete, each block entry will contain the set of defs
408 /// calculated during the final (fixed-point) iteration.
409 DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
411 static bool intervalMapsAreEqual(const FragsInMemMap &A,
412 const FragsInMemMap &B) {
413 auto AIt = A.begin(), AEnd = A.end();
414 auto BIt = B.begin(), BEnd = B.end();
415 for (; AIt != AEnd; ++AIt, ++BIt) {
416 if (BIt == BEnd)
417 return false; // B has fewer elements than A.
418 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
419 return false; // Interval is different.
420 if (*AIt != *BIt)
421 return false; // Value at interval is different.
423 // AIt == AEnd. Check BIt is also now at end.
424 return BIt == BEnd;
427 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
428 if (A.size() != B.size())
429 return false;
430 for (const auto &APair : A) {
431 auto BIt = B.find(APair.first);
432 if (BIt == B.end())
433 return false;
434 if (!intervalMapsAreEqual(APair.second, BIt->second))
435 return false;
437 return true;
440 /// Return a string for the value that \p BaseID represents.
441 std::string toString(unsigned BaseID) {
442 if (BaseID)
443 return Bases[BaseID].getVariableLocationOp(0)->getName().str();
444 else
445 return "None";
448 /// Format string describing an FragsInMemMap (IntervalMap) interval.
449 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
450 std::string String;
451 std::stringstream S(String);
452 if (It.valid()) {
453 S << "[" << It.start() << ", " << It.stop()
454 << "): " << toString(It.value());
455 } else {
456 S << "invalid iterator (end)";
458 if (Newline)
459 S << "\n";
460 return S.str();
463 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
464 FragsInMemMap Result(IntervalMapAlloc);
465 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
466 LLVM_DEBUG(dbgs() << "a " << toString(AIt));
467 // This is basically copied from process() and inverted (process is
468 // performing something like a union whereas this is more of an
469 // intersect).
471 // There's no work to do if interval `a` overlaps no fragments in map `B`.
472 if (!B.overlaps(AIt.start(), AIt.stop()))
473 continue;
475 // Does StartBit intersect an existing fragment?
476 auto FirstOverlap = B.find(AIt.start());
477 assert(FirstOverlap != B.end());
478 bool IntersectStart = FirstOverlap.start() < AIt.start();
479 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
480 << ", IntersectStart: " << IntersectStart << "\n");
482 // Does EndBit intersect an existing fragment?
483 auto LastOverlap = B.find(AIt.stop());
484 bool IntersectEnd =
485 LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
486 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
487 << ", IntersectEnd: " << IntersectEnd << "\n");
489 // Check if both ends of `a` intersect the same interval `b`.
490 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
491 // Insert `a` (`a` is contained in `b`) if the values match.
492 // [ a ]
493 // [ - b - ]
494 // -
495 // [ r ]
496 LLVM_DEBUG(dbgs() << "- a is contained within "
497 << toString(FirstOverlap));
498 if (*AIt && *AIt == *FirstOverlap)
499 Result.insert(AIt.start(), AIt.stop(), *AIt);
500 } else {
501 // There's an overlap but `a` is not fully contained within
502 // `b`. Shorten any end-point intersections.
503 // [ - a - ]
504 // [ - b - ]
505 // -
506 // [ r ]
507 auto Next = FirstOverlap;
508 if (IntersectStart) {
509 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
510 << toString(FirstOverlap));
511 if (*AIt && *AIt == *FirstOverlap)
512 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
513 ++Next;
515 // [ - a - ]
516 // [ - b - ]
517 // -
518 // [ r ]
519 if (IntersectEnd) {
520 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
521 << toString(LastOverlap));
522 if (*AIt && *AIt == *LastOverlap)
523 Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
526 // Insert all intervals in map `B` that are contained within interval
527 // `a` where the values match.
528 // [ - - a - - ]
529 // [ b1 ] [ b2 ]
530 // -
531 // [ r1 ] [ r2 ]
532 while (Next != B.end() && Next.start() < AIt.stop() &&
533 Next.stop() <= AIt.stop()) {
534 LLVM_DEBUG(dbgs()
535 << "- insert intersection of a and " << toString(Next));
536 if (*AIt && *AIt == *Next)
537 Result.insert(Next.start(), Next.stop(), *Next);
538 ++Next;
542 return Result;
545 /// Meet \p A and \p B, storing the result in \p A.
546 void meetVars(VarFragMap &A, const VarFragMap &B) {
547 // Meet A and B.
549 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
550 for (auto It = A.begin(), End = A.end(); It != End; ++It) {
551 unsigned AVar = It->first;
552 FragsInMemMap &AFrags = It->second;
553 auto BIt = B.find(AVar);
554 if (BIt == B.end()) {
555 A.erase(It);
556 continue; // Var has no bits defined in B.
558 LLVM_DEBUG(dbgs() << "meet fragment maps for "
559 << Aggregates[AVar].first->getName() << "\n");
560 AFrags = meetFragments(AFrags, BIt->second);
564 bool meet(const BasicBlock &BB,
565 const SmallPtrSet<BasicBlock *, 16> &Visited) {
566 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
567 << "\n");
569 VarFragMap BBLiveIn;
570 bool FirstMeet = true;
571 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
572 // locs.
573 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
574 // Ignore preds that haven't been processed yet. This is essentially the
575 // same as initialising all variables to implicit top value (⊤) which is
576 // the identity value for the meet operation.
577 const BasicBlock *Pred = *I;
578 if (!Visited.count(Pred))
579 continue;
581 auto PredLiveOut = LiveOut.find(Pred);
582 assert(PredLiveOut != LiveOut.end());
584 if (FirstMeet) {
585 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
586 BBLiveIn = PredLiveOut->second;
587 FirstMeet = false;
588 } else {
589 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
590 << "\n");
591 meetVars(BBLiveIn, PredLiveOut->second);
594 // An empty set is ⊥ for the intersect-like meet operation. If we've
595 // already got ⊥ there's no need to run the code - we know the result is
596 // ⊥ since `meet(a, ⊥) = ⊥`.
597 if (BBLiveIn.size() == 0)
598 break;
601 auto CurrentLiveInEntry = LiveIn.find(&BB);
602 // If there's no LiveIn entry for the block yet, add it.
603 if (CurrentLiveInEntry == LiveIn.end()) {
604 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
605 << "\n");
606 LiveIn[&BB] = std::move(BBLiveIn);
607 return /*Changed=*/true;
610 // If the LiveIn set has changed (expensive check) update it and return
611 // true.
612 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
613 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
614 CurrentLiveInEntry->second = std::move(BBLiveIn);
615 return /*Changed=*/true;
618 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
619 return /*Changed=*/false;
622 void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
623 unsigned StartBit, unsigned EndBit, unsigned Base,
624 DebugLoc DL) {
625 assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
626 if (!Base)
627 return;
628 FragMemLoc Loc;
629 Loc.Var = Var;
630 Loc.OffsetInBits = StartBit;
631 Loc.SizeInBits = EndBit - StartBit;
632 assert(Base && "Expected a non-zero ID for Base address");
633 Loc.Base = Base;
634 Loc.DL = DL;
635 BBInsertBeforeMap[&BB][Before].push_back(Loc);
636 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
637 << " bits [" << StartBit << ", " << EndBit << ")\n");
640 /// Inserts a new dbg def if the interval found when looking up \p StartBit
641 /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
642 /// indicates - assuming StartBit->EndBit has just been inserted - that the
643 /// slice has been coalesced in the map).
644 void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
645 unsigned StartBit, unsigned EndBit, unsigned Base,
646 DebugLoc DL, const FragsInMemMap &FragMap) {
647 if (!CoalesceAdjacentFragments)
648 return;
649 // We've inserted the location into the map. The map will have coalesced
650 // adjacent intervals (variable fragments) that describe the same memory
651 // location. Use this knowledge to insert a debug location that describes
652 // that coalesced fragment. This may eclipse other locs we've just
653 // inserted. This is okay as redundant locs will be cleaned up later.
654 auto CoalescedFrag = FragMap.find(StartBit);
655 // Bail if no coalescing has taken place.
656 if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit)
657 return;
659 LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start()
660 << " to " << CoalescedFrag.stop() << "\n");
661 insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(),
662 Base, DL);
665 void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB,
666 VarFragMap &LiveSet) {
667 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
668 if (skipVariable(DbgVar.getVariable()))
669 return;
670 // Don't bother doing anything for this variables if we know it's fully
671 // promoted. We're only interested in variables that (sometimes) live on
672 // the stack here.
673 if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
674 return;
675 unsigned Var = Aggregates.insert(
676 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
678 // [StartBit: EndBit) are the bits affected by this def.
679 const DIExpression *DIExpr = VarLoc.Expr;
680 unsigned StartBit;
681 unsigned EndBit;
682 if (auto Frag = DIExpr->getFragmentInfo()) {
683 StartBit = Frag->OffsetInBits;
684 EndBit = StartBit + Frag->SizeInBits;
685 } else {
686 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
687 StartBit = 0;
688 EndBit = *DbgVar.getVariable()->getSizeInBits();
691 // We will only fill fragments for simple memory-describing dbg.value
692 // intrinsics. If the fragment offset is the same as the offset from the
693 // base pointer, do The Thing, otherwise fall back to normal dbg.value
694 // behaviour. AssignmentTrackingLowering has generated DIExpressions
695 // written in terms of the base pointer.
696 // TODO: Remove this condition since the fragment offset doesn't always
697 // equal the offset from base pointer (e.g. for a SROA-split variable).
698 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
699 const unsigned Base =
700 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
701 ? Bases.insert(VarLoc.Values)
702 : 0;
703 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
704 << StartBit << ", " << EndBit << "): " << toString(Base)
705 << "\n");
707 // First of all, any locs that use mem that are disrupted need reinstating.
708 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
709 // with existing intervals so this code involves a lot of fiddling around
710 // with intervals to do that manually.
711 auto FragIt = LiveSet.find(Var);
713 // Check if the variable does not exist in the map.
714 if (FragIt == LiveSet.end()) {
715 // Add this variable to the BB map.
716 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
717 assert(P.second && "Var already in map?");
718 // Add the interval to the fragment map.
719 P.first->second.insert(StartBit, EndBit, Base);
720 return;
722 // The variable has an entry in the map.
724 FragsInMemMap &FragMap = FragIt->second;
725 // First check the easy case: the new fragment `f` doesn't overlap with any
726 // intervals.
727 if (!FragMap.overlaps(StartBit, EndBit)) {
728 LLVM_DEBUG(dbgs() << "- No overlaps\n");
729 FragMap.insert(StartBit, EndBit, Base);
730 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
731 FragMap);
732 return;
734 // There is at least one overlap.
736 // Does StartBit intersect an existing fragment?
737 auto FirstOverlap = FragMap.find(StartBit);
738 assert(FirstOverlap != FragMap.end());
739 bool IntersectStart = FirstOverlap.start() < StartBit;
741 // Does EndBit intersect an existing fragment?
742 auto LastOverlap = FragMap.find(EndBit);
743 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
745 // Check if both ends of `f` intersect the same interval `i`.
746 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
747 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
748 // Shorten `i` so that there's space to insert `f`.
749 // [ f ]
750 // [ - i - ]
751 // +
752 // [ i ][ f ][ i ]
754 // Save values for use after inserting a new interval.
755 auto EndBitOfOverlap = FirstOverlap.stop();
756 unsigned OverlapValue = FirstOverlap.value();
758 // Shorten the overlapping interval.
759 FirstOverlap.setStop(StartBit);
760 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
761 OverlapValue, VarLoc.DL);
763 // Insert a new interval to represent the end part.
764 FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
765 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
766 VarLoc.DL);
768 // Insert the new (middle) fragment now there is space.
769 FragMap.insert(StartBit, EndBit, Base);
770 } else {
771 // There's an overlap but `f` may not be fully contained within
772 // `i`. Shorten any end-point intersections so that we can then
773 // insert `f`.
774 // [ - f - ]
775 // [ - i - ]
776 // | |
777 // [ i ]
778 // Shorten any end-point intersections.
779 if (IntersectStart) {
780 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
781 // Split off at the intersection.
782 FirstOverlap.setStop(StartBit);
783 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
784 *FirstOverlap, VarLoc.DL);
786 // [ - f - ]
787 // [ - i - ]
788 // | |
789 // [ i ]
790 if (IntersectEnd) {
791 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
792 // Split off at the intersection.
793 LastOverlap.setStart(EndBit);
794 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
795 VarLoc.DL);
798 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
799 // FirstOverlap and LastOverlap have been shortened such that they're
800 // no longer overlapping with [StartBit, EndBit). Delete any overlaps
801 // that remain (these will be fully contained within `f`).
802 // [ - f - ] }
803 // [ - i - ] } Intersection shortening that has happened above.
804 // | | }
805 // [ i ] }
806 // -----------------
807 // [i2 ] } Intervals fully contained within `f` get erased.
808 // -----------------
809 // [ - f - ][ i ] } Completed insertion.
810 auto It = FirstOverlap;
811 if (IntersectStart)
812 ++It; // IntersectStart: first overlap has been shortened.
813 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
814 LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
815 It.erase(); // This increments It after removing the interval.
817 // We've dealt with all the overlaps now!
818 assert(!FragMap.overlaps(StartBit, EndBit));
819 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
820 FragMap.insert(StartBit, EndBit, Base);
823 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
824 FragMap);
827 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
829 void process(BasicBlock &BB, VarFragMap &LiveSet) {
830 BBInsertBeforeMap[&BB].clear();
831 for (auto &I : BB) {
832 for (auto &DPV : I.getDbgValueRange()) {
833 if (const auto *Locs = FnVarLocs->getWedge(&DPV)) {
834 for (const VarLocInfo &Loc : *Locs) {
835 addDef(Loc, &DPV, *I.getParent(), LiveSet);
839 if (const auto *Locs = FnVarLocs->getWedge(&I)) {
840 for (const VarLocInfo &Loc : *Locs) {
841 addDef(Loc, &I, *I.getParent(), LiveSet);
847 public:
848 MemLocFragmentFill(Function &Fn,
849 const DenseSet<DebugAggregate> *VarsWithStackSlot,
850 bool CoalesceAdjacentFragments)
851 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot),
852 CoalesceAdjacentFragments(CoalesceAdjacentFragments) {}
854 /// Add variable locations to \p FnVarLocs so that any bits of a variable
855 /// with a memory location have that location explicitly reinstated at each
856 /// subsequent variable location definition that that doesn't overwrite those
857 /// bits. i.e. after a variable location def, insert new defs for the memory
858 /// location with fragments for the difference of "all bits currently in
859 /// memory" and "the fragment of the second def". e.g.
861 /// Before:
863 /// var x bits 0 to 63: value in memory
864 /// more instructions
865 /// var x bits 0 to 31: value is %0
867 /// After:
869 /// var x bits 0 to 63: value in memory
870 /// more instructions
871 /// var x bits 0 to 31: value is %0
872 /// var x bits 32 to 61: value in memory ; <-- new loc def
874 void run(FunctionVarLocsBuilder *FnVarLocs) {
875 if (!EnableMemLocFragFill)
876 return;
878 this->FnVarLocs = FnVarLocs;
880 // Prepare for traversal.
882 ReversePostOrderTraversal<Function *> RPOT(&Fn);
883 std::priority_queue<unsigned int, std::vector<unsigned int>,
884 std::greater<unsigned int>>
885 Worklist;
886 std::priority_queue<unsigned int, std::vector<unsigned int>,
887 std::greater<unsigned int>>
888 Pending;
889 DenseMap<unsigned int, BasicBlock *> OrderToBB;
890 DenseMap<BasicBlock *, unsigned int> BBToOrder;
891 { // Init OrderToBB and BBToOrder.
892 unsigned int RPONumber = 0;
893 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
894 OrderToBB[RPONumber] = *RI;
895 BBToOrder[*RI] = RPONumber;
896 Worklist.push(RPONumber);
897 ++RPONumber;
899 LiveIn.init(RPONumber);
900 LiveOut.init(RPONumber);
903 // Perform the traversal.
905 // This is a standard "intersect of predecessor outs" dataflow problem. To
906 // solve it, we perform meet() and process() using the two worklist method
907 // until the LiveIn data for each block becomes unchanging.
909 // This dataflow is essentially working on maps of sets and at each meet we
910 // intersect the maps and the mapped sets. So, initialized live-in maps
911 // monotonically decrease in value throughout the dataflow.
912 SmallPtrSet<BasicBlock *, 16> Visited;
913 while (!Worklist.empty() || !Pending.empty()) {
914 // We track what is on the pending worklist to avoid inserting the same
915 // thing twice. We could avoid this with a custom priority queue, but
916 // this is probably not worth it.
917 SmallPtrSet<BasicBlock *, 16> OnPending;
918 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
919 while (!Worklist.empty()) {
920 BasicBlock *BB = OrderToBB[Worklist.top()];
921 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
922 Worklist.pop();
923 bool InChanged = meet(*BB, Visited);
924 // Always consider LiveIn changed on the first visit.
925 InChanged |= Visited.insert(BB).second;
926 if (InChanged) {
927 LLVM_DEBUG(dbgs()
928 << BB->getName() << " has new InLocs, process it\n");
929 // Mutate a copy of LiveIn while processing BB. Once we've processed
930 // the terminator LiveSet is the LiveOut set for BB.
931 // This is an expensive copy!
932 VarFragMap LiveSet = LiveIn[BB];
934 // Process the instructions in the block.
935 process(*BB, LiveSet);
937 // Relatively expensive check: has anything changed in LiveOut for BB?
938 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
939 LLVM_DEBUG(dbgs() << BB->getName()
940 << " has new OutLocs, add succs to worklist: [ ");
941 LiveOut[BB] = std::move(LiveSet);
942 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
943 if (OnPending.insert(*I).second) {
944 LLVM_DEBUG(dbgs() << I->getName() << " ");
945 Pending.push(BBToOrder[*I]);
948 LLVM_DEBUG(dbgs() << "]\n");
952 Worklist.swap(Pending);
953 // At this point, pending must be empty, since it was just the empty
954 // worklist
955 assert(Pending.empty() && "Pending should be empty");
958 // Insert new location defs.
959 for (auto &Pair : BBInsertBeforeMap) {
960 InsertMap &Map = Pair.second;
961 for (auto &Pair : Map) {
962 auto InsertBefore = Pair.first;
963 assert(InsertBefore && "should never be null");
964 auto FragMemLocs = Pair.second;
965 auto &Ctx = Fn.getContext();
967 for (auto &FragMemLoc : FragMemLocs) {
968 DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
969 if (FragMemLoc.SizeInBits !=
970 *Aggregates[FragMemLoc.Var].first->getSizeInBits())
971 Expr = *DIExpression::createFragmentExpression(
972 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
973 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
974 FragMemLoc.OffsetInBits / 8);
975 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
976 FragMemLoc.DL.getInlinedAt());
977 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
978 Bases[FragMemLoc.Base]);
985 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
986 /// that interprets assignment tracking debug info metadata and stores in IR to
987 /// create a map of variable locations.
988 class AssignmentTrackingLowering {
989 public:
990 /// The kind of location in use for a variable, where Mem is the stack home,
991 /// Val is an SSA value or const, and None means that there is not one single
992 /// kind (either because there are multiple or because there is none; it may
993 /// prove useful to split this into two values in the future).
995 /// LocKind is a join-semilattice with the partial order:
996 /// None > Mem, Val
998 /// i.e.
999 /// join(Mem, Mem) = Mem
1000 /// join(Val, Val) = Val
1001 /// join(Mem, Val) = None
1002 /// join(None, Mem) = None
1003 /// join(None, Val) = None
1004 /// join(None, None) = None
1006 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
1007 /// to name assignments and are not tracking the actual stored values.
1008 /// Therefore currently there's no way to ensure that Mem values and Val
1009 /// values are the same. This could be a future extension, though it's not
1010 /// clear that many additional locations would be recovered that way in
1011 /// practice as the likelihood of this sitation arising naturally seems
1012 /// incredibly low.
1013 enum class LocKind { Mem, Val, None };
1015 /// An abstraction of the assignment of a value to a variable or memory
1016 /// location.
1018 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
1019 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
1020 /// can't) know the ID of the last assignment that took place.
1022 /// The Status of the Assignment (Known or NoneOrPhi) is another
1023 /// join-semilattice. The partial order is:
1024 /// NoneOrPhi > Known {id_0, id_1, ...id_N}
1026 /// i.e. for all values x and y where x != y:
1027 /// join(x, x) = x
1028 /// join(x, y) = NoneOrPhi
1029 using AssignRecord = PointerUnion<DbgAssignIntrinsic *, DPValue *>;
1030 struct Assignment {
1031 enum S { Known, NoneOrPhi } Status;
1032 /// ID of the assignment. nullptr if Status is not Known.
1033 DIAssignID *ID;
1034 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
1035 /// May be nullptr.
1036 AssignRecord Source;
1038 bool isSameSourceAssignment(const Assignment &Other) const {
1039 // Don't include Source in the equality check. Assignments are
1040 // defined by their ID, not debug intrinsic(s).
1041 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
1043 void dump(raw_ostream &OS) {
1044 static const char *LUT[] = {"Known", "NoneOrPhi"};
1045 OS << LUT[Status] << "(id=";
1046 if (ID)
1047 OS << ID;
1048 else
1049 OS << "null";
1050 OS << ", s=";
1051 if (Source.isNull())
1052 OS << "null";
1053 else if (isa<DbgAssignIntrinsic *>(Source))
1054 OS << Source.get<DbgAssignIntrinsic *>();
1055 else
1056 OS << Source.get<DPValue *>();
1057 OS << ")";
1060 static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
1061 return Assignment(Known, ID, Source);
1063 static Assignment make(DIAssignID *ID, DPValue *Source) {
1064 assert(Source->isDbgAssign() &&
1065 "Cannot make an assignment from a non-assign DPValue");
1066 return Assignment(Known, ID, Source);
1068 static Assignment make(DIAssignID *ID, AssignRecord Source) {
1069 return Assignment(Known, ID, Source);
1071 static Assignment makeFromMemDef(DIAssignID *ID) {
1072 return Assignment(Known, ID);
1074 static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); }
1075 // Again, need a Top value?
1076 Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this?
1077 Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) {
1078 // If the Status is Known then we expect there to be an assignment ID.
1079 assert(Status == NoneOrPhi || ID);
1081 Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
1082 : Status(Status), ID(ID), Source(Source) {
1083 // If the Status is Known then we expect there to be an assignment ID.
1084 assert(Status == NoneOrPhi || ID);
1086 Assignment(S Status, DIAssignID *ID, DPValue *Source)
1087 : Status(Status), ID(ID), Source(Source) {
1088 // If the Status is Known then we expect there to be an assignment ID.
1089 assert(Status == NoneOrPhi || ID);
1091 Assignment(S Status, DIAssignID *ID, AssignRecord Source)
1092 : Status(Status), ID(ID), Source(Source) {
1093 // If the Status is Known then we expect there to be an assignment ID.
1094 assert(Status == NoneOrPhi || ID);
1098 using AssignmentMap = SmallVector<Assignment>;
1099 using LocMap = SmallVector<LocKind>;
1100 using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>;
1101 using UntaggedStoreAssignmentMap =
1102 DenseMap<const Instruction *,
1103 SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
1105 private:
1106 /// The highest numbered VariableID for partially promoted variables plus 1,
1107 /// the values for which start at 1.
1108 unsigned TrackedVariablesVectorSize = 0;
1109 /// Map a variable to the set of variables that it fully contains.
1110 OverlapMap VarContains;
1111 /// Map untagged stores to the variable fragments they assign to. Used by
1112 /// processUntaggedInstruction.
1113 UntaggedStoreAssignmentMap UntaggedStoreVars;
1115 // Machinery to defer inserting dbg.values.
1116 using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>;
1117 InstInsertMap InsertBeforeMap;
1118 /// Clear the location definitions currently cached for insertion after /p
1119 /// After.
1120 void resetInsertionPoint(Instruction &After);
1121 void resetInsertionPoint(DPValue &After);
1123 // emitDbgValue can be called with:
1124 // Source=[AssignRecord|DbgValueInst*|DbgAssignIntrinsic*|DPValue*]
1125 // Since AssignRecord can be cast to one of the latter two types, and all
1126 // other types have a shared interface, we use a template to handle the latter
1127 // three types, and an explicit overload for AssignRecord that forwards to
1128 // the template version with the right type.
1129 void emitDbgValue(LocKind Kind, AssignRecord Source, VarLocInsertPt After);
1130 template <typename T>
1131 void emitDbgValue(LocKind Kind, const T Source, VarLocInsertPt After);
1133 static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A,
1134 const AssignmentMap &B) {
1135 return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) {
1136 return A[VarID].isSameSourceAssignment(B[VarID]);
1140 /// Represents the stack and debug assignments in a block. Used to describe
1141 /// the live-in and live-out values for blocks, as well as the "current"
1142 /// value as we process each instruction in a block.
1143 struct BlockInfo {
1144 /// The set of variables (VariableID) being tracked in this block.
1145 BitVector VariableIDsInBlock;
1146 /// Dominating assignment to memory for each variable, indexed by
1147 /// VariableID.
1148 AssignmentMap StackHomeValue;
1149 /// Dominating assignemnt to each variable, indexed by VariableID.
1150 AssignmentMap DebugValue;
1151 /// Location kind for each variable. LiveLoc indicates whether the
1152 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1153 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1154 /// preference. This cannot be derived by inspecting DebugValue and
1155 /// StackHomeValue due to the fact that there's no distinction in
1156 /// Assignment (the class) between whether an assignment is unknown or a
1157 /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1158 /// words, the memory location may well be valid while both DebugValue and
1159 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1160 /// Indexed by VariableID.
1161 LocMap LiveLoc;
1163 public:
1164 enum AssignmentKind { Stack, Debug };
1165 const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const {
1166 switch (Kind) {
1167 case Stack:
1168 return StackHomeValue;
1169 case Debug:
1170 return DebugValue;
1172 llvm_unreachable("Unknown AssignmentKind");
1174 AssignmentMap &getAssignmentMap(AssignmentKind Kind) {
1175 return const_cast<AssignmentMap &>(
1176 const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind));
1179 bool isVariableTracked(VariableID Var) const {
1180 return VariableIDsInBlock[static_cast<unsigned>(Var)];
1183 const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const {
1184 assert(isVariableTracked(Var) && "Var not tracked in block");
1185 return getAssignmentMap(Kind)[static_cast<unsigned>(Var)];
1188 LocKind getLocKind(VariableID Var) const {
1189 assert(isVariableTracked(Var) && "Var not tracked in block");
1190 return LiveLoc[static_cast<unsigned>(Var)];
1193 /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1194 /// fragments contained win \p Var.
1195 void setLocKind(VariableID Var, LocKind K) {
1196 VariableIDsInBlock.set(static_cast<unsigned>(Var));
1197 LiveLoc[static_cast<unsigned>(Var)] = K;
1200 /// Set the assignment in the \p Kind assignment map for \p Var only: does
1201 /// not set the assignment for VariableIDs of fragments contained win \p
1202 /// Var.
1203 void setAssignment(AssignmentKind Kind, VariableID Var,
1204 const Assignment &AV) {
1205 VariableIDsInBlock.set(static_cast<unsigned>(Var));
1206 getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV;
1209 /// Return true if there is an assignment matching \p AV in the \p Kind
1210 /// assignment map. Does consider assignments for VariableIDs of fragments
1211 /// contained win \p Var.
1212 bool hasAssignment(AssignmentKind Kind, VariableID Var,
1213 const Assignment &AV) const {
1214 if (!isVariableTracked(Var))
1215 return false;
1216 return AV.isSameSourceAssignment(getAssignment(Kind, Var));
1219 /// Compare every element in each map to determine structural equality
1220 /// (slow).
1221 bool operator==(const BlockInfo &Other) const {
1222 return VariableIDsInBlock == Other.VariableIDsInBlock &&
1223 LiveLoc == Other.LiveLoc &&
1224 mapsAreEqual(VariableIDsInBlock, StackHomeValue,
1225 Other.StackHomeValue) &&
1226 mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue);
1228 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
1229 bool isValid() {
1230 return LiveLoc.size() == DebugValue.size() &&
1231 LiveLoc.size() == StackHomeValue.size();
1234 /// Clear everything and initialise with ⊤-values for all variables.
1235 void init(int NumVars) {
1236 StackHomeValue.clear();
1237 DebugValue.clear();
1238 LiveLoc.clear();
1239 VariableIDsInBlock = BitVector(NumVars);
1240 StackHomeValue.insert(StackHomeValue.begin(), NumVars,
1241 Assignment::makeNoneOrPhi());
1242 DebugValue.insert(DebugValue.begin(), NumVars,
1243 Assignment::makeNoneOrPhi());
1244 LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None);
1247 /// Helper for join.
1248 template <typename ElmtType, typename FnInputType>
1249 static void joinElmt(int Index, SmallVector<ElmtType> &Target,
1250 const SmallVector<ElmtType> &A,
1251 const SmallVector<ElmtType> &B,
1252 ElmtType (*Fn)(FnInputType, FnInputType)) {
1253 Target[Index] = Fn(A[Index], B[Index]);
1256 /// See comment for AssignmentTrackingLowering::joinBlockInfo.
1257 static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) {
1258 // Join A and B.
1260 // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1261 // Difference = join(x, ⊤) for x where Var(x) is in A xor B
1262 // Join = Intersect ∪ Difference
1264 // This is achieved by performing a join on elements from A and B with
1265 // variables common to both A and B (join elements indexed by var
1266 // intersect), then adding ⊤-value elements for vars in A xor B. The
1267 // latter part is equivalent to performing join on elements with variables
1268 // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
1269 // BlockInfo::init initializes all variable entries to the ⊤ value so we
1270 // don't need to explicitly perform that step as Join.VariableIDsInBlock
1271 // is set to the union of the variables in A and B at the end of this
1272 // function.
1273 BlockInfo Join;
1274 Join.init(NumVars);
1276 BitVector Intersect = A.VariableIDsInBlock;
1277 Intersect &= B.VariableIDsInBlock;
1279 for (auto VarID : Intersect.set_bits()) {
1280 joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind);
1281 joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue,
1282 joinAssignment);
1283 joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue,
1284 joinAssignment);
1287 Join.VariableIDsInBlock = A.VariableIDsInBlock;
1288 Join.VariableIDsInBlock |= B.VariableIDsInBlock;
1289 assert(Join.isValid());
1290 return Join;
1294 Function &Fn;
1295 const DataLayout &Layout;
1296 const DenseSet<DebugAggregate> *VarsWithStackSlot;
1297 FunctionVarLocsBuilder *FnVarLocs;
1298 DenseMap<const BasicBlock *, BlockInfo> LiveIn;
1299 DenseMap<const BasicBlock *, BlockInfo> LiveOut;
1301 /// Helper for process methods to track variables touched each frame.
1302 DenseSet<VariableID> VarsTouchedThisFrame;
1304 /// The set of variables that sometimes are not located in their stack home.
1305 DenseSet<DebugAggregate> NotAlwaysStackHomed;
1307 VariableID getVariableID(const DebugVariable &Var) {
1308 return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
1311 /// Join the LiveOut values of preds that are contained in \p Visited into
1312 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1313 /// values monotonically increase. See the @link joinMethods join methods
1314 /// @endlink documentation for more info.
1315 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
1316 ///@name joinMethods
1317 /// Functions that implement `join` (the least upper bound) for the
1318 /// join-semilattice types used in the dataflow. There is an explicit bottom
1319 /// value (⊥) for some types and and explicit top value (⊤) for all types.
1320 /// By definition:
1322 /// Join(A, B) >= A && Join(A, B) >= B
1323 /// Join(A, ⊥) = A
1324 /// Join(A, ⊤) = ⊤
1326 /// These invariants are important for monotonicity.
1328 /// For the map-type functions, all unmapped keys in an empty map are
1329 /// associated with a bottom value (⊥). This represents their values being
1330 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1331 /// only present in one) represents either a variable going out of scope or
1332 /// dropped debug info. It is assumed the key is associated with a top value
1333 /// (⊤) in this case (unknown location / assignment).
1334 ///@{
1335 static LocKind joinKind(LocKind A, LocKind B);
1336 static Assignment joinAssignment(const Assignment &A, const Assignment &B);
1337 BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
1338 ///@}
1340 /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1341 /// LiveSet must be initialized with the current live-in locations before
1342 /// calling this.
1343 void process(BasicBlock &BB, BlockInfo *LiveSet);
1344 ///@name processMethods
1345 /// Methods to process instructions in order to update the LiveSet (current
1346 /// location information).
1347 ///@{
1348 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1349 void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet);
1350 /// Update \p LiveSet after encountering an instruction with a DIAssignID
1351 /// attachment, \p I.
1352 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1353 /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1354 /// attachment, \p I.
1355 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1356 void processDbgAssign(AssignRecord Assign, BlockInfo *LiveSet);
1357 void processDPValue(DPValue &DPV, BlockInfo *LiveSet);
1358 void processDbgValue(PointerUnion<DbgValueInst *, DPValue *> DbgValueRecord,
1359 BlockInfo *LiveSet);
1360 /// Add an assignment to memory for the variable /p Var.
1361 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1362 /// Add an assignment to the variable /p Var.
1363 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1364 ///@}
1366 /// Set the LocKind for \p Var.
1367 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
1368 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1369 /// have been called for \p Var first.
1370 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
1371 /// Return true if \p Var has an assignment in \p M matching \p AV.
1372 bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind,
1373 VariableID Var, const Assignment &AV);
1374 /// Return the set of VariableIDs corresponding the fragments contained fully
1375 /// within the variable/fragment \p Var.
1376 ArrayRef<VariableID> getContainedFragments(VariableID Var) const;
1378 /// Mark \p Var as having been touched this frame. Note, this applies only
1379 /// to the exact fragment \p Var and not to any fragments contained within.
1380 void touchFragment(VariableID Var);
1382 /// Emit info for variables that are fully promoted.
1383 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
1385 public:
1386 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
1387 const DenseSet<DebugAggregate> *VarsWithStackSlot)
1388 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
1389 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1390 /// true if any variable locations have been added to FnVarLocs.
1391 bool run(FunctionVarLocsBuilder *FnVarLocs);
1393 } // namespace
1395 ArrayRef<VariableID>
1396 AssignmentTrackingLowering::getContainedFragments(VariableID Var) const {
1397 auto R = VarContains.find(Var);
1398 if (R == VarContains.end())
1399 return std::nullopt;
1400 return R->second;
1403 void AssignmentTrackingLowering::touchFragment(VariableID Var) {
1404 VarsTouchedThisFrame.insert(Var);
1407 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
1408 LocKind K) {
1409 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
1410 LiveSet->setLocKind(Var, K);
1411 touchFragment(Var);
1413 SetKind(LiveSet, Var, K);
1415 // Update the LocKind for all fragments contained within Var.
1416 for (VariableID Frag : getContainedFragments(Var))
1417 SetKind(LiveSet, Frag, K);
1420 AssignmentTrackingLowering::LocKind
1421 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
1422 return LiveSet->getLocKind(Var);
1425 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
1426 const Assignment &AV) {
1427 LiveSet->setAssignment(BlockInfo::Stack, Var, AV);
1429 // Use this assigment for all fragments contained within Var, but do not
1430 // provide a Source because we cannot convert Var's value to a value for the
1431 // fragment.
1432 Assignment FragAV = AV;
1433 FragAV.Source = nullptr;
1434 for (VariableID Frag : getContainedFragments(Var))
1435 LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV);
1438 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
1439 const Assignment &AV) {
1440 LiveSet->setAssignment(BlockInfo::Debug, Var, AV);
1442 // Use this assigment for all fragments contained within Var, but do not
1443 // provide a Source because we cannot convert Var's value to a value for the
1444 // fragment.
1445 Assignment FragAV = AV;
1446 FragAV.Source = nullptr;
1447 for (VariableID Frag : getContainedFragments(Var))
1448 LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV);
1451 static DIAssignID *getIDFromInst(const Instruction &I) {
1452 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
1455 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
1456 return cast<DIAssignID>(DAI.getAssignID());
1459 static DIAssignID *getIDFromMarker(const DPValue &DPV) {
1460 assert(DPV.isDbgAssign() &&
1461 "Cannot get a DIAssignID from a non-assign DPValue!");
1462 return DPV.getAssignID();
1465 /// Return true if \p Var has an assignment in \p M matching \p AV.
1466 bool AssignmentTrackingLowering::hasVarWithAssignment(
1467 BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var,
1468 const Assignment &AV) {
1469 if (!LiveSet->hasAssignment(Kind, Var, AV))
1470 return false;
1472 // Check all the frags contained within Var as these will have all been
1473 // mapped to AV at the last store to Var.
1474 for (VariableID Frag : getContainedFragments(Var))
1475 if (!LiveSet->hasAssignment(Kind, Frag, AV))
1476 return false;
1477 return true;
1480 #ifndef NDEBUG
1481 const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
1482 using LocKind = AssignmentTrackingLowering::LocKind;
1483 switch (Loc) {
1484 case LocKind::Val:
1485 return "Val";
1486 case LocKind::Mem:
1487 return "Mem";
1488 case LocKind::None:
1489 return "None";
1491 llvm_unreachable("unknown LocKind");
1493 #endif
1495 VarLocInsertPt getNextNode(const DPValue *DPV) {
1496 auto NextIt = ++(DPV->getIterator());
1497 if (NextIt == DPV->getMarker()->getDbgValueRange().end())
1498 return DPV->getMarker()->MarkedInstr;
1499 return &*NextIt;
1501 VarLocInsertPt getNextNode(const Instruction *Inst) {
1502 const Instruction *Next = Inst->getNextNode();
1503 if (!Next->hasDbgValues())
1504 return Next;
1505 return &*Next->getDbgValueRange().begin();
1507 VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) {
1508 if (isa<const Instruction *>(InsertPt))
1509 return getNextNode(cast<const Instruction *>(InsertPt));
1510 return getNextNode(cast<const DPValue *>(InsertPt));
1513 DbgAssignIntrinsic *CastToDbgAssign(DbgVariableIntrinsic *DVI) {
1514 return cast<DbgAssignIntrinsic>(DVI);
1517 DPValue *CastToDbgAssign(DPValue *DPV) {
1518 assert(DPV->isDbgAssign() &&
1519 "Attempted to cast non-assign DPValue to DPVAssign.");
1520 return DPV;
1523 void AssignmentTrackingLowering::emitDbgValue(
1524 AssignmentTrackingLowering::LocKind Kind,
1525 AssignmentTrackingLowering::AssignRecord Source, VarLocInsertPt After) {
1526 if (isa<DbgAssignIntrinsic *>(Source))
1527 emitDbgValue(Kind, cast<DbgAssignIntrinsic *>(Source), After);
1528 else
1529 emitDbgValue(Kind, cast<DPValue *>(Source), After);
1531 template <typename T>
1532 void AssignmentTrackingLowering::emitDbgValue(
1533 AssignmentTrackingLowering::LocKind Kind, const T Source,
1534 VarLocInsertPt After) {
1536 DILocation *DL = Source->getDebugLoc();
1537 auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) {
1538 assert(Expr);
1539 if (!Val)
1540 Val = ValueAsMetadata::get(
1541 PoisonValue::get(Type::getInt1Ty(Source->getContext())));
1543 // Find a suitable insert point.
1544 auto InsertBefore = getNextNode(After);
1545 assert(InsertBefore && "Shouldn't be inserting after a terminator");
1547 VariableID Var = getVariableID(DebugVariable(Source));
1548 VarLocInfo VarLoc;
1549 VarLoc.VariableID = static_cast<VariableID>(Var);
1550 VarLoc.Expr = Expr;
1551 VarLoc.Values = RawLocationWrapper(Val);
1552 VarLoc.DL = DL;
1553 // Insert it into the map for later.
1554 InsertBeforeMap[InsertBefore].push_back(VarLoc);
1557 // NOTE: This block can mutate Kind.
1558 if (Kind == LocKind::Mem) {
1559 const auto *Assign = CastToDbgAssign(Source);
1560 // Check the address hasn't been dropped (e.g. the debug uses may not have
1561 // been replaced before deleting a Value).
1562 if (Assign->isKillAddress()) {
1563 // The address isn't valid so treat this as a non-memory def.
1564 Kind = LocKind::Val;
1565 } else {
1566 Value *Val = Assign->getAddress();
1567 DIExpression *Expr = Assign->getAddressExpression();
1568 assert(!Expr->getFragmentInfo() &&
1569 "fragment info should be stored in value-expression only");
1570 // Copy the fragment info over from the value-expression to the new
1571 // DIExpression.
1572 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
1573 auto FragInfo = *OptFragInfo;
1574 Expr = *DIExpression::createFragmentExpression(
1575 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
1577 // The address-expression has an implicit deref, add it now.
1578 std::tie(Val, Expr) =
1579 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
1580 Emit(ValueAsMetadata::get(Val), Expr);
1581 return;
1585 if (Kind == LocKind::Val) {
1586 Emit(Source->getRawLocation(), Source->getExpression());
1587 return;
1590 if (Kind == LocKind::None) {
1591 Emit(nullptr, Source->getExpression());
1592 return;
1596 void AssignmentTrackingLowering::processNonDbgInstruction(
1597 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1598 if (I.hasMetadata(LLVMContext::MD_DIAssignID))
1599 processTaggedInstruction(I, LiveSet);
1600 else
1601 processUntaggedInstruction(I, LiveSet);
1604 void AssignmentTrackingLowering::processUntaggedInstruction(
1605 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1606 // Interpret stack stores that are not tagged as an assignment in memory for
1607 // the variables associated with that address. These stores may not be tagged
1608 // because a) the store cannot be represented using dbg.assigns (non-const
1609 // length or offset) or b) the tag was accidentally dropped during
1610 // optimisations. For these stores we fall back to assuming that the stack
1611 // home is a valid location for the variables. The benefit is that this
1612 // prevents us missing an assignment and therefore incorrectly maintaining
1613 // earlier location definitions, and in many cases it should be a reasonable
1614 // assumption. However, this will occasionally lead to slight
1615 // inaccuracies. The value of a hoisted untagged store will be visible
1616 // "early", for example.
1617 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
1618 auto It = UntaggedStoreVars.find(&I);
1619 if (It == UntaggedStoreVars.end())
1620 return; // No variables associated with the store destination.
1622 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1623 << "\n");
1624 // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1625 // and mem def, set lockind to Mem, and emit a location def for each.
1626 for (auto [Var, Info] : It->second) {
1627 // This instruction is treated as both a debug and memory assignment,
1628 // meaning the memory location should be used. We don't have an assignment
1629 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1630 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1631 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1632 setLocKind(LiveSet, Var, LocKind::Mem);
1633 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem)
1634 << "\n");
1635 // Build the dbg location def to insert.
1637 // DIExpression: Add fragment and offset.
1638 DebugVariable V = FnVarLocs->getVariable(Var);
1639 DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
1640 if (auto Frag = V.getFragment()) {
1641 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
1642 Frag->SizeInBits);
1643 assert(R && "unexpected createFragmentExpression failure");
1644 DIE = *R;
1646 SmallVector<uint64_t, 3> Ops;
1647 if (Info.OffsetInBits)
1648 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
1649 Ops.push_back(dwarf::DW_OP_deref);
1650 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
1651 /*EntryValue=*/false);
1652 // Find a suitable insert point, before the next instruction or DPValue
1653 // after I.
1654 auto InsertBefore = getNextNode(&I);
1655 assert(InsertBefore && "Shouldn't be inserting after a terminator");
1657 // Get DILocation for this unrecorded assignment.
1658 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1659 const DILocation *DILoc = DILocation::get(
1660 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1662 VarLocInfo VarLoc;
1663 VarLoc.VariableID = static_cast<VariableID>(Var);
1664 VarLoc.Expr = DIE;
1665 VarLoc.Values = RawLocationWrapper(
1666 ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base)));
1667 VarLoc.DL = DILoc;
1668 // 3. Insert it into the map for later.
1669 InsertBeforeMap[InsertBefore].push_back(VarLoc);
1673 void AssignmentTrackingLowering::processTaggedInstruction(
1674 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1675 auto Linked = at::getAssignmentMarkers(&I);
1676 auto LinkedDPAssigns = at::getDPVAssignmentMarkers(&I);
1677 // No dbg.assign intrinsics linked.
1678 // FIXME: All vars that have a stack slot this store modifies that don't have
1679 // a dbg.assign linked to it should probably treat this like an untagged
1680 // store.
1681 if (Linked.empty() && LinkedDPAssigns.empty())
1682 return;
1684 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
1685 auto ProcessLinkedAssign = [&](auto *Assign) {
1686 VariableID Var = getVariableID(DebugVariable(Assign));
1687 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1688 // that is linked to a store.
1689 assert(VarsWithStackSlot->count(getAggregate(Assign)) &&
1690 "expected Assign's variable to have stack slot");
1692 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
1693 addMemDef(LiveSet, Var, AV);
1695 LLVM_DEBUG(dbgs() << " linked to " << *Assign << "\n");
1696 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1697 << " -> ");
1699 // The last assignment to the stack is now AV. Check if the last debug
1700 // assignment has a matching Assignment.
1701 if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) {
1702 // The StackHomeValue and DebugValue for this variable match so we can
1703 // emit a stack home location here.
1704 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1705 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
1706 LLVM_DEBUG(dbgs() << " Debug val: ";
1707 LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs());
1708 dbgs() << "\n");
1709 setLocKind(LiveSet, Var, LocKind::Mem);
1710 emitDbgValue(LocKind::Mem, Assign, &I);
1711 return;
1714 // The StackHomeValue and DebugValue for this variable do not match. I.e.
1715 // The value currently stored in the stack is not what we'd expect to
1716 // see, so we cannot use emit a stack home location here. Now we will
1717 // look at the live LocKind for the variable and determine an appropriate
1718 // dbg.value to emit.
1719 LocKind PrevLoc = getLocKind(LiveSet, Var);
1720 switch (PrevLoc) {
1721 case LocKind::Val: {
1722 // The value in memory in memory has changed but we're not currently
1723 // using the memory location. Do nothing.
1724 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1725 setLocKind(LiveSet, Var, LocKind::Val);
1726 } break;
1727 case LocKind::Mem: {
1728 // There's been an assignment to memory that we were using as a
1729 // location for this variable, and the Assignment doesn't match what
1730 // we'd expect to see in memory.
1731 Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
1732 if (DbgAV.Status == Assignment::NoneOrPhi) {
1733 // We need to terminate any previously open location now.
1734 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1735 setLocKind(LiveSet, Var, LocKind::None);
1736 emitDbgValue(LocKind::None, Assign, &I);
1737 } else {
1738 // The previous DebugValue Value can be used here.
1739 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1740 setLocKind(LiveSet, Var, LocKind::Val);
1741 if (DbgAV.Source) {
1742 emitDbgValue(LocKind::Val, DbgAV.Source, &I);
1743 } else {
1744 // PrevAV.Source is nullptr so we must emit undef here.
1745 emitDbgValue(LocKind::None, Assign, &I);
1748 } break;
1749 case LocKind::None: {
1750 // There's been an assignment to memory and we currently are
1751 // not tracking a location for the variable. Do not emit anything.
1752 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1753 setLocKind(LiveSet, Var, LocKind::None);
1754 } break;
1757 for (DbgAssignIntrinsic *DAI : Linked)
1758 ProcessLinkedAssign(DAI);
1759 for (DPValue *DPV : LinkedDPAssigns)
1760 ProcessLinkedAssign(DPV);
1763 void AssignmentTrackingLowering::processDbgAssign(AssignRecord Assign,
1764 BlockInfo *LiveSet) {
1765 auto ProcessDbgAssignImpl = [&](auto *DbgAssign) {
1766 // Only bother tracking variables that are at some point stack homed. Other
1767 // variables can be dealt with trivially later.
1768 if (!VarsWithStackSlot->count(getAggregate(DbgAssign)))
1769 return;
1771 VariableID Var = getVariableID(DebugVariable(DbgAssign));
1772 Assignment AV = Assignment::make(getIDFromMarker(*DbgAssign), DbgAssign);
1773 addDbgDef(LiveSet, Var, AV);
1775 LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n";);
1776 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1777 << " -> ");
1779 // Check if the DebugValue and StackHomeValue both hold the same
1780 // Assignment.
1781 if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) {
1782 // They match. We can use the stack home because the debug intrinsics
1783 // state that an assignment happened here, and we know that specific
1784 // assignment was the last one to take place in memory for this variable.
1785 LocKind Kind;
1786 if (DbgAssign->isKillAddress()) {
1787 LLVM_DEBUG(
1788 dbgs()
1789 << "Val, Stack matches Debug program but address is killed\n";);
1790 Kind = LocKind::Val;
1791 } else {
1792 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1793 Kind = LocKind::Mem;
1795 setLocKind(LiveSet, Var, Kind);
1796 emitDbgValue(Kind, DbgAssign, DbgAssign);
1797 } else {
1798 // The last assignment to the memory location isn't the one that we want
1799 // to show to the user so emit a dbg.value(Value). Value may be undef.
1800 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1801 setLocKind(LiveSet, Var, LocKind::Val);
1802 emitDbgValue(LocKind::Val, DbgAssign, DbgAssign);
1805 if (isa<DPValue *>(Assign))
1806 return ProcessDbgAssignImpl(cast<DPValue *>(Assign));
1807 return ProcessDbgAssignImpl(cast<DbgAssignIntrinsic *>(Assign));
1810 void AssignmentTrackingLowering::processDbgValue(
1811 PointerUnion<DbgValueInst *, DPValue *> DbgValueRecord,
1812 BlockInfo *LiveSet) {
1813 auto ProcessDbgValueImpl = [&](auto *DbgValue) {
1814 // Only other tracking variables that are at some point stack homed.
1815 // Other variables can be dealt with trivally later.
1816 if (!VarsWithStackSlot->count(getAggregate(DbgValue)))
1817 return;
1819 VariableID Var = getVariableID(DebugVariable(DbgValue));
1820 // We have no ID to create an Assignment with so we mark this assignment as
1821 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1822 // the assignment responsible for setting this value.
1823 // This is fine; dbg.values are essentially interchangable with unlinked
1824 // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1825 // PHIs for promoted variables.
1826 Assignment AV = Assignment::makeNoneOrPhi();
1827 addDbgDef(LiveSet, Var, AV);
1829 LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n";);
1830 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1831 << " -> Val, dbg.value override");
1833 setLocKind(LiveSet, Var, LocKind::Val);
1834 emitDbgValue(LocKind::Val, DbgValue, DbgValue);
1836 if (isa<DPValue *>(DbgValueRecord))
1837 return ProcessDbgValueImpl(cast<DPValue *>(DbgValueRecord));
1838 return ProcessDbgValueImpl(cast<DbgValueInst *>(DbgValueRecord));
1841 template <typename T> static bool hasZeroSizedFragment(T &DbgValue) {
1842 if (auto F = DbgValue.getExpression()->getFragmentInfo())
1843 return F->SizeInBits == 0;
1844 return false;
1847 void AssignmentTrackingLowering::processDbgInstruction(
1848 DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1849 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
1850 if (!DVI)
1851 return;
1853 // Ignore assignments to zero bits of the variable.
1854 if (hasZeroSizedFragment(*DVI))
1855 return;
1857 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1858 processDbgAssign(DAI, LiveSet);
1859 else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
1860 processDbgValue(DVI, LiveSet);
1862 void AssignmentTrackingLowering::processDPValue(
1863 DPValue &DPV, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1864 // Ignore assignments to zero bits of the variable.
1865 if (hasZeroSizedFragment(DPV))
1866 return;
1868 if (DPV.isDbgAssign())
1869 processDbgAssign(&DPV, LiveSet);
1870 else if (DPV.isDbgValue())
1871 processDbgValue(&DPV, LiveSet);
1874 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
1875 assert(!After.isTerminator() && "Can't insert after a terminator");
1876 auto *R = InsertBeforeMap.find(getNextNode(&After));
1877 if (R == InsertBeforeMap.end())
1878 return;
1879 R->second.clear();
1881 void AssignmentTrackingLowering::resetInsertionPoint(DPValue &After) {
1882 auto *R = InsertBeforeMap.find(getNextNode(&After));
1883 if (R == InsertBeforeMap.end())
1884 return;
1885 R->second.clear();
1888 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
1889 // If the block starts with DPValues, we need to process those DPValues as
1890 // their own frame without processing any instructions first.
1891 bool ProcessedLeadingDPValues = !BB.begin()->hasDbgValues();
1892 for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
1893 assert(VarsTouchedThisFrame.empty());
1894 // Process the instructions in "frames". A "frame" includes a single
1895 // non-debug instruction followed any debug instructions before the
1896 // next non-debug instruction.
1898 // Skip the current instruction if it has unprocessed DPValues attached (see
1899 // comment above `ProcessedLeadingDPValues`).
1900 if (ProcessedLeadingDPValues) {
1901 // II is now either a debug intrinsic, a non-debug instruction with no
1902 // attached DPValues, or a non-debug instruction with attached processed
1903 // DPValues.
1904 // II has not been processed.
1905 if (!isa<DbgInfoIntrinsic>(&*II)) {
1906 if (II->isTerminator())
1907 break;
1908 resetInsertionPoint(*II);
1909 processNonDbgInstruction(*II, LiveSet);
1910 assert(LiveSet->isValid());
1911 ++II;
1914 // II is now either a debug intrinsic, a non-debug instruction with no
1915 // attached DPValues, or a non-debug instruction with attached unprocessed
1916 // DPValues.
1917 if (II != EI && II->hasDbgValues()) {
1918 for (DPValue &DPV : II->getDbgValueRange()) {
1919 resetInsertionPoint(DPV);
1920 processDPValue(DPV, LiveSet);
1921 assert(LiveSet->isValid());
1924 ProcessedLeadingDPValues = true;
1925 while (II != EI) {
1926 auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II);
1927 if (!Dbg)
1928 break;
1929 resetInsertionPoint(*II);
1930 processDbgInstruction(*Dbg, LiveSet);
1931 assert(LiveSet->isValid());
1932 ++II;
1934 // II is now a non-debug instruction either with no attached DPValues, or
1935 // with attached processed DPValues. II has not been processed, and all
1936 // debug instructions or DPValues in the frame preceding II have been
1937 // processed.
1939 // We've processed everything in the "frame". Now determine which variables
1940 // cannot be represented by a dbg.declare.
1941 for (auto Var : VarsTouchedThisFrame) {
1942 LocKind Loc = getLocKind(LiveSet, Var);
1943 // If a variable's LocKind is anything other than LocKind::Mem then we
1944 // must note that it cannot be represented with a dbg.declare.
1945 // Note that this check is enough without having to check the result of
1946 // joins() because for join to produce anything other than Mem after
1947 // we've already seen a Mem we'd be joining None or Val with Mem. In that
1948 // case, we've already hit this codepath when we set the LocKind to Val
1949 // or None in that block.
1950 if (Loc != LocKind::Mem) {
1951 DebugVariable DbgVar = FnVarLocs->getVariable(Var);
1952 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
1953 NotAlwaysStackHomed.insert(Aggr);
1956 VarsTouchedThisFrame.clear();
1960 AssignmentTrackingLowering::LocKind
1961 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
1962 // Partial order:
1963 // None > Mem, Val
1964 return A == B ? A : LocKind::None;
1967 AssignmentTrackingLowering::Assignment
1968 AssignmentTrackingLowering::joinAssignment(const Assignment &A,
1969 const Assignment &B) {
1970 // Partial order:
1971 // NoneOrPhi(null, null) > Known(v, ?s)
1973 // If either are NoneOrPhi the join is NoneOrPhi.
1974 // If either value is different then the result is
1975 // NoneOrPhi (joining two values is a Phi).
1976 if (!A.isSameSourceAssignment(B))
1977 return Assignment::makeNoneOrPhi();
1978 if (A.Status == Assignment::NoneOrPhi)
1979 return Assignment::makeNoneOrPhi();
1981 // Source is used to lookup the value + expression in the debug program if
1982 // the stack slot gets assigned a value earlier than expected. Because
1983 // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1984 // It's unlikely that we're losing out on much coverage by avoiding that
1985 // extra work.
1986 // The Source may differ in this situation:
1987 // Pred.1:
1988 // dbg.assign i32 0, ..., !1, ...
1989 // Pred.2:
1990 // dbg.assign i32 1, ..., !1, ...
1991 // Here the same assignment (!1) was performed in both preds in the source,
1992 // but we can't use either one unless they are identical (e.g. .we don't
1993 // want to arbitrarily pick between constant values).
1994 auto JoinSource = [&]() -> AssignRecord {
1995 if (A.Source == B.Source)
1996 return A.Source;
1997 if (!A.Source || !B.Source)
1998 return AssignRecord();
1999 assert(isa<DPValue *>(A.Source) == isa<DPValue *>(B.Source));
2000 if (isa<DPValue *>(A.Source) &&
2001 cast<DPValue *>(A.Source)->isEquivalentTo(*cast<DPValue *>(B.Source)))
2002 return A.Source;
2003 if (isa<DbgAssignIntrinsic *>(A.Source) &&
2004 cast<DbgAssignIntrinsic *>(A.Source)->isIdenticalTo(
2005 cast<DbgAssignIntrinsic *>(B.Source)))
2006 return A.Source;
2007 return AssignRecord();
2009 AssignRecord Source = JoinSource();
2010 assert(A.Status == B.Status && A.Status == Assignment::Known);
2011 assert(A.ID == B.ID);
2012 return Assignment::make(A.ID, Source);
2015 AssignmentTrackingLowering::BlockInfo
2016 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
2017 const BlockInfo &B) {
2018 return BlockInfo::join(A, B, TrackedVariablesVectorSize);
2021 bool AssignmentTrackingLowering::join(
2022 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
2024 SmallVector<const BasicBlock *> VisitedPreds;
2025 // Ignore backedges if we have not visited the predecessor yet. As the
2026 // predecessor hasn't yet had locations propagated into it, most locations
2027 // will not yet be valid, so treat them as all being uninitialized and
2028 // potentially valid. If a location guessed to be correct here is
2029 // invalidated later, we will remove it when we revisit this block. This
2030 // is essentially the same as initialising all LocKinds and Assignments to
2031 // an implicit ⊥ value which is the identity value for the join operation.
2032 for (const BasicBlock *Pred : predecessors(&BB)) {
2033 if (Visited.count(Pred))
2034 VisitedPreds.push_back(Pred);
2037 // No preds visited yet.
2038 if (VisitedPreds.empty()) {
2039 auto It = LiveIn.try_emplace(&BB, BlockInfo());
2040 bool DidInsert = It.second;
2041 if (DidInsert)
2042 It.first->second.init(TrackedVariablesVectorSize);
2043 return /*Changed*/ DidInsert;
2046 // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
2047 if (VisitedPreds.size() == 1) {
2048 const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second;
2049 auto CurrentLiveInEntry = LiveIn.find(&BB);
2051 // Check if there isn't an entry, or there is but the LiveIn set has
2052 // changed (expensive check).
2053 if (CurrentLiveInEntry == LiveIn.end())
2054 LiveIn.insert(std::make_pair(&BB, PredLiveOut));
2055 else if (PredLiveOut != CurrentLiveInEntry->second)
2056 CurrentLiveInEntry->second = PredLiveOut;
2057 else
2058 return /*Changed*/ false;
2059 return /*Changed*/ true;
2062 // More than one pred. Join LiveOuts of blocks 1 and 2.
2063 assert(VisitedPreds.size() > 1);
2064 const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second;
2065 const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second;
2066 BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1);
2068 // Join the LiveOuts of subsequent blocks.
2069 ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2);
2070 for (const BasicBlock *Pred : Tail) {
2071 const auto &PredLiveOut = LiveOut.find(Pred);
2072 assert(PredLiveOut != LiveOut.end() &&
2073 "block should have been processed already");
2074 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
2077 // Save the joined result for BB.
2078 auto CurrentLiveInEntry = LiveIn.find(&BB);
2079 // Check if there isn't an entry, or there is but the LiveIn set has changed
2080 // (expensive check).
2081 if (CurrentLiveInEntry == LiveIn.end())
2082 LiveIn.try_emplace(&BB, std::move(BBLiveIn));
2083 else if (BBLiveIn != CurrentLiveInEntry->second)
2084 CurrentLiveInEntry->second = std::move(BBLiveIn);
2085 else
2086 return /*Changed*/ false;
2087 return /*Changed*/ true;
2090 /// Return true if A fully contains B.
2091 static bool fullyContains(DIExpression::FragmentInfo A,
2092 DIExpression::FragmentInfo B) {
2093 auto ALeft = A.OffsetInBits;
2094 auto BLeft = B.OffsetInBits;
2095 if (BLeft < ALeft)
2096 return false;
2098 auto ARight = ALeft + A.SizeInBits;
2099 auto BRight = BLeft + B.SizeInBits;
2100 if (BRight > ARight)
2101 return false;
2102 return true;
2105 static std::optional<at::AssignmentInfo>
2106 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
2107 // Don't bother checking if this is an AllocaInst. We know this
2108 // instruction has no tag which means there are no variables associated
2109 // with it.
2110 if (const auto *SI = dyn_cast<StoreInst>(&I))
2111 return at::getAssignmentInfo(Layout, SI);
2112 if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
2113 return at::getAssignmentInfo(Layout, MI);
2114 // Alloca or non-store-like inst.
2115 return std::nullopt;
2118 DbgDeclareInst *DynCastToDbgDeclare(DbgVariableIntrinsic *DVI) {
2119 return dyn_cast<DbgDeclareInst>(DVI);
2122 DPValue *DynCastToDbgDeclare(DPValue *DPV) {
2123 return DPV->isDbgDeclare() ? DPV : nullptr;
2126 /// Build a map of {Variable x: Variables y} where all variable fragments
2127 /// contained within the variable fragment x are in set y. This means that
2128 /// y does not contain all overlaps because partial overlaps are excluded.
2130 /// While we're iterating over the function, add single location defs for
2131 /// dbg.declares to \p FnVarLocs.
2133 /// Variables that are interesting to this pass in are added to
2134 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
2135 /// the last interesting variable plus 1, meaning variables with ID 1
2136 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
2137 /// subsequent variables are either stack homed or fully promoted.
2139 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
2140 /// the stored-to variable fragments.
2142 /// These tasks are bundled together to reduce the number of times we need
2143 /// to iterate over the function as they can be achieved together in one pass.
2144 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
2145 Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
2146 const DenseSet<DebugAggregate> &VarsWithStackSlot,
2147 AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars,
2148 unsigned &TrackedVariablesVectorSize) {
2149 DenseSet<DebugVariable> Seen;
2150 // Map of Variable: [Fragments].
2151 DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
2152 // Iterate over all instructions:
2153 // - dbg.declare -> add single location variable record
2154 // - dbg.* -> Add fragments to FragmentMap
2155 // - untagged store -> Add fragments to FragmentMap and update
2156 // UntaggedStoreVars.
2157 // We need to add fragments for untagged stores too so that we can correctly
2158 // clobber overlapped fragment locations later.
2159 SmallVector<DbgDeclareInst *> InstDeclares;
2160 SmallVector<DPValue *> DPDeclares;
2161 auto ProcessDbgRecord = [&](auto *Record, auto &DeclareList) {
2162 if (auto *Declare = DynCastToDbgDeclare(Record)) {
2163 DeclareList.push_back(Declare);
2164 return;
2166 DebugVariable DV = DebugVariable(Record);
2167 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2168 if (!VarsWithStackSlot.contains(DA))
2169 return;
2170 if (Seen.insert(DV).second)
2171 FragmentMap[DA].push_back(DV);
2173 for (auto &BB : Fn) {
2174 for (auto &I : BB) {
2175 for (auto &DPV : I.getDbgValueRange())
2176 ProcessDbgRecord(&DPV, DPDeclares);
2177 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2178 ProcessDbgRecord(DII, InstDeclares);
2179 } else if (auto Info = getUntaggedStoreAssignmentInfo(
2180 I, Fn.getParent()->getDataLayout())) {
2181 // Find markers linked to this alloca.
2182 auto HandleDbgAssignForStore = [&](auto *Assign) {
2183 std::optional<DIExpression::FragmentInfo> FragInfo;
2185 // Skip this assignment if the affected bits are outside of the
2186 // variable fragment.
2187 if (!at::calculateFragmentIntersect(
2188 I.getModule()->getDataLayout(), Info->Base,
2189 Info->OffsetInBits, Info->SizeInBits, Assign, FragInfo) ||
2190 (FragInfo && FragInfo->SizeInBits == 0))
2191 return;
2193 // FragInfo from calculateFragmentIntersect is nullopt if the
2194 // resultant fragment matches DAI's fragment or entire variable - in
2195 // which case copy the fragment info from DAI. If FragInfo is still
2196 // nullopt after the copy it means "no fragment info" instead, which
2197 // is how it is usually interpreted.
2198 if (!FragInfo)
2199 FragInfo = Assign->getExpression()->getFragmentInfo();
2201 DebugVariable DV =
2202 DebugVariable(Assign->getVariable(), FragInfo,
2203 Assign->getDebugLoc().getInlinedAt());
2204 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2205 if (!VarsWithStackSlot.contains(DA))
2206 return;
2208 // Cache this info for later.
2209 UntaggedStoreVars[&I].push_back(
2210 {FnVarLocs->insertVariable(DV), *Info});
2212 if (Seen.insert(DV).second)
2213 FragmentMap[DA].push_back(DV);
2215 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base))
2216 HandleDbgAssignForStore(DAI);
2217 for (DPValue *DPV : at::getDPVAssignmentMarkers(Info->Base))
2218 HandleDbgAssignForStore(DPV);
2223 // Sort the fragment map for each DebugAggregate in ascending
2224 // order of fragment size - there should be no duplicates.
2225 for (auto &Pair : FragmentMap) {
2226 SmallVector<DebugVariable, 8> &Frags = Pair.second;
2227 std::sort(Frags.begin(), Frags.end(),
2228 [](const DebugVariable &Next, const DebugVariable &Elmt) {
2229 return Elmt.getFragmentOrDefault().SizeInBits >
2230 Next.getFragmentOrDefault().SizeInBits;
2232 // Check for duplicates.
2233 assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end());
2236 // Build the map.
2237 AssignmentTrackingLowering::OverlapMap Map;
2238 for (auto &Pair : FragmentMap) {
2239 auto &Frags = Pair.second;
2240 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
2241 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
2242 // Find the frags that this is contained within.
2244 // Because Frags is sorted by size and none have the same offset and
2245 // size, we know that this frag can only be contained by subsequent
2246 // elements.
2247 SmallVector<DebugVariable, 8>::iterator OtherIt = It;
2248 ++OtherIt;
2249 VariableID ThisVar = FnVarLocs->insertVariable(*It);
2250 for (; OtherIt != IEnd; ++OtherIt) {
2251 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
2252 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
2253 if (fullyContains(OtherFrag, Frag))
2254 Map[OtherVar].push_back(ThisVar);
2259 // VariableIDs are 1-based so the variable-tracking bitvector needs
2260 // NumVariables plus 1 bits.
2261 TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1;
2263 // Finally, insert the declares afterwards, so the first IDs are all
2264 // partially stack homed vars.
2265 for (auto *DDI : InstDeclares)
2266 FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
2267 DDI->getDebugLoc(), DDI->getWrappedLocation());
2268 for (auto *DPV : DPDeclares)
2269 FnVarLocs->addSingleLocVar(DebugVariable(DPV), DPV->getExpression(),
2270 DPV->getDebugLoc(),
2271 RawLocationWrapper(DPV->getRawLocation()));
2272 return Map;
2275 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
2276 if (Fn.size() > MaxNumBlocks) {
2277 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
2278 << ": too many blocks (" << Fn.size() << ")\n");
2279 at::deleteAll(&Fn);
2280 return false;
2283 FnVarLocs = FnVarLocsBuilder;
2285 // The general structure here is inspired by VarLocBasedImpl.cpp
2286 // (LiveDebugValues).
2288 // Build the variable fragment overlap map.
2289 // Note that this pass doesn't handle partial overlaps correctly (FWIW
2290 // neither does LiveDebugVariables) because that is difficult to do and
2291 // appears to be rare occurance.
2292 VarContains = buildOverlapMapAndRecordDeclares(
2293 Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars,
2294 TrackedVariablesVectorSize);
2296 // Prepare for traversal.
2297 ReversePostOrderTraversal<Function *> RPOT(&Fn);
2298 std::priority_queue<unsigned int, std::vector<unsigned int>,
2299 std::greater<unsigned int>>
2300 Worklist;
2301 std::priority_queue<unsigned int, std::vector<unsigned int>,
2302 std::greater<unsigned int>>
2303 Pending;
2304 DenseMap<unsigned int, BasicBlock *> OrderToBB;
2305 DenseMap<BasicBlock *, unsigned int> BBToOrder;
2306 { // Init OrderToBB and BBToOrder.
2307 unsigned int RPONumber = 0;
2308 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
2309 OrderToBB[RPONumber] = *RI;
2310 BBToOrder[*RI] = RPONumber;
2311 Worklist.push(RPONumber);
2312 ++RPONumber;
2314 LiveIn.init(RPONumber);
2315 LiveOut.init(RPONumber);
2318 // Perform the traversal.
2320 // This is a standard "union of predecessor outs" dataflow problem. To solve
2321 // it, we perform join() and process() using the two worklist method until
2322 // the LiveIn data for each block becomes unchanging. The "proof" that this
2323 // terminates can be put together by looking at the comments around LocKind,
2324 // Assignment, and the various join methods, which show that all the elements
2325 // involved are made up of join-semilattices; LiveIn(n) can only
2326 // monotonically increase in value throughout the dataflow.
2328 SmallPtrSet<BasicBlock *, 16> Visited;
2329 while (!Worklist.empty()) {
2330 // We track what is on the pending worklist to avoid inserting the same
2331 // thing twice.
2332 SmallPtrSet<BasicBlock *, 16> OnPending;
2333 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2334 while (!Worklist.empty()) {
2335 BasicBlock *BB = OrderToBB[Worklist.top()];
2336 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
2337 Worklist.pop();
2338 bool InChanged = join(*BB, Visited);
2339 // Always consider LiveIn changed on the first visit.
2340 InChanged |= Visited.insert(BB).second;
2341 if (InChanged) {
2342 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
2343 // Mutate a copy of LiveIn while processing BB. After calling process
2344 // LiveSet is the LiveOut set for BB.
2345 BlockInfo LiveSet = LiveIn[BB];
2347 // Process the instructions in the block.
2348 process(*BB, &LiveSet);
2350 // Relatively expensive check: has anything changed in LiveOut for BB?
2351 if (LiveOut[BB] != LiveSet) {
2352 LLVM_DEBUG(dbgs() << BB->getName()
2353 << " has new OutLocs, add succs to worklist: [ ");
2354 LiveOut[BB] = std::move(LiveSet);
2355 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
2356 if (OnPending.insert(*I).second) {
2357 LLVM_DEBUG(dbgs() << I->getName() << " ");
2358 Pending.push(BBToOrder[*I]);
2361 LLVM_DEBUG(dbgs() << "]\n");
2365 Worklist.swap(Pending);
2366 // At this point, pending must be empty, since it was just the empty
2367 // worklist
2368 assert(Pending.empty() && "Pending should be empty");
2371 // That's the hard part over. Now we just have some admin to do.
2373 // Record whether we inserted any intrinsics.
2374 bool InsertedAnyIntrinsics = false;
2376 // Identify and add defs for single location variables.
2378 // Go through all of the defs that we plan to add. If the aggregate variable
2379 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2380 // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2381 // we can identify those uneeded defs later.
2382 DenseSet<DebugAggregate> AlwaysStackHomed;
2383 for (const auto &Pair : InsertBeforeMap) {
2384 auto &Vec = Pair.second;
2385 for (VarLocInfo VarLoc : Vec) {
2386 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2387 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2389 // Skip this Var if it's not always stack homed.
2390 if (NotAlwaysStackHomed.contains(Aggr))
2391 continue;
2393 // Skip complex cases such as when different fragments of a variable have
2394 // been split into different allocas. Skipping in this case means falling
2395 // back to using a list of defs (which could reduce coverage, but is no
2396 // less correct).
2397 bool Simple =
2398 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
2399 if (!Simple) {
2400 NotAlwaysStackHomed.insert(Aggr);
2401 continue;
2404 // All source assignments to this variable remain and all stores to any
2405 // part of the variable store to the same address (with varying
2406 // offsets). We can just emit a single location for the whole variable.
2408 // Unless we've already done so, create the single location def now.
2409 if (AlwaysStackHomed.insert(Aggr).second) {
2410 assert(!VarLoc.Values.hasArgList());
2411 // TODO: When more complex cases are handled VarLoc.Expr should be
2412 // built appropriately rather than always using an empty DIExpression.
2413 // The assert below is a reminder.
2414 assert(Simple);
2415 VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
2416 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2417 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values);
2418 InsertedAnyIntrinsics = true;
2423 // Insert the other DEFs.
2424 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
2425 SmallVector<VarLocInfo> NewDefs;
2426 for (const VarLocInfo &VarLoc : Vec) {
2427 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2428 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2429 // If this variable is always stack homed then we have already inserted a
2430 // dbg.declare and deleted this dbg.value.
2431 if (AlwaysStackHomed.contains(Aggr))
2432 continue;
2433 NewDefs.push_back(VarLoc);
2434 InsertedAnyIntrinsics = true;
2437 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
2440 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
2442 return InsertedAnyIntrinsics;
2445 bool AssignmentTrackingLowering::emitPromotedVarLocs(
2446 FunctionVarLocsBuilder *FnVarLocs) {
2447 bool InsertedAnyIntrinsics = false;
2448 // Go through every block, translating debug intrinsics for fully promoted
2449 // variables into FnVarLocs location defs. No analysis required for these.
2450 auto TranslateDbgRecord = [&](auto *Record) {
2451 // Skip variables that haven't been promoted - we've dealt with those
2452 // already.
2453 if (VarsWithStackSlot->contains(getAggregate(Record)))
2454 return;
2455 auto InsertBefore = getNextNode(Record);
2456 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
2457 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(Record),
2458 Record->getExpression(), Record->getDebugLoc(),
2459 RawLocationWrapper(Record->getRawLocation()));
2460 InsertedAnyIntrinsics = true;
2462 for (auto &BB : Fn) {
2463 for (auto &I : BB) {
2464 // Skip instructions other than dbg.values and dbg.assigns.
2465 for (DPValue &DPV : I.getDbgValueRange())
2466 if (DPV.isDbgValue() || DPV.isDbgAssign())
2467 TranslateDbgRecord(&DPV);
2468 auto *DVI = dyn_cast<DbgValueInst>(&I);
2469 if (DVI)
2470 TranslateDbgRecord(DVI);
2473 return InsertedAnyIntrinsics;
2476 /// Remove redundant definitions within sequences of consecutive location defs.
2477 /// This is done using a backward scan to keep the last def describing a
2478 /// specific variable/fragment.
2480 /// This implements removeRedundantDbgInstrsUsingBackwardScan from
2481 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2482 /// FunctionVarLocsBuilder instead of with intrinsics.
2483 static bool
2484 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
2485 FunctionVarLocsBuilder &FnVarLocs) {
2486 bool Changed = false;
2487 SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes;
2488 // Scan over the entire block, not just over the instructions mapped by
2489 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2490 // instructions.
2491 for (const Instruction &I : reverse(*BB)) {
2492 if (!isa<DbgVariableIntrinsic>(I)) {
2493 // Sequence of consecutive defs ended. Clear map for the next one.
2494 VariableDefinedBytes.clear();
2497 auto HandleLocsForWedge = [&](auto *WedgePosition) {
2498 // Get the location defs that start just before this instruction.
2499 const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2500 if (!Locs)
2501 return;
2503 NumWedgesScanned++;
2504 bool ChangedThisWedge = false;
2505 // The new pruned set of defs, reversed because we're scanning backwards.
2506 SmallVector<VarLocInfo> NewDefsReversed;
2508 // Iterate over the existing defs in reverse.
2509 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
2510 NumDefsScanned++;
2511 DebugAggregate Aggr =
2512 getAggregate(FnVarLocs.getVariable(RIt->VariableID));
2513 uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0);
2514 uint64_t SizeInBytes = divideCeil(SizeInBits, 8);
2516 // Cutoff for large variables to prevent expensive bitvector operations.
2517 const uint64_t MaxSizeBytes = 2048;
2519 if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) {
2520 // If the size is unknown (0) then keep this location def to be safe.
2521 // Do the same for defs of large variables, which would be expensive
2522 // to represent with a BitVector.
2523 NewDefsReversed.push_back(*RIt);
2524 continue;
2527 // Only keep this location definition if it is not fully eclipsed by
2528 // other definitions in this wedge that come after it
2530 // Inert the bytes the location definition defines.
2531 auto InsertResult =
2532 VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes));
2533 bool FirstDefinition = InsertResult.second;
2534 BitVector &DefinedBytes = InsertResult.first->second;
2536 DIExpression::FragmentInfo Fragment =
2537 RIt->Expr->getFragmentInfo().value_or(
2538 DIExpression::FragmentInfo(SizeInBits, 0));
2539 bool InvalidFragment = Fragment.endInBits() > SizeInBits;
2540 uint64_t StartInBytes = Fragment.startInBits() / 8;
2541 uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8);
2543 // If this defines any previously undefined bytes, keep it.
2544 if (FirstDefinition || InvalidFragment ||
2545 DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) {
2546 if (!InvalidFragment)
2547 DefinedBytes.set(StartInBytes, EndInBytes);
2548 NewDefsReversed.push_back(*RIt);
2549 continue;
2552 // Redundant def found: throw it away. Since the wedge of defs is being
2553 // rebuilt, doing nothing is the same as deleting an entry.
2554 ChangedThisWedge = true;
2555 NumDefsRemoved++;
2558 // Un-reverse the defs and replace the wedge with the pruned version.
2559 if (ChangedThisWedge) {
2560 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
2561 FnVarLocs.setWedge(WedgePosition, std::move(NewDefsReversed));
2562 NumWedgesChanged++;
2563 Changed = true;
2566 HandleLocsForWedge(&I);
2567 for (DPValue &DPV : reverse(I.getDbgValueRange()))
2568 HandleLocsForWedge(&DPV);
2571 return Changed;
2574 /// Remove redundant location defs using a forward scan. This can remove a
2575 /// location definition that is redundant due to indicating that a variable has
2576 /// the same value as is already being indicated by an earlier def.
2578 /// This implements removeRedundantDbgInstrsUsingForwardScan from
2579 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2580 /// FunctionVarLocsBuilder instead of with intrinsics
2581 static bool
2582 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
2583 FunctionVarLocsBuilder &FnVarLocs) {
2584 bool Changed = false;
2585 DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>>
2586 VariableMap;
2588 // Scan over the entire block, not just over the instructions mapped by
2589 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2590 // instructions.
2591 for (const Instruction &I : *BB) {
2592 // Get the defs that come just before this instruction.
2593 auto HandleLocsForWedge = [&](auto *WedgePosition) {
2594 const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2595 if (!Locs)
2596 return;
2598 NumWedgesScanned++;
2599 bool ChangedThisWedge = false;
2600 // The new pruned set of defs.
2601 SmallVector<VarLocInfo> NewDefs;
2603 // Iterate over the existing defs.
2604 for (const VarLocInfo &Loc : *Locs) {
2605 NumDefsScanned++;
2606 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2607 std::nullopt, Loc.DL.getInlinedAt());
2608 auto VMI = VariableMap.find(Key);
2610 // Update the map if we found a new value/expression describing the
2611 // variable, or if the variable wasn't mapped already.
2612 if (VMI == VariableMap.end() || VMI->second.first != Loc.Values ||
2613 VMI->second.second != Loc.Expr) {
2614 VariableMap[Key] = {Loc.Values, Loc.Expr};
2615 NewDefs.push_back(Loc);
2616 continue;
2619 // Did not insert this Loc, which is the same as removing it.
2620 ChangedThisWedge = true;
2621 NumDefsRemoved++;
2624 // Replace the existing wedge with the pruned version.
2625 if (ChangedThisWedge) {
2626 FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2627 NumWedgesChanged++;
2628 Changed = true;
2632 for (DPValue &DPV : I.getDbgValueRange())
2633 HandleLocsForWedge(&DPV);
2634 HandleLocsForWedge(&I);
2637 return Changed;
2640 static bool
2641 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
2642 FunctionVarLocsBuilder &FnVarLocs) {
2643 assert(BB->isEntryBlock());
2644 // Do extra work to ensure that we remove semantically unimportant undefs.
2646 // This is to work around the fact that SelectionDAG will hoist dbg.values
2647 // using argument values to the top of the entry block. That can move arg
2648 // dbg.values before undef and constant dbg.values which they previously
2649 // followed. The easiest thing to do is to just try to feed SelectionDAG
2650 // input it's happy with.
2652 // Map of {Variable x: Fragments y} where the fragments y of variable x have
2653 // have at least one non-undef location defined already. Don't use directly,
2654 // instead call DefineBits and HasDefinedBits.
2655 SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
2656 VarsWithDef;
2657 // Specify that V (a fragment of A) has a non-undef location.
2658 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2659 VarsWithDef[A].insert(V.getFragmentOrDefault());
2661 // Return true if a non-undef location has been defined for V (a fragment of
2662 // A). Doesn't imply that the location is currently non-undef, just that a
2663 // non-undef location has been seen previously.
2664 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2665 auto FragsIt = VarsWithDef.find(A);
2666 if (FragsIt == VarsWithDef.end())
2667 return false;
2668 return llvm::any_of(FragsIt->second, [V](auto Frag) {
2669 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
2673 bool Changed = false;
2674 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
2676 // Scan over the entire block, not just over the instructions mapped by
2677 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2678 // instructions.
2679 for (const Instruction &I : *BB) {
2680 // Get the defs that come just before this instruction.
2681 auto HandleLocsForWedge = [&](auto *WedgePosition) {
2682 const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2683 if (!Locs)
2684 return;
2686 NumWedgesScanned++;
2687 bool ChangedThisWedge = false;
2688 // The new pruned set of defs.
2689 SmallVector<VarLocInfo> NewDefs;
2691 // Iterate over the existing defs.
2692 for (const VarLocInfo &Loc : *Locs) {
2693 NumDefsScanned++;
2694 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2695 Loc.DL.getInlinedAt()};
2696 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
2698 // Remove undef entries that are encountered before any non-undef
2699 // intrinsics from the entry block.
2700 if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) {
2701 // Did not insert this Loc, which is the same as removing it.
2702 NumDefsRemoved++;
2703 ChangedThisWedge = true;
2704 continue;
2707 DefineBits(Aggr, Var);
2708 NewDefs.push_back(Loc);
2711 // Replace the existing wedge with the pruned version.
2712 if (ChangedThisWedge) {
2713 FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2714 NumWedgesChanged++;
2715 Changed = true;
2718 for (DPValue &DPV : I.getDbgValueRange())
2719 HandleLocsForWedge(&DPV);
2720 HandleLocsForWedge(&I);
2723 return Changed;
2726 static bool removeRedundantDbgLocs(const BasicBlock *BB,
2727 FunctionVarLocsBuilder &FnVarLocs) {
2728 bool MadeChanges = false;
2729 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
2730 if (BB->isEntryBlock())
2731 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
2732 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
2734 if (MadeChanges)
2735 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
2736 << "\n");
2737 return MadeChanges;
2740 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
2741 DenseSet<DebugAggregate> Result;
2742 for (auto &BB : Fn) {
2743 for (auto &I : BB) {
2744 // Any variable linked to an instruction is considered
2745 // interesting. Ideally we only need to check Allocas, however, a
2746 // DIAssignID might get dropped from an alloca but not stores. In that
2747 // case, we need to consider the variable interesting for NFC behaviour
2748 // with this change. TODO: Consider only looking at allocas.
2749 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
2750 Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
2752 for (DPValue *DPV : at::getDPVAssignmentMarkers(&I)) {
2753 Result.insert({DPV->getVariable(), DPV->getDebugLoc().getInlinedAt()});
2757 return Result;
2760 static void analyzeFunction(Function &Fn, const DataLayout &Layout,
2761 FunctionVarLocsBuilder *FnVarLocs) {
2762 // The analysis will generate location definitions for all variables, but we
2763 // only need to perform a dataflow on the set of variables which have a stack
2764 // slot. Find those now.
2765 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
2767 bool Changed = false;
2769 // Use a scope block to clean up AssignmentTrackingLowering before running
2770 // MemLocFragmentFill to reduce peak memory consumption.
2772 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
2773 Changed = Pass.run(FnVarLocs);
2776 if (Changed) {
2777 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot,
2778 shouldCoalesceFragments(Fn));
2779 Pass.run(FnVarLocs);
2781 // Remove redundant entries. As well as reducing memory consumption and
2782 // avoiding waiting cycles later by burning some now, this has another
2783 // important job. That is to work around some SelectionDAG quirks. See
2784 // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2785 for (auto &BB : Fn)
2786 removeRedundantDbgLocs(&BB, *FnVarLocs);
2790 FunctionVarLocs
2791 DebugAssignmentTrackingAnalysis::run(Function &F,
2792 FunctionAnalysisManager &FAM) {
2793 if (!isAssignmentTrackingEnabled(*F.getParent()))
2794 return FunctionVarLocs();
2796 auto &DL = F.getParent()->getDataLayout();
2798 FunctionVarLocsBuilder Builder;
2799 analyzeFunction(F, DL, &Builder);
2801 // Save these results.
2802 FunctionVarLocs Results;
2803 Results.init(Builder);
2804 return Results;
2807 AnalysisKey DebugAssignmentTrackingAnalysis::Key;
2809 PreservedAnalyses
2810 DebugAssignmentTrackingPrinterPass::run(Function &F,
2811 FunctionAnalysisManager &FAM) {
2812 FAM.getResult<DebugAssignmentTrackingAnalysis>(F).print(OS, F);
2813 return PreservedAnalyses::all();
2816 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
2817 if (!isAssignmentTrackingEnabled(*F.getParent()))
2818 return false;
2820 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
2821 << "\n");
2822 auto DL = std::make_unique<DataLayout>(F.getParent());
2824 // Clear previous results.
2825 Results->clear();
2827 FunctionVarLocsBuilder Builder;
2828 analyzeFunction(F, *DL.get(), &Builder);
2830 // Save these results.
2831 Results->init(Builder);
2833 if (PrintResults && isFunctionInPrintList(F.getName()))
2834 Results->print(errs(), F);
2836 // Return false because this pass does not modify the function.
2837 return false;
2840 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2841 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
2843 char AssignmentTrackingAnalysis::ID = 0;
2845 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
2846 "Assignment Tracking Analysis", false, true)