[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / BranchFolding.cpp
blobecf7bc30913f51bec90ed2e1868ea8c23e112817
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block. This pass often results in dead MBB's, which
11 // it then removes.
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
17 //===----------------------------------------------------------------------===//
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/MBFIWrapper.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/MachineSizeOpts.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetOpcodes.h"
41 #include "llvm/CodeGen/TargetPassConfig.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/BlockFrequency.h"
52 #include "llvm/Support/BranchProbability.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <cassert>
59 #include <cstddef>
60 #include <iterator>
61 #include <numeric>
63 using namespace llvm;
65 #define DEBUG_TYPE "branch-folder"
67 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
68 STATISTIC(NumBranchOpts, "Number of branches optimized");
69 STATISTIC(NumTailMerge , "Number of block tails merged");
70 STATISTIC(NumHoist , "Number of times common instructions are hoisted");
71 STATISTIC(NumTailCalls, "Number of tail calls optimized");
73 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
74 cl::init(cl::BOU_UNSET), cl::Hidden);
76 // Throttle for huge numbers of predecessors (compile speed problems)
77 static cl::opt<unsigned>
78 TailMergeThreshold("tail-merge-threshold",
79 cl::desc("Max number of predecessors to consider tail merging"),
80 cl::init(150), cl::Hidden);
82 // Heuristic for tail merging (and, inversely, tail duplication).
83 // TODO: This should be replaced with a target query.
84 static cl::opt<unsigned>
85 TailMergeSize("tail-merge-size",
86 cl::desc("Min number of instructions to consider tail merging"),
87 cl::init(3), cl::Hidden);
89 namespace {
91 /// BranchFolderPass - Wrap branch folder in a machine function pass.
92 class BranchFolderPass : public MachineFunctionPass {
93 public:
94 static char ID;
96 explicit BranchFolderPass(): MachineFunctionPass(ID) {}
98 bool runOnMachineFunction(MachineFunction &MF) override;
100 void getAnalysisUsage(AnalysisUsage &AU) const override {
101 AU.addRequired<MachineBlockFrequencyInfo>();
102 AU.addRequired<MachineBranchProbabilityInfo>();
103 AU.addRequired<ProfileSummaryInfoWrapperPass>();
104 AU.addRequired<TargetPassConfig>();
105 MachineFunctionPass::getAnalysisUsage(AU);
108 MachineFunctionProperties getRequiredProperties() const override {
109 return MachineFunctionProperties().set(
110 MachineFunctionProperties::Property::NoPHIs);
114 } // end anonymous namespace
116 char BranchFolderPass::ID = 0;
118 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
120 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
121 "Control Flow Optimizer", false, false)
123 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
124 if (skipFunction(MF.getFunction()))
125 return false;
127 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
128 // TailMerge can create jump into if branches that make CFG irreducible for
129 // HW that requires structurized CFG.
130 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
131 PassConfig->getEnableTailMerge();
132 MBFIWrapper MBBFreqInfo(
133 getAnalysis<MachineBlockFrequencyInfo>());
134 BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
135 getAnalysis<MachineBranchProbabilityInfo>(),
136 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
137 return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
138 MF.getSubtarget().getRegisterInfo());
141 BranchFolder::BranchFolder(bool DefaultEnableTailMerge, bool CommonHoist,
142 MBFIWrapper &FreqInfo,
143 const MachineBranchProbabilityInfo &ProbInfo,
144 ProfileSummaryInfo *PSI, unsigned MinTailLength)
145 : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
146 MBBFreqInfo(FreqInfo), MBPI(ProbInfo), PSI(PSI) {
147 if (MinCommonTailLength == 0)
148 MinCommonTailLength = TailMergeSize;
149 switch (FlagEnableTailMerge) {
150 case cl::BOU_UNSET:
151 EnableTailMerge = DefaultEnableTailMerge;
152 break;
153 case cl::BOU_TRUE: EnableTailMerge = true; break;
154 case cl::BOU_FALSE: EnableTailMerge = false; break;
158 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
159 assert(MBB->pred_empty() && "MBB must be dead!");
160 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
162 MachineFunction *MF = MBB->getParent();
163 // drop all successors.
164 while (!MBB->succ_empty())
165 MBB->removeSuccessor(MBB->succ_end()-1);
167 // Avoid matching if this pointer gets reused.
168 TriedMerging.erase(MBB);
170 // Update call site info.
171 for (const MachineInstr &MI : *MBB)
172 if (MI.shouldUpdateCallSiteInfo())
173 MF->eraseCallSiteInfo(&MI);
175 // Remove the block.
176 MF->erase(MBB);
177 EHScopeMembership.erase(MBB);
178 if (MLI)
179 MLI->removeBlock(MBB);
182 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
183 const TargetInstrInfo *tii,
184 const TargetRegisterInfo *tri,
185 MachineLoopInfo *mli, bool AfterPlacement) {
186 if (!tii) return false;
188 TriedMerging.clear();
190 MachineRegisterInfo &MRI = MF.getRegInfo();
191 AfterBlockPlacement = AfterPlacement;
192 TII = tii;
193 TRI = tri;
194 MLI = mli;
195 this->MRI = &MRI;
197 UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
198 if (!UpdateLiveIns)
199 MRI.invalidateLiveness();
201 bool MadeChange = false;
203 // Recalculate EH scope membership.
204 EHScopeMembership = getEHScopeMembership(MF);
206 bool MadeChangeThisIteration = true;
207 while (MadeChangeThisIteration) {
208 MadeChangeThisIteration = TailMergeBlocks(MF);
209 // No need to clean up if tail merging does not change anything after the
210 // block placement.
211 if (!AfterBlockPlacement || MadeChangeThisIteration)
212 MadeChangeThisIteration |= OptimizeBranches(MF);
213 if (EnableHoistCommonCode)
214 MadeChangeThisIteration |= HoistCommonCode(MF);
215 MadeChange |= MadeChangeThisIteration;
218 // See if any jump tables have become dead as the code generator
219 // did its thing.
220 MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
221 if (!JTI)
222 return MadeChange;
224 // Walk the function to find jump tables that are live.
225 BitVector JTIsLive(JTI->getJumpTables().size());
226 for (const MachineBasicBlock &BB : MF) {
227 for (const MachineInstr &I : BB)
228 for (const MachineOperand &Op : I.operands()) {
229 if (!Op.isJTI()) continue;
231 // Remember that this JT is live.
232 JTIsLive.set(Op.getIndex());
236 // Finally, remove dead jump tables. This happens when the
237 // indirect jump was unreachable (and thus deleted).
238 for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
239 if (!JTIsLive.test(i)) {
240 JTI->RemoveJumpTable(i);
241 MadeChange = true;
244 return MadeChange;
247 //===----------------------------------------------------------------------===//
248 // Tail Merging of Blocks
249 //===----------------------------------------------------------------------===//
251 /// HashMachineInstr - Compute a hash value for MI and its operands.
252 static unsigned HashMachineInstr(const MachineInstr &MI) {
253 unsigned Hash = MI.getOpcode();
254 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
255 const MachineOperand &Op = MI.getOperand(i);
257 // Merge in bits from the operand if easy. We can't use MachineOperand's
258 // hash_code here because it's not deterministic and we sort by hash value
259 // later.
260 unsigned OperandHash = 0;
261 switch (Op.getType()) {
262 case MachineOperand::MO_Register:
263 OperandHash = Op.getReg();
264 break;
265 case MachineOperand::MO_Immediate:
266 OperandHash = Op.getImm();
267 break;
268 case MachineOperand::MO_MachineBasicBlock:
269 OperandHash = Op.getMBB()->getNumber();
270 break;
271 case MachineOperand::MO_FrameIndex:
272 case MachineOperand::MO_ConstantPoolIndex:
273 case MachineOperand::MO_JumpTableIndex:
274 OperandHash = Op.getIndex();
275 break;
276 case MachineOperand::MO_GlobalAddress:
277 case MachineOperand::MO_ExternalSymbol:
278 // Global address / external symbol are too hard, don't bother, but do
279 // pull in the offset.
280 OperandHash = Op.getOffset();
281 break;
282 default:
283 break;
286 Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
288 return Hash;
291 /// HashEndOfMBB - Hash the last instruction in the MBB.
292 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
293 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(false);
294 if (I == MBB.end())
295 return 0;
297 return HashMachineInstr(*I);
300 /// Whether MI should be counted as an instruction when calculating common tail.
301 static bool countsAsInstruction(const MachineInstr &MI) {
302 return !(MI.isDebugInstr() || MI.isCFIInstruction());
305 /// Iterate backwards from the given iterator \p I, towards the beginning of the
306 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
307 /// pointing to that MI. If no such MI is found, return the end iterator.
308 static MachineBasicBlock::iterator
309 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I,
310 MachineBasicBlock *MBB) {
311 while (I != MBB->begin()) {
312 --I;
313 if (countsAsInstruction(*I))
314 return I;
316 return MBB->end();
319 /// Given two machine basic blocks, return the number of instructions they
320 /// actually have in common together at their end. If a common tail is found (at
321 /// least by one instruction), then iterators for the first shared instruction
322 /// in each block are returned as well.
324 /// Non-instructions according to countsAsInstruction are ignored.
325 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
326 MachineBasicBlock *MBB2,
327 MachineBasicBlock::iterator &I1,
328 MachineBasicBlock::iterator &I2) {
329 MachineBasicBlock::iterator MBBI1 = MBB1->end();
330 MachineBasicBlock::iterator MBBI2 = MBB2->end();
332 unsigned TailLen = 0;
333 while (true) {
334 MBBI1 = skipBackwardPastNonInstructions(MBBI1, MBB1);
335 MBBI2 = skipBackwardPastNonInstructions(MBBI2, MBB2);
336 if (MBBI1 == MBB1->end() || MBBI2 == MBB2->end())
337 break;
338 if (!MBBI1->isIdenticalTo(*MBBI2) ||
339 // FIXME: This check is dubious. It's used to get around a problem where
340 // people incorrectly expect inline asm directives to remain in the same
341 // relative order. This is untenable because normal compiler
342 // optimizations (like this one) may reorder and/or merge these
343 // directives.
344 MBBI1->isInlineAsm()) {
345 break;
347 if (MBBI1->getFlag(MachineInstr::NoMerge) ||
348 MBBI2->getFlag(MachineInstr::NoMerge))
349 break;
350 ++TailLen;
351 I1 = MBBI1;
352 I2 = MBBI2;
355 return TailLen;
358 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
359 MachineBasicBlock &NewDest) {
360 if (UpdateLiveIns) {
361 // OldInst should always point to an instruction.
362 MachineBasicBlock &OldMBB = *OldInst->getParent();
363 LiveRegs.clear();
364 LiveRegs.addLiveOuts(OldMBB);
365 // Move backward to the place where will insert the jump.
366 MachineBasicBlock::iterator I = OldMBB.end();
367 do {
368 --I;
369 LiveRegs.stepBackward(*I);
370 } while (I != OldInst);
372 // Merging the tails may have switched some undef operand to non-undef ones.
373 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
374 // register.
375 for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
376 // We computed the liveins with computeLiveIn earlier and should only see
377 // full registers:
378 assert(P.LaneMask == LaneBitmask::getAll() &&
379 "Can only handle full register.");
380 MCPhysReg Reg = P.PhysReg;
381 if (!LiveRegs.available(*MRI, Reg))
382 continue;
383 DebugLoc DL;
384 BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
388 TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
389 ++NumTailMerge;
392 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
393 MachineBasicBlock::iterator BBI1,
394 const BasicBlock *BB) {
395 if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
396 return nullptr;
398 MachineFunction &MF = *CurMBB.getParent();
400 // Create the fall-through block.
401 MachineFunction::iterator MBBI = CurMBB.getIterator();
402 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
403 CurMBB.getParent()->insert(++MBBI, NewMBB);
405 // Move all the successors of this block to the specified block.
406 NewMBB->transferSuccessors(&CurMBB);
408 // Add an edge from CurMBB to NewMBB for the fall-through.
409 CurMBB.addSuccessor(NewMBB);
411 // Splice the code over.
412 NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
414 // NewMBB belongs to the same loop as CurMBB.
415 if (MLI)
416 if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
417 ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
419 // NewMBB inherits CurMBB's block frequency.
420 MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
422 if (UpdateLiveIns)
423 computeAndAddLiveIns(LiveRegs, *NewMBB);
425 // Add the new block to the EH scope.
426 const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
427 if (EHScopeI != EHScopeMembership.end()) {
428 auto n = EHScopeI->second;
429 EHScopeMembership[NewMBB] = n;
432 return NewMBB;
435 /// EstimateRuntime - Make a rough estimate for how long it will take to run
436 /// the specified code.
437 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
438 MachineBasicBlock::iterator E) {
439 unsigned Time = 0;
440 for (; I != E; ++I) {
441 if (!countsAsInstruction(*I))
442 continue;
443 if (I->isCall())
444 Time += 10;
445 else if (I->mayLoadOrStore())
446 Time += 2;
447 else
448 ++Time;
450 return Time;
453 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
454 // branches temporarily for tail merging). In the case where CurMBB ends
455 // with a conditional branch to the next block, optimize by reversing the
456 // test and conditionally branching to SuccMBB instead.
457 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
458 const TargetInstrInfo *TII) {
459 MachineFunction *MF = CurMBB->getParent();
460 MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
461 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
462 SmallVector<MachineOperand, 4> Cond;
463 DebugLoc dl = CurMBB->findBranchDebugLoc();
464 if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
465 MachineBasicBlock *NextBB = &*I;
466 if (TBB == NextBB && !Cond.empty() && !FBB) {
467 if (!TII->reverseBranchCondition(Cond)) {
468 TII->removeBranch(*CurMBB);
469 TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
470 return;
474 TII->insertBranch(*CurMBB, SuccBB, nullptr,
475 SmallVector<MachineOperand, 0>(), dl);
478 bool
479 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
480 if (getHash() < o.getHash())
481 return true;
482 if (getHash() > o.getHash())
483 return false;
484 if (getBlock()->getNumber() < o.getBlock()->getNumber())
485 return true;
486 if (getBlock()->getNumber() > o.getBlock()->getNumber())
487 return false;
488 return false;
491 /// CountTerminators - Count the number of terminators in the given
492 /// block and set I to the position of the first non-terminator, if there
493 /// is one, or MBB->end() otherwise.
494 static unsigned CountTerminators(MachineBasicBlock *MBB,
495 MachineBasicBlock::iterator &I) {
496 I = MBB->end();
497 unsigned NumTerms = 0;
498 while (true) {
499 if (I == MBB->begin()) {
500 I = MBB->end();
501 break;
503 --I;
504 if (!I->isTerminator()) break;
505 ++NumTerms;
507 return NumTerms;
510 /// A no successor, non-return block probably ends in unreachable and is cold.
511 /// Also consider a block that ends in an indirect branch to be a return block,
512 /// since many targets use plain indirect branches to return.
513 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
514 if (!MBB->succ_empty())
515 return false;
516 if (MBB->empty())
517 return true;
518 return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
521 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
522 /// and decide if it would be profitable to merge those tails. Return the
523 /// length of the common tail and iterators to the first common instruction
524 /// in each block.
525 /// MBB1, MBB2 The blocks to check
526 /// MinCommonTailLength Minimum size of tail block to be merged.
527 /// CommonTailLen Out parameter to record the size of the shared tail between
528 /// MBB1 and MBB2
529 /// I1, I2 Iterator references that will be changed to point to the first
530 /// instruction in the common tail shared by MBB1,MBB2
531 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
532 /// relative to SuccBB
533 /// PredBB The layout predecessor of SuccBB, if any.
534 /// EHScopeMembership map from block to EH scope #.
535 /// AfterPlacement True if we are merging blocks after layout. Stricter
536 /// thresholds apply to prevent undoing tail-duplication.
537 static bool
538 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
539 unsigned MinCommonTailLength, unsigned &CommonTailLen,
540 MachineBasicBlock::iterator &I1,
541 MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
542 MachineBasicBlock *PredBB,
543 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
544 bool AfterPlacement,
545 MBFIWrapper &MBBFreqInfo,
546 ProfileSummaryInfo *PSI) {
547 // It is never profitable to tail-merge blocks from two different EH scopes.
548 if (!EHScopeMembership.empty()) {
549 auto EHScope1 = EHScopeMembership.find(MBB1);
550 assert(EHScope1 != EHScopeMembership.end());
551 auto EHScope2 = EHScopeMembership.find(MBB2);
552 assert(EHScope2 != EHScopeMembership.end());
553 if (EHScope1->second != EHScope2->second)
554 return false;
557 CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
558 if (CommonTailLen == 0)
559 return false;
560 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
561 << " and " << printMBBReference(*MBB2) << " is "
562 << CommonTailLen << '\n');
564 // Move the iterators to the beginning of the MBB if we only got debug
565 // instructions before the tail. This is to avoid splitting a block when we
566 // only got debug instructions before the tail (to be invariant on -g).
567 if (skipDebugInstructionsForward(MBB1->begin(), MBB1->end(), false) == I1)
568 I1 = MBB1->begin();
569 if (skipDebugInstructionsForward(MBB2->begin(), MBB2->end(), false) == I2)
570 I2 = MBB2->begin();
572 bool FullBlockTail1 = I1 == MBB1->begin();
573 bool FullBlockTail2 = I2 == MBB2->begin();
575 // It's almost always profitable to merge any number of non-terminator
576 // instructions with the block that falls through into the common successor.
577 // This is true only for a single successor. For multiple successors, we are
578 // trading a conditional branch for an unconditional one.
579 // TODO: Re-visit successor size for non-layout tail merging.
580 if ((MBB1 == PredBB || MBB2 == PredBB) &&
581 (!AfterPlacement || MBB1->succ_size() == 1)) {
582 MachineBasicBlock::iterator I;
583 unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
584 if (CommonTailLen > NumTerms)
585 return true;
588 // If these are identical non-return blocks with no successors, merge them.
589 // Such blocks are typically cold calls to noreturn functions like abort, and
590 // are unlikely to become a fallthrough target after machine block placement.
591 // Tail merging these blocks is unlikely to create additional unconditional
592 // branches, and will reduce the size of this cold code.
593 if (FullBlockTail1 && FullBlockTail2 &&
594 blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
595 return true;
597 // If one of the blocks can be completely merged and happens to be in
598 // a position where the other could fall through into it, merge any number
599 // of instructions, because it can be done without a branch.
600 // TODO: If the blocks are not adjacent, move one of them so that they are?
601 if (MBB1->isLayoutSuccessor(MBB2) && FullBlockTail2)
602 return true;
603 if (MBB2->isLayoutSuccessor(MBB1) && FullBlockTail1)
604 return true;
606 // If both blocks are identical and end in a branch, merge them unless they
607 // both have a fallthrough predecessor and successor.
608 // We can only do this after block placement because it depends on whether
609 // there are fallthroughs, and we don't know until after layout.
610 if (AfterPlacement && FullBlockTail1 && FullBlockTail2) {
611 auto BothFallThrough = [](MachineBasicBlock *MBB) {
612 if (!MBB->succ_empty() && !MBB->canFallThrough())
613 return false;
614 MachineFunction::iterator I(MBB);
615 MachineFunction *MF = MBB->getParent();
616 return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
618 if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
619 return true;
622 // If both blocks have an unconditional branch temporarily stripped out,
623 // count that as an additional common instruction for the following
624 // heuristics. This heuristic is only accurate for single-succ blocks, so to
625 // make sure that during layout merging and duplicating don't crash, we check
626 // for that when merging during layout.
627 unsigned EffectiveTailLen = CommonTailLen;
628 if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
629 (MBB1->succ_size() == 1 || !AfterPlacement) &&
630 !MBB1->back().isBarrier() &&
631 !MBB2->back().isBarrier())
632 ++EffectiveTailLen;
634 // Check if the common tail is long enough to be worthwhile.
635 if (EffectiveTailLen >= MinCommonTailLength)
636 return true;
638 // If we are optimizing for code size, 2 instructions in common is enough if
639 // we don't have to split a block. At worst we will be introducing 1 new
640 // branch instruction, which is likely to be smaller than the 2
641 // instructions that would be deleted in the merge.
642 MachineFunction *MF = MBB1->getParent();
643 bool OptForSize =
644 MF->getFunction().hasOptSize() ||
645 (llvm::shouldOptimizeForSize(MBB1, PSI, &MBBFreqInfo) &&
646 llvm::shouldOptimizeForSize(MBB2, PSI, &MBBFreqInfo));
647 return EffectiveTailLen >= 2 && OptForSize &&
648 (FullBlockTail1 || FullBlockTail2);
651 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
652 unsigned MinCommonTailLength,
653 MachineBasicBlock *SuccBB,
654 MachineBasicBlock *PredBB) {
655 unsigned maxCommonTailLength = 0U;
656 SameTails.clear();
657 MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
658 MPIterator HighestMPIter = std::prev(MergePotentials.end());
659 for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
660 B = MergePotentials.begin();
661 CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
662 for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
663 unsigned CommonTailLen;
664 if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
665 MinCommonTailLength,
666 CommonTailLen, TrialBBI1, TrialBBI2,
667 SuccBB, PredBB,
668 EHScopeMembership,
669 AfterBlockPlacement, MBBFreqInfo, PSI)) {
670 if (CommonTailLen > maxCommonTailLength) {
671 SameTails.clear();
672 maxCommonTailLength = CommonTailLen;
673 HighestMPIter = CurMPIter;
674 SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
676 if (HighestMPIter == CurMPIter &&
677 CommonTailLen == maxCommonTailLength)
678 SameTails.push_back(SameTailElt(I, TrialBBI2));
680 if (I == B)
681 break;
684 return maxCommonTailLength;
687 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
688 MachineBasicBlock *SuccBB,
689 MachineBasicBlock *PredBB) {
690 MPIterator CurMPIter, B;
691 for (CurMPIter = std::prev(MergePotentials.end()),
692 B = MergePotentials.begin();
693 CurMPIter->getHash() == CurHash; --CurMPIter) {
694 // Put the unconditional branch back, if we need one.
695 MachineBasicBlock *CurMBB = CurMPIter->getBlock();
696 if (SuccBB && CurMBB != PredBB)
697 FixTail(CurMBB, SuccBB, TII);
698 if (CurMPIter == B)
699 break;
701 if (CurMPIter->getHash() != CurHash)
702 CurMPIter++;
703 MergePotentials.erase(CurMPIter, MergePotentials.end());
706 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
707 MachineBasicBlock *SuccBB,
708 unsigned maxCommonTailLength,
709 unsigned &commonTailIndex) {
710 commonTailIndex = 0;
711 unsigned TimeEstimate = ~0U;
712 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
713 // Use PredBB if possible; that doesn't require a new branch.
714 if (SameTails[i].getBlock() == PredBB) {
715 commonTailIndex = i;
716 break;
718 // Otherwise, make a (fairly bogus) choice based on estimate of
719 // how long it will take the various blocks to execute.
720 unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
721 SameTails[i].getTailStartPos());
722 if (t <= TimeEstimate) {
723 TimeEstimate = t;
724 commonTailIndex = i;
728 MachineBasicBlock::iterator BBI =
729 SameTails[commonTailIndex].getTailStartPos();
730 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
732 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
733 << maxCommonTailLength);
735 // If the split block unconditionally falls-thru to SuccBB, it will be
736 // merged. In control flow terms it should then take SuccBB's name. e.g. If
737 // SuccBB is an inner loop, the common tail is still part of the inner loop.
738 const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
739 SuccBB->getBasicBlock() : MBB->getBasicBlock();
740 MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
741 if (!newMBB) {
742 LLVM_DEBUG(dbgs() << "... failed!");
743 return false;
746 SameTails[commonTailIndex].setBlock(newMBB);
747 SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
749 // If we split PredBB, newMBB is the new predecessor.
750 if (PredBB == MBB)
751 PredBB = newMBB;
753 return true;
756 static void
757 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
758 MachineBasicBlock &MBBCommon) {
759 MachineBasicBlock *MBB = MBBIStartPos->getParent();
760 // Note CommonTailLen does not necessarily matches the size of
761 // the common BB nor all its instructions because of debug
762 // instructions differences.
763 unsigned CommonTailLen = 0;
764 for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
765 ++CommonTailLen;
767 MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
768 MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
769 MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
770 MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
772 while (CommonTailLen--) {
773 assert(MBBI != MBBIE && "Reached BB end within common tail length!");
774 (void)MBBIE;
776 if (!countsAsInstruction(*MBBI)) {
777 ++MBBI;
778 continue;
781 while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
782 ++MBBICommon;
784 assert(MBBICommon != MBBIECommon &&
785 "Reached BB end within common tail length!");
786 assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
788 // Merge MMOs from memory operations in the common block.
789 if (MBBICommon->mayLoadOrStore())
790 MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
791 // Drop undef flags if they aren't present in all merged instructions.
792 for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
793 MachineOperand &MO = MBBICommon->getOperand(I);
794 if (MO.isReg() && MO.isUndef()) {
795 const MachineOperand &OtherMO = MBBI->getOperand(I);
796 if (!OtherMO.isUndef())
797 MO.setIsUndef(false);
801 ++MBBI;
802 ++MBBICommon;
806 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
807 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
809 std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
810 for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
811 if (i != commonTailIndex) {
812 NextCommonInsts[i] = SameTails[i].getTailStartPos();
813 mergeOperations(SameTails[i].getTailStartPos(), *MBB);
814 } else {
815 assert(SameTails[i].getTailStartPos() == MBB->begin() &&
816 "MBB is not a common tail only block");
820 for (auto &MI : *MBB) {
821 if (!countsAsInstruction(MI))
822 continue;
823 DebugLoc DL = MI.getDebugLoc();
824 for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
825 if (i == commonTailIndex)
826 continue;
828 auto &Pos = NextCommonInsts[i];
829 assert(Pos != SameTails[i].getBlock()->end() &&
830 "Reached BB end within common tail");
831 while (!countsAsInstruction(*Pos)) {
832 ++Pos;
833 assert(Pos != SameTails[i].getBlock()->end() &&
834 "Reached BB end within common tail");
836 assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
837 DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
838 NextCommonInsts[i] = ++Pos;
840 MI.setDebugLoc(DL);
843 if (UpdateLiveIns) {
844 LivePhysRegs NewLiveIns(*TRI);
845 computeLiveIns(NewLiveIns, *MBB);
846 LiveRegs.init(*TRI);
848 // The flag merging may lead to some register uses no longer using the
849 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
850 for (MachineBasicBlock *Pred : MBB->predecessors()) {
851 LiveRegs.clear();
852 LiveRegs.addLiveOuts(*Pred);
853 MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
854 for (Register Reg : NewLiveIns) {
855 if (!LiveRegs.available(*MRI, Reg))
856 continue;
858 // Skip the register if we are about to add one of its super registers.
859 // TODO: Common this up with the same logic in addLineIns().
860 if (any_of(TRI->superregs(Reg), [&](MCPhysReg SReg) {
861 return NewLiveIns.contains(SReg) && !MRI->isReserved(SReg);
863 continue;
865 DebugLoc DL;
866 BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
867 Reg);
871 MBB->clearLiveIns();
872 addLiveIns(*MBB, NewLiveIns);
876 // See if any of the blocks in MergePotentials (which all have SuccBB as a
877 // successor, or all have no successor if it is null) can be tail-merged.
878 // If there is a successor, any blocks in MergePotentials that are not
879 // tail-merged and are not immediately before Succ must have an unconditional
880 // branch to Succ added (but the predecessor/successor lists need no
881 // adjustment). The lone predecessor of Succ that falls through into Succ,
882 // if any, is given in PredBB.
883 // MinCommonTailLength - Except for the special cases below, tail-merge if
884 // there are at least this many instructions in common.
885 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
886 MachineBasicBlock *PredBB,
887 unsigned MinCommonTailLength) {
888 bool MadeChange = false;
890 LLVM_DEBUG(
891 dbgs() << "\nTryTailMergeBlocks: ";
892 for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
893 << printMBBReference(*MergePotentials[i].getBlock())
894 << (i == e - 1 ? "" : ", ");
895 dbgs() << "\n"; if (SuccBB) {
896 dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n';
897 if (PredBB)
898 dbgs() << " which has fall-through from "
899 << printMBBReference(*PredBB) << "\n";
900 } dbgs() << "Looking for common tails of at least "
901 << MinCommonTailLength << " instruction"
902 << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
904 // Sort by hash value so that blocks with identical end sequences sort
905 // together.
906 array_pod_sort(MergePotentials.begin(), MergePotentials.end());
908 // Walk through equivalence sets looking for actual exact matches.
909 while (MergePotentials.size() > 1) {
910 unsigned CurHash = MergePotentials.back().getHash();
912 // Build SameTails, identifying the set of blocks with this hash code
913 // and with the maximum number of instructions in common.
914 unsigned maxCommonTailLength = ComputeSameTails(CurHash,
915 MinCommonTailLength,
916 SuccBB, PredBB);
918 // If we didn't find any pair that has at least MinCommonTailLength
919 // instructions in common, remove all blocks with this hash code and retry.
920 if (SameTails.empty()) {
921 RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
922 continue;
925 // If one of the blocks is the entire common tail (and is not the entry
926 // block/an EH pad, which we can't jump to), we can treat all blocks with
927 // this same tail at once. Use PredBB if that is one of the possibilities,
928 // as that will not introduce any extra branches.
929 MachineBasicBlock *EntryBB =
930 &MergePotentials.front().getBlock()->getParent()->front();
931 unsigned commonTailIndex = SameTails.size();
932 // If there are two blocks, check to see if one can be made to fall through
933 // into the other.
934 if (SameTails.size() == 2 &&
935 SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
936 SameTails[1].tailIsWholeBlock() && !SameTails[1].getBlock()->isEHPad())
937 commonTailIndex = 1;
938 else if (SameTails.size() == 2 &&
939 SameTails[1].getBlock()->isLayoutSuccessor(
940 SameTails[0].getBlock()) &&
941 SameTails[0].tailIsWholeBlock() &&
942 !SameTails[0].getBlock()->isEHPad())
943 commonTailIndex = 0;
944 else {
945 // Otherwise just pick one, favoring the fall-through predecessor if
946 // there is one.
947 for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
948 MachineBasicBlock *MBB = SameTails[i].getBlock();
949 if ((MBB == EntryBB || MBB->isEHPad()) &&
950 SameTails[i].tailIsWholeBlock())
951 continue;
952 if (MBB == PredBB) {
953 commonTailIndex = i;
954 break;
956 if (SameTails[i].tailIsWholeBlock())
957 commonTailIndex = i;
961 if (commonTailIndex == SameTails.size() ||
962 (SameTails[commonTailIndex].getBlock() == PredBB &&
963 !SameTails[commonTailIndex].tailIsWholeBlock())) {
964 // None of the blocks consist entirely of the common tail.
965 // Split a block so that one does.
966 if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
967 maxCommonTailLength, commonTailIndex)) {
968 RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
969 continue;
973 MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
975 // Recompute common tail MBB's edge weights and block frequency.
976 setCommonTailEdgeWeights(*MBB);
978 // Merge debug locations, MMOs and undef flags across identical instructions
979 // for common tail.
980 mergeCommonTails(commonTailIndex);
982 // MBB is common tail. Adjust all other BB's to jump to this one.
983 // Traversal must be forwards so erases work.
984 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
985 << " for ");
986 for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
987 if (commonTailIndex == i)
988 continue;
989 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
990 << (i == e - 1 ? "" : ", "));
991 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
992 replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
993 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
994 MergePotentials.erase(SameTails[i].getMPIter());
996 LLVM_DEBUG(dbgs() << "\n");
997 // We leave commonTailIndex in the worklist in case there are other blocks
998 // that match it with a smaller number of instructions.
999 MadeChange = true;
1001 return MadeChange;
1004 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1005 bool MadeChange = false;
1006 if (!EnableTailMerge)
1007 return MadeChange;
1009 // First find blocks with no successors.
1010 // Block placement may create new tail merging opportunities for these blocks.
1011 MergePotentials.clear();
1012 for (MachineBasicBlock &MBB : MF) {
1013 if (MergePotentials.size() == TailMergeThreshold)
1014 break;
1015 if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1016 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1019 // If this is a large problem, avoid visiting the same basic blocks
1020 // multiple times.
1021 if (MergePotentials.size() == TailMergeThreshold)
1022 for (const MergePotentialsElt &Elt : MergePotentials)
1023 TriedMerging.insert(Elt.getBlock());
1025 // See if we can do any tail merging on those.
1026 if (MergePotentials.size() >= 2)
1027 MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1029 // Look at blocks (IBB) with multiple predecessors (PBB).
1030 // We change each predecessor to a canonical form, by
1031 // (1) temporarily removing any unconditional branch from the predecessor
1032 // to IBB, and
1033 // (2) alter conditional branches so they branch to the other block
1034 // not IBB; this may require adding back an unconditional branch to IBB
1035 // later, where there wasn't one coming in. E.g.
1036 // Bcc IBB
1037 // fallthrough to QBB
1038 // here becomes
1039 // Bncc QBB
1040 // with a conceptual B to IBB after that, which never actually exists.
1041 // With those changes, we see whether the predecessors' tails match,
1042 // and merge them if so. We change things out of canonical form and
1043 // back to the way they were later in the process. (OptimizeBranches
1044 // would undo some of this, but we can't use it, because we'd get into
1045 // a compile-time infinite loop repeatedly doing and undoing the same
1046 // transformations.)
1048 for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1049 I != E; ++I) {
1050 if (I->pred_size() < 2) continue;
1051 SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1052 MachineBasicBlock *IBB = &*I;
1053 MachineBasicBlock *PredBB = &*std::prev(I);
1054 MergePotentials.clear();
1055 MachineLoop *ML;
1057 // Bail if merging after placement and IBB is the loop header because
1058 // -- If merging predecessors that belong to the same loop as IBB, the
1059 // common tail of merged predecessors may become the loop top if block
1060 // placement is called again and the predecessors may branch to this common
1061 // tail and require more branches. This can be relaxed if
1062 // MachineBlockPlacement::findBestLoopTop is more flexible.
1063 // --If merging predecessors that do not belong to the same loop as IBB, the
1064 // loop info of IBB's loop and the other loops may be affected. Calling the
1065 // block placement again may make big change to the layout and eliminate the
1066 // reason to do tail merging here.
1067 if (AfterBlockPlacement && MLI) {
1068 ML = MLI->getLoopFor(IBB);
1069 if (ML && IBB == ML->getHeader())
1070 continue;
1073 for (MachineBasicBlock *PBB : I->predecessors()) {
1074 if (MergePotentials.size() == TailMergeThreshold)
1075 break;
1077 if (TriedMerging.count(PBB))
1078 continue;
1080 // Skip blocks that loop to themselves, can't tail merge these.
1081 if (PBB == IBB)
1082 continue;
1084 // Visit each predecessor only once.
1085 if (!UniquePreds.insert(PBB).second)
1086 continue;
1088 // Skip blocks which may jump to a landing pad or jump from an asm blob.
1089 // Can't tail merge these.
1090 if (PBB->hasEHPadSuccessor() || PBB->mayHaveInlineAsmBr())
1091 continue;
1093 // After block placement, only consider predecessors that belong to the
1094 // same loop as IBB. The reason is the same as above when skipping loop
1095 // header.
1096 if (AfterBlockPlacement && MLI)
1097 if (ML != MLI->getLoopFor(PBB))
1098 continue;
1100 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1101 SmallVector<MachineOperand, 4> Cond;
1102 if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1103 // Failing case: IBB is the target of a cbr, and we cannot reverse the
1104 // branch.
1105 SmallVector<MachineOperand, 4> NewCond(Cond);
1106 if (!Cond.empty() && TBB == IBB) {
1107 if (TII->reverseBranchCondition(NewCond))
1108 continue;
1109 // This is the QBB case described above
1110 if (!FBB) {
1111 auto Next = ++PBB->getIterator();
1112 if (Next != MF.end())
1113 FBB = &*Next;
1117 // Remove the unconditional branch at the end, if any.
1118 if (TBB && (Cond.empty() || FBB)) {
1119 DebugLoc dl = PBB->findBranchDebugLoc();
1120 TII->removeBranch(*PBB);
1121 if (!Cond.empty())
1122 // reinsert conditional branch only, for now
1123 TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1124 NewCond, dl);
1127 MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1131 // If this is a large problem, avoid visiting the same basic blocks multiple
1132 // times.
1133 if (MergePotentials.size() == TailMergeThreshold)
1134 for (MergePotentialsElt &Elt : MergePotentials)
1135 TriedMerging.insert(Elt.getBlock());
1137 if (MergePotentials.size() >= 2)
1138 MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1140 // Reinsert an unconditional branch if needed. The 1 below can occur as a
1141 // result of removing blocks in TryTailMergeBlocks.
1142 PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1143 if (MergePotentials.size() == 1 &&
1144 MergePotentials.begin()->getBlock() != PredBB)
1145 FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1148 return MadeChange;
1151 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1152 SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1153 BlockFrequency AccumulatedMBBFreq;
1155 // Aggregate edge frequency of successor edge j:
1156 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1157 // where bb is a basic block that is in SameTails.
1158 for (const auto &Src : SameTails) {
1159 const MachineBasicBlock *SrcMBB = Src.getBlock();
1160 BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1161 AccumulatedMBBFreq += BlockFreq;
1163 // It is not necessary to recompute edge weights if TailBB has less than two
1164 // successors.
1165 if (TailMBB.succ_size() <= 1)
1166 continue;
1168 auto EdgeFreq = EdgeFreqLs.begin();
1170 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1171 SuccI != SuccE; ++SuccI, ++EdgeFreq)
1172 *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1175 MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1177 if (TailMBB.succ_size() <= 1)
1178 return;
1180 auto SumEdgeFreq =
1181 std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1182 .getFrequency();
1183 auto EdgeFreq = EdgeFreqLs.begin();
1185 if (SumEdgeFreq > 0) {
1186 for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1187 SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1188 auto Prob = BranchProbability::getBranchProbability(
1189 EdgeFreq->getFrequency(), SumEdgeFreq);
1190 TailMBB.setSuccProbability(SuccI, Prob);
1195 //===----------------------------------------------------------------------===//
1196 // Branch Optimization
1197 //===----------------------------------------------------------------------===//
1199 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1200 bool MadeChange = false;
1202 // Make sure blocks are numbered in order
1203 MF.RenumberBlocks();
1204 // Renumbering blocks alters EH scope membership, recalculate it.
1205 EHScopeMembership = getEHScopeMembership(MF);
1207 for (MachineBasicBlock &MBB :
1208 llvm::make_early_inc_range(llvm::drop_begin(MF))) {
1209 MadeChange |= OptimizeBlock(&MBB);
1211 // If it is dead, remove it.
1212 if (MBB.pred_empty() && !MBB.isMachineBlockAddressTaken()) {
1213 RemoveDeadBlock(&MBB);
1214 MadeChange = true;
1215 ++NumDeadBlocks;
1219 return MadeChange;
1222 // Blocks should be considered empty if they contain only debug info;
1223 // else the debug info would affect codegen.
1224 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1225 return MBB->getFirstNonDebugInstr(true) == MBB->end();
1228 // Blocks with only debug info and branches should be considered the same
1229 // as blocks with only branches.
1230 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1231 MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1232 assert(I != MBB->end() && "empty block!");
1233 return I->isBranch();
1236 /// IsBetterFallthrough - Return true if it would be clearly better to
1237 /// fall-through to MBB1 than to fall through into MBB2. This has to return
1238 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1239 /// result in infinite loops.
1240 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1241 MachineBasicBlock *MBB2) {
1242 assert(MBB1 && MBB2 && "Unknown MachineBasicBlock");
1244 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
1245 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
1246 // optimize branches that branch to either a return block or an assert block
1247 // into a fallthrough to the return.
1248 MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1249 MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1250 if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1251 return false;
1253 // If there is a clear successor ordering we make sure that one block
1254 // will fall through to the next
1255 if (MBB1->isSuccessor(MBB2)) return true;
1256 if (MBB2->isSuccessor(MBB1)) return false;
1258 return MBB2I->isCall() && !MBB1I->isCall();
1261 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1262 /// instructions on the block.
1263 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1264 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1265 if (I != MBB.end() && I->isBranch())
1266 return I->getDebugLoc();
1267 return DebugLoc();
1270 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1271 MachineBasicBlock &MBB,
1272 MachineBasicBlock &PredMBB) {
1273 auto InsertBefore = PredMBB.getFirstTerminator();
1274 for (MachineInstr &MI : MBB.instrs())
1275 if (MI.isDebugInstr()) {
1276 TII->duplicate(PredMBB, InsertBefore, MI);
1277 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1278 << MI);
1282 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1283 MachineBasicBlock &MBB,
1284 MachineBasicBlock &SuccMBB) {
1285 auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1286 for (MachineInstr &MI : MBB.instrs())
1287 if (MI.isDebugInstr()) {
1288 TII->duplicate(SuccMBB, InsertBefore, MI);
1289 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1290 << MI);
1294 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1295 // a basic block is removed we would lose the debug information unless we have
1296 // copied the information to a predecessor/successor.
1298 // TODO: This function only handles some simple cases. An alternative would be
1299 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1300 // branch folding.
1301 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1302 MachineBasicBlock &MBB) {
1303 assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1304 // If this MBB is the only predecessor of a successor it is legal to copy
1305 // DBG_VALUE instructions to the beginning of the successor.
1306 for (MachineBasicBlock *SuccBB : MBB.successors())
1307 if (SuccBB->pred_size() == 1)
1308 copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1309 // If this MBB is the only successor of a predecessor it is legal to copy the
1310 // DBG_VALUE instructions to the end of the predecessor (just before the
1311 // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1312 for (MachineBasicBlock *PredBB : MBB.predecessors())
1313 if (PredBB->succ_size() == 1)
1314 copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1317 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1318 bool MadeChange = false;
1319 MachineFunction &MF = *MBB->getParent();
1320 ReoptimizeBlock:
1322 MachineFunction::iterator FallThrough = MBB->getIterator();
1323 ++FallThrough;
1325 // Make sure MBB and FallThrough belong to the same EH scope.
1326 bool SameEHScope = true;
1327 if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1328 auto MBBEHScope = EHScopeMembership.find(MBB);
1329 assert(MBBEHScope != EHScopeMembership.end());
1330 auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1331 assert(FallThroughEHScope != EHScopeMembership.end());
1332 SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1335 // Analyze the branch in the current block. As a side-effect, this may cause
1336 // the block to become empty.
1337 MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1338 SmallVector<MachineOperand, 4> CurCond;
1339 bool CurUnAnalyzable =
1340 TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1342 // If this block is empty, make everyone use its fall-through, not the block
1343 // explicitly. Landing pads should not do this since the landing-pad table
1344 // points to this block. Blocks with their addresses taken shouldn't be
1345 // optimized away.
1346 if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1347 SameEHScope) {
1348 salvageDebugInfoFromEmptyBlock(TII, *MBB);
1349 // Dead block? Leave for cleanup later.
1350 if (MBB->pred_empty()) return MadeChange;
1352 if (FallThrough == MF.end()) {
1353 // TODO: Simplify preds to not branch here if possible!
1354 } else if (FallThrough->isEHPad()) {
1355 // Don't rewrite to a landing pad fallthough. That could lead to the case
1356 // where a BB jumps to more than one landing pad.
1357 // TODO: Is it ever worth rewriting predecessors which don't already
1358 // jump to a landing pad, and so can safely jump to the fallthrough?
1359 } else if (MBB->isSuccessor(&*FallThrough)) {
1360 // Rewrite all predecessors of the old block to go to the fallthrough
1361 // instead.
1362 while (!MBB->pred_empty()) {
1363 MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1364 Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1366 // Add rest successors of MBB to successors of FallThrough. Those
1367 // successors are not directly reachable via MBB, so it should be
1368 // landing-pad.
1369 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
1370 if (*SI != &*FallThrough && !FallThrough->isSuccessor(*SI)) {
1371 assert((*SI)->isEHPad() && "Bad CFG");
1372 FallThrough->copySuccessor(MBB, SI);
1374 // If MBB was the target of a jump table, update jump tables to go to the
1375 // fallthrough instead.
1376 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1377 MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1378 MadeChange = true;
1380 return MadeChange;
1383 // Check to see if we can simplify the terminator of the block before this
1384 // one.
1385 MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1387 MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1388 SmallVector<MachineOperand, 4> PriorCond;
1389 bool PriorUnAnalyzable =
1390 TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1391 if (!PriorUnAnalyzable) {
1392 // If the previous branch is conditional and both conditions go to the same
1393 // destination, remove the branch, replacing it with an unconditional one or
1394 // a fall-through.
1395 if (PriorTBB && PriorTBB == PriorFBB) {
1396 DebugLoc dl = getBranchDebugLoc(PrevBB);
1397 TII->removeBranch(PrevBB);
1398 PriorCond.clear();
1399 if (PriorTBB != MBB)
1400 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1401 MadeChange = true;
1402 ++NumBranchOpts;
1403 goto ReoptimizeBlock;
1406 // If the previous block unconditionally falls through to this block and
1407 // this block has no other predecessors, move the contents of this block
1408 // into the prior block. This doesn't usually happen when SimplifyCFG
1409 // has been used, but it can happen if tail merging splits a fall-through
1410 // predecessor of a block.
1411 // This has to check PrevBB->succ_size() because EH edges are ignored by
1412 // analyzeBranch.
1413 if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1414 PrevBB.succ_size() == 1 && PrevBB.isSuccessor(MBB) &&
1415 !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1416 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1417 << "From MBB: " << *MBB);
1418 // Remove redundant DBG_VALUEs first.
1419 if (!PrevBB.empty()) {
1420 MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1421 --PrevBBIter;
1422 MachineBasicBlock::iterator MBBIter = MBB->begin();
1423 // Check if DBG_VALUE at the end of PrevBB is identical to the
1424 // DBG_VALUE at the beginning of MBB.
1425 while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1426 && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1427 if (!MBBIter->isIdenticalTo(*PrevBBIter))
1428 break;
1429 MachineInstr &DuplicateDbg = *MBBIter;
1430 ++MBBIter; -- PrevBBIter;
1431 DuplicateDbg.eraseFromParent();
1434 PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1435 PrevBB.removeSuccessor(PrevBB.succ_begin());
1436 assert(PrevBB.succ_empty());
1437 PrevBB.transferSuccessors(MBB);
1438 MadeChange = true;
1439 return MadeChange;
1442 // If the previous branch *only* branches to *this* block (conditional or
1443 // not) remove the branch.
1444 if (PriorTBB == MBB && !PriorFBB) {
1445 TII->removeBranch(PrevBB);
1446 MadeChange = true;
1447 ++NumBranchOpts;
1448 goto ReoptimizeBlock;
1451 // If the prior block branches somewhere else on the condition and here if
1452 // the condition is false, remove the uncond second branch.
1453 if (PriorFBB == MBB) {
1454 DebugLoc dl = getBranchDebugLoc(PrevBB);
1455 TII->removeBranch(PrevBB);
1456 TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1457 MadeChange = true;
1458 ++NumBranchOpts;
1459 goto ReoptimizeBlock;
1462 // If the prior block branches here on true and somewhere else on false, and
1463 // if the branch condition is reversible, reverse the branch to create a
1464 // fall-through.
1465 if (PriorTBB == MBB) {
1466 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1467 if (!TII->reverseBranchCondition(NewPriorCond)) {
1468 DebugLoc dl = getBranchDebugLoc(PrevBB);
1469 TII->removeBranch(PrevBB);
1470 TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1471 MadeChange = true;
1472 ++NumBranchOpts;
1473 goto ReoptimizeBlock;
1477 // If this block has no successors (e.g. it is a return block or ends with
1478 // a call to a no-return function like abort or __cxa_throw) and if the pred
1479 // falls through into this block, and if it would otherwise fall through
1480 // into the block after this, move this block to the end of the function.
1482 // We consider it more likely that execution will stay in the function (e.g.
1483 // due to loops) than it is to exit it. This asserts in loops etc, moving
1484 // the assert condition out of the loop body.
1485 if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1486 MachineFunction::iterator(PriorTBB) == FallThrough &&
1487 !MBB->canFallThrough()) {
1488 bool DoTransform = true;
1490 // We have to be careful that the succs of PredBB aren't both no-successor
1491 // blocks. If neither have successors and if PredBB is the second from
1492 // last block in the function, we'd just keep swapping the two blocks for
1493 // last. Only do the swap if one is clearly better to fall through than
1494 // the other.
1495 if (FallThrough == --MF.end() &&
1496 !IsBetterFallthrough(PriorTBB, MBB))
1497 DoTransform = false;
1499 if (DoTransform) {
1500 // Reverse the branch so we will fall through on the previous true cond.
1501 SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1502 if (!TII->reverseBranchCondition(NewPriorCond)) {
1503 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1504 << "To make fallthrough to: " << *PriorTBB << "\n");
1506 DebugLoc dl = getBranchDebugLoc(PrevBB);
1507 TII->removeBranch(PrevBB);
1508 TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1510 // Move this block to the end of the function.
1511 MBB->moveAfter(&MF.back());
1512 MadeChange = true;
1513 ++NumBranchOpts;
1514 return MadeChange;
1520 if (!IsEmptyBlock(MBB)) {
1521 MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1522 if (TII->isUnconditionalTailCall(TailCall)) {
1523 SmallVector<MachineBasicBlock *> PredsChanged;
1524 for (auto &Pred : MBB->predecessors()) {
1525 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1526 SmallVector<MachineOperand, 4> PredCond;
1527 bool PredAnalyzable =
1528 !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1530 // Only eliminate if MBB == TBB (Taken Basic Block)
1531 if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1532 PredTBB != PredFBB) {
1533 // The predecessor has a conditional branch to this block which
1534 // consists of only a tail call. Try to fold the tail call into the
1535 // conditional branch.
1536 if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1537 // TODO: It would be nice if analyzeBranch() could provide a pointer
1538 // to the branch instruction so replaceBranchWithTailCall() doesn't
1539 // have to search for it.
1540 TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1541 PredsChanged.push_back(Pred);
1544 // If the predecessor is falling through to this block, we could reverse
1545 // the branch condition and fold the tail call into that. However, after
1546 // that we might have to re-arrange the CFG to fall through to the other
1547 // block and there is a high risk of regressing code size rather than
1548 // improving it.
1550 if (!PredsChanged.empty()) {
1551 NumTailCalls += PredsChanged.size();
1552 for (auto &Pred : PredsChanged)
1553 Pred->removeSuccessor(MBB);
1555 return true;
1560 if (!CurUnAnalyzable) {
1561 // If this is a two-way branch, and the FBB branches to this block, reverse
1562 // the condition so the single-basic-block loop is faster. Instead of:
1563 // Loop: xxx; jcc Out; jmp Loop
1564 // we want:
1565 // Loop: xxx; jncc Loop; jmp Out
1566 if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1567 SmallVector<MachineOperand, 4> NewCond(CurCond);
1568 if (!TII->reverseBranchCondition(NewCond)) {
1569 DebugLoc dl = getBranchDebugLoc(*MBB);
1570 TII->removeBranch(*MBB);
1571 TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1572 MadeChange = true;
1573 ++NumBranchOpts;
1574 goto ReoptimizeBlock;
1578 // If this branch is the only thing in its block, see if we can forward
1579 // other blocks across it.
1580 if (CurTBB && CurCond.empty() && !CurFBB &&
1581 IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1582 !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1583 DebugLoc dl = getBranchDebugLoc(*MBB);
1584 // This block may contain just an unconditional branch. Because there can
1585 // be 'non-branch terminators' in the block, try removing the branch and
1586 // then seeing if the block is empty.
1587 TII->removeBranch(*MBB);
1588 // If the only things remaining in the block are debug info, remove these
1589 // as well, so this will behave the same as an empty block in non-debug
1590 // mode.
1591 if (IsEmptyBlock(MBB)) {
1592 // Make the block empty, losing the debug info (we could probably
1593 // improve this in some cases.)
1594 MBB->erase(MBB->begin(), MBB->end());
1596 // If this block is just an unconditional branch to CurTBB, we can
1597 // usually completely eliminate the block. The only case we cannot
1598 // completely eliminate the block is when the block before this one
1599 // falls through into MBB and we can't understand the prior block's branch
1600 // condition.
1601 if (MBB->empty()) {
1602 bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1603 if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1604 !PrevBB.isSuccessor(MBB)) {
1605 // If the prior block falls through into us, turn it into an
1606 // explicit branch to us to make updates simpler.
1607 if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1608 PriorTBB != MBB && PriorFBB != MBB) {
1609 if (!PriorTBB) {
1610 assert(PriorCond.empty() && !PriorFBB &&
1611 "Bad branch analysis");
1612 PriorTBB = MBB;
1613 } else {
1614 assert(!PriorFBB && "Machine CFG out of date!");
1615 PriorFBB = MBB;
1617 DebugLoc pdl = getBranchDebugLoc(PrevBB);
1618 TII->removeBranch(PrevBB);
1619 TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1622 // Iterate through all the predecessors, revectoring each in-turn.
1623 size_t PI = 0;
1624 bool DidChange = false;
1625 bool HasBranchToSelf = false;
1626 while(PI != MBB->pred_size()) {
1627 MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1628 if (PMBB == MBB) {
1629 // If this block has an uncond branch to itself, leave it.
1630 ++PI;
1631 HasBranchToSelf = true;
1632 } else {
1633 DidChange = true;
1634 PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1635 // Add rest successors of MBB to successors of CurTBB. Those
1636 // successors are not directly reachable via MBB, so it should be
1637 // landing-pad.
1638 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE;
1639 ++SI)
1640 if (*SI != CurTBB && !CurTBB->isSuccessor(*SI)) {
1641 assert((*SI)->isEHPad() && "Bad CFG");
1642 CurTBB->copySuccessor(MBB, SI);
1644 // If this change resulted in PMBB ending in a conditional
1645 // branch where both conditions go to the same destination,
1646 // change this to an unconditional branch.
1647 MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1648 SmallVector<MachineOperand, 4> NewCurCond;
1649 bool NewCurUnAnalyzable = TII->analyzeBranch(
1650 *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1651 if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1652 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1653 TII->removeBranch(*PMBB);
1654 NewCurCond.clear();
1655 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1656 MadeChange = true;
1657 ++NumBranchOpts;
1662 // Change any jumptables to go to the new MBB.
1663 if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1664 MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1665 if (DidChange) {
1666 ++NumBranchOpts;
1667 MadeChange = true;
1668 if (!HasBranchToSelf) return MadeChange;
1673 // Add the branch back if the block is more than just an uncond branch.
1674 TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1678 // If the prior block doesn't fall through into this block, and if this
1679 // block doesn't fall through into some other block, see if we can find a
1680 // place to move this block where a fall-through will happen.
1681 if (!PrevBB.canFallThrough()) {
1682 // Now we know that there was no fall-through into this block, check to
1683 // see if it has a fall-through into its successor.
1684 bool CurFallsThru = MBB->canFallThrough();
1686 if (!MBB->isEHPad()) {
1687 // Check all the predecessors of this block. If one of them has no fall
1688 // throughs, and analyzeBranch thinks it _could_ fallthrough to this
1689 // block, move this block right after it.
1690 for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1691 // Analyze the branch at the end of the pred.
1692 MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1693 SmallVector<MachineOperand, 4> PredCond;
1694 if (PredBB != MBB && !PredBB->canFallThrough() &&
1695 !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1696 (PredTBB == MBB || PredFBB == MBB) &&
1697 (!CurFallsThru || !CurTBB || !CurFBB) &&
1698 (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1699 // If the current block doesn't fall through, just move it.
1700 // If the current block can fall through and does not end with a
1701 // conditional branch, we need to append an unconditional jump to
1702 // the (current) next block. To avoid a possible compile-time
1703 // infinite loop, move blocks only backward in this case.
1704 // Also, if there are already 2 branches here, we cannot add a third;
1705 // this means we have the case
1706 // Bcc next
1707 // B elsewhere
1708 // next:
1709 if (CurFallsThru) {
1710 MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1711 CurCond.clear();
1712 TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1714 MBB->moveAfter(PredBB);
1715 MadeChange = true;
1716 goto ReoptimizeBlock;
1721 if (!CurFallsThru) {
1722 // Check analyzable branch-successors to see if we can move this block
1723 // before one.
1724 if (!CurUnAnalyzable) {
1725 for (MachineBasicBlock *SuccBB : {CurFBB, CurTBB}) {
1726 if (!SuccBB)
1727 continue;
1728 // Analyze the branch at the end of the block before the succ.
1729 MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1731 // If this block doesn't already fall-through to that successor, and
1732 // if the succ doesn't already have a block that can fall through into
1733 // it, we can arrange for the fallthrough to happen.
1734 if (SuccBB != MBB && &*SuccPrev != MBB &&
1735 !SuccPrev->canFallThrough()) {
1736 MBB->moveBefore(SuccBB);
1737 MadeChange = true;
1738 goto ReoptimizeBlock;
1743 // Okay, there is no really great place to put this block. If, however,
1744 // the block before this one would be a fall-through if this block were
1745 // removed, move this block to the end of the function. There is no real
1746 // advantage in "falling through" to an EH block, so we don't want to
1747 // perform this transformation for that case.
1749 // Also, Windows EH introduced the possibility of an arbitrary number of
1750 // successors to a given block. The analyzeBranch call does not consider
1751 // exception handling and so we can get in a state where a block
1752 // containing a call is followed by multiple EH blocks that would be
1753 // rotated infinitely at the end of the function if the transformation
1754 // below were performed for EH "FallThrough" blocks. Therefore, even if
1755 // that appears not to be happening anymore, we should assume that it is
1756 // possible and not remove the "!FallThrough()->isEHPad" condition below.
1757 MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1758 SmallVector<MachineOperand, 4> PrevCond;
1759 if (FallThrough != MF.end() &&
1760 !FallThrough->isEHPad() &&
1761 !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1762 PrevBB.isSuccessor(&*FallThrough)) {
1763 MBB->moveAfter(&MF.back());
1764 MadeChange = true;
1765 return MadeChange;
1770 return MadeChange;
1773 //===----------------------------------------------------------------------===//
1774 // Hoist Common Code
1775 //===----------------------------------------------------------------------===//
1777 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1778 bool MadeChange = false;
1779 for (MachineBasicBlock &MBB : llvm::make_early_inc_range(MF))
1780 MadeChange |= HoistCommonCodeInSuccs(&MBB);
1782 return MadeChange;
1785 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1786 /// its 'true' successor.
1787 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1788 MachineBasicBlock *TrueBB) {
1789 for (MachineBasicBlock *SuccBB : BB->successors())
1790 if (SuccBB != TrueBB)
1791 return SuccBB;
1792 return nullptr;
1795 template <class Container>
1796 static void addRegAndItsAliases(Register Reg, const TargetRegisterInfo *TRI,
1797 Container &Set) {
1798 if (Reg.isPhysical()) {
1799 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1800 Set.insert(*AI);
1801 } else {
1802 Set.insert(Reg);
1806 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1807 /// in successors to. The location is usually just before the terminator,
1808 /// however if the terminator is a conditional branch and its previous
1809 /// instruction is the flag setting instruction, the previous instruction is
1810 /// the preferred location. This function also gathers uses and defs of the
1811 /// instructions from the insertion point to the end of the block. The data is
1812 /// used by HoistCommonCodeInSuccs to ensure safety.
1813 static
1814 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1815 const TargetInstrInfo *TII,
1816 const TargetRegisterInfo *TRI,
1817 SmallSet<Register, 4> &Uses,
1818 SmallSet<Register, 4> &Defs) {
1819 MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1820 if (!TII->isUnpredicatedTerminator(*Loc))
1821 return MBB->end();
1823 for (const MachineOperand &MO : Loc->operands()) {
1824 if (!MO.isReg())
1825 continue;
1826 Register Reg = MO.getReg();
1827 if (!Reg)
1828 continue;
1829 if (MO.isUse()) {
1830 addRegAndItsAliases(Reg, TRI, Uses);
1831 } else {
1832 if (!MO.isDead())
1833 // Don't try to hoist code in the rare case the terminator defines a
1834 // register that is later used.
1835 return MBB->end();
1837 // If the terminator defines a register, make sure we don't hoist
1838 // the instruction whose def might be clobbered by the terminator.
1839 addRegAndItsAliases(Reg, TRI, Defs);
1843 if (Uses.empty())
1844 return Loc;
1845 // If the terminator is the only instruction in the block and Uses is not
1846 // empty (or we would have returned above), we can still safely hoist
1847 // instructions just before the terminator as long as the Defs/Uses are not
1848 // violated (which is checked in HoistCommonCodeInSuccs).
1849 if (Loc == MBB->begin())
1850 return Loc;
1852 // The terminator is probably a conditional branch, try not to separate the
1853 // branch from condition setting instruction.
1854 MachineBasicBlock::iterator PI = prev_nodbg(Loc, MBB->begin());
1856 bool IsDef = false;
1857 for (const MachineOperand &MO : PI->operands()) {
1858 // If PI has a regmask operand, it is probably a call. Separate away.
1859 if (MO.isRegMask())
1860 return Loc;
1861 if (!MO.isReg() || MO.isUse())
1862 continue;
1863 Register Reg = MO.getReg();
1864 if (!Reg)
1865 continue;
1866 if (Uses.count(Reg)) {
1867 IsDef = true;
1868 break;
1871 if (!IsDef)
1872 // The condition setting instruction is not just before the conditional
1873 // branch.
1874 return Loc;
1876 // Be conservative, don't insert instruction above something that may have
1877 // side-effects. And since it's potentially bad to separate flag setting
1878 // instruction from the conditional branch, just abort the optimization
1879 // completely.
1880 // Also avoid moving code above predicated instruction since it's hard to
1881 // reason about register liveness with predicated instruction.
1882 bool DontMoveAcrossStore = true;
1883 if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1884 return MBB->end();
1886 // Find out what registers are live. Note this routine is ignoring other live
1887 // registers which are only used by instructions in successor blocks.
1888 for (const MachineOperand &MO : PI->operands()) {
1889 if (!MO.isReg())
1890 continue;
1891 Register Reg = MO.getReg();
1892 if (!Reg)
1893 continue;
1894 if (MO.isUse()) {
1895 addRegAndItsAliases(Reg, TRI, Uses);
1896 } else {
1897 if (Uses.erase(Reg)) {
1898 if (Reg.isPhysical()) {
1899 for (MCPhysReg SubReg : TRI->subregs(Reg))
1900 Uses.erase(SubReg); // Use sub-registers to be conservative
1903 addRegAndItsAliases(Reg, TRI, Defs);
1907 return PI;
1910 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1911 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1912 SmallVector<MachineOperand, 4> Cond;
1913 if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1914 return false;
1916 if (!FBB) FBB = findFalseBlock(MBB, TBB);
1917 if (!FBB)
1918 // Malformed bcc? True and false blocks are the same?
1919 return false;
1921 // Restrict the optimization to cases where MBB is the only predecessor,
1922 // it is an obvious win.
1923 if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1924 return false;
1926 // Find a suitable position to hoist the common instructions to. Also figure
1927 // out which registers are used or defined by instructions from the insertion
1928 // point to the end of the block.
1929 SmallSet<Register, 4> Uses, Defs;
1930 MachineBasicBlock::iterator Loc =
1931 findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1932 if (Loc == MBB->end())
1933 return false;
1935 bool HasDups = false;
1936 SmallSet<Register, 4> ActiveDefsSet, AllDefsSet;
1937 MachineBasicBlock::iterator TIB = TBB->begin();
1938 MachineBasicBlock::iterator FIB = FBB->begin();
1939 MachineBasicBlock::iterator TIE = TBB->end();
1940 MachineBasicBlock::iterator FIE = FBB->end();
1941 while (TIB != TIE && FIB != FIE) {
1942 // Skip dbg_value instructions. These do not count.
1943 TIB = skipDebugInstructionsForward(TIB, TIE, false);
1944 FIB = skipDebugInstructionsForward(FIB, FIE, false);
1945 if (TIB == TIE || FIB == FIE)
1946 break;
1948 if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1949 break;
1951 if (TII->isPredicated(*TIB))
1952 // Hard to reason about register liveness with predicated instruction.
1953 break;
1955 bool IsSafe = true;
1956 for (MachineOperand &MO : TIB->operands()) {
1957 // Don't attempt to hoist instructions with register masks.
1958 if (MO.isRegMask()) {
1959 IsSafe = false;
1960 break;
1962 if (!MO.isReg())
1963 continue;
1964 Register Reg = MO.getReg();
1965 if (!Reg)
1966 continue;
1967 if (MO.isDef()) {
1968 if (Uses.count(Reg)) {
1969 // Avoid clobbering a register that's used by the instruction at
1970 // the point of insertion.
1971 IsSafe = false;
1972 break;
1975 if (Defs.count(Reg) && !MO.isDead()) {
1976 // Don't hoist the instruction if the def would be clobber by the
1977 // instruction at the point insertion. FIXME: This is overly
1978 // conservative. It should be possible to hoist the instructions
1979 // in BB2 in the following example:
1980 // BB1:
1981 // r1, eflag = op1 r2, r3
1982 // brcc eflag
1984 // BB2:
1985 // r1 = op2, ...
1986 // = op3, killed r1
1987 IsSafe = false;
1988 break;
1990 } else if (!ActiveDefsSet.count(Reg)) {
1991 if (Defs.count(Reg)) {
1992 // Use is defined by the instruction at the point of insertion.
1993 IsSafe = false;
1994 break;
1997 if (MO.isKill() && Uses.count(Reg))
1998 // Kills a register that's read by the instruction at the point of
1999 // insertion. Remove the kill marker.
2000 MO.setIsKill(false);
2003 if (!IsSafe)
2004 break;
2006 bool DontMoveAcrossStore = true;
2007 if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
2008 break;
2010 // Remove kills from ActiveDefsSet, these registers had short live ranges.
2011 for (const MachineOperand &MO : TIB->all_uses()) {
2012 if (!MO.isKill())
2013 continue;
2014 Register Reg = MO.getReg();
2015 if (!Reg)
2016 continue;
2017 if (!AllDefsSet.count(Reg)) {
2018 continue;
2020 if (Reg.isPhysical()) {
2021 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2022 ActiveDefsSet.erase(*AI);
2023 } else {
2024 ActiveDefsSet.erase(Reg);
2028 // Track local defs so we can update liveins.
2029 for (const MachineOperand &MO : TIB->all_defs()) {
2030 if (MO.isDead())
2031 continue;
2032 Register Reg = MO.getReg();
2033 if (!Reg || Reg.isVirtual())
2034 continue;
2035 addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2036 addRegAndItsAliases(Reg, TRI, AllDefsSet);
2039 HasDups = true;
2040 ++TIB;
2041 ++FIB;
2044 if (!HasDups)
2045 return false;
2047 MBB->splice(Loc, TBB, TBB->begin(), TIB);
2048 FBB->erase(FBB->begin(), FIB);
2050 if (UpdateLiveIns) {
2051 bool anyChange = false;
2052 do {
2053 anyChange = recomputeLiveIns(*TBB) || recomputeLiveIns(*FBB);
2054 } while (anyChange);
2057 ++NumHoist;
2058 return true;